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ABSTRACT  
Multi-objective optimisation (MOOP) methods are used heavily to support decision-makers in 
addressing problems with conflicting objectives. With global CO2 emission legislation becoming 
stringent, automotive OEMs face a challenge to balance conflicting commercial and environmental 
objectives simultaneously. Automotive OEMs seek to maximise profits by stimulating global sales 
volumes whilst also minimising CO2 management costs. MOOP methods can quantify CO2 
management costs to optimise decisions in response to the increasingly regulated business 
environment. Whilst automotive OEMs are modelling the dynamic knock-on effects of pursuing 
multiple objectives, there is also a need to formulate their decision objectives, decision criteria and 
decision options to be considered as part of CO2 management decisions first. A systematic literature 
review offers a detailed account of how automotive OEMs can optimise CO2 management decisions.  

The multiple decision objectives, decision criteria and CO2 management decision options considered 
by automotive OEMs are first categorised. The systematic literature review reveals that evaluating 
decision criteria such as the vehicle fleet portfolio, customer demand, market requirements and 
financial cost can assist automotive OEMs select the optimal CO2 management decision in a given 
scenario. Next, reconfiguring vehicle features, investing in technology, restricting sales and paying 
CO2 tariffs are identified as the most common CO2 management decisions taken by automotive 
OEMs. Then MOOP methods are critiqued for their suitability, before a novel decision support 
model, which adopts an automotive OEMs’ perspective for mitigating CO2 management costs is 
proposed. It is found that interactive and objective decision making approaches such as MOOP 
opposed to classical Multi Criteria Decision Making (MCDM) methods can more precisely quantify 
the commercial implications of the stricter global CO2 emission legislation now imposed on 
automotive OEMs. If automotive OEMs adopt the proposed model, they can effectively model 
future CO2 management scenarios and pre-emptively prevent counter-productive decisions by 
minimising CO2 management costs.    

Key words: CO2 tariff minimisation; Profit maximisation; Financial cost; Multi-objective 
optimisation; Decision support model; Automotive OEMs  

1. Introduction  
The transportation industry is one of the largest emitters of CO2 (EPA, 2019). CO2 emissions are a 
major concern for decision-makers throughout the product lifecycle, particularly during the use 
phase (Russell, 2019). Decision-makers seek to quantify the compliance and noncompliance costs 
associated with CO2 legislation and to enumerate the extent to which the increasingly regulated 
business environment impacts the sales of vehicles (Morris et al., 2009). The commercial 
implications of CO2 legislation need to be considered prior to the sale of goods to avoid automotive 
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OEMs incurring substantial CO2 tariff costs for noncompliance with emission targets in global sales 
markets (Niese & Singer, 2013). In order to effectively measure the costs associated with vehicle CO2 
emissions, the commercial implications must be captured and quantified by ascribing a monetary 
cost (Engau & Hoffmann, 2011).   
By factoring in the commercial implications of CO2 legislation into decision-making, automotive 
OEMs can mitigate the commercial implications of CO2 emissions throughout various stages of the 
product lifecycle (Nieuwenhuis et al., 2012). Factoring in the commercial implications of CO2 
legislation brings about an extra layer of complexity into the already intricate production processes 
involved in the automotive industry (Jasiński et al., 2016), especially during car production. 
Automotive OEMs carefully consider production measures such as Takt time, production line 
balancing, tooling and manpower planning (Roy et al., 2011), hence embedding CO2 management 
into the decision-making equation brings about an extra layer of complexity for automotive OEMs 
(Shaik & Rodrigues, 2018). After all, automotive OEMs already produce countless different vehicle 
permutations, fitted with unique feature combinations, across a wide portfolio of vehicle models, as 
part of international vehicle fleets to cater for a global customer population (PA Consulting, 2019). 
Automotive OEMs need to handle the dynamics involved in the decision-making process by factoring 
in the costs associated with CO2 management by modelling the interrelated criteria involved when 
optimising CO2 decisions (Hao et al., 2016).   

Numerous methods are used by manufacturers in existing approaches to manage the commercial 
implications of CO2 legislation. Nevertheless, there is a deficiency of frameworks that assess criteria 
holistically, whilst utilising dynamic models (Carmona-Benítez et al., 2017; Khoo & Teoh., 2014) and 
that also offer a manufacturers perspective (Wellmann et al., 2017). This study builds upon 
previously developed methods that quantify the commercial implications of CO2 legislation via 
optimisation methods. This paper progresses the work of Lee & Hashim, (2014), who modelled CO2 
mitigation strategies for electricity generation, by integrating CO2 reduction costs with maximising 
profit, to achieve Pareto optimal outcomes. In addition, this paper follows the work of Müller et al.  
(2018), by recognising that businesses which operate globally are required to comply with different 
CO2 emission legislations. Moreover, this paper extends the work of Nazari et al. (2015) by 
acknowledging that methods designed for CO2 management should be dynamic whilst also 
appreciating the non-linear nature of how CO2 tariff costs are incurred in reality as done in the work 
of Yang, (2018).   

Automotive OEMs utilise a range of decision support methods with different purposes to investigate 
design variations and make cost-effective configurations even before the first vehicle prototype has 
been built. The methods used by automotive OEMs include but are not limited to Fords’ product 
sustainability index and environmental failure mode effect analysis (FMEA), Volvos’ life cycle 
analysis and design for recycling, Nissans’ design for recycling, Renaults’ life cycle management, 
Volkswagens’ life cycle analysis, PSA (Peugeot-Citroens’) eco-design, Fiats’ life cycle analysis, 
Daimlers’ design for environment and Toyotas’ ecological vehicle assessment (eco-vas) 
(Nieuwenhuis & Wells, 2003). Other notable methods employed by automotive OEMs include CO2 
Model for PAssenger and commercial vehicles Simulation (CO2MPAS), Vehicle Energy Consumption 
Calculation Tool (VECTO), Passenger Car and Heavy Emission Duty Model (PHEM), Passenger Car 
fleet emissions Simulator (PyCSIS), Simulation of Urban Mobility (SUMO) and Anstalt für 
Verbrennungskraftmaschinen List (AVL) Cruise. Notwithstanding the usefulness of the plethora of 
methods that are available, global emission legislation has given birth to a range of commercial 
implications for automotive OEMs that existing methods fail to fully address (Ricardo, 2018).   
With the advent of stricter emission legislation, automotive OEMs are increasingly concerned with 
how CO2 management decisions can be optimised and the combination of criteria that should be 
considered to effectively mitigate the costs associated with global emission legislation (PA 
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Consulting, 2019). In this regard, Multiple Criteria Decision Making (MCDM) methods can be 
employed to solve the automotive OEMs’ CO2 management decision problem (Zopounidis & 
Doumpos, 2002). Despite the abundance of published reviews on the subject of CO2 emissions, the 
commercial implications of CO2 emission legislation have received less coverage than the social, 
environmental, legal and technological implications brought about by CO2 emission legislation.  The 
explicit focus of this study is to address the commercial implications of CO2 legislation with a 
conceptual decision support model. The model assists automotive OEMs to optimise CO2 
management decisions by concentrating solely on commercial objectives, such as minimising the 
financial costs associated with CO2 management decisions whilst seeking to maximise profits for 
automotive OEMs. 

The contributions provided by this systematic literature review are two-fold. Firstly, the gaps in 
knowledge pertaining to the commercial implications of CO2 legislation are identified.  The gaps in 
the body of knowledge that need to be filled are:   

1. formulating the key objectives involved in dealing with the commercial implications of CO2 emission 
legislation;  

2. identifying the most effective combination of criteria to be evaluated by automotive OEMs in the 
CO2 management decision problem in order to achieve optimal decisions;  

3. and identifying the decision options that lead to achieving Pareto optimal outcomes as part of an 
automotive OEMs CO2 management strategy.  

Secondly, a decision support model that acts as a mechanism for automotive OEMs to mitigate the 
commercial implications of CO2 legislation is proposed via a systematic literature review. The paper 
is organised as follows. Before the model is presented, section 2 of this article outlines the process 
of the systematic literature review. Section 3 covers the decision objectives, options and criteria that 
automotive OEMs can evaluate to solve the CO2 management decision problem. Section 3 also 
includes a critique of MCDM methods and then categorises methods based on their individual 
characteristics. Section 4 covers the lessons that can be learned from existing approaches that utilise 
MCDM methods, to solve similar CO2 management problems. Section 4 also includes a critical 
review of the effectiveness of employing particular MCDM and MOOP methods to mitigate CO2 
management costs across various industries. The findings from the literature on MCDM methods 
valuably inform the development of the proposed decision support model designed for automotive 
OEMs. Finally, section 5 concludes the paper.  

2. Method   
For the systematic literature review conducted in this study, keyword searches were carried out on 
academic databases such as Science Direct, IEEE, Web of Science, Scopus and Google Scholar. Some 
of the search terms used in database queries were: [‘CO2 emission costs’ OR ‘carbon footprint costs’ 
AND ‘decision support systems’ OR ‘decision analysis’ OR ‘multi-criteria decision analysis’ OR ‘MCDA’ 
AND ‘multiple objective optimisation’ OR ‘MOOP’]. After records were generated from several 
searches on various academic databases, records were screened for relevance by assessing titles 
and abstracts of records. Duplicates were then removed which produced a collection of 183 sources 
of literature, ready for analysis.  Due to the multidisciplinary nature of the CO2 management 
decision making subject matter, a wide range of search term combinations in addition to the 
aforementioned search terms were employed. See the supplementary material for further details on 
the literature search. 

A set of selection rules were set up to ensure that only relevant pieces of literature were included in 
this study: 
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• Inclusion of any type of study (published, whether peer-reviewed or not) 
• Inclusion of any study on CO2 management decision problems (automotive or not) 
• Inclusion of studies of any geographical scope 
• Exclusion of studies adopting a non-technocratic approach due to the study adopting a 

manufacturers perspective and the industry strongly favouring technocratic approaches  
• Exclusion of studies in languages other than English (the languages fluently handled by 

authors of this study) 
• Exclusion of studies focusing predominantly on ethical, social and political issues of CO2 

management decision problems as the focus of this review is on the commercial 
implications of CO2 legislation 

• Exclusion of duplicates. For example if a technical report was transformed into a peer-
reviewed article then only the peer-reviewed article 

The content of selected studies were mapped by extracting information using the following 
questions: 

• What were the aim(s) of the study? 
• What type of frameworks, models, methods or tools and techniques (approaches) were 

used in those studies? 
• How were the approaches used in those studies to solve the CO2 management decision 

problem? 
• Did the study focus on the commercial implications of the CO2 management decision 

problem? 
• What were the conclusions of the studies regarding the effectiveness of the various existing 

approaches in solving the CO2 management decision problem? 
 

The CO2 management decision problem has received significant attention especially as the 
environmental legislative landscape has become more stringent. In between the transition of NEDC 
and WLTP, the number of academic publications have increased as seen in Figure 1. In the advent of 
new global environmental legislation, academic publications have continuously reported the 
challenges facing manufacturers. Table 1 conveys the top academic journals that have reported the 
CO2 management decision problem according to the bibliometrics of this study. This study found 
that the Journal of Cleaner Production, European Journal of Operational Research, and Energy Policy 
publish comprehensively on the CO2 management subject matter in addition to the Society of 
Automotive Engineers. However, a significant amount of literature can also be found in white papers 
and consultancy reports produced by Ricardo, Netherlands Organisation for Applied Scientific 
Research (TNO), PA Consulting, European Environment Agency, JATO Dynamics and Just Auto, 
amongst many more.  Based on the aforementioned selection rules, 201 publications were found, 
whereof 158 were peer-reviewed journal articles and 43 were other types of publications. Thirty-
three percent of the publications focussed on the financial costs associated with CO2 legislation with 
a further fifteen percent concentrating on the technological costs of CO2 improvement during 
product development. Figure 1 shows that the number of publications in CO2 management decision 
making has increased especially during the last decade (2010-2020), with a significant rise in 2017 
particularly for the automotive industry during the advent of WLTP. 
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Figure 1: Academic publications on the CO2 management decision problems utilising MCDM methods (status: 
11th January 2020) 

 

Table 1: Top 12 academic Journals ranked by number of publications on the CO2 management 
decision problem in this study 

 Academic Journal Number of publications  

1 Journal of Cleaner Production 

 

17 

 

2 European Journal of 
Operational Research 

13 

3 Energy Policy 9 

4 Society of Automotive 
Engineers 

9 

5 Renewable & Sustainable 
Energy Reviews 

5 

6 International Council on Clean 
Transportation 

5 

7 Energy 4 

8 Applied Energy 3 
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9 Journal of Mechanical Design 3 

10 Transportation Research Part D 
: Transport and Environment 

2 

11 Sustainability 2 

12 Journal of Air Transport and 
Management 

2 

 

The key purpose of this paper is to collate existing literature on decision-making methods suitable 
for solving CO2 management decision problems. First, the challenges global CO2 emission legislation 
creates for manufacturing businesses, also known as Original Equipment Manufacturers (OEMs), will 
be explained. Second, the decision options of responding to global emission legislation are 
categorised, accompanied by the key criteria used by decision-makers when evaluating optimal 
responses to potential what-if scenarios. A review of existing decision-making methods is 
subsequently followed by an assessment of existing approaches to CO2 management decision 
problems. Finally, MCDM methods are appraised on their suitability to support automotive OEMs 
mitigate the commercial implications of CO2 legislation. The commercial implications of global CO2 

emission legislation will be discussed in the following section.  

 

3. Results  
The results of the systematic literature review will now be presented beginning with global emission 
legislation facing automotive OEMs. 

3.1 Global emission legislation  
Global CO2 legislation is gradually becoming more and more stringent (The International Council on 
Clean Transportation (ICCT), 2016) by setting limits on CO2 emitted throughout the product life 
cycle. OEMs have had to react to this legislative constraint by quantifying the costs associated with 
CO2 emissions across the respective stages of the product life cycle (Rubin et al., 2015) as illustrated 
in Figure 2. Figure 2 highlights that even though global emission legislation is enforced on 
automotive OEMs, proactive design decisions can be made to mitigate the commercial implications 
of CO2 legislation throughout the product life cycle. This study focuses on supporting automotive 
OEMs optimise CO2 management decisions with an emphasis on the use phase of the product life 
cycle. The use phase involves the highest level of CO2 emissions (Faria et al., 2013) and potential 
tariffs for noncompliance with emission targets. Non-compliance with emission targets could erode 
the profit margin and overshadow any profits to be achieved by automotive OEMs if not managed 
effectively (Matar & Elshurafa, 2017).   
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Figure 2: CO2 emissions associated with activity across product life cycle 

  

Global environmental legislation for automotive OEMs include CO2 exhaust emission targets in the EU 
in 2021, fuel economy targets in the United States (US) in 2025 under corporate average fuel economy 
(CAFE) (Jenn et al., 2016), and the US National Highway Traffic Safety Administration (NHTSA), and 
the corporate average fuel consumption (CAFC) standard phase 4 in 2020, in China (Atabani et al., 
2011). Table 2 shows existing and emerging global CO2 emissions legislation for automotive OEMs. 
Whilst the EU measures a vehicle’s environmental performance in CO2 grams per kilometre (g/km), 
other markets such as China and the US use fuel economy in litres per kilometre (l/km) to indicate the 
environmental performance of vehicles. Automotive OEMs should factor in the commercial 
implications of global CO2 emission targets into their decision-making.  
  

 
Table 2: Global Passenger Vehicle Emission and Fuel Economy Legislation  

Global Passenger Vehicle Emission Legislation – Use phase 
Region  Period 

2015-2020  2020 - 2025   2025-2030 
(expected 
targets)  

  
China  

Phase 4  
Corporate  
Average Fuel  
Consumption  
(CAFC)  

5.0 Litres (L)  
/100 km  

Phase 5 CAFC  4.0  
Litres (L) 
/100 km  

  
  
-  
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EU  

New European  
Driving Cycle  
(NEDC) Test   

130g CO2/km 
target  

Worldwide  
Harmonised  
Light Vehicle  
Test  
Procedure  
(WLTP) +  
Real Driving  
Emissions  
(RDE) Test  

95g  
CO2/km 
target  

WLTP 
+ RDE  

68 -78g  
CO2/km  
target   

  
India  

Bharat Stage IV  130g CO2/km 
target  

Bharat Stage  
VI  

113g  
CO2/km 
target 
(from  
2021)  

WLTP  

  
Japan  

Top Runner 
Program for 
passenger 
vehicles  

16.8 L/km target  Top Runner 
Program for 
passenger 
vehicles  

20.3 L  
/100 km 
target  

 
-  

  
  
US  

Corporate  
Average Fuel  
Economy  
(CAFE)  
Standards  

6.63 L/ 100 km /  
35.5 MPG  

The Safer  
Affordable  
Fuel- 
Efficient  
(SAFE)  
Vehicles  
Rule  

6.36  
L/100 
km  
target/ 
37 US  
MPG  
(from  
2021)    

 
-  

  
For example, the Corporate Average Fuel Economy (CAFE) program in the US regulates vehicles to a 
fuel economy standard of 34.1 miles per gallon (MPG) requires automotive OEMs to tailor their 
future vehicle offerings to more fuel-efficient powertrains or propulsion systems whilst also 
reducing vehicle mass and size (Wolfram et al., 2016). The European Union (EU) has proposed 
regulation 443/2009 to control CO2 emissions from new passenger cars (European Commission 
Climate Action, 2019). According to that regulation, the average CO2 emissions for each automotive 
OEMs’ new passenger cars registered in 2020, in the EU should not exceed the value of 95 grams (g) 
CO2/km on the New European Driving Cycle (NEDC) (Bampatsou & Zervas, 2011). In addition to this 
constraint, the previous emissions testing process (NEDC) was changed to the more stringent 
Worldwide Harmonised Light Vehicles Test Procedure (WLTP) in 2018. WLTP intends to better 
reflect actual emissions compared to carrying out the test in a laboratory where certain variables 
could have been manipulated (Dimaratos et al., 2016). This further exacerbates the CO2 
management challenge for automotive OEMs.   

Failure to comply with emission targets can have serious implications such as CO2 tariffs being 
imposed on automotive OEMs (Brand et al., 2017). This prompts automotive OEMs to assess various 
CO2 improvement measures in response to the legislative environment, hence, fuel efficiency and 
exhaust emission legislation have become key drivers of technological change for automotive OEMs. 
There is a challenge to better understand the commercial implications of CO2 legislation in the 
automotive industry (González Palencia et al., 2015; Thiel et al., 2010) with respect to the potential 
costs (Hill et al., 2012; Ligterink et al., 2016) of future investments (Fox et al., 2017) or penalties to 
be incurred in different global sales territories.   
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There are various decision options automotive OEMs can consider in meeting emission targets such 
as vehicle mass reduction measures (Isenstadt et al., 2017), improving internal combustion engines 
(ICE) (Johnson & Joshi, 2018) and selling alternative fuel vehicles (AFVs), which consist of hybrid and 
battery electric vehicles (BEV) (Michalek et al., 2006). Automotive OEMs typically incorporate a 
mixture of complimentary CO2 improvement measures as part of their vehicle fleet to offset the 
effect of high emitting vehicles affecting their fleet average emissions (Meszler et al., 2013). 
European CO2 legislation was the predominant policy utilised to model CO2 management costs in the 
publications found, followed by Chinese policy with American policy the least common. The decision 
maker’s objectives and decision options of dealing with emission legislation will now be discussed.   

3.2 Multiple objectives and decision options involved in CO2 management 
decisions  
Automotive OEMs typically seek to satisfy two competing objectives in dealing with emission 
legislation (Pasaoglu et al., 2012). In addressing the commercial implications of CO2 legislation, these 
objectives are profit maximisation and emission minimisation for solving environmental problems 
(PwC, 2007). Finding a balance between commercial and environmental objectives is challenging, as 
emissions are a by-product of seeking profit maximisation (Tsai et al., 2012). Instead, automotive 
OEMs can identify the points at which they could incur CO2 tariffs for not complying with global 
emission targets (Maddulapalli et al., 2012). This way, automotive OEMs could still pursue profit 
maximisation and minimise the cost of CO2 tariffs by optimising decisions. When optimising 
decisions to satisfy multiple objectives, automotive OEMs should assess the effect of decisions on a 
vehicle fleet collectively, since the CO2 tariff cost is based upon a collective vehicle fleet portfolio. A 
vehicle fleet portfolio is influenced by market requirements and driven by customer demand. As a 
result, automotive OEMs should observe the collective effects of decision options in dealing with 
emission legislation to mitigate the costs of CO2 tariffs more effectively (Wells et al., 2010).  

Figure 1 shows that CO2 emissions can be mitigated at different stages of the lifecycle by product 
design decisions. There are a number of decision options available for automotive OEMs to choose 
from in order to respond to emission legislation, such as, investing in CO2 technology, paying CO2 
tariffs, restricting sales and reconfiguring vehicle features (PA Consulting, 2019; ICCT, 2017, Ricardo, 
2016; Ricardo, 2018). These options may not be mutually exclusive; hence automotive OEMs can 
make decisions about how to respond to the commercial implications of CO2 legislation by 
combining decision options together, subject to the different potential scenarios in global markets. 
The CO2 management decision options for automotive OEMs are discussed in the following section.  

Decision Option I. Investing in CO2 technology  
There are a range of CO2 improving technologies automotive OEMs can adopt in vehicle design to 
achieve favourable CO2 performance, such as engine downsizing, electromechanical systems, 
regenerative braking systems (Silva et al., 2009), hybrid powertrains, battery-electric powertrains, 
fuel cells (Folkson, 2014) and alternative fuels, which include hydrogen, natural gas and biofuels 
(PwC, 2007). Toyota has taken a hybridisation route; however, they are returning to work on fuel 
cell technology; in contrast Nissan, Tesla and BMW have preferred battery electric vehicles (Mazur 
et al., 2015). The Renault-Nissan-Mitsubishi Alliance seeks to be the low-cost market leader for 
PHEV and BEV by 2022, Daimler has plans to launch a fully-electric brand, EQ by 2022 and after the 
PSA’s merger with FCA, they plan to share technologies together and focus on selling small and 
compact vehicles with increased PHEV and BEV adoption (PA Consulting, 2020). Emission legislation 
can encourage or discourage investment in CO2 improvement technologies (Lopez et al., 2017), 
however technologies are often dismissed due to a lack of customer demand (Coffman et al., 2017), 
their high associated life cycle costs (Ricardo, 2016) and the lack of available electric vehicle charging 
infrastructure (Wan et al., 2015). Upcoming legislation cannot be met without automotive OEMs 
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deploying significant levels of technology in order to reduce CO2 levels (Cheah et al., 2010; Walter et 
al., 2017). Not complying with CO2 emission legislation means costly tariffs will have to be paid by 
automotive OEMs to authorities. 
   
Decision Option II. Paying CO2 tariffs to authorities for non-compliance with emission 

targets  
An alternative to reducing CO2 emissions is that automotive OEMs could decide to sell non-
compliant vehicles and pay tariffs to authorities in their sales markets (Ciuffo & Fontaras, 2017). If, 
however, fleet average emissions do exceed the target threshold, there is a tariff incurred by the 
manufacturer of €95 per exceeding gram of CO2/km against the total vehicle fleet in the respective 
sales markets in the EU (Mock, 2019). Similarly, automotive OEMs can be financially penalised for 
non-compliance with CAFC in China and CAFE in the US (Atabani et al., 2011). If CO2 tariff costs are 
not mitigated they could overshadow any profits made on vehicle sales and hence erode the profit 
margins of automotive OEMs (Matar & Elshurafa, 2017).   

Decision Option III.  Restricting sales   
Another way automotive OEMs could respond to CO2 tariffs is to restrict their vehicle sales offering. 
Automotive OEMs sell vehicles in different global markets with varying emission targets, thus a 
viable decision could be to restrict product offering in specific markets. Automotive OEMs can sell 
individual vehicles with varying levels of CO2 emissions as long as the average emissions of the total 
group of vehicles, also known as the vehicle ‘fleet’, within a specific market does not exceed the 
130g CO2/km target till 2020 and then the 95g CO2/km target after 2021 in the EU (Regulation (EC) 
No 443/2009 of the EU). Automotive OEMs can respond to emission legislation by restricting the 
sales of highly polluting vehicles in markets with stringent legislation (Winter & Thierfelder, 2017). In 
the process sales restriction, automotive OEMs must also comply with Article 102 of the Treaty for 
the EU’s antitrust policy (European Commission, 2014) and US antidumping laws which prohibit 
limiting the production of goods or charging unfair prices (Konings & Vandenbussche, 2013). 
Reconfiguring vehicle features across the global population of vehicle fleets in various markets could 
be an alternative option.   

Decision Option IV.  Reconfiguring vehicle features  
Vehicle CO2 emissions are largely influenced by the mass of an individual vehicle (Tsokolis et al., 
2016), which is impacted by the features fitted to the vehicle (May et al., 2014); along with the 
vehicle engine type, aerodynamic drag, tyre rolling resistance and power-to-mass ratio (Galindo et 
al., 2017). Vehicle feature content could be reconfigured during product development to minimise 
CO2 emissions and tariff cost incurred and thus mitigate the impact on the profit margin (JATO, 
2017). Automotive OEMs could decide to review features offered to customers to reduce CO2 

emissions.   

CO2 emissions can be mitigated in a number of ways. Table 3 summarises automotive OEM’s 
decision options for CO2 management. A proactive approach can maximise the opportunities of 
automotive OEMs to satisfy both environmental and commercial objectives. Automotive OEMs are 
currently preparing scenario specific responses to CO2 legislation by conducting what-if-scenario 
analyses to gauge product life cycle costs associated with current and future emission legislation 
targets in various international markets (Thiel et al., 2014). The following section will identify the 
criteria to consider when selecting between decision options for responding to CO2 emission 
legislation.  

Some of the many CO2 management decision options available to automotive OEMs can be 
categorised into two well-known categories. The first category is investing in CO2 improvement 
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technology and includes electrification, developing advanced transmission systems, advanced 
engines and alternative fuel systems. The second category involves adopting vehicle mass reduction 
measures via the use of lighter materials or reconfiguring additional vehicle features (PwC, 2007).  
Although the academic literature provides insights into how automotive OEMs can optimise CO2 
management decisions via technology and product development, white papers and consultancy 
reports  have shown that automotive OEMS can also elect to pay CO2 tariffs for non-compliance with 
legislated CO2 targets or also restrict global vehicle sales (PA Consulting, 2019; ICCT, 2017, Ricardo, 
2016; Ricardo, 2018). Despite less scientific publications covering the latter two decision options, 
paying CO2 tariffs and restricting vehicle sales are valid decision options for automotive OEMs 
dealing with the commercial implications of CO2 legislation (Ito & Sallee, 2018). Table 3 tabulates the 
four key decision option categories extracted from the literature, available to automotive OEMs in 
response to the commercial implications of CO2 legislation. 

Table 3: Summary of decision options to deal with CO2 emission legislation  
Decision Options  Decision options of dealing with CO2 emission legislation  
  
Decision Option I. 
Investing in  
CO2 technology  

Description: There is a general consensus in the car industry that CO2 
improvement technology will be necessary for meeting global emission 
legislation.  
Advantage: the decision of investing in CO2 technology is considered 
the most effective for reducing CO2 emissions and automotive OEMs 
are rewarded with incentives such as CO2 reduction credits and 
subsidies for investing in CO2 technologies by policymakers (Wolfram et 
al., 2016)  
Disadvantage: The significant financial costs associated with investing 
in CO2 improvement technology makes the decision of investing, cost 
prohibitive (Folkson, 2014).   

  
Decision Option II. 
Paying CO2 tariffs  

Description: If the average emissions of an automotive OEM’s fleet 
exceed the emission target, the automotive OEM has to pay a CO2 tariff 
for each vehicle sold.  
Advantage: The payment of CO2 tariffs permits vehicles which are 
noncompliant with global emission targets to still be sold hence 
enabling automotive OEMs to generate sales revenues which would 
otherwise have not been possible without paying tariffs (ICCT, 2016)  
Disadvantage: The payment of tariffs, also known as penalties, can 
negatively harm the brand image of automotive OEMs, particularly for 
the environmental impact created by products (Ferrell et al., 2017). As 
a result, automotive OEMs take Corporate Social Responsibility (CSR) 
seriously to protect brand image  

  
Decision Option III. 
Restricting sales  

Description: Automotive OEMs can restrict the sales volumes of 
specific vehicle models or vehicle features to mitigate fleet average 
emissions  
Advantage: Tariff costs can be avoided by restricting sales and 
automotive OEMs can use this opportunity make minor modifications 
in the product development cycle to improve CO2 performance of 
future vehicles to be sold (PA Consulting, 2019)  
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Disadvantage: There can be significant opportunity costs associated 
with restricting sales such as a reduction in market share and the lack 
of proactively dealing with the CO2 management problem may cause 
automotive OEMs to incur greater financial costs in the long term 
compared to the benefits of avoiding tariff costs in the short term 
when restricting sales (PA Consulting, 2019)  

  
Decision Option IV. 
Reconfiguring  
vehicle features  

Description: Vehicle features offered to customers by automotive 
OEMs can be changed to satisfy emission targets  
Advantage: Vehicle mass is the dominant factor impacting the CO2 
emissions of internal combustion engine vehicles and reconfiguring 
vehicle features can improve vehicle emission performance (Tsokolis et 
al., 2016)   
Disadvantage: Whilst striving to improve emission performance, 
automotive OEMs should not neglect the preferences of customers by 
disregarding customer demand (Mills et al., 2016)  

 
After discussing the most common decision options taken by automotive OEMs in response to the 
commercial implications of CO2 legislation, now the decision criteria that has been used to evaluate 
the commercial implications of CO2 management decisions will follow.  

3.3 Decision Criteria to consider in selecting options to respond to emission 
legislation  
There are multiple criteria to consider in the decision-making process for selecting appropriate 
decision options in response to global emission legislation as shown in Table 3. First, it is important to 
establish the particular CO2 management strategy to be adopted by the automotive OEM prior to 
selecting decision criteria. CO2 management strategies vary widely (Genta et al., 2014) and include, 
but are not limited to three main strategy categories which give birth to their related measures: 

1) Alternative fuel technologies with measures such as Biofuels, Natural gas and Hydrogen; 
 

2) Engine technologies with measures such as Electrification, Hybridisation, Fuel cells and 
Advanced ICE; 
 

3) Non engine technologies such as Transmission, Energy storage, Rolling resistance and 
Aerodynamics 
 

The relative effectiveness of these CO2 management measures have been investigated in previous 
studies. For example, Türe & Türe (2020) investigated the use of lighter vehicle materials and 
considered criteria such as the amount of vehicle material type employed, the vehicle mass reduction 
achieved when substituting components and the resultant exhaust emission produced by the 
passenger car. Weiss et al (2019) assessed the cost-to-benefits of electrification and plug-in hybrid 
vehicles (PHEV) by considering criteria such as fuel and electricity prices, existing vehicle charging 
infrastructure and expected vehicle mileage.  Conversely, Rosenfeld et al (2019) examined alternative 
fuel technologies using criteria like energy supply structure, electricity generation mix and transport 
distance travelled. The various possible CO2 management strategies that automotive OEMs can adopt 
impacts both the measures that will consequently be available to them, and the decision criteria that 
they will evaluate as a result. Although the aforementioned criteria utilised in previous studies are 
valid, the evaluation of decision criteria is progressively becoming a commercial challenge for 
automotive OEMs who are seeking profitability and battling against CO2 management costs (Idjis & da 
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Costa, 2017). The commercial challenge involves automotive OEMs having to consider criteria like the 
market requirements in their international sales territories, the customer demand for vehicles they 
produce, the subsequent financial costs of CO2 management and the nature of their vehicle fleet 
portfolio. As previously mentioned in section 1, the aim of this study is to purely address the 
commercial implications of CO2 legislation facing automotive OEMs and provide decision support from 
the manufacturers perspective. Future research is required to verify the viability of these decision 
criteria and will now be discussed in more detail.   

Decision Criteria I. Optimise vehicle fleet portfolio  
An automotive OEM’s vehicle fleet portfolio is comprised of various vehicle models, all which 
proportionally contribute to the fleet average emissions in respective markets (Autovista, 2019). 
Vehicle models have a range of features. Automotive OEMs can optimise their vehicle fleet portfolio 
by maximising vehicle sales and minimising the CO2 tariff cost incurred by reconfiguring vehicle 
features to satisfy CO2 emission targets in (g/km), whilst also satisfying customer demand for a given 
selection of vehicle features (Sharif et al., 2019).   

 Decision Criteria II. Customer demand  
Customer demand is another criteria automotive OEMs consider when responding to emission 
legislation. Customer demand determines the type of vehicles ordered and the individual features 
fitted to vehicles. Customers are still demanding heavy and high-emitting types of vehicles such as 
Sports Utility Vehicles (SUVs) even though legislation requires a reduction in vehicle emissions 
(Bampatsou & Zervas, 2011). As customers order vehicles with more optional features, the optional 
vehicle features impact a vehicles’ mass, power consumption and CO2 emissions (Martin et al., 
2017). The manufacturer should acknowledge how customer demand for various vehicle types and 
individual features can be met whilst responding to emission legislation.  
 
Decision Criteria III. Market requirements  
The cost of market-specific tariffs for non-compliance of legislation has to be factored into the 
decision-making process as well as the compliance costs associated with CO2 improving technologies 
(Ligterink et al., 2015). As part of their CO2 management strategy, automotive OEMs can choose to 
respond to emission legislation by restricting the sales of highly polluting vehicles in markets with 
stringent legislation (Winter & Thierfelder, 2017). Depending on market requirements, automotive 
OEMs could opt to invest in CO2 improving vehicle technologies (Werber et al., 2009); purchase 
carbon credits, which is effectively a mechanism of ‘paying to pollute’; pay non-compliance tariffs 
(Pasaoglu et al., 2012) or pay another manufacturer to join their emissions pool in order offset 
potential high fleet average emissions. Ultimately, automotive OEMs can make different decisions in 
different markets as part of their CO2 management strategy.   

Decision Criteria IV. Financial cost  
Financial cost is a key criterion for automotive OEMs in the consideration of selecting options to 
respond to emission legislation. Automotive OEMs need to weigh up the costs of tariffs paid for non-
compliance with emission targets, versus the incremental investment cost to comply with emission 
targets. Automotive OEMs assess the potential costs of CO2 improving technologies together with 
their CO2 reduction potential against the potential costs of CO2 tariffs (Ricardo, 2018). In addition to 
the potential costs of CO2 improving technologies, automotive OEMs are also concerned with the 
shelf-life of CO2 improving technologies (Fox et al., 2017).   

As vehicle technology evolves, automotive OEMs are aware that multiple criteria have to be 
considered in the selection of CO2 improving technologies such as engine e-boosting (Hu et al., 
2017), 48 volt electrical systems (Brown et al., 2016), advanced driver assistance systems (ADAS) 
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(D’Amato et al., 2017) and sensor suites (Schaeffler Technologies GmbH, 2014). Customer demand, 
vehicle fleet portfolio, financial cost and sales markets are criteria which could all be evaluated in 
CO2 management decisions. Table 4 shows the multiple criteria that could be considered by 
automotive OEMs when selecting decision options for CO2 management as extracted from 
literature.  

Table 4: Decision Criteria to consider in selecting decision options for CO2 management  
Reference Decision Criteria to consider in selecting options to respond to CO2 

emission legislation  
Decision Criteria I.    
Optimise vehicle fleet 
portfolio  

Decision Criteria II. 
Customer demand  

Decision Criteria III. 
Market 
requirements  

Decision Criteria IV. 
Financial cost  

Maddulapalli 
et al., 2012  

✓  ✓  ✓  ✓  

Michalek et 
al., 2004  

  ✓  ✓  ✓  

Shiau et al., 
2010  

✓      ✓  

Reid et al., 
2012  

✓  ✓      

Hoffenson 
and  
Söderberg, 
2015  

  ✓  ✓  ✓  

Michalek et 
al., 2006  

✓  ✓  ✓  ✓  

Takai et al., 
2011  

✓  ✓    ✓  

Frischknecht 
and  
Papalambros,  
2008  

✓  ✓  ✓  ✓  

Siskos et al., 
2014  

✓    ✓  ✓  

Tsokolis et 
al., 2016  

✓    ✓    

Silva et al.,  
2009  

✓      ✓  

Thiel et al., 
2010  

✓      ✓  

Tsiakmakis et 
al., 2017  

✓    ✓    

Fontaras et 
al., 2018  

✓    ✓    

Al-Alawi &  
Bradley, 2014  

✓    ✓  ✓  

  
Decision-making methods can offer the perspective of policymakers, customers and manufacturers. 
Previous studies have modelled how decision-makers can make profit-optimal decisions whilst 
evaluating multiple criteria simultaneously. Although controlling financial cost is a key criterion for 
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decision-makers seeking business profitability (Reid et al., 2012), understanding how the 
interrelationships between other criteria influences the objectives of the decision-maker is crucial 
when making decisions involving multiple criteria (Si et al., 2016). Multi-criteria decision-making 
(MCDM) is discussed in the following section.   

3.4 Multi-criteria decision-making (MCDM) Methods   
Decisions which involve making choices, ranking and sorting can be problematic due to the presence 
of several criteria (Ishizaka & Nemery, 2013). Decisions usually involve trade-offs whereby a 
decision-maker incurs a loss to make a gain elsewhere. In pursuit of making the optimal choice, the 
decision-maker considers a range of alternative options (Favi et al., 2016) to make a final choice, 
consequently sacrificing alternative choices. The process of foregoing alternative choices is referred 
to as the opportunity cost (Hahn et al., 2010). Usually, there is not a perfect decision that satisfies all 
criteria so a compromise must be found to achieve Pareto optimality (Tomoiagă et al., 2013). Pareto 
optimality can be defined as the state where resources are allocated as efficiently as possible so that 
improving one criterion will not worsen other criteria (Kennedy et al., 2008).  

Multi-criteria decision-making (MCDM) is an approach for evaluating conflicting decision objectives 
in a structured manner (Nijkamp et al., 1990). Decisions are typically evaluated based upon long 
term prospects, level of uncertainty and risks. The MCDM process consists of defining objectives, 
choosing criteria for measuring objectives, specifying alternative decisions, transforming the 
criterion scales into measurable units by the same standard, allocating weights to criteria 
representing their relative significance, selecting and applying a mathematical algorithm for ranking 
alternatives and then choosing from set of alternative decisions (Ananda & Herath, 2009).  Table 5 
will now highlight the wide range of MCDM methods at the disposal of an automotive OEM for 
solving the CO2 management decision problem in order to mitigate the commercial implications of 
CO2 legislation. 



 

 

Table 5: MCDM methods classification  

     MCDM methods classification  
Method  School of 

thought  
Merits  Limitations  

 Analytic Hierarchy 
Process (AHP)  

Full  
Aggregation   

AHP has a prominent reputation for 
assigning weights to decision objectives 
which enables decision-makers to discern 
between objectives when making 
judgements (Ren et al., 2019)  

The interdependence amongst criteria and decision 
alternatives can cause issues which can lead to 
discrepancies in the ranking of criteria and ultimately in 
decision-making judgment (Velasquez & Hester, 2013  

  Analytic Network 
Process (ANP)  

Full  
Aggregation   

ANP can handle the interrelationships 
between criteria thus allowing a more 
accurate ranking of criteria (Giannakis et 
al., 2020)   

The priorities derived from the pairwise comparison 
matrices feeding into the weighted ‘super matrix’ and  
‘limit super matrix’ involve subjective human 
judgements. Therefore, ANP is commonly supplemented 
with other methods to form hybrid decision methods 
(Chen et al., 2019)  

  ELECTRE  Outranking  ELECTRE is the best known and most 
widely used method for ranking problems 
due to the comprehensive ranking 
relationships produced by the method  
(Wen et al., 2016)  

Although ELECTRE declares the decision-makers 
preferences, the method ignores the differences 
between decision alternatives in the process of 
determining the ranking order (Strantzali & Aravossis, 
2016)  

  PROMETHEE  Outranking  PROMETHEE is easy to use, does not 
require criteria to be equally proportional 
and does not require normalisation hence 
overcoming the commensurability issue 
(Ishizaka & Nemery, 2011).  

A limitation of PROMETHEE is that it lacks a clear system 
by which to assign weights (Macharis et al., 2004).  
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Technique for the 
Order of Prioritisation 
by Similarity to Ideal 
Solution (TOPSIS)  

  

Goal 
aspiration  

TOPSIS involves a straightforward 
computation process, a weighing of 
decision criteria during the solution 
comparison procedure, whilst also 
enabling the best decision alternative for 
each decision criteria to be expressed in 
simple mathematical form, all, in a logical 
procedure for decision-makers’ to easily  

  follow (García-Cascales & Lamata, 2012)  

1) TOPSIS is heavily dependent upon crisp values for 
assigning criteria weights however in most empirical 
decision problems, crisp values do not model decision 
problems accurately hence Fuzzy TOPSIS can be used in 
this case (Onu et al., 2017)  
2) TOPSIS fails to acknowledge the relationships 
between decision criteria, consequently, decision-makers 
can encounter issues for weighing criteria consistently  
3) TOPSIS suffers from the phenomenon of rank reversal 
subsequently violating the invariance principle of the 
utility theory (García-Cascales & Lamata, 2012)  

  Evolutionary 
Algorithms  

Goal aspiration  Evolutionary algorithms can solve complex 
optimisation problems and generate 
multiple Pareto optimal solutions in a 
single simulation considerably quicker 
than classical decision-making methods 
which have prohibitive execution times 
(Tomoiagă et al., 2013).  

Mathematical problems which consist of a large number 
of design variables can be best solved by the Multi 
Objective Differential Evolution (MODE) algorithm with 
respect to convergence rate and running time. On the 
other hand, the MODE algorithm generates a smaller 
variety of solutions compared to the Multi-Objective 
Particle Swarm Optimisation (MOPSO) algorithm and the  
Non dominated Sorting Genetic Algorithm II (NSGAII) 
(Monsef et al., 2019)  

  Quality Function  
Deployment (QFD)/  
House of Quality  
(HOQ)  

Product 
development  

Applying QFD can reduce product design 
time and product costs whilst also 
increasing sale revenues (Carnevalli &  
Miguel, 2008)  

Accurately interpreting the fuzzy desires of customers, 
modelling the relationships between the quality 
demanded by customers and the technical quality 
delivered by manufacturers is both a challenge and time 
consuming for decision-makers (Zhang et al., 2019)  
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  Goal Programming  Goal aspiration  GP presents decision-makers with helpful 
procedures such as the ability to relax 
decision constraints to better reflect the 
reality of decision problems (García‐
Martínez et al., 2019)  

1) The ‘satisfactory’ solutions generated by GP are 
underpinned by Simons’ theory of satisficing, hence GP 
can be criticised for the methods’ failure to guarantee 
that Pareto optimal solutions are generated  
(García‐Martínez et al., 2019)  
2) GP is typically combined with other decision-
making methods such as AHP due to the inability of GP to 
weigh coefficients  

  Data Envelopment 
Analysis (DEA)  

Nonparametric  1)The programming solvers embedded 
within the method facilitate the 
subjectivity issue associated with weight 
determination to be avoided by assigning 
efficiency scores to decision-making units 
(DMUs) instead (Liu et al., 2019)  
2)The desirable and undesirable factors in 
decision-making can be differentiated well 
in comparison to multivariate analysis 
methods (Ai et al., 2019)   

1)The trade-offs amongst multiple inputs as well as the 
desirable and undesirable outputs creates difficulty for 
decision-makers to capture and evaluate the empirical 
performance of systems (Xie et al., 2019)   
2)The application of the method is more suited for 
production problems which have clear defined inputs and 
outputs (Wojcik et al., 2018)  

  Measuring  
Attractiveness by a  
Categorical Based  
Evaluation Technique  
(MACBETH)  

Full  
Aggregation  

MACBETH offers a simple and transparent 
approach for modelling complex, 
multidimensional problems and is 
extensively adopted for building value 
functions and to weigh criteria in additive 
models (Lopes et al., 2014)  

Additive models are generally employed in MACBETH, 
however, additive models are criticised for violating 
conditional monotonicity (Lopes et al., 2014). Instead, 
non-additive measures such as interdependent 
elementary concerns (EC), also known as the decision-
makers’ ‘point of view’ can be used along with Choquet 
Integral (CI) operators, to be aggregated and create a key 
concern (KC).   
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  UTilités Additives (UTA)  Preference 
disaggregation 
- regression 
based  

The methodological characteristics of UTA 
are favourable for decisions involving 
uncertainty due to methodological 
attributes such as estimating the additive 
utility value of decisions by ascertaining 
the decision-makers’ global preferences, 
therefore UTA is commonly used for 
decision problems that involve ranking and 
sorting (Beuthe & Scanella, 2001)  

The results generated by UTA can represent the decision-
makers’ preferences inaccurately by utilising the 
embedded piecewise linear marginal function value 
function within the method due to the methods’ 
assumption that smoothness exists between first and 
second-order derivatives (Sobrie et al., 2018)   

  UTADIS  Preference 
disaggregation 
- regression 
based   

Instead of an additive model with 
piecewise linear marginal value functions, 
all non-decreasing marginal values are 
considered by UTADIS thus offering a more 
flexible preference model 2) UTADIS also 
offers a higher level of interaction with the 
decision-maker compared to variants of 
UTA methods (Greco et al.,  
2010)  
  
  

The interactive process in UTADIS can be improved further 
to enable better support for the decision-maker and the 
practical usefulness of the method needs to be 
demonstrated by solving real world sorting decision 
problems (Greco et al., 2010)  
  

  Rough Set Approach  Preference 
disaggregation   

1) Extensions to method allow for 
inconsistent preference-ordered relations  
within decision criteria to be handled with 
via a) approximation by dominance 
relations and by incorporating b) analysis 
pairwise comparison table for choice and 
ranking problems   
2) Preferential information is expressed 
comprehensibly via decision rule  
preference modelling (Greco et al., 2001)  
  

Classical rough set theory approaches suffered from the 
issue of not detecting inconsistencies between criteria  
due to indiscernibility relations  (Greco 
et al., 2001)  
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  Multi-attribute value 
theory (MAVT)  

Full  
Aggregation  

The method involves the relative global 
performance of every alternative is ranked 
opposed to ranking just the decision 
options hence enabling a transparent and 
structured decision making procedure. In 
addition, the method can compute a large 
number of alternatives with minimal 
impact on elicitation effort and without 
specialised software thus providing 
decision-makers with useful information 
(Ferretti, 2016)  

The inherent process of eliciting the preferences of the 
decision-makers is restrictive which subsequently causes 
the method to inadequately represent preference 
information (Haag et al., 2019)  

  Multi-attribute utility 
theory (MAUT)  

Full  
Aggregation  

MAUT usefully accounts for uncertainty 
(Scholten et al., 2015)   

MAUT Demands strenuous efforts for decision-makers 
(Durbach & Stewart, 2012b) and the method necessitates 
precise preference information   

  Simple Additive 
Weighting(SAW)  

Goal  
Aspiration  

The calculation procedure in SAW is 
intuitive and transparent, making the 
method popular and simple to use (Zionts 
& Wallenius, 1983)   

The original method only employs crisp values which 
effectively disqualifies the method for solving decision 
problems involving imprecise values and uncertainty 
(Stević et al., 2017)   

  Visekriteriijumska 
Optimizacija I 
kompromisno resenje  
(VIKOR)  

Goal  
Aspiration  

1) Useful for optimising multiple 
decision responses  
2) ranking index accounts for group 
utility and minimal individual regret (Tian 
et al., 2019)  

A significant methodological challenge has been handling 
imprecise information pertaining to decision values 
especially where criteria can not easily be expressed 
numerically (Xu et al., 2017). Fuzzy VIKOR method has 
been utilised to combat the challenge   

  Value Analysis/Cost  Cost-Benefit  Value Analysis has been has been praised  Gathering and organising information is a frequently  
 Management  Analysis  for the high degree of formalisation and 

found to increase product value whilst 
cutting product costs, importantly, 
without diminishing the value delivered to 
customers (Romano et al., 2010)  

occurring issue in addition to the challenges of the 
potential counter-productiveness of group decision 
making and poorly organised data to the potential of the 
method producing effective results (Romano et al., 2010)  
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  Value engineering  Cost-Benefit  
Analysis/Cost  
Management  

Value Engineering (VE) is systematic 
approach to attain desired functionality of 
products at a minimum cost by assigning 
a measurable ‘value ratio’. VE seeks to 
ensure that the product achieves its basic 
function in a manner which satisfies the 
customer at an acceptable cost (Durga  
Prasad et al., 2014)  

Despite the fact that achieving cost-effectiveness is 
significant for manufacturers, doing so at the early stage 
is rewarding but very difficult due to product concepts 
being formed when the major features and materials are 
determined at a later stage (Cho & Park, 2019)  
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Table 5 shows that there are two main schools of thought in MCDM (Wallenius et al., 2008); the 
American, full aggregation approach (Keeney & Raiffa, 1976) versus the French outranking approach 
(Roy, 1991). The full aggregation approach involves a score being evaluated for each criterion that is then 
synthesised into a global score whereby a criterion with a poor score can be compensated for by another 
criterion with a good score (Ishizaka & Nemery, 2013). Full aggregation methods include AHP (Saaty, 
1987), ANP (Saaty, 1999), MAUT and MACBETH (Bana e Costa and Vansnick, 1994). In contrast, the 
outranking approach does not allow a poor score to be compensated for by a better score. PROMETHEE 
(Brans et al., 1986) and ELECTRE (Roy, 1991) are two methods built upon the outranking approach. Other 
major MCDA methods are based on goal aspiration that defines a goal for each criterion and then selects 
the nearest option to the ideal goal (Ishizaka & Nemery, 2013). TOPSIS (Hwang & Yoon, 1981), goal 
programming (Charnes et al., 1955) and data envelopment analysis (DEA) (Charnes et al., 1978) are 
examples of goal aspiration methods.   

Over a dozen MCDM methods exist and various classifications exist for those respective methods as 
shown in Table 5. MCDM methods can primarily be classified according to the approach adopted by the 
method. For example, the value systems approach, the outranking relation approach, the disaggregation-
aggregation approach or the multi-objective optimisation approach are the main four approaches 
adopted by MCDM methods (Siskos & Spyridakos, 1999). In addition to classifying methods according to 
their approaches, it is also possible to classify methods with respect to the differences between the types 
of decision problems that methods can solve. Decision problems normally involve either choosing, 
ranking, sorting or describing. Each method has its own merits, limitations and appropriateness 
depending on the nature of the decision problem to be solved. MCDM methods will now be discussed in 
further detail in section 3.5. 

3.5 Full Aggregation Methods  

• Analytic Hierarchy Process (AHP)  
Analytic hierarchy process (AHP) is a multi-criteria decision-making method proposed by Saaty in 
1980 which caters for both quantitative and qualitative data (Asabadi et al., 2019). Rather than the 
interval scale used conventionally by other decision-making methods, AHP uses a 1-9 ratio scale to 
compare preferences with a 1 out of 9 measure denoting least valued than the alternative; 1 
denoting equally preferred to the alternative and 9 out of 9 denoting most important compared to 
alternative (Vaidya & Kumar, 2006). The AHP process involves the following steps:  

1) Defining the problem  

2) Developing a hierarchical structure  

3) Constructing a pairwise comparison matrix  

4) Performing judgment for pairwise comparisons  

5) Synthesising pairwise comparisons   

6) Checking for consistency  

7) Developing an overall priority ranking  

8) Selecting the best alternative (Velmurugan & Selvamuthukumar, 2012)   

AHP is scalable to fit problems with a range of sizes and is not a data-intensive method; nevertheless 
the interdependence amongst criteria and decision alternatives can cause issues which can lead to 
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discrepancies in the ranking of criteria and ultimately in decision-making judgment (Mahdiyar et al., 
2020).   

• Multi-Attribute Utility Theory (MAUT)  
Keeney and Raiffa (1976) proposed multi-attribute utility theory (MAUT), a structured method that 
applies the utility concept to complicated decision problems that contain multiple attributes and 
multiple conflicting objectives (Sanayei et al., 2008). MAUT problems can be of two types. The first 
type is known as multiple criteria discrete alternative problems and involves choosing from a 
modestly sized set of alternatives or sorting between hundreds of alternatives (Zoupoundis & 
Doumpos, 2002). The second MAUT problem type is known as multiple criteria optimisation 
problems and contains a very large or even infinite number set of feasible alternatives. Alongside the 
differences in sizes of the feasible set of alternatives, multiple criteria discrete alternative and 
multiple criteria optimisation problems also differ in that discrete alternative problems tend to be 
modelled with uncertain values for criteria or alternatives. Utility or value functions are also 
accounted for differently in multiple criteria discrete and multiple criteria optimisation problems. 
The decision maker’s utility is not captured mathematically in multiple criteria optimisation 
problems, instead the decision-maker is navigated towards their most preferred solution through an 
iterative and interactive process; whereas utility is in fact mathematically captured in multiple 
criteria discrete problems (Wallenius et al., 2008).   

MAUT consists of the following five steps:  

1. Defining alternatives and value relevant attributes  
2. Evaluating each alternative separately on each attribute  

3. Assigning relative weights to attributes  
4. Aggregating weights of attributes and the single attribute evaluations of alternatives to obtain an 

overall evaluation of alternatives   
5. Performing sensitivity analyses and making recommendations (Jansen, 2011)  

MAUT usefully accounts for uncertainty (Scholten et al., 2015) and incorporates the decision maker’s 
preferences (Durbach & Stewart, 2012). However, applying the method demands strenuous efforts on 
the decision-makers’ part (Durbach & Stewart, 2012b) and necessitates the decision maker’s 
preferences to be precise (Sarabando & Dias 2010).  

3.5.1 Outranking methods  

• PROMETHEE   
PROMETHEE is an outranking method initially proposed by Brans in 1982 and developed further by 
Vincke & Brans in 1985 to solve MCDM problems (Brans & De Smet, 2016). PROMETHEE involves 
pairwise comparisons of alternatives with regards to each criterion, to obtain the ranking for all 
alternatives (Qi et al., 2019). PROMETHEE I consists of partial ranking whereas PROMETHEE II 
completely ranks a set of fixed alternatives from best to worst and PROMETHEE GAIA provides a 
visualisation of results (Talukder & Hipel, 2018). PROMETHEE II involves a stepwise procedure with the 
following five steps:  

Step 1: Determine deviations based on pair-wise comparisons  

Step 2: Apply the preference function  

Step 3: Calculate overall or global preference index  
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Step 4: Calculate outranking flows also known as the PROMETHEE I partial ranking   

Step 5: Calculate net outranking flow also known as the PROMETHEE II complete ranking  

(Behzadian et al., 2010)  

PROMETHEE is easy to use, does not require criteria to be equally proportional and does not require 
normalisation hence overcoming the commensurability issue (Ishizaka & Nemery, 2011). A limitation of 
PROMETHEE is that it lacks a clear system by which to assign weights (Macharis et al., 2004).   

• ELECTRE  
ELECTRE is a family of outranking decision-making methods initially proposed by Benayoun et al.  
(1966) and developed significantly throughout ELECTRE I (Roy, 1968), ELECTRE II (Roy and Bertier,  
1971), ELECTRE III (Roy, 1978) ELECTRE IV (Roy & Hugonnard, 1982), ELECTRE TRI (Yu, 1992; Roy & 
Bouyssou, 1993) and ELECTRE IS (Roy & Bouyssou, 1993). ELECTRE I and IS methods can be used for 
choice problems to select from the smallest set of best alternatives (Kaya et al., 2019); whereas 
ELECTRE II, III and IV are used for ranking problems with the aim of ordering alternatives from best to 
worst. ELECTRE TRI, TRI-C and TRI-nC are used for sorting problems to allocate alternatives to a set of 
pre-defined categories. 

ELECTRE methods collectively consist of two stages: an aggregation stage and an exploitation stage 
(Figueira et al., 2013). During the aggregation stage, pairwise comparisons of alternative actions against 
a given set of criteria are made; via numerous outranking relations, achieved by a Multiple Criteria 
Aggregation Procedure (MCAP). Outranking relations depend on the concepts of concordance and non-
discordance (Govindan & Jepsen, 2016). Concordance requires the majority of criteria to be strictly in 
favour for an alternative in order for that alternative to be validly preferred over another. Once the 
concordance condition is satisfied, non-discordance requires none of the criteria in the remaining 
minority to oppose too strongly with the preferences made. The exploitation stage involves specific 
procedures to support various decision problems such as choosing from a restricted pool of the most 
appropriate actions by eliminating other actions, sorting those actions into categories from worst to 
best or ranking actions numerically from best to worst (Figueira et al., 2016).   

Despite the fact that ELECTRE can handle both qualitative and quantitative data, and account for 
uncertainty and vagueness due to imperfect data, the underpinning outranking process can be 
burdensome, making the benefits and drawbacks of the various alternatives difficult to explicitly 
identify.  

3.5.2 Goal aspiration methods   

• Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)  
The technique for order preference by similarity to ideal solution (TOPSIS) was proposed by Hwang & 
Yoon in 1981 and continues to be a versatile multi criteria decision-making method (Behzadian et al., 
2012). The TOPSIS method involves the following steps:  

1. Constructing a normalised decision matrix   
2. Constructing a weighted normalised decision matrix  
3. Determining positive ideal and negative ideal solutions from a finite set of alternatives  
4. Calculating the separation measures for respective alternatives  
5. Calculating the relative closeness of alternatives to the ideal solution   
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6. Selecting the alternative with the shortest distance from the ideal solution (Jahanshahloo et al., 
2009)  

Although TOPSIS is convenient for implementing in real life decision-making problems and follows a 
simple yet effective decision-making process, a major weakness of the method is the failure to 
acknowledge the relationships between decision criteria (Velasquez & Hester, 2013). As a result of the 
inter-relationships between criteria, decision-makers can encounter issues in weighing criteria 
consistently. Simple additive weighting is another commonly used decision-making method.   

• Simple Additive Weighting (SAW)  
Simple additive weighting (SAW) also known as weighted sum Model (SAW), is a simple method for 
solving MCDM problems proposed by Zionts & Wallenius (1983) and also by Kaliszewski and Podkopaev, 
(2016). The SAW method involves the following steps:  

1. Determine the criteria that will be used as a reference in decision  
2. Determine the suitability rating of each alternative for each criterion  
3. Construct a decision matrix built upon the criteria  
4. Normalise the matrix dependent on equations which will adjust attributes depending on whether 

attributes bring about gain (benefit) or a cost  
5. Sum the multiplication of the normalised matrix with the weight vector in order to choose the 

largest value obtained as the best alternative (Haswan, 2019)  

Even though SAW usefully permits criteria to be compensated, involves a simple calculation, and is 
implemented intuitively by decision-makers without the need for sophisticated software; yet still, the 
solutions generated by the method can be illogical hence misrepresent reality. 

• Goal Programming (GP)  
Goal programming (GP) is a commonly used MCDM method (Mardani et al., 2017), proposed by 
Charnes et al., (1955), and built upon on Herbert Simmons principle of satisficing (Tamiz et al., 1998). 
GP is an extension of linear programming (LP) and is designed to generate satisfactory solutions to 
problems with multiple conflicting goals, by assigning target values to a given set of goals (Jones et 
al., 2016). GP problems can be solved via lexicographic GP that integrates ordering and satisficing 
principles; weighted GP that combines optimising and satisficing principles; Chebyshev GP that 
unites satisficing and balancing principles (Broz et al., 2019); and extended GP that joins the 
respective principles together to form new frameworks (Jones & Romero, 2019). Lexicographic GP is 
applicable to decision problems where target goals can be clearly prioritised, whereas weighted GP is 
used for cross comparing objectives and Chebyshev GP is used to find a balance between competing 
objectives (Colapinto et al., 2017). Ultimately, GP involves setting a target value for each goal, listing 
target values along with their deviation variables, then weighing and adding together the 
undesirable deviations from the set of target values to create an achievement function (Huang et al., 
2017).  

GP can tolerate large problem sizes and yield infinite alternative solutions, however, the incapability of 
GP to weigh coefficients necessitates GP to be combined with another method for weighing 
coefficients. 

• Evolutionary Algorithms (EA)  
Evolutionary algorithms (EA) have become powerful decision support tools for decision-makers (Zhou 
et al., 2011) and are underpinned by a stochastic search mechanism, built upon the Darwinian 
principle of survival of the fittest (Elbeltagi et al., 2005). EAs generate solutions which mimic the 
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natural process of evolution through reproduction (Elbeltagi et al., 2005). EAs are employed to 
generate a set of Pareto-optimal candidate solutions progressively. Trade-off information is provided 
by candidate solutions which are evaluated subject to the decision maker’s preferences iteratively to 
refine goals and preferences (Qu et al., 2018).   

The non-dominated sorting genetic algorithm (NSGA-II) is one of the first of such EAs and many other 
nature inspired algorithms have been developed to solve decision problems (Cortez, 2014). Although 
EAs can deal with large scale problems whilst generating near optimum solutions, a serious limitation 
of EA’s is their long processing time for optimum solutions to evolve (Elbeltagi et al., 2005). To 
overcome the processing time issue, other EA algorithms such as memetic, particle swarm 
optimisation (PSO), ant colony and shuffled frog leaping algorithms have been proposed. Elbeltagi et 
al., (2005) found the PSO algorithm to perform best according to success rate in finding solutions, 
solution quality and ranked second best in with respect to processing time.   

EAs can minimise the computation burden in finding multiple Pareto optimal solutions in just a single 
simulation compared to classical methods which involve prohibitive execution times (Tomoiagă et 
al., 2013). In spite of EAs generating solutions rapidly, EAs are criticised for not being able to detect 
changes occurring during the search process, thus failing to generate optimal solutions at all. EAs are 
also said to be ineffective in predictive approaches when data is non-linear or if changes in the 
dynamic environment are stochastic and consequently, the optimisation process can be slowed 
down by promoting diversity amongst solutions to prevent convergence (Nguyen et al., 2012). 
 With respect to MCDM methods, only two percent of the 183 publications reviewed utilised DEA 
whereas ELECTRE was utilised most frequently with a seven percent coverage. In comparison, Goal 
Programming, AHP or ANP, Genetic Algorithms, PROMETHEE and TOPSIS were utilised three percent 
each. Next, the existing approaches of decision-making methods sourced from the literature will be 
discussed.   

4. Discussion  
4.1 Existing approaches of MCDM methods to similar CO2 management 
decision problems  

The purpose of this study was to provide automotive OEMs with a decision support model to mitigate the 
commercial implications of CO2 legislation. CO2 management is becoming an increasingly important 
matter for global automotive OEMs. Employing an effective decision support model as response to the 
CO2 management decision problem shows promise. CO2 management decision problems involve a wide 
range of decision objectives, decision criteria and decision options. Factors may differ according to the 
priorities of the various automotive OEMs. Effectively identifying and combining the relevant factors is an 
important first step to optimise CO2 management decisions. If automotive OEMs apply MCDM methods 
they can achieve Pareto optimal outcomes. Therefore automotive OEMs can mitigate the impact of CO2 

management costs and safeguard their profitability without sacrificing the requirements of customers, 
policymakers and business needs. 

The methods, objectives and criteria utilised in previously conducted studies dedicated to measuring and 
controlling the costs of environmental impacts on businesses are shown in Table 7. Table 6 is an index 
table for Table 7. A range of decision-making methods have been applied across various industries, 
focusing on different stages of the product life cycle. Existing approaches from the literature have been 
tabulated and compared to contextualise the kind of decision-making methods that automotive OEMs 
could employ. Table 6 signifies the challenges that authors confronted in their approaches to solving CO2 
management decision problems in employing MCDM methods  



 

 

Table 6: Challenges confronted by authors in the literature of existing approaches (utilising decision-making methods) 

 Challenges confronted by authors in the literature  

i  Determining optimal points where 
emission reduction measures become 
cost-prohibitive and negatively impact 
net profits causing businesses to incur 
losses should be explored  

v  Methods such as multi-variate analysis which can handle 
complex, interrelated, non-linear data are required for 
modelling  
CO2 problems   

ii  Decision-making methods should enable 
parameters to be reconfigured to 
examine overall life cycle impacts   

vi  Subjectivity involved in various stages of decision-making 
methods can cause inconsistent results to be generated  

iii  Methods need to incorporate additional 
steps to generate more precise results  

vii  Simulating objectives simultaneously whilst considering criteria 
holistically generates superior results    

iv  Decision-making methods should be 
built upon stochastic models to tolerate 
uncertain data   

 
  



 

 

Table 7: Literature matrix of existing approaches  
Reference Industry Lifecycle 

stage focus 
Method 
employed 

Objectives Criteria considered Challenges confronted by 
authors in literature 
i ii iii iv v vi vi

i 
(Matar & 
Elshurafa, 
2017) 

Cement 
production  

Production Multi 
Objective 
Optimisation 

Maximise 
Profit 
Minimise CO2 

emissions 

Investment cost of 
technology 
Electricity prices 
CO2 tax prices 

✓       

(Mayyas, 
et al., 
2012) 

Automotive  ALL Life Cycle 
Assessment 

Estimate life 
cycle CO2 
emissions 
 

CO2 emissions per 
component 
produced 
Material type  
Mass 
Life cycle energy 

 
✓ 

   
  

(Burke, et 
al., 2018) 

Automotive  Use Multivariate 
Analysis 
Partial Least 
Squares 

Predict 
properties of 
product, 
determine 
which 
variables have 
greatest 
influence on 
output 
variables  
Reduce test to 
test variability 

Vehicle chassis 
dynamometer 
recordings  
Vehicle power 
from torque and 
speed or voltage 
and current 
Humidity and 
temperature 
 

    
✓   

(Qiao, et 
al., 2017) 

Automotive Raw 
Materials, 
Production 

Life Cycle Cost 
Analysis 

Estimate life 
cycle CO2 
emissions  

Production process 
fuel 
Material type  
CO2 emissions per 
component 
produced 

  
✓ 

  
  



 

 

Reference Industry Lifecycle 
stage focus 

Method 
employed 

Objectives Criteria considered Challenges confronted by 
authors in literature 
i ii iii iv v vi vi

i 
(Favi, et 
al., 2018) 

Shipbuilding Raw 
Materials, 
Production, 
Use, 
Recycling 

Life Cycle Cost 
Analysis 

Minimise 
lifecycle 
environmental 
impact  
Minimise 
lifecycle 
economic 
impact  
 

Design 
configuration 
Fuel consumption 
Electricity 
consumption 
Recycling rate 
Operating costs 

   
✓ 

 
  

(Kumar, et 
al., 2014) 

Automotive Production TOPSIS 
Entropy 

Select Optimal 
Material Type 

Surface hardness 
Core hardness 
Surface fatigue 
limit 
Bending fatigue 
limit 
Ultimate tensile 
strength  
Cost 
 

     ✓  

(Tsai & 
Jhong, 
2018) 

Footwear 
manufacturi
ng 

Production Activity Based 
Costing 
Mathematical 
Programming 
TOC 

Maximise 
Profit 
Minimise 
Business Costs 
Minimise CO2 

tax 
 

Product mix 
Direct labour 
Machine hours 
Batch level activity 
Product level 
activity  

    ✓   



 

 

Reference Industry Lifecycle 
stage focus 

Method 
employed 

Objectives Criteria considered Challenges confronted by 
authors in literature 
i ii iii iv v vi vi

i 
(Igarashi, 
et al., 
2016) 

Recycling Recycling Multi 
Objective 
Optimisation 

Minimise Total 
Recycling Cost 
Maximise 
Total 
Recycling Rate 
of Product 
Maximise total 
CO2 saving 
rate of 
product 

Total disassembly 
time  
Number of parts 
Recycling rate  
CO2 saving rate 
Recycling cost 
Balance delay 
Smoothness index 

      ✓ 

(Nadal-
Roig, et al., 
2018) 

Animal 
husbandry 

Transport Multi 
Objective 
Optimisation 

Maximise 
Profit 
Minimise CO2 

emissions 

Batch size of pigs 
Cost per pig 
Selling price per pig  
Mean value of the 
live weight of pigs  
CO2 emitted per kg 
of meat produced 
CO2 emitted per 
trip of transporting 
pig by truck type     
Capacity of trucks 
Penalty per kg of 
CO2 emitted 

✓       



 

 

Reference Industry Lifecycle 
stage focus 

Method 
employed 

Objectives Criteria considered Challenges confronted by 
authors in literature 
i ii iii iv v vi vi

i 
(Tomoiagă, 
et al., 
2013) 

Power 
generation 
and 
distribution 

Transport Genetic 
Algorithms 

Minimise 
Active Power 
Losses 
Minimise 
System 
Average 
Interruption 
Frequency 
Index 

Total number of 
customers served 
Total number of 
customers supplied 
power from each 
load point (node) 
Total failure rate at 
the level at the 
level of the node 
Node Voltage limits 
Safeguard of power 
supplies for all 
customers 

     ✓  



 

 

Reference Industry Lifecycle 
stage focus 

Method 
employed 

Objectives Criteria considered Challenges confronted by 
authors in literature 
i ii iii iv v vi vi

i 
(Lee & 
Hashim, 
2014) 

Power 
generation 
and 
distribution 

Production Mathematical 
Programming 

Minimise total 
costs with CO2 
emissions 
constraint  

Type of fuel used in 
power plant 
Electricity power 
generation 
technology 
selected 
Capacity of boiler 
Total number of 
renewable energy 
(RE) power plants 
CO2 emitted from 
various boilers 
using various fuels 
Fixed cost of boiler 
Operation time 
Price of fuel 
Price of RE sources 
CO2 reduction 
target 
 

✓       



 

 

(Müller, et 
al., 2018) 

Aviation Use Mathematical 
Programming 

Minimise the 
Net Present 
Value of 
periodic 
payments of 
investment 

Optimal fleet size 
Optimal fleet 
composition  
Type of aircraft to 
operate in each 
period  
Quantity of new 
aircraft to be 
purchased in each 
period 
Quantity of aircraft 
to be sold in each 
period 
Quantity of aircraft 
to be retrofitted in 
each period 
Available budget 
Aircraft to be 
liquidated after 
maximum time of 
operation has been 
reached 
Flight operation 
plan (representing 
airlines using 
classes through 
assignment of 
aircraft subject to 
flight distances and 
number of seats) 
CO2 emitted from 
flight operation  

      ✓ 

(Yang, 
2018) 

Power 
generation 

Production Activity Based 
Costing 

Maximise 
Profit 

Lifecycle Carbon 
footprint costs  

      ✓ 



 

 

Reference Industry Lifecycle 
stage focus 

Method 
employed 

Objectives Criteria considered Challenges confronted by 
authors in literature 
i ii iii iv v vi vi

i 
and 
distribution 

Mathematical 
Programming 

 Feed in tariff prices 
Carbon tax amount 
Unit costs of 
materials 
Activity based costs 
Total quantity of 
CO2 emitted 
Total machine 
costs 
Total labour costs 
 
 

(Oh, et al., 
2016) 

Construction Production Mathematical 
Programming 

Minimise CO2 

emissions 
Material type 
Material weight 
Section width or 
diameter 
Section thickness 
Yield strength  
Diameter 
Compressive 
strength  

      ✓ 



 

 

Reference Industry Lifecycle 
stage focus 

Method 
employed 

Objectives Criteria considered Challenges confronted by 
authors in literature 
i ii iii iv v vi vi

i 
(Xiao, et 
al., 2018) 

Agriculture Production, 
Transport 

Economic 
Order Quantity  
Life Cycle 
Assessment 

Maximise 
Profit 
 

Selling price of 
grapes 
Market demand 
rate 
Replenishment 
costs 
Purchasing price 
CO2 emission price 
Decay rate of 
product 
CO2 emitted during 
transportation 
Energy consumed 
during refrigerating 
product 

✓       
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This study has highlighted that the respective factors for CO2 management decisions requires careful 
consideration. However, this reality can be often underestimated when modelling CO2 management 
decision problems. Balancing the commercial and environmental objectives has proven to be 
challenging for automotive OEMs as shown in section 3.2. However, it is possible to optimise CO2 
management decisions by simulating the empirical reality of the CO2 management decision problem 
faithfully. This way the likelihood of achieving Pareto optimal outcomes can be increased. 
Maximising profits, minimising costs, minimising emissions, minimising lifecycle impact, selecting 
material type and maximising product recyclability have all been objectives for previous CO2 
management decisions as seen in Table 7.  

The nature of the CO2 management decision problem impacts whether automotive OEMs can 
optimise CO2 management decisions. Automotive OEMs should be conscious that achieving the 
desired Pareto optimal outcome in a given CO2 management scenario rests on how the scenario is 
translated during the application of the particular MCDM method employed. The interrelationships 
between data should be carefully analysed to capture the true reality of the CO2 management 
decision problem. For example a 2000kg vehicle may have a tailpipe emission of 140g/km yet a 
1600kg vehicle may have tailpipe emissions of 130g/km. The linearity between variables such as 
mass and emissions should not be assumed naturally when modelling the CO2 management decision 
problem. Instead automotive OEMs should carefully explore and analyse the properties and values 
of the parameters that exist within the decision problems and their possible non-linear inter-
relationships. 

Automotive OEMs can simulate CO2 management scenarios via MCDM methods to identify the 
optimal points where various decisions can create their desired effect and achieve Pareto optimal 
outcomes. In order for automotive OEMs to select between two conflicting decision options they 
should first assess the multiple criteria that are required to be evaluated. For example criteria such 
as market requirements and customer demand are significant alongside the potential financial costs 
associated with the various decision options as seen in section 3.3. By formulating a clear set of 
decision objectives, criteria and decision options, automotive OEMs can adopt a holistic view of CO2 
management decisions and thus prevent counter-productive decision.  

Additionally, more decision-making methods designed for policymakers and customers were found 
in the study compared to approaches that were designed for automotive OEMs. Failing to prepare 
adequate decision support approaches tailored to manufacturers could mean that the future profits 
of automotive OEMs are overshadowed by CO2 management costs.  Table 3 highlighted the 
advantages and disadvantages of various CO2 management decisions. Achieving Pareto optimal 
outcomes depends on automotive OEMs carefully analysing the cost-to-benefits associated with the 
various decision options. For example, it may be counterproductive to invest in CO2 improvement 
technology in a particular scenario. Similarly, it may be cost prohibitive for automotive OEMs to pay 
a CO2 tariff. On the other hand, making the vehicle sale and reconfiguring vehicle features could be 
the optimal decision in that scenario. MCDM methods can assist automotive OEMs significantly with 
preparing scenario-specific responses and determine the Pareto optimal CO2 management decision 
in a given scenario.  
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Minimising CO2 emissions is a common pursuit in global businesses across a range of industries; thus, 
decision-makers should integrate CO2 emission costs alongside pursuing commercial objectives (Xiao 
et al., 2018). Estimates of CO2 emissions will not suffice; hence decision-making methods need to 
precisely translate CO2 cost estimates into optimal scenario-specific business decisions for 
automotive OEMs. Changing the decision maker’s assumptions can also significantly impact the 
nature of scenarios and decision outcomes hence methods employed by decision-makers should 
allow for sensitivity analysis to be incorporated. Moreover, CO2 emission problems typically rely on 
non-linear models which involve highly correlated data, where detecting the specific variables which 
cause variations in results can be challenging to differentiate (Burke et al., 2018). One way to 
overcome the complexity of correlated data is to break down the problem into smaller sub-problems 
to sequentially solve (Qiao et al., 2017). Mathematical programming and MOOP decision-making 
methods have been found to be the most commonly applied approaches in the literature and such 
methods enable the decision-makers to reconfigure parameters iteratively to examine overall cost 
implications of CO2 legislation.  

Even with data remaining constant and systematic algorithms being utilised in decision-making 
methods, different methods can generate dissimilar results, thus impacting decisions (Zamani-Sabzi 
et al., 2016). This is known as the decision-making paradox (Triantaphyllou & Mann, 1989). One 
criticism of decision-making methods is their failure to represent reality accurately (Kolios et al., 
2016). The subjectivity of decision-makers at different stages in respective decision-making methods 
can be detrimental for reaching consistent decisions (Vinogradova, 2018). Subjectivity of decision-
makers occurs during the criteria evaluation stage in AHP, the setting of preference thresholds and 
statistical functions stages in PROMETHEE and selecting distances from ideal solutions stage in 
TOPSIS. The subjectivity involved in all these various stages across decision-making methods causes 
unequal results to be generated by the respective decision-making methods.  

This study has shown that automotive OEMs require a multi-objective optimisation (MOOP) decision 
support model, focused on the use stage of the vehicle life cycle, with precise objectives and tailored 
criteria to mitigate the impact of potential CO2 tariff costs on the profits of automotive OEMs. Once 
the embedded CO2 emissions costs associated with various decisions are captured, automotive 
OEMs can utilise a MOOP decision support model to prepare a CO2 management decision strategy by 
iteratively simulating coordinated responses to emerging what-if scenarios. Through such a model, 
automotive OEMs can holistically examine how criteria such as vehicle fleet portfolio, customer 
demand, market tariffs and the financial costs associated with the options of responding to CO2 
legislation influences vehicle CO2 performance and CO2 tariff costs. Automotive OEMs can also 
evaluate the interrelated consequences of reconfiguring vehicle feature content to achieve vehicle 
mass reduction and CO2 performance improvements on the profitability of automotive OEMs global 
vehicle sales. As a result, automotive OEMs can optimise decision-making by incorporating a set of 
quantified CO2 performance parameters in order to achieve profit maximisation and CO2 tariff cost 
minimisation.   

Decision-makers evaluate a specific set of criteria to optimise multiple objectives for businesses. This 
study has shown how businesses can effectively control CO2 emission costs whilst increasing profits 
by constructing models (Tsai & Jhong, 2018). Decision-makers can model scenarios to determine 
optimal points where emission reduction measures become cost-prohibitive and negatively impact 
net profits causing businesses to incur losses. To mitigate the impact of potential losses, Igarashi et 
al., (2016) integrated financial cost and reducing CO2 emissions during product recycling however 
Nadal-Roig et al., (2018) found profits do not proportionally change in line with emission reduction. 
Pareto optimal outcomes can be achieved if approaches allow decision-makers to iteratively 
simulate objectives whilst considering criteria holistically and examining the relationships between 
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criteria closely (Müller et al., 2018). Yang (2018) factored in CO2 emissions costs associated with 
business activity by accounting for CO2 taxes as part of modelling. Oh et al., (2016) similarly 
modelled scenarios which optimised building designs subject to the costs associated with CO2 
emissions. Quantifying the financial costs associated with CO2 emissions via modelling, allows 
decision-makers to prepare responses to what-if scenarios which optimise commercial and 
environmental objectives.  
 
Now, a decision support model designed for automotive OEMs as a response to the commercial 
implications of CO2 legislation will be presented in Figure 3, followed by the conclusion. The model 
offers a manufacturers perspective to optimise decisions for CO2 management.  

 

 

Figure 3: The proposed decision support model designed for automotive OEMs as a response to the 
commercial implications of CO2 legislation 
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The proposed decision support model illustrated in Figure 3, was conceptualised by first assimilating 
the decision objectives, criteria and decision options adopted within existing approaches used to 
solve CO2 management decision problems found in the literature. It is acknowledged that 
automotive OEMs have many other objectives to satisfy alongside maximising profits. Profits can be 
maximised by minimising costs in CO2 management if automotive OEMs consider product material 
recyclability (Mayyas et al., 2012) to minimise product lifecycle emissions (Favi et al., 2018). 
Although automotive OEMs have many ways to maximise profits and minimise CO2 emissions, the 
proposed model enables automotive OEMs to consider criteria such as their vehicle fleet portfolio, 
market requirements, customer demand and financial cost.  

The decision support model considered four criteria to be evaluated by automotive OEMs for CO2 
management decisions. The key decision criteria for CO2 management decisions focussing on the 
commercial implications of CO2 legislation found in the literature were vehicle fleet portfolio 
(Autovista, 2019), customer demand (Sharif et al., 2019), market requirements (Ligterink et al., 2015) 
and financial cost (Ricardo, 2018) as seen in Table 4. However, existing approaches considered 
several other criteria such as investment cost in technology (Matar & Elshurafa, 2017), product 
material type, mass and the emissions per component produced as seen in Table 7.  

Additionally, the other decision criteria considered in Section 3.4, included design configuration, fuel 
consumption and electricity consumption, product speed, voltage, external humidity and 
temperature during testing (Burke et al., 2018) plus the type of fuel used, fuel price and CO2 
reduction targets (Lee & Hashim, 2014). The possible explanation for the wide range of different 
criteria utilised in the literature, in comparison to the criteria adopted in the proposed decision 
support model, is likely due to the usage of the different terminology used across the industry to 
express the same criteria. For instance, investment cost fits in the financial cost criterion, whereas 
design configuration was covered by the vehicle fleet portfolio criterion and finally the CO2 reduction 
targets were also considered within the decision support model under the market requirements 
criterion. Another possible explanation for the inclusion of decision criteria such as product material 
type and emissions per component produced, despite the proposed decision support model 
excluded such criteria is that, every decision problem is unique and should thus be treated 
accordingly. Naturally, the preferences of decision-makers vary, and so do the decision criteria to be 
evaluated subject to the nature of the decision problem to be solved. 

Indeed, there are also ethical considerations that automotive OEMs should be aware of. Although 
the decision support model recognised this partially via the market requirements criterion, the 
decision support model did not directly facilitate ethical objectives to be fully satisfied. Safeguarding 
brand image was deemed important for automotive OEMs in the literature (Bampatsou & Zervas, 
2011). However, the scope of this study was to mitigate the commercial implications of CO2 
legislation, and therefore the decision objectives were to maximise profits for automotive OEMs and 
minimise CO2 management costs. The optimal set of decision objectives, decision criteria and 
decision options were formulated and found to be essential to optimising CO2 management 
decisions. This study will now be concluded. 

 

5. Conclusions  
CO2 management decision making for automotive OEMs was studied in this paper.  In the process, 
MCDM methods were reviewed for their suitability to provide decision support in solving the CO2 
management decision problem facing automotive OEMs. Below, the main findings are listed. 
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• Based on the selection criteria (see section 2), 183 publications were found, whereof 144 are 
peer-reviewed journal articles and 40 are other types of publications 

• Thirty-three percent of the publications focussed on the financial costs associated with CO2 
legislation with a further fifteen percent concentrating on the technological costs of CO2 
improvement during product development 

• European CO2 legislation was the predominant policy utilised to model CO2 management 
costs in the publications found, followed by Chinese policy with American policy the least 
common 

• The number of publications in CO2 management decision making has increased especially 
during the last decade (2010-2020), with a significant rise in 2017 particularly for the 
automotive industry during the advent of WLTP 

• With respect to MCDM methods, only two percent of the publications utilised DEA whereas 
ELECTRE (seven percent) compared to Goal Programming, AHP or ANP, Genetic Algorithms, 
PROMETHEE and TOPSIS were utilised three percent each  

• A plethora of customised models, tools, methods and frameworks have been developed to 
specifically assist with CO2 management decisions  

The conceptual decision support model proposed in this paper enables automotive OEMs to 
proactively model CO2 management scenarios to mitigate the commercial implications of CO2 

legislation. Financial cost is a key criterion considered by decision-makers when selecting decision 
options in response to stricter global CO2 emissions legislation as shown in Section 3.3. While some 
approaches consider financial cost, alongside other criteria such as market requirements (Tsokolis et 
al., 2016), or optimising the vehicle fleet portfolio (Shiau et al., 2010) or even customer demand 
(Hoffenson and Söderberg, 2015), other approaches consider multiple criteria simultaneously as 
shown in section 3.4 (Michalek et al., 2006; Frischknecht and Papalambros, 2008 and Maddulapalli et 
al., 2012). The interrelationships between decision criteria can significantly impact the solutions 
generated by MCDM methods, especially if the criteria have non-linear inter-relationships. New 
decision-making approaches should therefore capture the significance of the non-linear 
interrelationships between decision criteria as illustrated in section 4.1. This way, the empirical 
reality facing automotive OEMs can be modelled more faithfully, thereby avoiding irrational 
solutions which mislead decision-makers to be generated. The subjectivity involved in various stages 
of decision making methods can also cause inconsistent results to be generated by MCDM methods 
(Kumar et al., 2014). For this reason, simulating objectives simultaneously whilst considering criteria 
holistically can generate superior results when solving CO2 management decision problems as shown 
in Table 7.  

The various MCDM methods used within existing decision support approaches had differences in 
their underlying theoretical perspectives as shown in section 3.5. The theoretical differences 
associated with MCDM methods impacted both the functional performance of each method and 
also the results generated by the respective methods. For instance, the methodological 
characteristics of the Goal Programming (GP) method are favourable for practical decisions due to 
the ability to relax constraints in empirical decision problems (García‐Martínez et al., 2019). On the 
other hand, as GP is underpinned by Simons' theory of satisficing, the method can fail to produce 
Pareto optimal solutions. Oppositely, evolutionary algorithms such as NSGA-II perform trade-offs to 
produce multiple Pareto optimal solutions considerably quicker than classical decision-making 
methods (Tomoiagă et al., 2013) as shown in section 3.5.1.  

This paper has demonstrated that automotive OEMs are increasingly concerned with the costs 
associated with the various decision options and criteria which can mitigate the commercial 
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implications of CO2 legislation. Automotive OEMs are carefully considering their decision options and 
evaluating decision criteria to make Pareto optimal decisions in order to achieve multiple business 
objectives. MCDM methods can be utilised by automotive OEMs to reconcile between interrelated 
decision criteria to make Pareto optimal decisions. In contrast to the binary options provided by 
some MCDM methods theoretically, decisions are not mutually exclusive in reality as demonstrated 
in section 4.1. Automotive OEMs can decide to make multiple CO2 management decision options in 
parallel, subject to the scenario they are confronted with and classical decision-making methods can 
fail to model this reality as well.  

CO2 management decision problems are commonly solved with non-interactive and subjective 
methods, however, this paper has shown the inadequacies of classical MCDM methods for solving 
the automotive OEMs CO2 management decision problem in Table 4. The findings of this paper 
suggest that interactive and objective decision making approaches such as MOOP can more precisely 
quantify, the commercial implications of the stricter global CO2 emission legislation now imposed on 
automotive OEMs. New decision-making approaches should therefore be more data-driven, more 
objective and rely less on the subjectivity of the decision-maker in order to make optimal decisions 
in a given scenario. This way, automotive OEMs can formulate a set of coordinated decisions in a 
structured manner to achieve Pareto-optimal outcomes.  

Automotive OEMs should not underestimate the financial impact of the commercial implications of 
CO2 legislation on their future profits. The proposed decision support model allows automotive 
OEMs to adopt a pre-emptive response which proportionally mitigates the commercial implications 
of CO2 legislation. Automotive OEMs can make optimal decisions by carefully modelling the relevant 
decision criteria and decision options to proactively confront the CO2 management decision 
problem. By adopting such an approach, automotive OEMs can model the costs associated with CO2 
and importantly make informed trade-offs between the conflicting objectives of maximising profits 
and minimising environmental impact. Future work will validate the practical usefulness of the 
decision support model proposed in this paper. A series of semi-structured interviews, a set of 
computer-based experiments and questionnaires with participants as well as a case study with a 
global automotive OEM are all planned to build on this paper.  
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