
applied  
sciences

Article

Human Health Impact Analysis of Contaminant in IoT-Enabled
Water Distributed Networks

Essa Q. Shahra 1,† , Wenyan Wu 1,*,† and Roberto Gomez 2

����������
�������

Citation: Shahra, E.Q.; Wu, W.;

Gomez, R. Human Health Impact

Analysis of Contaminant in

IoT-Enabled Water Distributed

Networks. Appl. Sci. 2021, 11, 3394.

https://doi.org/10.3390/app11083394

Academic Editor: Elida Nora Ferri

Received: 23 February 2021

Accepted: 6 April 2021

Published: 10 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Engineering Department, Faculty of Computing, Engineering and Built Environment, Birmingham City
University, Birmingham B4 7XG, UK; Essa.Shahra@bcu.ac.uk

2 Urban Water Networks Department, TPF Getinsa Eurostudios, 28028 Madrid, Spain;
Roberto.Gomez@tpfingenieria.com

* Correspondence: Wenyan.Wu@bcu.ac.uk; Tel.: +44-121-3004291
† These authors contributed equally to this work.

Abstract: This paper aims to assess and analyze the health impact of consuming contaminated
drinking water in a water distributed system (WDS). The analysis was based on qualitative simulation
performed in two different models named hydraulic and water quality in a WDS. The computation
focuses on quantitative analysis for chemically contaminated water impacts by analyzing the dose
level in various locations in the water network and the mass of the substance that entered the human
body. Several numerical experiments have been applied to evaluate the impact of water pollution
on human life. They analyzed the impact on human life according to various factors, including the
location of the injected node (pollution occurrence) and the ingested dose level. The results show a
significant impact of water contaminant on human life in multiple areas in the water network, and
the level of this impact changed from one location to another in WDSs based on several factors such
as the location of the pollution occurrence, the contaminant concentration, and the dose level. In
order to reduce the impact of this contaminant, water quality sensors have been used and deployed
on the water network to help detect this contaminant. The sensors were optimally deployed based on
the time-detection of water contamination and the volume of polluted water consumed. Numerical
experiments were carried out to compare water pollution’s impact with and without using water
quality sensors. The results show that the health impact was reduced by up to 98.37% by using water
quality sensors.

Keywords: human health analysis; water contamination; water quality model; hydraulic model;
WDS; water quality sensors

1. Introduction

One of the fundamental human rights of all human beings, regardless of their race, na-
tionality, religion, and beliefs, is to have pure and safe drinking water [1]. At a fundamental
level, daily consumption requires a minimum amount of water for survival, and thus access
to a particular form of water is necessary for life [2]. Water has a much more significant
impact on health and well-being. However, concerns in many subjects, such as the quality
and quantity of water supplied, are essential in determining the health of individuals and
entire communities [3]. Water utilities’ fundamental duties are to provide and distribute
water to customers of an acceptable quality, quantity, and pressure through the entire water
distributed system (WDS) [4]. The usable water is at first treated to meet the drinking water
quality standards before delivery [5]. Because of the spatial scale and the high complexity
of water distributed networks, adverse accidental incidents commonly occur. For this
unwanted event, the growth of infectious diseases begins with biological and chemical
contaminants in drinking water [6]. The use of contaminated drinking water and poor
sanitation is directly related to the transmission of diseases and epidemics, for example,
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diarrhea, polio, dysentery, cholera, hepatitis, gastric ulcers, pneumonia, and pulmonary dis-
ease [7]. Water supplies may contain various non-biological contaminants, including silica,
sodium, sulfur, ammonia, and chlorine. In addition to these contaminants, microbiological
contaminants in drinking water at the stage of consumption represent another problem of
water quality. Poor drinking water quality significantly affects consumers’ health [8]. In re-
cent years, many developing countries have set public health goals to reduce waterborne
diseases and develop safe water resources, and the situation has improved slightly. This
somewhat improved situation can be further exacerbated by increased water demand and
lower water availability due to population growth and economic growth. Understanding
the factors that influence the quality of drinking water is also a necessary step in making the
right decisions about protecting and managing the quality of drinking water [9]. In general,
the quality of drinking water is affected by the variety of water sources, the treatment in
predistribution water treatment plants, the water distribution system, and the containers
or tanks used for water storage and household filters. However, in rural areas and small
municipalities, drinking water is generally pumped directly from wells or rivers, lakes,
and reservoirs without adequate treatment [10]. Therefore, the quality of water sources
plays a fundamental role in determining the quality of drinking water.

Protecting water source quality, which plays a crucial role in providing safe drinking
water, usually requires the combined efforts of many partners, such as water managers,
industrial plants, water supply, communities, and the public [11]. Evaluation of individual
water quality parameters may not give a good understanding of water quality between
partners with different scientific backgrounds. On the other hand, the traditional method,
even by water quality experts, can also cause subjective judgments and prejudices. To solve
the problems associated with characterizing and interpreting the state of water quality,
various indicators of water quality have been developed to convert the levels of water
quality parameters into a numerical index integrated using mathematical tools [12]. Many
factors are taken into account when calculating these water quality indicators, and the
two most important factors are the time from the incidence of contamination to the water
delivery to the customer and the load and concentration of pollution taken from the tap
water by the user.

The main contributions of this paper are as follows: (1) Propose a health impact
analysis model based on hydraulic and water quality models. (2) Analyze the impact of
water contamination based on its occurrence locations and ingested dose level. (3) Reduce
the contamination impact using water quality sensors that were optimally deployed based
on the time of detection and volume of contaminated water.

The paper is organized as follows. Section 2 presents the selective related literature
review. Section 3 explains the methodology and the case study. Section 4 shows the results
and the discussion. Section 5 concludes the work.

2. Related Work

The use of a feasible and effective method of assessing the quality of drinking water
is essential to achieve reliable results and to facilitate informed decision-making. Since
the 1960s, when Horton developed the first water quality index (WQI), many methods
of assessing water quality have been proposed [13–15]. The rapid development of water
quality assessment methods improves our understanding of water quality either by a single
numeric number or by a more sophisticated interpretation of water quality characteris-
tics [16].

Abtahi et al. [11,17] proposed Drinking Water Quality Indicators (DWQIs) to under-
stand the general status of drinking water quality in water networks. The DWQI method
works to classify the variety of drinking water sources based on a comparison of the inputs
measured values of the water quality parameters with the standard fundamental values
(benchmark). The DWQI scores classify the quality of drinking water into five different
categories: excellent, good, fair, marginal, and weak. The results showed that the DWQI is
a stable, flexible, simple, and reliable indicator, and it could be used as an essential method
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for characterizing the quality of the drinking water supply. Likewise, Akter et al. [18] used
the weighted arithmetic WQI approach to provide details on water quality in Bangladesh.
The WQI method converts massive numbers of water quality variables into digital numbers,
and it is useful for understanding the water quality, making it one the most common meth-
ods for measuring water quality with some limitations. Furthermore, Ba and McKenna [19]
developed a time series monitoring and event detection method for water quality. This
method composites an affine projection algorithm and an autoregressive (AR) model to
predict the time series of water quality. In order to assess the existence of contamination
events or not, they used the online change point detection methods for estimated residuals.
Most recently, Braun et al. [20] studied the impact of demand uncertainties on the water age
in a network model and applied polynomial chaos expansion (PCE) on two real networks.
The results show the PCE performs considerably better for a fixed number of simulations,
while perturbation approaches are not appropriate for this task. Moreover, the scale of the
network has been shown to have a significant impact on the maximum water age.

Nonetheless, these approaches to evaluating water quality rely on water quality cri-
teria for classifying water quality. Therefore, what matters is establishing water quality
standards while taking into account specific regional local water quality conditions, the con-
text of water quality indicators, and the health problem [21]. It would be difficult to fully
understand the water quality without incorporating these issues into the water quality
standards. In contrast, the rapid growth of methods to evaluate water quality is also very
promising [22].

Contrary to the rapid development of water quality assessment strategies, assessing
human health risks relies mainly on the model suggested by the United States Environment
Protection Agency (USEPA) or updated USEPA models. However, the slow development
of the evaluation model does not impede health risk assessment activities. Over the past
three decades, increasingly more health risk assessment studies have been performed.
Researchers slowly recognized the vital role that public health risk assessment plays
in effective water quality control and consumer safety, instead of waterborne diseases.
For example, Chen et al. [23] used the triangular Fuzzy Number Approach to consider
inconsistencies in the health risk assessments provided by the USEPA. The results showed
that the health risk assessment model is successful in quantifying risk uncertainty with
lower complexity. Moreover, the findings in this paper help managers mitigate possible
safety risks and provide new insight to address water uncertainties. Another study by
Zhang et al. [24] where strontium (Sr) is detected in drinking water was studied through a
monthly sampling strategy in twelve locations in Xi’an, Northwest China. A Monte Carlo
simulation was carried out in a safety risk assessment for various age groups and exposure
routes. The results of this study could be useful in developing possible risk control. In the
study by Ali et al. [25], organophosphate pesticide concentrations (OPPs) were determined
in drinking water samples obtained in the Peshawar Basin, Pakistan. The findings showed
the highest contamination for methamidophos was detected among OPPs, while the lowest
was found for dichlorvos. This study, therefore, recommends stopping the use of shallow
drinking water and using deep groundwater at depths >98 m, which showed relatively
less pollution. Joshi et al. [26] assessed the combination of drinking water quality and
meteorological factors with the incidence of enteroviral diseases among children in seven
Korean metropolitan provinces. They concluded that drinking water quality was one of
the main determinants of enteroviral diseases.

Full awareness of the water quality status and the possible impacts on human health
is the first step towards sustainable governance of water quality [27]. Adimalla and Li [28]
assessed the quality of groundwater for consumption and irrigation and estimated the pos-
sible adverse impact on health for consumers in the rapidly urbanizing areas in Telangana
State, India. Results showed that, due to the use of highly contaminated drinking water
with nitrate and fluoride in the study region, children were more vulnerable to health risk.
Kumar et al. [29] proposed a method using sensitivity analysis (SSA) to assess the relative
impact of inputs in estimating the dose to safety. This method is useful in evaluating the
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ambiguity and vulnerability of parameters in the input health hazard framework. Shahra
and Wu [30] proposed a sensor placement using an evaluations algorithm (EA). The pro-
posed method uses multiple objectives—the volume of the contaminated water (VCW)
and time detection (TD)—to find the optimal sensor placements. Two real case studies
of WDNs were used to evaluate the effectiveness of the proposed method. The results
showed the ability of the proposed method to maximize the coverage of the deployed
sensors and reduce the time detection of the water contaminant. Ung et al. [31] used
Monte Carlo and identification methods for sensor placement. It calculates a ranked list of
potential contamination location nodes and contamination times using binary responses
from sensors. The backtracking algorithm is used to determine the source identification.
The locations of sensors that are best suited for allocating the source of contamination
are determined using a greedy algorithm and a local search algorithm, all of which are
combined with a Monte Carlo approach. The proposed method was tested using a real
French water network with 2500 nodes. In another study, Hooshmand et al. [32] proved
the quality of the two expectation-based models (IBM and IPM) to identify the appropriate
configuration of the sensors. These expectation models are extended to include the value at
risk (VaR), worse case, and conditional VaR measures (CVaR). Numerical experiments on a
real network of WDNs have shown that the optimal sensor placement of CVaRIBM causes
an increase of approximately 18.5% in the expectation values compared with the optimal
sensor of WorstIBM. The optimal sensor placement of CVarIBM causes increases of 36%
in the value of the worst case compared with the values of IBM and VaRIBM. Santonas-
taso et al. [33] used three different methods to find the detection quality point in WDS; these
three methods are based on topology, optimization, and empiricism. The comparisons
showed that the widely used empirical approach of the water utility is unsatisfactory.
Although the optimization-based approach performs significantly better, it is difficult to
implement because it necessitates a calibrated hydra. Due to its simplicity compared to
the optimization-based approach, the topological approach proves to be successful, and it
can be easily adopted by water utilities to determine the location for quality detection
points. Hu et al. [34] conducted a theoretical analysis of an optimal scheduling problem
before demonstrating that the valve and hydrant scheduling are NP-complete. Following
that, they propose a multi-objective optimization model to respond to the contaminant.
The proposed model focuses on two opposing goals: first, minimizing the volume of
contaminated water exposed to the public, and second, minimizing the hydrant and valves’
operational costs. The validity of the proposed model is demonstrated by two different
water networks.

3. Materials and Methods
3.1. Materials
3.1.1. Case Study

The real case study represents the drinking water network distributed in a district of
Madrid City, specifically the city center, Spain. It has dimensions of X = 1.5 Km, Y= 1.03 Km,
as shown in Figure 1. It includes one reservoir, two pumps, fifty-five valves, three-hundred-
and-ten pipes, and three-hundred-and-twelve junctions. This study was carefully chosen
to include different cases in terms of water demand. The three cases were divided based on
the water demand, and they are labeled in the case study by a circle, square, and node_3654.
Whereas the water demand is considered high in the center and the areas near the source
of drinking water (labeled by the circle in Figure 1), in the isolated regions (not connected
to the rest of the network) the water demand is minimal, as at Nod_3654 shown in Figure
1. There are also other areas related to the primary system but with a medium need for
drinking water, as labeled by a square in the case study presented in Figure 1. Based on
these three different cases, in this study only chemical water contaminant is used, so it is
generated and spread in this network for 8 h, see Section 3.2.1 for more details. Through
this, the impact of water contaminants on human health will be calculated and analyzed in
all the previous cases that have been mentioned above.
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Figure 1. Water distributed networks from Madrid (city center).

3.1.2. Tools

The analysis of this paper was performed with TEVA-SPOT [35], which uses the
toolkit of an EPANET programmer (2.00.12) for hydraulic and water quality modeling
in a WDS. TEVA-SPOT was created by the National Homeland Security Research Center
of the USEPA to include the ability to determine the impact of deliberate and accidental
releases of a contaminant into a WDS. It is one of the tools that can be conveniently
and effectively used in a water network model to determine the impacts of injections
at any or all nodes. The TEVA-SPOT included the ability to monitor contaminant mass
using the concentration results given by EPANET to allow a better understanding of the
distribution of a contaminant in a network after injection and to improve quality control
for simulations [36].

EPANET is a software program used to model water delivery networks around the
globe. It was developed as a method to understand the movement and fate of components
of drinking water within distribution systems. It can be used in distribution system analysis
for many different types of applications. It can also be used to model risks of pollution and
determine resistance to threats of safety or natural disasters [37].

3.2. Methods

The risk assessment approach relies on the determination of the safety and life-
threatening consequences of water supply involving contaminants. The proposed model of
health impact analysis encompasses various phases: contaminants generation, dose level
calculation, and health impact analysis as shown in Figure 2, more details of these phases
are given in the following subsections.

Figure 2. The proposed model of health analysis
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3.2.1. Contaminant Generation

In the first phase, the water contaminants are generated and start to propagate in
the system (see Figure 3). Chemical/toxin contaminants are used to represent the events
in this study. For these contaminants, the health impacts are based on the lethal dose
(LD50). Therefore, some parameters need to be set for this kind of contaminant, such as
LD50, resulting in death to 50% of the population; body weight; and others. All parameter
values required for the contaminant have been set up based on the EPA’s guidance [35],
and they are summarized in Table 1. Another point that needs clarification is how the water
contaminant spread in the water network for eight hours. Figure 3 depicts all nodes in the
water network model that have been color-coded based on the concentration level of the
chemical contaminant that would result across the network given an injection node at the
water source (reservoir). The legend on the left hand side of the map provides the scale of
the contaminant for both links and nodes, where the red color represents the high level of
the contaminant concentration and the blue shows the low level of the same contaminant.

Figure 3. The concentration of the contaminant after 8 h for the injected node (reservoir).

Table 1. Water contaminant parameters.

Parameters Values

Contaminant type Chemical/Toxin
Average Body Mass (KG) 70.0
Water Ingestion Rate (Liters per day) 1.41
Gallons per Person per Day (GPD) 200
LD50 (mg/kg) 0.001
Simulation Start time 00:00 A.M.
Simulation Length 24 h
Injection Start Time 00:00 A.M.
Injection Duration 8 h
Injection Node Reservoir

3.2.2. Dose Level Calculation

Hydraulics and water quality models are performed in a water pipeline network
for predicting spatial and temporal changes in the concentration of contaminants in the
water network. Dose delivered to a subsection of the water network which is supplying N
people needs to be calculated, and its level in each branch needs to be determined. For this,
Equation (1) was used and applied [38].

Li =
T

∑
t=0

Cit × Qit × ∆t (1)
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where Li = load of substance delivered to people from i sub-network (pipe),
Cit = concentration of contamination in water at time (t),
Qit = Water demand in section i at a time (t), and
∆t = Exposure time.

Based on Davis et al. [39], a procedure for evaluating a simple contaminant concentra-
tion linked to an adverse outcome was illustrated. Equation (2) was used to determine the
concentration of the contaminant ingested [36]:

CC =
q × M

Q
(2)

where CC is the contaminant concentration, q is a constant for the water ingestion rate, M
is the mass of the contaminant, and Q is the volume of the water usage rate. The target
dose of a person for a specific contaminant can be calculated from the dose–response data
available for the contaminant as well as the individual’s body mass. The dose values are
typically expressed in units of mg per kg of body mass. The maximum number of people
(N) who can receive an ingested dose (d) equals the mass ingested divided by the dose as
shown in Equation (3) [36]:

N =
q × M
Q × d

(3)

where N represents the population served as represented by the model of the water
distribution system, and d is the dose of the target contaminant resulting from the ingestion
of tap water. The target dose of a person for a specific contaminant can be calculated from
the available dose response data for the contaminant along with the body mass of the
individual. The lethal dose (LD50), for example, is the dose at which 50 percent of the
population that receives such a dose dies, this defines the LD50 for a contaminant. Using
the contaminant-specific LD50 information and the mean body mass of the population,
a target dose for a contaminant (TDC) can be determined as shown in Equation (4):

TDC = LD50
mg
kg

× BodyMass (Kg) (4)

3.2.3. Health Impact Analysis

Health impacts are measured in terms of the number of people exposed to or affected
by the contaminated water. Potential public health impacts on contaminants can differ
dramatically across networks. Public health impacts increase with the network population
for contaminants with high toxicities, particularly for the scenarios with injection locations
that have consequences near the upper end of the distribution. On the other hand, for less
toxic contaminants potential public health impacts have not been shown to be sensitive to
the network population, even those across the network that differ by more than a factor of
population size. This is because contaminants with low toxicity appear to create localized
impacts that are constrained by the mass of the available contaminant rather than the
contaminants with high toxicity. The public health impact Iei is analyzed and evaluated by
calculating the mass of the substance to enter the body using Equation (5):

Iei =
q ∑t

t=0 Ci × ∆t
G × t

(5)

where q is the volume of consumed water and Ci is the contamination concentration. G
is the average weight of the human body during the exposure, and t is the duration of
exposure. The risk will be ignored if the value of Iei is too small relative to the tolerable
daily intake. The volume of consumed water is represented using Equation (6):

qne(t) =
{

Cne × di(t)× ∆t i f Cne(t) ≥ Cmin
0 otherwise

(6)
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where qne is the volume of the water at node n for event e, Cmin is the threshold hazard
concentration, and Cne is the concentration at node n for event e. Cne is the contaminant
concentration, di (t) denotes the water demand at node i at a time step, and ∆t represents
the time step interval. The volume of contaminant water for all event scenarios is calculated
based on Algorithm 1.

Algorithm 1 Calculating the volume of the contaminant water
1: Generate Contamination Scenarios (S).
2: Select one scenario (C) from S.
3: WHILE ( C ≤ S )
4: Simulate Hydraulic and Quality models.
5: If (Contamination Concentration(CC)>>Threshold)
6: Contaminate water volume (q) ← cc × ∆t × demand

The research methodology represented in Figure 2 can be summarized as follows:

• Generate and simulate water contamination propagation on the pipeline networks (WDS).
• Develop the hydraulic and water quality models of the pipeline networks.
• Calculate dose level delivered to one section of the water network, which is supplying

N people using Equation (1).
• Evaluate the health impact based on the calculation of the mass of the substance

entering the body using Equation (5).

4. Results and Discussion
4.1. Health Analysis Results

To show the results from the Madrid case study described in the Section 3.1.1, we start
explaining the distribution of contaminants based on the water demand of the network.
In this work, we used the demand-based method to define the number of water gallons
used by each person per day (GPD) to define the distribution of the population. Figure 4
depicts that high demand is focused on the center of the network, while low demand is
focused on the top left of the water network. Various demand levels are represented by
different colors in the map, where blue represents the deficient water demand and dark
red represents the high water demand.

Figure 4. Population distribution based on water demand.

In this study, public health impacts have been described as the size of the population
receiving a contaminant intake dose above a certain level. To calculate this, we simulate
the impact of water contaminants in different locations in the case study used in this work,
as shown in Figure 5, and then investigate the impact of the contaminant for each location.
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Table 2 presents the impacts of the contaminant based on where the contaminant has
occurred (injected node location) in the case study. This table shows the essential properties
of the water contaminants, such as the location, max concentration, max individual dose,
and the number of estimated infected people. Referring to Table 2, the locations of the
contaminant are selected carefully to include all cases, where Loc.6 represents that the
contaminants occurs at the source of the water (Reservoir). This kind of contaminant has
a high impact on the number of water nodes in WDS, which leads to a high number of
people becoming infected from this contaminant. While Loc. 1 means that a contaminant
is present in one of the isolated areas in the case study (see Figure 5), these areas labeled
by nod_3654; in these areas, the impact of the contaminant on water nodes is small, which
leads to a small number of people being affected by this contaminant.

Figure 5. Areas of the contaminant locations.

From Table 2, we note that the location of the injected node is the essential property of
contamination as it recorded a high number of estimated infected people (146,729) when
the contaminant occurred in the water source (Loc. 6), even though the contaminant was
carrying a lower concentration. While very few infected people, ranging from zero to
2750 people, were recorded when the contaminant occurred in isolated locations (Loc. 2)
that have a low population, the contamination was recorded at a higher concentration.
On the other hand, the remaining locations—Loc. 3, Loc. 4, and Loc. 5—recorded a
number of different infected people with a variable contaminant concentration as well. To
examine and investigate the impact of water contaminant based on its occurrence in more
details, two different cases were chosen (Loc. 2 and Loc. 6), and the extent of the impact is
explained in detail as follows.

Table 2. Infected people based on contamination locations.

Contamination
Locations

Maximum Concentration
(Mg/L)

Maximum Individual
Dose (mg)

Number of
Estimated
Infected
People

Loc. 1 2993 1 0
Loc. 2 30 2 2750
Loc. 3 44 5 7217
Loc. 4 224 11 29,017
Loc. 5 27 16 43,996
Loc. 6 2 91 146,729
Mean 217 8 18,568
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The first case (Loc. 6, Figure 6) has a contaminant that occurs at the source of the
water, which means that the injected node is the reservoir, and this contaminant has a
massive impact on the water nodes. From Figure 6, the impact of this contaminant appears
at most of the nodes in the network, where the impact denoted by different colors, in
which the colors indicate the number of people, has been affected by this contaminant
(fatality). The different colors used in the map represent different levels of contaminant
impact, in which red represents the high impact with a number of population is close to
eight-thousand-and-seventy-nine people (8079 people), and the blue color represents the
low impact with a number of people in the range between zero and two-hundred. Another
way this impact was shown is in terms of fatalities, infection, and diseased people. These
categories of impact were done based on the dose threshold values. If the people receive
a dose greater than the threshold value, it is reported to one of these categories based on
the dose level received. Figure 7 shows the estimated number of people impacted in these
three categories, and it depicts that more than six hours after the contaminant spread in the
water network, the impact began to appear in the form of infection in the seventh hour to
reach the highest value by affecting more than one-hundred-thousand people. The impact
appears as diseases in the next hour, recording the same number of impacted people after
eight hours, the actual emergence of the fatality began to appear after nine hours, and it
reaches its highest value after 7–10 hours with nearly one-hundred-and-fifty-thousand
registered infected people.

Figure 6. Estimated impact for contaminant occurred at water source (Reservoir).

Figure 7. Estimated infection, disease, and fatalities (contamination at source).
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In the second case (Loc. 1), the contaminant occurred in one of the smallest areas of
water network (isolated area). Figure 8 shows the special impacts on the node directly
related to the contaminated source; the impact is minimal and strictly confined. Compre-
hensive analysis of the impact of this contaminant source is shown in Figure 9, and we
notice that the impact appeared consecutively in the form of infection in the seventh hour,
followed by the impact in the way of diseases in the next hour. Finally, the emergence of
the fatality rate expected at nine o’clock and the same percentage of impact for people at a
rate equal to two-thousand-two-hundred infected people was recorded.

Figure 8. Estimated impact for contaminant at one of the small isolated networks.

Figure 9. Estimated infection, disease, and fatalities (contaminant at the isolated branch).

4.2. Reducing the Impact of the Contaminant using Water Quality Sensors

The main goal of deploying water quality sensors in WDS is to minimize the con-
sequences associated with water contamination. The water quality sensor detects the
contaminant based on the contaminant concentration that would change one or more
parameters of water quality (i.e., chlorine, TOC, turbidity, and conductivity) enough that
an event detection device (sensor) or a water utility operator can detect the change. For in-
stance, if the residual chlorine decreased by 1 mg/L, the conductivity increased by 150
Sm/cm, or the TOC increased by 1 mg/L.

In this section, the impact of water contamination on the lives of consumers is con-
ducted, where the impact of the contaminated water used by people will be recorded before
the water quality sensors are deployed. Then, the extent of the contaminant water impact
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is recorded after the water quality sensors have been deployed based on our proposed
approach [30] reviewed in Section 2. Three different numerical experiments have been
conducted in this section:

1. The first experiment investigated the impact of the contaminant without using water
quality sensors.

2. The second experiment shows the impact using the water quality sensors optimally
deployed on WDS utilizing the volume of the contamination water (VCW) as an
objective function for deploying the sensors.

3. The third experiment analyzes the impact using water quality sensors that are opti-
mally deployed on WDS using time detection (TD) as an objective function to deploy
the sensors.

In the first experiment, the health impact was analyzed without using water quality
sensors to detect the water contaminant. Table 3 shows the impact of water contaminant on
the people and contains the essential properties to represent the impact of the contaminant,
such as the contaminants’ injections nodes, detection time, and the impact as infected
people. In Table 3, we have to select thirty injected nodes (as samples) from more than
one-thousand nodes included in the Madrid case study, and these samples will be used
in all the numerical experiments. As we present this experiment without using deployed
sensors (water quality sensors), the detection time is recorded as 1440 min, which means
there is no detection until the end of the simulation (24 h). The impact is computed using
the proposed model presented in Section 3.2, and it computes the number of people got
affected. The impact of the contaminated water without sensors is represented clearly in
Figure 10. The x-axis represents the water nodes that are infected with contamination,
and the y-axis represents the impact of this contamination concerning the number of
people that are affected by this contamination. From Figure 10, we notice that the results
were significantly recorded in this experiment, as it was estimated 1that 14,721 cases were
recorded at injected node 17_No_1195. At the same time, the rest of the injected water
nodes recorded significant numbers of people.

Figure 10. Health impact without using water quality sensors.

In the second experiment, we have deployed ten sensors as monitoring stations to
detect the water contaminant, the deployment of sensors used the volume of contaminant
water (VCW) as its optimization objective [30]. Table 4 shows the impact of the contaminant
after deploying the ten monitoring sensors, and the table contains the same properties
presented in the previous experiment, while the detected stations represent the sensor
station that detects the contaminant. The time detection column recorded the detection
time of the contaminant by the monitoring stations. From Table 4, despite using monitoring
stations (sensors), we still find that some injected nodes are not directly detected by any
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monitoring stations such as 17_No_1381, 17_No1532, 17_No_1702, and 17_No_1703. These
nodes kept the contamination until the end of the simulation (1440 min). The main reason
for this is the optimization method used to deploy the sensor in this experiment is still
unable to cover all injected nodes. The estimated impact of using ten sensor stations
(based on the volume of contaminated consume water) is represented clearly in Figure
11. The x-axis represents the water nodes that are infected with contamination, and the
y-axis represents the impact of this contamination concerning the number of people that
got impact from this contamination. From Figure 11, we notice that the impact decreased
significantly compared to what was presented in the previous experiment. The maximum
number of cases recorded in this experiment was estimated at 2211 cases, recorded at
injected node 17_No_1462.

Figure 11. Health impact with 10 sensors deployed using volume of contaminated water (VCW).



Appl. Sci. 2021, 11, 3394 14 of 19

Table 3. Health impact without using any water quality monitor stations.

Injection Nodes
in WDS

Detection Time
(Minutes) Infected People

17_No1001 1440 4858
17_No1002 1440 6499
17_No1053 1440 3899
17_No1124 1440 2071
17_No1125 1440 2042
17_No1113 1440 91,710
17_No1127 1440 6364
17_No1126 1440 2512
17_No1128 1440 20,742
17_No1196 1440 27,215
17_No1295 1440 4821
17_No1296 1440 14,360
17_No1195 1440 114,721
17_No1297 1440 84,217
17_No1298 1440 85,784
17_No1365 1440 2492
17_No1381 1440 23
17_No1414 1440 24,377
17_No1462 1440 17,485
17_No1463 1440 14,949
17_No1415 1440 47,880
17_No1483 1440 2493
17_No1532 1440 186
17_No1533 1440 183
17_No1556 1440 2666
17_No1702 1440 64
17_No1703 1440 64
17_No1654 1440 63,882
17_No1752 1440 45,190
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Table 4. Health impact with using 10 water quality sensors using (VCW).

Injection Nodes
in WDS Detection Sensors Detection Time Infected People

17_No1001 17_No1891 106 3
17_No1002 17_No1891 66 24
17_No1053 17_No1483 382 982
17_No1124 17_No1483 1410 1829
17_No1125 17_No1483 1166 25
17_No1113 17_No1297 8 30
17_No1127 17_No525 612 485
17_No1126 17_No1483 32 16
17_No1128 17_No3856 104 28
17_No1196 17_No3707 24 35
17_No1295 17_No525 494 10
17_No1296 17_No525 496 10
17_No1195 17_No3707 26 378
17_No1297 17_No1297 0 0
17_No1298 17_No1415 48 32
17_No1365 17_No1483 4 17
17_No1381 1440 23
17_No1414 17_No3856 512 140
17_No1462 17_No4702 232 2211
17_No1463 17_No2087 310 2111
17_No1415 17_No1415 0 0
17_No1483 17_No1483 0 0
17_No1532 1440 186
17_No1533 1440 183
17_No1556 17_No1483 354 11
17_No1702 1440 64
17_No1703 1440 64
17_No1654 17_No1415 54 29
17_No1752 17_No1483 342 12

In the third experiment, we deployed ten sensors as monitoring stations to detect
water contamination and used time detection (TD) as optimization functions for deployed
sensors. Using the same samples used in the previous numerical experiments, Table
5 includes the same properties used in the previous numerical experiments. However,
the results show that the number of injected nodes that were not detected by any of the
monitor stations (sensors) decreased significantly compared to the previous numerical
experiments. Only one injected node (17_No_1532) was not directly covered by any of the
monitoring stations, and this injected node recorded the maximum impact of the water
contamination. The estimated impacts of pollution are represented clearly in Figure 12.
Figure 12 shows the extent of the impact of water pollution, and it has decreased sig-
nificantly compared to previous experiences in this experiment. The highest number of
infected cases was recorded as 1464 cases, recorded at 17_No_1532.

Finally, the comparison of water contaminant impact before deploying the sensors and
after the deployment of the sensors is conducted and presented in Figure 13. The results in
Figure 13 show a significant impact on the number of people impacted by the contaminant
water before the water quality sensors were deployed and recorded a massive amount of
more than one-hundred-thousand people. On the other hand, this number decreased with
the use of water quality sensors to monitor the quality of the water. These sensors were
distributed in the water network based on the previously described method, and different
numbers were recorded for the number of people affected by water contaminant. Using
the contaminated water volume as an objective function to determine the location of the
sensors, the number of people affected was close to two-thousand. On the other hand,
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the number of people in the situation that time detection is used as a target to locate the
sensors is close to one-thousand-and-four-hundred. In summary, the use of water sensors
to monitor water quality has shown a big difference in reducing the number of people
exposed to the risk of using contaminated water, which shows the effectiveness of the
proposed method used to distribute the water quality sensors.

Table 5. Health impact with using 10 water quality sensors using time detection (TD).

Injection Nodes
In WDS Detection Sensors Detection Time Infected People (People)

17_No1001 17_No1891 106 108
17_No1002 17_No2830 62 65
17_No1053 17_No1483 382 386
17_No1124 17_No1483 1410 1415
17_No1125 17_No1483 1166 1172
17_No1113 17_No5633 120 127
17_No1127 17_No4089 460 468
17_No1126 17_No1483 32 41
17_No1128 17_No4089 102 112
17_No1196 17_No525 320 331
17_No1295 17_No525 494 506
17_No1296 17_No525 496 509
17_No1195 17_No525 86 100
17_No1297 17_No5633 148 163
17_No1298 17_No5633 60 76
17_No1365 17_No1483 4 21
17_No1381 17_No348 50 68
17_No1414 17_No4089 510 529
17_No1462 17_No4702 232 252
17_No1463 17_No2087 310 331
17_No1415 17_No1483 334 356
17_No1483 17_No1483 2 23
17_No1532 1440 1464
17_No1533 17_No1483 1200 1225
17_No1556 17_No_1483 354 380
17_No1702 17_No961 38 65
17_No1703 17_No961 22 50
17_No1654 17_No1483 142 171
17_No1752 17_No1483 342 372

Figure 12. Health impact with 10 sensors deployed using time detection (TD).
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Figure 13. Comparison of the health impact for three scenarios.

5. Conclusions

In this paper, a health impact analysis model of WDS is proposed to assess and analyze
the health impact of consuming contaminated drinking water in a water distributed system
(WDS). The health impact analysis process mainly depends on the hydraulic and water
quality models in WDS. Water contaminants are injected in various locations and spread
in the water network for 8 h before we start the analysis. The health impact for the
contaminated scenarios in WDS is examined and simulated using a real case study from
a district of Madrid, Spain. The impact of water pollution has been analyzed in different
locations with multiple critical threshold values of the dose level. The number of people that
were infected, diseased, or died from pollution was recorded in each simulated experiment.
Finally, the extent of pollution’s impact was compared without using water quality stations
and using ten water quality sensors. These sensors are optimally deployed on WD based
on the time detection and volume of the contaminated water. The results showed a very
significant reduction in the impact using the deployed sensors, where the health impact
was reduced by up to 98.37%.
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