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A Texture Superpixel Approach to Semantic Material Classification for
Acoustic Geometry Tagging

The current state of audio rendering algorithms allows efficient sound propagation, reflecting realistic acoustic properties of real
environments. Among factors affecting realism of acoustic simulations is the mapping between an environment’s geometry, and
acoustic information of materials represented. We present a pipeline to infer material characteristics from their visual representations,
providing an automated mapping. A trained image classifier estimates semantic material information from textured meshes mapping
predicted labels to a database of measured frequency-dependent absorption coefficients; trained on a material image patches generated
from superpixels, it produces inference from meshes, decomposing their unwrapped textures. The most frequent label from predicted
texture patches determines the acoustic material assigned to the input mesh. We test the pipeline on a real environment, capturing a
conference room and reconstructing its geometry from point cloud data. We estimate a Room Impulse Response (RIR) of the virtual
environment, which we compare against a measured counterpart.
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1 INTRODUCTION

The realism of digital media has increased in recent years thanks to recent advances in computer games technology [28].
Sound describes entities with respect to the acoustic environment they exist in. As listener in a sound transmission, the
human auditory system is aware of acoustic characteristics manifesting in auditory cues, which enable spatial hearing
abilities such as sound localisation aiding interaction tasks with objects in the world. Intrinsic acoustic characteristics
are dependent on the sound transmission’s wavefield, dictated by structural properties of the environments associated
with boundaries and materials, as they interact with sound propagating to the listener’s ears. Acoustic rendering
methods simulate real or virtual auditory environments by deriving from sound propagation algorithms that discretise
the geometrical representation of an environment to synthesise a wavefield. They render spatialised sound adopting
signal processing chains to reproduce realistic sound transmission in the simulated wavefield, considering the listener’s
position, orientation and their physical characteristics, described by Head-Related Transfer Function (HRTF) [15].

In Virtual Environments (VEs), acoustic rendering can reproduce spatial hearing abilities [21], supporting architectural
acoustics, cultural heritage [4, 32], and computer games [24, 27] to build compelling, realistic acoustic simulations.
Recent advances in wavefield synthesis have made it easier and computationally feasible to apply to VEs [2, 27]. They
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draw on geometrical acoustics, wave-based or hybrid sound propagation algorithms, simulating sound propagation by
tracing rays or beams [15]; solving the wave equations at discretised junctures of the representation of the environment
or by a combination of the former techniques. They enable game designers to apply realistic, spatialised audio to games.
However, the accuracy of the acoustic simulation depends on material information assigned to the scene geometry.
The scene geometry, tagged with frequency-dependent absorption and scattering information, determines how sound
behaves in space and affects the resulting wavefield. In games development, the process of tagging materials with
appropriate acoustic data often requires the work of experts, raising costs and resources needs for large scenes.

Advances in acoustic modelling propose automatic tagging of acoustic data to scene geometry using convolutional
neural networks to tag acoustic materials from stereo photographs of real environments [19]. Alternatively, using a
recent camera-based material tagging system tags geometry in VEs, applying scene understanding algorithms and
filtering complex geometry based on its perceptual impact on the resulting acoustic model [7]. At the core of these
methods lies the problem of scene segmentation. In computer games, often, a set of meshes composes a scene, where
each mesh represents an object in the scene. Acoustic materials are often assigned to all triangles composing a given
mesh, allowing audio engineers to group scene geometry when assigning acoustic data. Hence, the resulting acoustic
model’s accuracy depends on the separation of the geometry, where ideal conditions would have each triangle mapped
to its specific acoustic data. A naive approach would have the entire geometry mapping to a single acoustic material.
Besides, the representation of materials in real and virtual environments adds further dimensions to the material tagging
problem due to complex links between the visual representation of materials of an object and its perceptual effects on
the soundscape of the environments in which it exists [5].

Here, we propose a novel architecture for tagging acoustic material in virtual environments, which improves upon
recent work by abstracting away from camera-based systems and tests vision-based material recognition methods in
real environments. Despite the significant progress made in sound propagation over the last decades, there are still
many limitations in simulations for indoor and outdoor environments due to the complexity of the factors that describe
a wavefield [20]. The contributions of this paper are:

• an improvement in the application of acoustic rendering to virtual environments;
• a novel architecture for recognising materials from textured meshes in complex scenes reducing the need for
manual tagging of acoustic materials;

• an objective evaluation of the architecture conducted on a virtual reconstruction of a real conference room.

2 RELATEDWORK

The following section provides an overview of the current state of acoustic rendering systems for virtual environments,
as well as a review on methods for recognising material from visual representations.

2.1 Acoustic Rendering

Spatial sound has been shown to be influential in having a significant effect on the sense of presence and immersion for
a user in a VE [26]. Factors of accurate and plausible acoustic rendering include geometry, material definitions and a
room impulse which describes the attenuation of sound from a sound source to a listener and there exist approaches that
tackle varying aspects of these factors. Kim et al. [16] introduced the first approach to geometry estimation using scene
understanding inferring acoustic characteristics from visual representations of environments. Their pipeline identifies
isotropic features in synthesised directional impulse responses, expressed as independent parameters considering
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direction, time of arrival and spatial information of the sound source with respect to the listener’s position. Li et al. [19]
identify a novel method for acoustic simulations using convolutional neural networks to perform acoustic analysis
on videos, veering away from more formal 3D scene definition. This approach synthesises RIRs for environments’
representations from audio-visual scenes. Tang et al. [23] present a model for simulating sound fields using neural
networks without pre-computing the wave field of an acoustic environment, predicting unseen objects with arbitrary
shapes in a VE for sound propagation at interactive rates. They train a geometrical neural network on annotated meshes
to infer acoustic data associated with the represented object.

A common denominator in the sound rendering methods mentioned is the problem of mapping visual representation
of environments to corresponding acoustic materials, which intersects image processing and computer vision domains
aimed at modelling how human vision recognise materials.

2.2 Material Recognition

Recent developments in deep learning techniques have contributed to a dramatic accuracy increase in tasks such
as image classification. Specifically, convolutional neural networks have been broadly adopted to learning functions
mapping between image data and various semantic descriptors, such as local object classes [22], perceptual sensitivity
[11], or subjective quality [6]. For example, Lagunas et al. [18], present a method to learn similarities between materials
based on their appearance and distinguish them in a feature space, informed by human perception. They describe
mappings between subjective perception and physical material parameters. This is a challenging task due to the impact
of low-level properties, such illumination and reflectance on the appearance of materials. The authors address this
problem using deep features learned by a neural network trained on a bespoke dataset, annotated with around about
100 classes of materials, captured under different conditions, including surface shape, illuminance and reflectance,
expressed by environment maps and bidirectional reflectance distribution functions. In a subjective study they encode
materials in a perceptually-informed feature space, allowing for calculation of perceptual distances. Semi-supervised
approaches have also been adopted in tackling such problems. For example, Gaur and Manjunath [12] propose a novel
deep learning architecture to cluster materials from a given dataset, improving state-of-the-art superpixel algorithms
by combining segmentation of images into perceptually meaningful pixel clusters with a novel unsupervised clustering
method based on superpixel embeddings. A novel loss function uses a variable-margin that compensates the limitations
of classic superpixel algorithms in segmenting texture patterns, allowing the convolutional neural network to cluster
superpixel labels based on their embeddings requiring no manual supervision or annotations.

Approaches like these have demonstrated the efficacy of deep learning techniques for learning complex nonlinear
mappings directly from annotated image data. This work leverages and adapts such techniques for the purpose of local
material classification, allowing for the first step in mapping from image features to acoustic absorption coefficients.

3 METHOD

3.1 System Overview

We present a method for processing scene geometry generating acoustic models by predicting materials of objects
composing complex scenes. A breakdown of the system shown in Figure 1 illustrates how visual representations of the
environment maps to acoustic data used by sound renderers to model sound propagation in the scene.
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Fig. 1. Overview of the system’s workflow for inference: We extract superpixels from a set of textures associated with meshes in a
virtual environment to subdivide materials represented into patches which provide input for a feature extractor. A classifier assigns a
label to each patch, based on its embeddings, mapping it to measurements of the corresponding material in an acoustic database. The
resulting tagging process associates such information to meshes.

3.2 Material Recognition

According to [29], small image patches contain enough information to distinguish materials and hence, we decompose
input image textures into small image patches.

3.2.1 Training. We determine the visual material space by applying transfer learning to the OpenSurfaces dataset [3],
which comprises 36 classes of surface photographs. The SLIC algorithm [1] segments input surface photographs into a
set of superpixel labels, which determine regions correlated with boundaries of objects. From these resulting superpixel
labels, we then generate rectified image patches encapsulating their contours through edge detection [10]. The rectified
image patches are fed through a ResNet50 [13], used as a feature extractor for a classification network using a standard
fully connected layer to predict class labels based on embeddings of 32x32 pixel input patches. We train the network on
13677819 input patches, composing a train set of about 9.1M images and an evaluation set of about 4.5M, adopting
the standard Adam optimiser [17] to update the weights initialised from the ImageNet dataset [9]. The model usually
converges in 45 epochs with a training and validation accuracy of about 0.94 and 0.83 respectively.

3.2.2 Inference. Given the set of textured meshes in a scene, we unwrap textures as images to predict materials
represented. The trained ResNet50 extracts features from input image textures in complex scenes, whose embeddings
enable the classifier to predict class labels associated with each input superpixels. The most frequent prediction maps
to an acoustic measurement database, defining the output acoustic material.On average, the classifier takes 11.2𝑠 to
determine the acoustic material for a given mesh, see Figure 2, divided in 3.8𝑠 for generating rectified patches and 7.3𝑠
to extract features and compute the mapping.
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(a) An input image texture with superimposed
superpixel labels.

(b) A histogram of predicted material labels based on input patches
generated from superpixel labels.

Fig. 2. Example of material recognition applied on a texture from a given mesh, left image. Our system generates image patches
using superpixel labels, predicting several material classes and selecting the most frequent prediction.

3.3 Acoustic Mapping

Material labels inferred from textures are associated with acoustic measurements of absorption coefficients. For every
label, a one-to-many mapping groups measurements of the given material. Following the methodology in [16], we use
median frequency-dependent values to determine acoustic absorption, defining acoustic materials. A single acoustic
material maps to each given mesh, associating a vector of acoustic absorption coefficients to its triangles, determining
the overall acoustic mapping accuracy to depend upon the mesh separation of the scene geometry. In the example
texture shown in Figure 2b, “Tile” defines the acoustic material, as per predictions shown in Figure 2a.

4 EXPERIMENTAL EVALUATION METHODOLOGY

We compare acoustic models estimated with state-of-the-art wave-based audio renderers, testing whether the proposed
system for the automatic tagging of scene geometry has a significant impact on the resulting acoustic model. The
experimental evaluation uses a real environment as a benchmark for testing how predicted models express acoustic
parameters of measurable space.

4.1 Scene Geometry Reconstruction

Wavefields are simulated from a real conference room that is 3.5346𝑚 deep, 2.8367𝑚 wide and 3.5149𝑚 tall. Theoretically,
the dimensions determine a Schroeder frequency of 261𝐻𝑧. The room is reconstructed using the Unity game engine
with 2.9𝑀 of triangles and 6.6𝑀 vertices. We reconstruct the geometry of a conference room to deploy the proposed
system on a real environment and conduct the subsequent subjective experimental evaluation. We adopt a LiDAR
scanner, FARO Focus3D X300, to capture several point clouds scans of the room across 8 positions: 4 position points for
each corner of the room at about 1𝑚 height and 4 additional positions at about 0.2𝑚 height to capture furniture and
materials from different angles and enhance the spatial resolution.
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Fig. 3. Real environment used for the experimental evaluation: on the left, a picture of a conference room; on the middle, a point cloud
recostruction from LiDAR scans; on the right, the environment reconstructed as a set of meshes triangulated from the point cloud
data. The red sphere (middle image) indicates the listener position in the virtual reconstruction used for all acoustic measurements.

4.2 RIR Measurement

The experimental evaluation compares simulated wavefields generated from the reconstructed environment to a sample
measurement of the real counterpart’s wavefield. We compare wavefields using Room Impulse Responses (RIRs) to
describe acoustic properties dependent on geometry and materials surrounding a sound transmission between a source
and a listener [30]. We capture the environments’ acoustic characteristics emitting and recording an exponentially
swept sine, ranging from 20𝐻𝑧 to 20𝑘𝐻𝑧, from a listening to a receiving point that is consistent between the real and
reconstructed environments, see Figure 1. Applying inverse filtering, we recover the RIRs from the captured signal [14].
Given the single listener position, all RIRs are mono.

4.2.1 Real environment. In the conference room, a public address system, the dB Technologies ES 1002, emitted the
exponentially swept sine converted from a laptop using an Audient ID14 DAC and ADC, which captured the signal
back through an omnidirectional measurement microphone, the Earthwork M30.

4.2.2 Reconstructed Environment. With Steam Audio [2], we simulate wavefields of the reconstructed environment.
This allows synthesis of wavefields based on acoustic geometry, considering absorption coefficients expressed across
three frequency bands: low, medium and high. All simulations share the same resolution of 65536 and 16384 direct and
secondary rays, respectively, with 256 bounces off solid geometry. With the same setup, we synthesise three wavefields
with different acoustic materials: the generic with a single acoustic material for the entire scene geometry; the tagged,
with acoustic materials assigned through manual material tagging; and ours, using the proposed automatic tagging.

4.3 Perceptual test

We conduct a perceptual comparison between simulated wavefields at the same positions of source and listener, see
Figure 3, using an automated perceptual metric learned on subjects’ responses [23]. The metric consists of a 14-layer
deep neural network with filters trained on features extracted from paired input audio samples; it expresses a distance
𝐷 (𝑥𝑟𝑒 𝑓 , 𝑥𝑝𝑒𝑟 ) between two input signals, where 𝑥𝑟𝑒 𝑓 is a reference signal, and 𝑥𝑝𝑒𝑟 is a perturbated signal. The function
𝐷 considers factors including reverb and the ratio between direct and reverberated signal. We test whether the metric
expresses a closer perceptual distance between the measured ground truth and the synthesised wavefields, by convolving
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the RIRs to samples from the evaluation subset of a database for acoustic scene classification, which comprises 15
different acoustic environments, generating a total of 18 minutes of audio over 1620 𝑁 samples [25]. The learned metric
determines the distance between the ground truth convolutions and each of the relative simulated RIRs: for each audio
sample 𝑘 in 𝑁 , we determine perceptual distances 𝐷 (𝑥𝑟𝑒 𝑓 ,𝑘 , 𝑥𝑝𝑒𝑟𝑖 ,𝑘 ∀ 𝑖 ∈ {𝑔𝑒𝑛𝑒𝑟𝑖𝑐, 𝑡𝑎𝑔𝑔𝑒𝑑, 𝑜𝑢𝑟𝑠}), where 𝑟𝑒 𝑓 and 𝑝𝑒𝑟𝑖
are the measured and simulated RIRs.

5 RESULTS

5.1 Wave Field Comparison

We compare an artistic material tag, tagged, which assigns acoustic geometry in the scene by applying the methodology
used by game designers when tagging scenes; a generic tag, where all meshes map to a single acoustic material that
expresses 0.1𝛼 acoustic absorption coefficient across all frequency bands; and finally, ours, having meshes mapping to
acoustic materials inferred by proposed system. For each acoustic material, the sound renderer assigns its acoustic
absorption coefficients to all triangles of the corresponding mesh. The system takes around 7 minutes to compute
acoustic materials for the 38 meshes composing the reconstructed environment. Figure 4a shows the magnitude of early
reflections for each acoustic simulation. Note that the ground truth shows distortion errors caused by the constant
noise floor of −55𝑑𝐵 at the time of measurement. Our acoustic simulation marks the fastest decay in reverberation
energy with a 𝑇60 of 0.044𝑠 , computed parameterising the RIRs according to [8]. The ground truth is 0.43𝑠 , and generic
and tagged are respectively 0.054𝑠 and 0.073.

(a) Measured impulse responses from measurements shown as
normalised direct energy of reflections in function of time ℎ (𝑡 ) .

(b) Spectrograms, computed with triangular windows, showing
decay of early reflections across a logarithmic frequency range
from 102𝐻𝑧 to 10𝑘𝐻𝑧.

Fig. 4. A comparison between RIRs measured from a real environment and synthesised wavefields from its reconstruction.

5.2 Perceptual Distance Test

The perceptual metric between the measured ground truth and the synthesised wavefields yields three variables
describing 1620 pairwise distances between the measured and synthesised RIRs, see Table 1. Given the test conditions,
the correlation test uses Pearson r scores to measure the relationship between RIRs with different acoustic geometry.
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Table 1. A table showing Pearson 𝑟 scores for correlation between the simulated wave-fields: tagged, generic and ours.

Generic Tagged Ours
Generic 𝑟 1 0.85 0.854

Sig. (2-tailed) 0 0
Tagged 𝑟 0.85 1 0.96

Sig. (2-tailed) 0 0
Ours 𝑟 0.854 0.96 1

Sig. (2-tailed) 0 0

6 DISCUSSION

Experimental results show correlations between wave-fields generated from geometry that has been automatically
tagged by our material classification system; geometry tagged with a single generic material, and geometry tagged
with human supervision. A preliminary perceptual test shows that tagging the acoustic geometry using a material
classifier mapped to acoustic absorption data can produce acoustic simulations that correlate to their manually tagged
counterparts. As shown in the example of superpixel prediction in Figure 2b, the classifier can recognise many patches
from the input image texture, associating them with labels that visually relate to the material represented, excluding
outliers by selecting the most frequent prediction. In the evaluation, the mesh reconstruction process can introduce noise
to the resulting texture due to the geometrical approximations caused by the point cloud’s triangulation [31]. These
approximations cause artefacts, resulting in incorrectly predicted material labels. While the superpixel segmentation
process excludes these outliers, it prevents the feature extractor from capturing larger structures in the input texture.

The generic and tagged simulations, having a single acoustic material and approximated absorption data, are likely
to subtract less energy from rays, maintaining more energy over late reflections. Hence, the limited number of rays and
more specific acoustic absorption assigned to scene geometry determine shorter reverberation levels in our simulation,
see Figure 4a. According to the spectral analysis shown in Figure 4b, this also causes our simulation to preserve
more harmonic details above 103𝐻𝑧. Overall the experimental evaluation shows that acoustic materials’ assignment
through our system yields results that correlate to artistic material tags. Consequently, the proposed system can
tag acoustic materials in unseen complex scenes, reducing the costs of applications of wave-based methods in VEs.
However, limitations in the test design, such as the single measurement point and the limited set of materials in the real
environment, raise the need for an extended evaluation including different scene scales, i.e. larger rooms or outdoor
environments having more sustained late reflections in their RIRs. Besides, task-based subjective experiments in VEs
with subjects would further define the perceptual impact of acoustic material tagging on acoustic simulations.

7 CONCLUSIONS AND FUTURE DIRECTIONS

We addressed the problem of mapping acoustic absorption data to scene geometry in virtual environments for acoustic
simulations. Methods and frameworks for material recognition have become efficient enough in recognising materials
in the wild with varying factors of illumination, shape and surface characteristics. Despite their limited resolution in
computer games applications, sound propagation systems benefit from acoustic material tagging. With the proposed
system, we aim to integrate material recognition to wave-based methods to determine materials’ acoustic properties. The
next steps of this work aims to extend the system to broader scenes with larger sets of materials as well as improving the
material recognition by performing multi-scale analysis of superpixels and adopting clustering paradigms to overcome
the limitations of finite material space definitions.
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