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 

Abstract—Human activity recognition from sensor data is a 

fundamental research topic to achieve remote health monitoring 

and ambient assisted living (AAL). In AAL, sensors are integrated 

into conventional objects aimed at enabling people’s capabilities 

through digital environments that are sensitive, responsive and 

adaptive to human activities. Moreover, new technological 

approaches to support AAL within the home or community setting 

offers people the prospect of more individually focused care and 

improved quality of living. In the present work, an ambient human 

activity classification framework that augments information from 

the received signal strength indicator (RSSI) of passive RFID tags 

to obtain detailed activity profiling is proposed. Key indices of 

position, orientation, mobility, and degree of activities which are 

critical to guide reliable clinical management decisions using 4 

volunteers are employed to simulate the research objective. A two-

layer, fully connected sequence long short-term memory recurrent 

neural network model (LSTM RNN) is implemented. The LSTM 

RNN model extracts the feature of RSS from the sensor data and 

classifies the sampled activities using SoftMax. The performance 

of the LSTM model is evaluated for different data size and the 

hyper-parameters of the RNN are adjusted to optimal states, 

which results in an accuracy of 98.18%. The proposed framework 

suits well for smart homes and smart health and offers a pervasive 

sensing environment for the elderly, persons with disability and 

chronic illness.  

 
Index Terms—Activity recognition, ambient assisted living, 

LSTM, recurrent neural network, RFID, smart homes 

 

I. INTRODUCTION 

ORLD demography shows that ageing and chronic 

diseases are on the increase. With the prevalence of 

chronic diseases among the elderly and younger generation, the 

demand for improved healthcare services is rapidly becoming 

an economic burden with healthcare budgets overstretched in  
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most developed and developing countries. Recent reports from 

the world health organization (WHO) identified chronic 

diseases in both old and young people as a leading cause of 

disability, and if not successfully managed, would become the 

most expensive problem for most grown and growing 

economies [1, 2]. Moreover, with the global demographic trend 

towards the elderly, persons with chronic illness and 

immunocompromised patients, the demand for entirely new 

healthcare solutions using different indoor technologies [3] is 

ever-changing. 

Human activity recognition (HAR) is a key aspect of 

ubiquitous computing and human-robot interaction with 

significant application in healthcare for tracking, rehabilitation 

assistance, elderly care support and cognitive disorder 

recognition in various environments. Understanding and 

recognising human activities is a cost-effective alternative 

healthcare approach to ameliorate the proliferating demand for 

independent and assistive living.  

HAR from sensor data has proved to be an effective approach 

in pervasive computing due to its viable potentials in many 

wireless applications. Indoor human activities usually contain 

rich semantic information which can be applied as landmarks 

to infer the target’s location and position. In addition, HAR is 

achieved via wearable and ambient or device-free sensing 

approach. Wearable sensing depends on the target to determine 

where the wearable device is worn and the device position with 

regards to the performed activity, which implies that the 

transition between each position has to be detected [4]. With the 

prevalence of smart sensor technology and the Internet of 

Things, wearable sensing approach has become more and more 

popular and can be implemented directly using the smartphone.  

However, several wearables are often found obtrusive, causing 

discomfort to sensitive patients. 

Yorkshire, UK (e-mail: A.S.Alhabdalla@bradford.ac.uk, 

R.A.A.Abd@bradford.ac.uk). 

 
 

 

 
 

 

 
 

 

Passive RFID Module with LSTM Recurrent 

Neural Network Activity Classification 

Algorithm for Ambient Assisted Living 

George Oguntala, Senior Member, IEEE, Yim-Fun Hu, Senior Member, IEEE, Ali A. S. Alabdullah, 

Raed Abd-Alhameed, Senior Member, IEEE, Muhammad Ali, Doanh Luong 

W 



 2 

Ambient sensing involves device-free approach where 

devices/sensors fixed at predetermined locations of interest are 

used to detect different human activities. Ambient sensing 

offers the advantage of wireless human activity detection. It is 

worth noting that traditional ambient systems require the use of 

camera and computer vision, which are effective for large 

coverage data acquisition but are often found invasive [5-7]. 

Nonetheless, the development of HAR systems for diverse 

applications typically follow key standard sequence of activities 

that involves sensor network, data acquisition, data analytics 

and classification techniques [8].  

To this end, the main motivation of the present work is the 

extension of our previous work in [9] to employ a  continuous-

time classification approach using the LSTM RNN for AAL. 

The human activity classification framework augments data in 

the form of received signal strength (RSS) from passive RFID 

tags to obtain a more detailed activity profiling. The 

discriminative power of each RFID tag is sampled and 

processed for different sampled human activities. The physical 

characteristics of position, orientation, mobility, and degree of 

activities are key indices to support effective clinical 

management decisions, especially for the elderly, persons with 

disabilities and chronic illness and immunocompromised 

patients. 

Therefore, the contributions of this paper are as follows: 

1. We employed deep learning via LSTM RNN to model 

the sequential dataset from the RSS of passive RFID 

and learn high-level representations to improve time-

dependency. 

2. The LSTM RNN model is used to classify the 

experimental datasets to achieve human activity 

recognition. 

3. The performance of the LSTM RNN is evaluated on 

different data size to evaluate the complexity and 

accuracy of the classification model. 

In the following section, we present a review of related works 

on different ambient approaches for human activity recognition 

in Section II. In Section III, the methodology of the LSTM 

model is presented. Section IV presents the experimental 

evaluation of the study using the SmartWall. In Section V, the 

training of the LSTM model is presented whilst the activity 

classification of the dataset is presented in Section VI. 

Performance evaluation of the LSTM model using different 

metrics is presented in Section VII. Finally, the conclusion 

drawn from the present work is presented in Section VIII.  

II. RELATED WORKS 

Ambient intelligence (AmI) in healthcare as a computing 

paradigm where sensors are integrated into conventional 

objects aimed at enabling people’s capabilities through digital 

environments that are adaptive, sensitive, responsive and 

adaptive to human activities and emotions has been receiving 

intense attention in the subject of smart homes [10-13]. Readers 

interested in the subject of AmI for AAL and smart homes are 

referred to the following articles [14-19]. 

Different interesting AAL solutions using AmI have been 

proposed in the literature. Magherini et al. in [20] proposed the 

automated recogniser of activities of daily living (ADL) using 

the propositional temporal logic model. The proposed system is 

evaluated within the context of the smart kitchen. Jayatilaka et 

al. proposed the Home of Things for AAL (HoTAAL) solution 

[21]. In [21], appliances are developed to support unobtrusive, 

seamless social interactions with the elderly to assist them with 

ADL with a focus on meal preparation. Wan et al. in [22] 

proposed the Cummulately Overlapping windowing approach 

for amBient recognition of activities (COBRA) system. The 

proposed COBRA system employs the sliding window 

algorithm augmented with logistic regression to recognise real-

time activities within a 60-secs window. Biagi et al. in [23] 

proposed a continuous-time AAL approach for online and 

offline ADL using the continuous-time Hidden Semi-Markov 

model and continuous-time Hidden Markov model. Garcia et 

al. in [24] proposed the Safe Neighborhood solution to crowd 

sense people outdoor using computer interferences from 

contextual and sensor data to provide safer community 

monitoring of the elderly. The above solutions employ different 

perspective of methodologies under various conditions to 

support AAL. However, the present work is based on the deep 

learning approach due to its high-level feature extraction and 

learning capabilities to achieve a more robust, real-time HAR 

solution.    

III. METHODOLOGY 

Deep learning is effective high-level feature extraction and 

learning approach without a prior knowledge. Deep learning 

methods extract features in terms of complex ADL 

representations via different physical positions and 

orientations. However, since most human activities occur 

sequentially over a timeframe, the sequence model using the 

recurrent neural network is effective for activity classification.  

 

A. RNN and LSTM 

Recurrent neural networks (RNN) are a special type of 

artificial neural network capable of learning distinct patterns 

and long-term dependencies from time-series and sequential 

data including speech, language, genomes, text and video. 

Sequential data come in order of observations, rather than a set 

of observations.  

 

Fig 1. Topology of MLP 
 

The RNN operates as a form of multi-layer perceptron (MLP) 

network with the addition of loops to the architecture [25]. MLP 

networks are made of one input layer, one or more hidden layers 
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and an output layer as illustrated in Fig. 1. In Fig. 1, the MLP 

consist of six distinct input nodes, two hidden layers with each 

hidden layer containing two nodes and output is referred to 

Class. Fig. 2 also illustrates the architecture of a basic RNN 

where nodes are connected in one direction and the nodes of the 

hidden layers are connected to the nodes of the input layer. 

 

 

Fig. 2. RNN Architecture 

 

From Fig. 2, 
             1tanht t th l x r h    (1) 

    
   2 tt

y l h  (2) 

Eq. (1) and (2) shows that the output at t = n is dependent on 

the inputs at t = n, t = n-1 and t = 1. This implies that the 

predicted class depends on the sequence of sampled data rather 

than a single activity data and each hidden layer depends on the 

preceding hidden layer and the input layer. The structure of the 

hidden states operates as the memory of the network and the 

state of the hidden layer at each time step is conditioned on its 

previous state [26]. The RNN consists of hidden states of high 

dimensionality with nonlinear dynamics [27]. The performance 

of RNNs to learn long-term dependencies from time-series and 

sequential data is affected by the vanishing problem where the 

gradient of the loss function decays exponentially with time. 

However, to overcome the vanishing problem, and retain 

memory, the long short-term memory (LSTM) is a more 

effective method. The LSTM includes a set of gates that 

controls when information enters the memory and maintains it 

for an extended time. The LSTM uses memory cells where the 

inputs and outputs are controlled by gates instead of the 

traditional tanh or sigmoid activation functions [28]. The LSTM 

cells are effective to learn temporal representations from 

statistical features for activity classification. The recurrent 

connections in LSTM add state or memory to the network, 

which allows the RNN to learn and harness the ordered nature 

of the observations within input sequences. It is worth noting 

that the LSTM employs two inputs, output from the lower layer 

and from a previous time step in the current layer. The 

configuration operates with the assumption that the current state 

depends on the state of the previous time step [29]. This 

assumption of time-dependency often constrains the modelling 

capability of the RNN. However, in the present work, the 

current state of the LSTM RNN is adjusted via the RNN 

learning process to depend on multiple states of different 

timestamps which result in improved time-dependency 

modeling capability. 

 

B. LSTM Architecture 

The LSTM model has evolved into several architectures with 

different improvements and limitations. A comparison of 

different LSTM model architectures is presented in Table 1. 

Moreover, readers are referred to [28] for detailed knowledge 

of the different LSTM model architectures. However, the 

present work focus on the LSTM model due to its effective 

computational cost for activity classification problem.  

 
TABLE 1. COMPARISON OF VARIOUS LSTM ARCHITECTURES 

LSTM Model 

Architecture 

Features Limitations 

Bi-directional 

LSTM 

support forward and backward leaning 

of the input sequence, which is an edge 

over standard and S-LSTM 

forward and backward leaning often results 

in increased computational complexity 

than LSTM 

Differential LSTM effective on Spatio-temporal pattern 

and discriminates between non-salient 

and salient features in a sequence 

use of differential operators in the model 

increases its computational complexity 

than LSTM 

Frequency-Time 

LSTM 

improved performance in both 

frequency and time-based information  

number of parameters required to model 

frequency and time increases 

computational complexity in comparison 

with LSTM 

Grid LSTM model multi-dimensional sequence of 

increased grid dimension 

the model requires higher memory and 

multiple recurrent connections increase 

computational complexity than LSTM 

Local-Global 

LSTM 

improved performance on local and 

global contextual pattern in a sequence 

frequency of parameters for the local and 

global representations increases 

computational complexity in comparison 

with LSTM 

LSTM computational cost is low and effective 

for long-term dependencies. Robust to 

overcome the vanishing gradient 

problem than RNN 

model requires higher memory with 

increasing memory cells 

Matching LSTM optimises LSTM for NLP increased computational complexity due to 

word-to-word matching of hypothesis and 

premise 

Multi-dimensional 

LSTM 

effective on multidimensional sequence the model becomes unstable with 

increasing grid size and depth, resulting in 

higher computational complexity than 

LSTM 

S-LSTM effective on complicated inputs that 

standard LSTM 

the model requires higher computational 

cost than LSTM 

Stacked LSTM the model supports long-term sequential 

dependencies due to deeper architecture 

Stacking of LSTM cells requires higher 

memory and subsequently increased 

computational complexity than LSTM 

 

The architecture of the LSTM RNN model as a folded 

network, with two fully connected layers is illustrated in Fig. 3. 

 

 

Fig. 3. LSTM Architecture (Folded Network) 

 

The FCN layers and SoftMax layer are only applied at the end 

of the recurrence to generate sequence activity predictions. This 

implies that the intermediate outputs of the recurrent network 

are not used, as shown in the unrolled LSTM architecture in 

Fig. 4. 
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Fig. 4. Unrolled LSTM RNN where FCN layers with softmax are applied for 

activity prediction 

 

C. LSTM layer 

In Fig. 4,  x T represents the total sequence of input, o  is the 

output whilst the LSTM cell is the computational cell that maps 

the input to the output. The computational activities that operate 

within each LSTM unit is illustrated in Fig. 5. 

 

Fig. 5. Architecture of the LSTM unit 

  

Fig. 5 illustrates the architecture of the LSTM unit. The 

LSTM unit consists of a self-connected memory cell  tc  and 

three distinct gates; the forget gate  tf  that controls the removal 

of the previous state, an update gate  t
i  which controls the 

storage and update of input data and an output gate  t
o which 

generates the output results.  

For any given timestamp t, of input data,  t
x  and output  t

h

generated, the LSTM activations are calculated from the 

expressions in Eq. (3) – (8) 
      1

  
t t t

g f f ff W x U h b


  
 

(3) 

      1
  

t t t

g i i ii W x U h b


  
 

(4) 

      1
  

t t t

g o o oo W x U h b


  
 

(5) 

      1
  

t t t

h c c cc W x U h b


  
 

(6) 

         1
    

t t t t t
c i c f c


     (7) 

        
t t t

hh o c 
 

(8) 

Therefore, the parameters to be learned in the LSTM cell are 

the weights and biases in the sampled data, which includes bf, 

bi, bo, Wf, Uf, Wi, Ui, Wo, Uo. 

 

D. Fully connected layers 

In Fig. 5, the output from the LSTM is fed into two fully 

connected layers; FCN1 and FCN2. The two FCNs are used to 

reduce the dimensions of the features to a 1 m  vector, where 

m  denotes the number sampled activities. The computation 

within the two FCN layers are as follows:  

  1 Re 1 1   
t

fcn LU fcn fcna W h b   (9) 

2 2 1 2 .  fcn fcn fcn fcna W a b   (10) 

It is worth noting that the parameters to learn in the FCN1 layer 

are Wfcn1, bfcn1 and Wfcn2, bfcn2 in the FCN2 layer. Moreover, the 

length of the vector afcn2 is twelve, which represents the number 

of sampled classes. Each value in afcn2 corresponds to the 

denormalized probability that the input data belongs to the class 

that has the same index as its identity. This show that the first 

value of afcn2, i.e. afcn2(0), denotes the non-normalised 

probability that the input is from class_0 and similar conditions 

holds for all sampled activities. 

 

E. SoftMax Layer  

The output of the second fully connected layer, FCN2 layer 

is fed into the SoftMax layer (Y). The SoftMax layer converts 

the denormalized probabilities in afcn2 to a probability 

distribution function expressed in the form: 

 
 

 

 

 

 

 

2 2 2

2 11 11 11

2 2 20 0 0

0 1 12
, ,.........,

T

fcn fcn fcn

fcn j j j

fcn fcn fcnj j j

a a a
Y Softmax a

a j a j a j
  

  

 
  
 
     

 

(11) 

Since the SoftMax acts on each element of afcn2, Y and is of 

equal size as afcn2. Therefore,  

 
11

0

1
j

j

Y j





 

 

(12) 
 

From Eq. (12), the predicted class is expressed as an index in Y 

where the highest probability value and the observation is 

expressed as:  

Observation:   Predicted Class = Argmax (Y) 

 

IV. EXPERIMENTAL EVALUATION 

The ambient, experimental sampling approach for various 

ADLs is achieved via the SmartWall [9]. Fig. 6 illustrates the 

experimental setup for data acquisition using the SmartWall. The 

SmartWall is made from thick rubber cladding of dimension 

1220 × 2440 mm2. The rubber cladding is covered with fabricated 

passive RFID tags arranged in a grid of dimension 19 × 12 for 

the experiment. The RFID tags are mounted on the surface of the 

SmartWall. Each tag is positioned symmetrically on the surface 

of the wall 3cm apart in both x and z-axis as shown in Fig. 6. The 

Impinj RAIN RFID multi-reader version 6.6.13.240 with octane 

firmware is used for the read the HID passive RFID tags. The 

experiments are conducted within two mock rooms B3.03 and 

B3.26 of the Biomedical and Electronics Department, University 

of Bradford. Each mock room layout is of dimensions 6.5m × 

4.7m × 3.2m, with room B3.03 containing a kitchenette where 

some activities including prepares breakfast and brush teeth are 

performed.   
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Fig. 6.  Experimental Setup using the SmartWall 

 

Two RFID reader antennas are vertically placed with the 

height of the upper antenna at 1.7m, whilst the lower antenna is 

mounted 1m to the ground. The transmitted power of the reader 

antenna is set to -31.5dBm. Each HID RFID tag consists of a 

meander antenna of dimension 88 × 37 × 15 mm3 integrated with 

Alien Monza 4E chip of impedance 14 + j135 Ω. The distance 

between the SmartWall and the RFID reader antenna is set to 5m 

to achieve accurate readings. Different ADL is performed within 

and around the 5m radius of the SmartWall and the reader 

antenna and readings are recorded. 
 

A. Dataset 

The generated dataset involves a series of RSSI readings of 

passive RFID tags. Each activity was performed by the 

volunteers 2.5m in front of the SmartWall. The sampled 

activities were carried out in terms of height and width 

orientation. A description of each sampled human activity is 

presented in Table 2. 

 
TABLE 2. DESCRIPTION OF SAMPLED HUMAN ACTIVITY FOR 

CLASSIFICATION 

Activity_ID Activity Description 

S0 Target runs in and out of the room to the corridor 

S1 Target sits 1m away from the wall 
S2 Target uses the bathroom 

S3 Target stands 1m away from the wall 

S4 Target sits randomly at different locations in the room 
S5 Target walks in and out of the room 

S6 Target lay on the sofa  

S7 Target falls 

S8 Target brushes teeth 

S9 Target sleeps in bed 
S10 Target prepares food 

S11 No target in the room 

 

It is worth stating that the SmartWall is moved to different 

locations of the mock room to perform specific activities to 

achieve high precision. For example, the SmartWall is placed 

by the door of the mock to sample activities S0 and S5. For the 

more complex activity S2, the SmartWall is placed 2.5m from 

the predefined position of the activity. However, each activity 

is performed in 10 iterations taken within a 60-secs window and 

a total of 120 data files is obtained.  

B. Feature Extraction 

To employ the deep learning technique using the LSTM 

model, features of the dataset is selected to produce refined 

information of each sampled activity. Three distinct features of 

EPC_values (tag_id), RSSI and timestamp are selected. The 

selected features of EPC values (tag id), RSSI and timestamp 

are used as each feature varies with each sampled activity. It is 

worth noting that timestamp is critical to developing HAR 

systems for both discrete and continuous-time human activities. 

 

C. Feature Extraction and Data Cleanup 

To achieve data reliability, the dataset is pre-processed to 

clean any corrupted data caused by possible hardware failures 

during data transfer. To clean the data for further processing, 

the following procedures are performed:  

Step 1: The EPC_values are mapped to unique integer_ID such 

that the integer ranges from 1 to 228 (which corresponds to the 

total number of UHF passive RFID tags used in the 

experiment). Therefore, each tag ID is given a unique 

integer_ID whilst other tag IDs are similarly mapped.  

Step 2: The timestamps are uniquely mapped to integer_ID. 

The integer_ID given to the timestamps are in ascending order 

i.e. for each activity dataset, the lowest timestamp value takes 

the id 0 and the next timestamp takes id 1…. etc.   

Step 3:  Finally, the RSSI values for all tag IDs at each 

timestamp is collected to form an RSSI vector. Each vector is 

of length 228 (which corresponds to the total number of tags). 

It is worth noting that  t
x represents an RSSI vector at 

timestamp t, where the vector length is 228, which corresponds 

to the total number of tag_ID in the array.  This implies that 

each activity dataset is represented as a set of RSSI vectors. The 

number of RSSI vectors in each activity dataset depends on the 

total number of timestamps in the data file. However, the RSSI 

vector is not constant across each activity as it varies, with the 

maximum power found to be around -34dBm whilst is -25dBm 

across the entire dataset. Subsequently, each activity dataset 

represents a sequence of RSSI vectors  t
x and is denoted as 

KX where K is the total number of timesteps. Therefore,  
         0 1 2 3

{ ,  ,  ,  ,.............,  }
KKX x x x x x

   (13) 

Each 
KX is padded with zero to have the same size of K = 34 

and is expressed as: 

𝑋𝑇 ∈  ℝ𝑄 𝑥 𝐾                                          (14) 

where Q = 286 and represents the size of the RSSI vector  t
x  

 

From Eq. (14), 
TX represents a single activity training dataset. 

The activities are given unique integers from 0 to 11 and each 

integer is then converted to one-hot encoding as presented in 

Table 3. It is worth noting that the one-hot representation is used 

for the computation of the cross-entropy loss. 
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TABLE 3. ACTIVITY_ID WITH CORRESPONDING ONE-HOT REPRESENTATION 

Activity_ID One-Hot representation 

S0 [1,0,0,0,0,0,0,0,0,0,0,0] 

S1 [0,1,0,0,0,0,0,0,0,0,0,0] 

S2 [0,0,1,0,0,0,0,0,0,0,0,0] 

S3 [0,0,0,1,0,0,0,0,0,0,0,0] 

S4 [0,0,0,0,1,0,0,0,0,0,0,0] 

S5 [0,0,0,0,0,1,0,0,0,0,0,0] 

S6 [0,0,0,0,0,0,1,0,0,0,0,0] 

S7 [0,0,0,0,0,0,0,1,0,0,0,0] 

S8 [0,0,0,0,0,0,0,0,1,0,0,0] 

S9 [0,0,0,0,0,0,0,0,0,1,0,0] 

S10 [0,0,0,0,0,0,0,0,0,0,1,0] 

S11 [0,0,0,0,0,0,0,0,0,0,0,1] 

 

V. TRAINING  

A. Training Setup 

To train the RNN model, the stochastic gradient descent 

optimiser is employed. The objective function used in the 

gradient descent algorithm is to minimise the loss function. The 

training loss function used in the present multi-class 

classification problem is the cross-entropy loss and is expressed 

in the form: 

      
11

0

,     . log
j

actual actual

j

L Y Y Y j Y j




 
 

 
(15) 

where Yactual represents the one-hot encoding label for the 

training dataset.  

Eq. 15 gives the cross-entropy loss on a single training 

dataset. However, the total loss function over the entire training 

dataset is the sum of the cross-entropy loss for the entire 

training dataset expressed as:  

               
 

0

1
 = ,

j m

total actual

j

J L Y Y
m






 

 
(16) 

where m is the number of sampled activities per training batch 

data, Jtotal represents the total loss function, that is, the function 

of all weights and biases, i.e. learnable parameters in the 

network. Therefore, Eq. 16 is further expressed as:   

 1 1 2 2

0

( , , , , , , , , , , , ,  = ,
j nTrainingset

total f o i f f i i o o fcn fcn fcn fcn actual

j

J b b b U W U W U W b W b W L Y Y






(17) 
Eq. 17 is the objective/optimization function of the network and 

the value of the weights and biases minimises Eq. 16. 

Moreover, the gradient descent algorithm is used to minimise 

the objective function.  

The dataset is split into training and test dataset according to 

the iteration windows approach. The first 7 iteration windows 

for all sampled activities are selected for training the model and 

the last 3 iteration windows are used as test data. Since the RSSI 

value across the entire dataset is between 29dB and 31dB. The 

datasets are normalised and 30dB is selected as the normalised 

value. The normalised value is built into the batch loader to 

achieve accurate prediction. The datasets are loaded in batches 

and backpropagation is carried out on the batch dataset. The 

training is run on a Microsoft machine with Intel® Core™ i7-

7500U CPU @ 2.90GHz and NVIDIA GeForce 930MX. The 

computational graph of the RNN model is defined in 

TensorFlow [30].  

During training, two key metrics of minibatch loss and 

minibatch accuracy are observed. The minibatch loss gives the 

cross-entropy loss of the minibatch, whilst the minibatch 

accuracy gives the percentage accuracy the RNN model has on 

the batch dataset after backpropagation of its gradient, i.e. the 

RNN model is trained by optimising the total loss function. To 

overcome the overfitting problem, the hyperparameters are 

randomly tuned and optimised with the stochastic descent 

method to minimise the training loss. The dropout rate for each 

hidden layer is defined. The dropout allows a single dropout 

mask to be generated at the beginning of each training sequence 

and it adjusts throughout the sequence. The dropout rate is set 

to 0.5 on the FCN1 layer. Table 4 illustrates the 

hyperparameters used to train the RNN model. 

 
TABLE 4. TESTING PARAMETERS 

Hyperparameters Value 

Training iteration  

Learning rate,   

700 
0.0001 

Max sequence length 34 
Q 286 

fcn1 100 

fcn2 100 
K 

Num_Classes 

34 

12 

 

The performance of the RNN model is evaluated on the 

dataset after each epoch of training. The training loss for 

training the datasets is presented in Fig. 7. 

 

 
Fig. 7. Training loss curve 

From Fig. 7, the LSTM RNN model achieves a training loss of 

0.01. 

  

VI. ACTIVITY CLASSIFICATION   

To examine the generalisation of the LSTM RNN classifier for 

activity recognition, the model is evaluated on the selected test 

dataset. Six activity datasets were chosen randomly and fed into 

the model for classification. The classification of the selected 

activity test datasets is presented in Fig. 8. In Fig. 8, the LSTM 

RNN is illustrated to effectively recognise each selected 

activity class to their correct class with high probability. 
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Fig. 8. Recognition accuracy of the LSTM RNN model for selected activities  

 

Moreover, since accuracy as a performance metric expressed as 

the total correct classifications to the total number of instances, 

the recognition accuracy of the LSTM RNN classifier for all 

sampled activities is presented in Fig. 9.  

 

 
 

Fig. 9. Confusion matrix of the LSTM RNN model of sampled 
activities 

 

Fig. 9 illustrates the confusion matrix of the LSTM RNN 

model. The additional right column and bottom row indicate the 

accuracy of each actual and predicted activity class. The overall 

recognition accuracy of the LSTM RNN classifier for the 

sampled activities is found to be 98.18%, which is indicative 

that the model effectively learned each activity class. It is worth 

noting that the LSTM RNN classifier shows higher accuracy for 

stationary activities including sitting, standing, laying on the 

sofa, sleep in bed and fall. However, the LSTM classifier shows 

relatively low performance for concurrent and complex 

activities including sitting randomly and bathing, as the LSTM 

classifier, for example, misclassifies sequential random sitting 

with other stationary activities.  

 

VII. PERFORMANCE EVALUATION    

A. Effect of Training Data Size  

The correlation between data size and the performance of 

machine learning and deep learning algorithm has been a 

critical consideration to determine the complexity of the model 

[31-33]. With deep learning, there is ongoing research interest 

to determine how performance improves with increasing data 

size in the literature [34-36]. In the same context, the value of 

datasets that would result in the optimal recognition 

performance of the LSTM RNN model and reduce overfitting 

is investigated. To achieve the evaluation objective, different 

values of the data size, N are processed by the LSTM model to 

establish which range of N results in optimal recognition 

performance in terms of accuracy. The obtained results from the 

evaluation are presented in Fig. 10. 

  
a. Scatter plot of model for N=100  

b. Scatter plot of model for N=1000 

 

  
 

c. Scatter plot of model for N=5000 

 

 

d. Scatter plot of model for N = 10000 

 

 
 

e. Scatter plot of model for N = 20000 
 

Fig. 10. Performance of LSTM RNN model for varying data size 
 

In Fig. 10, it should be observed that the recognition 

performance of the LSTM RNN model improves as N 

increases. The convergence of the data indicates the recognition 
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accuracy of the LSTM model as N is increased from N = 100 

(25%), for N=1000 (58%), for N=5000 (92%). However, the 

performance of the model reaches an optimal for N>=10000). 

This shows that the performance of the LSTM model performs 

better for a certain value of datasets. 

 

B. Performance Metrics 

The performance of the LSTM model is further evaluated 

using other key metrics, including precision, recall and the F-

score. Precision expresses the proportionality of TP to the total 

predicted true classes and is expressed as: 

  Precision    =   TP

TP FP
                       (18) 

   where TP represents all true positives and FP all the false 

positive. 

Recall or sensitivity expresses the ratio of accurately predicted 

true classes to all activities in the true class.   

                               Sensitivity     =    TP

TP FN
                          (19) 

 where FN represents false-negative.                                                   

F-score expresses the classification correctness of the LSTM 

RNN model. F-score estimates the weighted harmonic mean of 

precision and recall by taking both false positives, FP and FN 

into account and is usually expressed as: 

                     F-score    =   
Recall Precision

2
Recall Precision





                   (20) 

The overall performance of the LSTM using the three key 

metrics to achieve the research objective is presented in Table 

5. From the results in Table 5, it is shown that the LSTM RNN 

model effectively classifies the dataset for human activity 

recognition. 

 
TABLE 5. PERFORMANCE METRICS OF THE LSTM MODEL 

Activity Precision  Sensitivity  F-score 

S0 0.984 0.986 0.9850 
S1 0.976 0.976 0.9760 

S2 0.972 0.978 0.9750 

S3 0.990 0.976 0.9830 
S4 0.968 0.978 0.9730 

S5 0.982 0.963 0.9724 

S6 0.986 0.986 0.9860 
S7 0.982 0.992 0.9870 

S8 0.976 0.984 0.9800 

S9 0.988 0.982 0.9850 
S10 0.978 0.983 0.9805 

S11 0.996 0.996 0.9960 

 

C. Comparison of the LSTM RNN model with other state-of-

the-art probabilistic models 

The performance of the LSTM RNN model in terms of 

accuracy is compared with other state-of-the-art algorithms, 

including random forest, Hidden Markov model (HMM), Naïve 

Bayes, Hidden Semi-Markov Model (HSMM) and 

Convolutional neural network (CNN) using the raw dataset. 

Python software is employed to implement the multiclass 

classifiers [37]. TensorFlow is used to evaluate the performance 

of both LSTM and CNN. The Scikit-learn library is used to 

implement the machine learning functions for Naïve Bayes and 

Random Forest. The HMM model is implemented using the 

hmmlearn and trained using the Baum-Welch algorithm, and the 

HSMM is evaluated using the factor adaptive training based on 

the expectation-maximization algorithm as described by 

Yamazaki et al. [38].  

Each state-of-the-art algorithm is trained on exact data size, N 

= 10000. The obtained results are presented in Fig. 11. The 

obtained results show that the LSTM RNN matched and 

outperformed several state-of-the-art probabilistic models 

including random forest, HMM, Naïve Bayes, HSMM with an 

overall performance of 98.18%. However, the performance of the 

LSTM RNN and CNN exhibits a greater correlation, which 

shows both neural network models effectively learned and 

predicted the dataset. Therefore, the present work further builds 

on our previous work in [9] on the opportunistic deployment of 

passive RFID via the SmartWall for human activity recognition. 

However, compared to our previous work in [9], the present work 

is evaluated with increased data size to improve the complexity 

and robustness of the LSTM model for reliable real-time, human 

activity recognition.  

 

 
 

Fig. 11. Comparison of recognition performance of LSTM RNN model with 

standard state-of-the-art classifiers 
 

VIII. CONCLUSION 

In this paper, we have proposed an ambient, human activity 

classification framework using a two-layer fully connected 

sequence RNN. The proposed method employs LSTM RNN to 

extract the high-level features of EPC, timestamps, and RSS. 

The performance of the LSTM-RNN is evaluated for different 

data size and the hyper-parameters of the RNN are adjusted to 

achieve improved classification performance. Using the 

experimental dataset, the classification accuracy of the LSTM 

RNN model is found to be 98.18% and outperforms the 

standard state-of-the-art learning methods of random forest, 

HMM, Naïve Bayes, HSMM and CNN. With the outcome of 

the research, it is shown that RFID technology can be properly 

employed to achieve smart health. Further emphasis on data 

size in deep learning indicates that the performance of the 

LSTM model performs better for a certain amount of datasets 
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(i.e. 10,000N  ). The future work will concentrate on 

exploring 3-D data sampling and improved development of the 

sensing methodology to achieve 3-D human activity profiling. 

The present activity recognition framework offers intelligent, 

pervasive sensing and classification approach to support active 

and assisted living for the elderly, vulnerable and persons with 

disabilities. 

APPENDIX 

  
Element-wise multiplication 

fb
 

Forget gate bias vector, i.e. 𝑏𝑓 ∈ ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

ib
 

Update gate bias vector, i.e. 𝑏𝑖 ∈ ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

ob
 

Output gate bias vector, i.e. 𝑏𝑜 ∈ ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

cb
 

Input gate bias vector, 𝑏𝑐 ∈ ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

 tf  
Forget gate activation vector, 𝑓(𝑡) ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

 t
i  

Input gate activation vector, 𝑖(𝑡) ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

 t
o  

Output gate activation vector, 𝑜(𝑡) ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

,f fW U
 Forget gate weight matrix, 𝑊𝑓 , 𝑈𝑓  ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 𝑄 

,i iW U
 

Update gate weight matrix, 𝑊𝑖 ,  𝑈𝑖  ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 𝑄 

,o oW U
 

Output gate weight matrix, 𝑊𝑜,  𝑈𝑜  ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 𝑄 

,c cW U
 

Input gate weight matrix, 𝑊𝑐 ,  𝑈𝑐  ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 𝑄 

h  Hyperbolic tangent activation 

g
 Sigmoid activation 
 t

h  Output vector from LSTM, ℎ(𝑡) ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 
 tc  

LSTM state vector,  𝑐(𝑡) ∈  ℝ𝑛ℎ𝑖𝑑𝑑𝑒𝑛 𝑥 1 

1fcna
 

Activation vector of FCN1, i.e. 𝑎𝑓𝑐𝑛1  ∈  ℝ𝑛𝑓𝑐𝑛1 𝑥 1 

2fcna
 

Activation vector of FCN2, i.e. 𝑎𝑓𝑐𝑛2  ∈  ℝ𝑛𝑓𝑐𝑛2 𝑥 1 

1fcnW
 

Weight matrix of FCN1 i.e. 𝑊𝑓𝑐𝑛1  ∈  ℝ𝑛𝑓𝑛𝑐1 𝑥 𝑛ℎ𝑖𝑑𝑑𝑒𝑛 

2fcnW
 

Weight matrix of FCN2 i.e. 𝑊𝑓𝑐𝑛2  ∈  ℝ𝑛𝑓𝑛𝑐2 𝑥 𝑛ℎ𝑖𝑑𝑑𝑒𝑛 

1fcnb
 

Bias vector of FCN1 i.e. 𝑏𝑓𝑐𝑛1  ∈  ℝ𝑛𝑓𝑐𝑛1 𝑥 1 

2fcnb
 

Bias vector of FCN2 i.e. 𝑏𝑓𝑐𝑛2  ∈  ℝ𝑛𝑓𝑐𝑛2 𝑥 1 

ReLU
 

Rectified linear unit activation function 

1fcna
 

Activation vector of FCN1, i.e. 𝑎𝑓𝑐𝑛1  ∈  ℝ𝑛𝑓𝑐𝑛1 𝑥 1 

2fcna
 

Activation vector of FCN2, i.e. 𝑎𝑓𝑐𝑛2  ∈  ℝ𝑛𝑓𝑐𝑛2 𝑥 1 

1fcnW
 

Weight matrix of FCN1 i.e. 𝑊𝑓𝑐𝑛1  ∈  ℝ𝑛𝑓𝑛𝑐1 𝑥 𝑛ℎ𝑖𝑑𝑑𝑒𝑛 
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