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Abstract 
The paper presents the non-Fourier bioheat transfer prediction methodology of human skin to determine skin burn 

injury with non-ideal properties of tissue, metabolism and blood perfusion. The dual-phase lag bioheat transfer 

model with the inclusion of evaporation is developed for the triple-layer skin tissues. The developed models are 

solved numerically using Galerkin’s finite element method. Parametric studies on the effects of skin tissue 

properties, initial temperature, blood perfusion rate and heat transfer parameters for the thermal response and 

exposure time of the layers of the skin tissue are carried out. The results of the investigation are compared with 

experimental results in the literature. The study demonstrates that the initial tissue temperature, the thermal 

conductivity of the epidermis and dermis, relaxation and thermalisation time and convective heat transfer 

coefficient are critical parameters to examine skin burn injury threshold. The study also shows that thermal 

conductivity and the blood perfusion rate exhibits negligible effects on the burn injury threshold. The objective 

of the present study is to support the accurate quantification and assessment of skin burn injury for reliable 

experimentation, design and optimisation of thermal therapy delivery. 
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Nomenclature 

 
Specific heat of tissue, J/KgK  Initial tissue temperature, (°C) 

 Specific heat of blood, J/KgK  Blood temperature, (°C) 

V Speed of thermal wave, m/s  Rate of blood perfusion, s-1  

 Denaturation activation energy, Jmol-1  Coordinate variables, m 

 Tissue thermal conductivity W/mK   Latent heat of vaporisation for water, J/Kg 

 Bromwich contour integration line   

 Tissue slab length, m   

 Frequency factor, s-1 
Greek Symbols 

 Heat flux density, W/m2  Thermal damage parameter 
 Metabolic heat generation, W/m3  Delay time for phase lag of microstructural interaction, s 

 Universal gas constant, Jmol-1K-1  Delay time for phase lag of the heating flux, s 

 Time variable, s 
w  Tissue water density, Kg/m3 

 Tissue temperature, (°C)   

 

 

1. Introduction 

The study on skin burns is relevant and timely as skin burns from thermal (direct contact with heated solid material 

and radiant heating), hot liquid (scald burns) and chemical mechanisms (direct contact with flames) remain a 

common form of thermal injury that occurs globally. Skin burns occur ubiquitously under different domains 

including homes, industry, and extreme situations such as in military combat. Burn victims often require long 

periods of rehabilitation and could receive multiple skin grafts and painful physical treatment, which often results 

in lifelong psychological and physical scars [1].  

Heat transport analysis in living biological structures is critical in several diagnostic and therapeutic applications 

that involve temperature changes. Heat transport in human tissue is associated with different complex processes 

including conductive heat transfer in solid tissues, metabolic heat generation, convective heat transfer of blood 

circulation and external heat interaction with the ambient environment. The intense interest in thermal properties 

of skin to understand different thermal conditions including contact heating, laser heating, microwave radiation 
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which might lead to skin damage is unprecedented. To the best knowledge of the authors, the classical studies on 

heat transport of skin were based on the Pennes bioheat model [2]. The Pennes bioheat model is based on the 

classical Fourier's law with the assumption that the propagation speed of thermal disturbance is infinite which in 

physical reality is impractical. Energy propagation takes place at a finite speed as thermodynamic processes in 

living tissues maintain steady state condition after a certain time lag period [3]. Moreover, living tissues are highly 

non-homogeneous and non-uniformity and require relaxation time to accumulate enough energy to transfer to the 

nearest medium. Consequently, the limitations of the Pennes bioheat model are concurrently addressed by 

Cattaneo [4] and Vernotte [5] using the non-Fourier model to consider the finite propagation speed of heat. The 

resulting thermal wave model of the bioheat equation due to the wave-like behaviour of heat transport in biological 

structures is often regarded as the Cattaneo and Vernotte constitutive model. The bioheat thermal wave model 

gained its popularity due to its established experimental validations and ability to generate more accurate 

predictions than the classical Fourier law model. Several studies on bioheat transfer in skin tissue employed the 

thermal wave bioheat model to produce accurate predictions than the classical Fourier law model [6-11]. However, 

the hyperbolic or thermal wave model is restricted to micro-scale response in time and not the micro-scale 

response in space [11-13]. To overcome the limitations of the hyperbolic bioheat model, Tzou proposed a new 

model that considers the micro-scale response in space using phase lag in heat flux and temperature gradient [11]. 

The phase lag model is effective in freezing and thawing processes where phase change is critical for the analysis 

of the survival rate of biological structures [14, 15]. However, to examine the effects of microstructural 

interactions in the fast transient process of heat transport without phase change, the dual-phase lag (DPL) bioheat 

model has been employed in the literature to analyse the thermal behaviour of skin tissue under various skin 

conditions [16-18]. The DPL model characterises microstructural interactions in heat transport and is developed 

with the first-order Taylor series expansion. Different methodologies have been employed to analyse the DPL 

bioheat model for single, double, and triple layer thermal models [19-27]. These methods examined the difference 

in the physiological and thermal properties of the skin. Additionally, since phase change occurs in biological 

tissues over a wide range, the boundary conditions at the interface between the two adjacent layers results in 

highly nonlinear mathematical models. Therefore, to understand the temperature distribution within the human 

skin when subjected to heat, the use of numerical method is effective to reduce dependency on time-consuming 

and costly experimental analysis. The finite element method is efficient to simulate the temperature changes in 

biological tissue due to its reliable adaptability to complex geometries and complex governing equations [28-31]. 

Motivated from the work in [32], the present work presents the non-Fourier thermal modelling of triple-layer 

human skin tissue for the prediction of skin burn with non-ideal properties of tissue, metabolism and blood 

perfusion. To develop a more generalised predictive model, the modified DPL bioheat transfer model based on 

second-order Taylor expansion is employed. The modified DPL bioheat model in triple-layer skin tissue are solved 

numerically using Galerkin’s FEM.  

 

 

2. Methodology 

The present study considered the effect of microstructural interactions in the transient process of heat transport to 

deal with the paradox of the classical Fourier’s model and account for the limitations in the thermal wave model. 
The consideration is based on the fact that the gradient of temperature at a point in the material at time t + τT 

corresponds to the heat flux vector at the same point at time t + τq, which can be written mathematically as: 

   , ,q Tq x t k T x t                                                                                                                                        (1) 

where τq and τT are non-zero times and accounts for the effects of thermal inertia and microstructural interactions. 

τq is the phase-lag to establish heat flux and its associated conduction through a medium, τT accounts for the 

diffusion of induced heat by τq and represents the phase-lag to establish the temperature gradient across the 

medium when conduction occurs through the small-scale structures.  

Using the second-order Taylor expansions, the DPL model can be expressed as: 
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The above model covers a wide range of space and time for physical observations.   

From Eq. (2), we write 
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From the local energy balance, the equation for conservation of energy can be written as:  

                                                                                                                         (4) 

Eq. (4) can be re-arranged as:  

                                                                                                                           (5) 

by substituting Eq. (5) in Eq. (3) we arrived at 
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The expansion of the above Eq. (6) gives 
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In the above DPL model in Eq. (7), if τq and τT are set to zero, then the Pennes’ model is recovered 

                                                                                                        (8) 

However, if τT is set to zero and the first-order Taylor expansion is used only in time, then the thermal wave or 

hyperbolic model is recovered as:  
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Further, if τT is set to zero and the first-order Taylor expansion is used both in time and space, then Tzou’ model 

in [11] is recovered as:  
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The three-dimensional DPL model in the Cartesian coordinates gives 
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by taking the thermal conductivity as constant, the three-dimensional DPL model in the Cartesian coordinate gives 

                                                 (12) 

The two-dimensional DPL model in the Cartesian coordinates gives 
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Taking the thermal conductivity as constant, the three-dimensional DPL model in the Cartesians co-ordinates 

produces 
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The one-dimensional DPL model with varying thermal conductivity is expressed as 
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Then the one-dimensional DPL model with constant thermal conductivity is expressed as: 
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2.1. Modelling Evaporation during the High Heating   

Heating of skin tissue at high temperatures makes the moisture in the skin tissue, normally around 70-75% 

evaporates and later carbonises as illustrated in Fig. 1. At 100°C, ablation occurs and water vaporisation in the 

tissues leading to dehydration of the tissues. Moreover, as temperature increases (>100°C), the continuous 

vaporisation of the tissue results in the carbonisation of the tissues [33-35]. Without due consideration of these 

processes, the results from the models would differ significantly from experimental results. To this end, the 

vaporization terms are included in the above models to accommodate the phase change due to evaporation.  Under 

this condition, an enthalpy-based model can be adopted [36]. In such a model, the enthalpy contains a three-part 

description. The first part corresponds to temperature changes in the liquid-containing tissue, the second part 

accounts for the latent heat of evaporation while the third part is the temperature changes in the post-phase-change 

tissue. Hence, without loss of generality, in the present work, a simple method is introduced to incorporate simple 

water-related processes into the thermal models to improve ablation models at high temperatures. Hence, the rate 

of heat of vaporisation is modelled as established in [37] as 

w
evap

d
q

dt


                                                                                       (17) 

 and 
w represents the latent heat of vaporisation for water (2260kJ/Kg) and tissue water density respectively. 

The tissue water density is a function of temperature and Eq. (17) using the chain rule is expressed as: 
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3. Two-dimensional DPL Model for the Triple Layer Skin Tissue 

 

 
 

Fig. 1. Schematic diagram of the processes under consideration  

 

In the three-layer skin tissue illustrated in Fig. 1, the two-dimensional, three-layer DPL thermal model can be 

written as: 
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which can be written as 
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is the effective heat capacity 

The present study considers a skin insult scenario that consists of direct contact with a heat disk of 1cm diameter 

that is maintained at a defined constant temperature for a specified time. The surface area peripheral to the disc 

was assumed to experience convective heat transfer with an ambient air temperature of 25°C during the burn 

process. After completion of the insult, the disc was removed and the entire skin surface was cooled by natural 

convection of the surrounding air [31, 32].  For the present scenario, the initial, boundary and interlayer conditions 

are stated as: 

3.1.1.  Initial conditions 

At the initial condition, the temperature of the skin tissue is equal to the blood. Therefore,  
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3.1.2. The boundary conditions, 

                                                                                                                                  (22a) 

                                                                                                                              (22b) 

where l=1, 2  

                                                                                                                      (22c) 

                                                                                                                     (22d) 

3.1.3. Interlayer conditions 

For the interlayers, the temperature and the heat flux in the respective layers must be equal at each point in between 

the layers as: 
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,                                                                                                           (23b) 

where l=1, 2 

  

For accurate analysis, the DPL model for each layer of the skin tissue as illustrated in Fig. 2 is developed as:  

                                                     

3.2.1 Layer 1: Epidermis Layer 
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3.2.3 Layer 2: Dermis Layer 
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3.2.3 Layer 3: Subcutaneous Layer 
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3.3.1.  Initial conditions 

At the initial condition, the temperature of the skin tissue is equal to the blood and is expressed as: 
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3.3.2. The boundary conditions, 
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                                                                                                                                 (28f) 

At the surface of the skin, the heat conducted to the surface is taken as the heat lost to ambient air through 

convection 
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where the effective convective heat transfer coefficient is given as 
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However, at the bottom of the subcutaneous layer, the local temperature is equal to the arterial temperature  
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3.3.3. Interlayer conditions 

In the interlayers, the temperature and heat flux is assumed continuous across the interface. Therefore, the 

temperature and the heat flux in the respective layers is equal at each point amongst the layers. 
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4.   Finite Element Analysis of the Thermal Model 

The transient triple-layer skin thermal model in Eq. (14) is analysed using Galerkin’s FEM. By applying 

Galerkin’s method, the temperature of the cutaneous skin tissue is discretised over space as: 
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where 
iN  represents the shape function, n is the number of nodes in an element and  iT t  represents the time-

dependent nodal temperature. Galerkin’s representation of Eq. (20) is expressed as: 
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The above Eq. (31) can be written as: 

                  (32)          

                                                                                                                                                     

Applying integration by parts to Eq. (32), we have 
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Further rearrangement of Eq. (33), provides 

 

                                                                          (34) 

 

 

Application of Green’s theorem in three dimensions on Eq. (34) gives 
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Recall that the non-Fourier’s law (Dual-Phase Lag Model) in a rectangular coordinate is given by  

,                                                            (36)                                                                  

 

Substitution of Eq. (36) into Eq. (35) results in  

 

                                                                          (37) 

 

Eq. (37) can be written as  
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Imposing the boundary conditions on Eq. (38), we arrived at 

 

                                                                               (39) 

On substituting the spatial approximation from Eq. (30) in Eq. (39), we have 
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Eq. (40) is written in a convenient form as 
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where 
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where i and j are the nodes, Cij, Kij, Tj  Qi and fi represents the assembled thermal stiffness matrix, assembled heat 

capacity matrix, nodal temperature vector, heat generation and assembled load vector respectively. 

Eq. (38) is discretised using the finite element for the temporal part, and the algebraic equations are derived for 

each element. By imposing the inter-element continuity conditions, the element matrices are assembled, which 
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results in a large number of algebraic equations in matrix form termed global matrix. The global matrix governs 

the whole domain of the problem under investigation. The boundary conditions of the problem are imposed on 

the assembled equations in the global matrix. The resulting system of equations is solved numerically until the 

desired accuracy or convergence criterion is achieved. The convergence criterion of the numerical solution along 

with the error estimation has been set to   

1 610
N

w w

w

T T                                                                                                                                            (43) 

      where T is the general dependent variable and w is the number of iteration 

It is worth noting that the boundary conditions and the temperature-dependent parameters are incorporated in the 

computer program used to solve the system of algebraic equations.  

 

 

5. Thermal Damage Model and Classification of Degree of Burns 

Skin thermal damage starts when the basal epidermis temperature reaches 44oC. To evaluate the degree and rate 

of thermal damage to the skin tissues, the following rate model is developed. 

                                                                                                                            (44) 

where , , , ,at A E R and 
lT  represents the thermal damage in tissue, time, frequency factor, the activation energy 

for skin, universal gas constant and temperature of layer l respectively. Hence, by integrating the Eq. (32), we 

have 

                                                                                                                      (45) 

Eq. (32) predicts the thermal damage  , which is a key prediction parameter to determine the degree of burn for 

clinical decision and treatment of damaged skin [38]. Moreover, the value of  determines the degree of the burn 

by the burn depth as presented in Table 1. 

 
Table 1. Burn degree and its associated biological features 

Burn    Biological features 

First-degree 

(Superficial or epidermal burns) 

0.53 affects epidermis with vasodilatation of the sub-capillary vessels, redness of affected area 

with no permanent scars or discolouration, mild pain and healing is rapid 

Second-degree 
(Partial-thickness burns) 

1.0 Both epidermis and dermis are slightly affected. Burn can be superficial or deep. Superficial 
burn results in moist blisters, whilst deep burn affects the capillaries or blood vessels causing 

tissue oedema and blisters on the skin 

Third-degree 

(Full Thickness) 

10000 Both epidermis and dermis are thermally damaged, causing blood flow to stop. The cells 

around the burn region start to die leading to leathery skin. Recovery from burn degree 
requires special treatment 

 

It is worth noting that the developed skin burns model is used to determine the required time to generate the 

different degrees of burns on the human body based on the understanding of the classification in Table 1.  

 

 

6. Results and Discussion 

The above-developed solutions are simulated and the effects of various thermal and flow parameters on 

temperature for the assessment of burn injury are investigated. The effects of thermal conductivity of the triple 

layer of the skin for prediction of burn injury baseline are presented in Figs. 2, 3 and 4. In Fig. 2, as the thermal 

conductivity of the epidermis increases by factor of 2, the injury baseline shifts towards the left-hand side (LHS) 

of the base value (0.210W/mK). This is because, as the thermal conductivity of the epidermis increases under 

continuous temperature exposure, the thermal resistance reduces resulting in increased heat penetration of the 

tissue. Under this condition, the time required to reach a second-degree burn injury situation becomes minimal. 

This shows that the higher the thermal conductivity of the skin tissue, the greater the degree of burn. 
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Fig. 2. Effects of thermal conductivity of epidermis on burn injury baseline 

Moreover, the opposite trend is observed as the thermal conductivity decreases by factor of 2, which results in the 

injury baseline shifting towards the right-hand side (RHS) of the base value (0.210W/mK). This is because as 

thermal conductivity reduces, the thermal resistance increases resulting in reduced heat penetration of the tissue. 

Consequently, under such burns condition, more time would be required to reach a second-degree burn injury. 

 

 

  Fig. 3. Effects of dermis thermal conductivity on burn injury baseline 

 
 

Fig. 4. Effects of subcutaneous layer thermal conductivity on burn injury baseline 

 

Fig. 3 shows that as the thermal conductivity of the dermis increases by factor of 2, the injury baseline shifts 

towards the RHS of the base value, i.e., 0.370W/mK. This phenomenon occurs, as an increase in the dermis 

thermal conductivity causes heat at the epidermis-dermis interface to be readily transferred to the deeper tissue 

and consequently resulting in prolonged time required to reach the injury baseline. However, an opposite trend is 

observed when the thermal conductivity of the dermis is decreased by factor of 2, resulting in the injury baseline 

shifting towards the LHS of the base value (0.370W/mK). Moreover, the above finding implies that the thermal 

conductivity of the dermis reduces as the temperature of exposure heat decreases. Fig. 4 illustrates the effect of 

the subcutaneous layer thermal conductivity on burn injury baseline. It is worth noting that the three curves lie on 

top of each other. This shows that the thermal conductivity of the subcutaneous layer exhibits no significant effect 

on the prediction of the injury baseline.  
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Fig. 5. Effects of blood perfusion rate on burn injury baseline 

 

 
Fig. 6. Effects of initial skin tissue temperature on burn injury baseline 

Fig. 5 illustrates the effect of blood perfusion rate on the prediction baseline. Under constant volumetric capacity 

of the blood, the effects of no perfusion (0ml/100g/min), half of the maximum dilatation (75ml/100g/min) and 

maximum blood flow (150ml/100g/min) of the skin vessels. From Fig. 5, the blood perfusion rate exhibits 

negligible effects on the dermis and invariably does not affect the burn injury prediction in the dermis layer. The 

effects of initial skin tissue temperature on the burn injury baseline prediction are presented in Fig. 6. From Fig. 

6, the initial skin tissue temperature exhibits significant effects on skin exposed to burn injury. This is because the 

warmth of the skin tissue increases as the temperature experienced throughout the heating and cooling periods 

increases resulting in an increased degree of burn injury. 

 

 

Fig. 7. Effects of convective heat transfer coefficient on burn injury baseline 

The effect of convective heat transfer coefficient for the prediction of burn injury baseline is illustrated in Fig. 7. 

In Fig. 7, it is shown that the heat transfer coefficient exhibits significant effects on the burn injury baseline for 

minimal exposure time. However, the effect of the convective heat transfer coefficient becomes negligible, with 

prolonged exposure time. This is because, under prolonged exposure of the skin layers to burn, the burn injury is 

dominated by conductive heat transfer in the tissue rather than the convective heat transfer at the surface of the 

skin. Moreover, as the convective heat transfer coefficient increases by a factor of 2, the injury baseline shifts 

towards the LHS of the base value (1250W/m2K).  
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Fig. 8. Initial tissue temperature profiles for three-layer skin tissue 

 

 

Fig. 9. Injury baseline with uniform tissue temperature (34°C) and initial temperature profile for two-layer and three-layer slab 

 

 

Under such condition, minimal time is required to reach the second-degree injury baseline. However, when the 

convective heat transfer coefficient is decreased by a factor of 2, the injury baseline shifts towards the RHS of the 

base value (1250W/m2K), which shows that as the convective heat transfer coefficient decreases, more time is 

needed for the skin burn to reach a second-degree burn injury. Fig. 8 shows the initial tissue temperature profiles 

for the three-layer skin tissue whilst the injury baseline using a uniform tissue temperature of 34°C and the initial 

temperature profile for two and three-layer slabs is presented in Fig. 9. Figs 8 and 9 shows that the selection of 

initial temperature 34°C for all the three layers is highly reasonable. It is worth noting that uniform initial 

temperature can be applied for all three layers for a more accurate analysis of the cutaneous tissue burn injury. 

Moreover, the skin injury layer baseline range of combinations of different values of thermal properties is 

presented in Fig. 10. Fig. 10 considers the effect of a worst-case combination of parameters, where the upper 

baseline represents a combination of low thermal properties of skin components, low heat transfer coefficient and 

low initial tissue temperature. The lower baseline represents a combination of high values of these parameters. 

 

 

Fig. 10. Skin injury layer baselines for varying thermal properties 
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6.1. Effects of Relaxation time and Thermalisation time 

The effects of relaxation time and thermalisation time on the skin temperature during the cooling process is 

presented in Fig. 11. The simulation shows that the peak temperature predicted by the classical bioheat equation 

is higher than the DPL during the heating process. However, the temperatures from all considered cases converge 

during the cooling process. This is because the finite speed of wave propagation and the peak temperature 

predicted by the DPL occurs with time lags. The time lag causes longer thermal dissipation, i.e., cooling by the 

heat conduction of tissue and by the blood perfusion period of peak temperature. The predicted higher temperature 

by the classical bioheat model than the DPL model implies that the accumulation of the thermal damage is 

overestimated since the level of the accumulative thermal damage depends primarily on the peak temperature. 

Moreover, as seen in Fig. 11, the relaxation time and thermalisation time enhances heat diffusion and reduces the 

thermal damage in the skin tissues. This effect is noticeable as the heat transfer process approaches the peak 

temperature during heating. However, the curves are close and almost similar values are predicted during cooling 

for the relaxation time and thermalisation time considered.  

 

 
Fig. 11. Effects of relaxation time and thermalisation time on the skin temperature 

 
 

  
 

a. Maximum temperature distribution in the skin tissue before cooling 

 
b. Temperature distribution in the skin tissue after 4sec of cooling 

 

 

 
 

c. Maximum temperature distribution in the skin tissue after 7sec of cooling 

 
Fig. 12. Temperature distribution of the skin tissue before and after cooling 
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The temperature distribution in the skin tissue at depth 0.006m and length 0.024m for a period of 8sec are 

presented in Fig. 12. Fig. 12 shows the dimensionless length and depth of the tissue, where the negative values in 

the dimensionless depth indicate depth zero i.e., below the skin surface. The dimensional length ranges from –1 

to +1 to depict symmetry as stated in the boundary conditions. The dimensional length ranges from –1 to +1 to 

depict symmetry as stated in the boundary conditions. Further, the results of the present study are compared with 

the different established works in the literature including Henriques [39], Fugitt et al. [40], Stoll and Greene [41], 

Takata [42] and Wu [43] as presented in Figs. 13-18. Fig. 13 demonstrates the comparison of the various results 

for the effects of surface temperature on burn injury. Also, Figs. 14 - 16 demonstrates the required time to reach 

the first, second and third-degree burn injuries when the skin tissue temperature is maintained at 50°C, 70°C, and 

90°C respectively. The effects of tissue depth and surface temperature on the degree of burn and burn injury are 

illustrated in Figs. 17 and 18. It is shown that the thermal damage value or the value of the burn injury is minimal 

for low tissue temperature but increases rapidly with temperature above 50°C. 

 

 

 
 

Fig. 13. Comparison of present work with existing studies on the effect of surface temperature on burn injury  

 

 

 

 
 

Fig. 14. Comparison of present work with existing studies on degree of burn and burn injury time (log) at fixed surface temperature of 50oC 

 
 



 
 

Fig. 15. Comparison of present work with existing studies on degree of burn and burn injury time (log) at fixed surface temperature of 70oC 

 

 
 

 
 

Fig. 16. Comparison of present work with existing studies on degree of burn and burn injury time (log) at fixed surface temperature of 90oC 

 

 

 

 
 

Fig. 17. Comparison of present work with existing studies on the degree of burn injury for various tissue depth at 80oC for 5s  

 



 
 

Fig. 18. Comparison of results for the effects of temperature on the degree of burn and its associated level of injury  

 

 

Figs. 13-18 show that the present study quantitatively agrees with previous studies for low-level damage at 

temperatures below 50oC.  However, there is significant variation among the skin burn damage models results for 

high exposure temperatures. In fact, for temperature above 50oC, only Henriques [39] and Takata [42] corresponds 

reasonably for all temperatures evaluated and in agreement with the results of the present study. Fig. 19 presents 

the validation of the present study with the experimental work of Takata [42]. From the comparison, the present 

study shows significant agreements with the experimental work of Takata [42], which demonstrates the reliability 

of the obtained results of the study. 

   

 
 

Fig. 19. Comparison of the present study on burn injury with established experimental results   

 

7. Conclusion 

In the present work, Galerkin’s finite element method is used to analyse the DPL bioheat model of the human 

skin. The effects of skin tissue properties, initial temperature, blood perfusion rate, relaxation and thermalisation 

time and heat transfer parameters for the thermal response and exposure time of triple-layer cutaneous tissue is 

carried out. The following concluding remarks are drawn from the detailed study: 

 An increase in the thermal conductivity of the epidermis decreases the thermal resistance, which readily 

causes increased heat penetration of the tissue, which implies that the higher the thermal conductivity of 

the tissue, the lower the degree of burn injury  

 The study shows that an increase in dermis thermal conductivity results in a prolonged time to reach the 

injury threshold and the blood perfusion rate exhibits no net effect on the prediction of burn injury in the 

dermis layer. However, the initial skin tissue temperature exhibit significant effects on burn injury 

exposure  

 The relaxation and thermalisation time play fundamental roles in the analysis of burn injury. The 

relaxation time and thermalisation time enhances the heat diffusion and reduces the thermal damage in 

the skin tissues 



 The heat transfer coefficient plays significant effects on burn injury for small exposure time. The effect 

of the convective heat transfer coefficient becomes minimal for prolonged exposure time.  

 For accurate analysis of the skin tissue burn injury, it is convenient to use uniform initial temperature for 

the triple-layer cutaneous layers  

 The most dominating factors in the burn injury follow the order: relaxation time and thermalisation time, 

initial tissue temperature followed by the epidermis layer thermal conductivity, dermis layer thermal 

conductivity and convective heat transfer coefficient 

The present work would help in the quantification of skin burn, and for clinicians and biomedical engineers to 

experiment, design, characterise and optimise strategies for delivering thermal therapies. 
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