
BIRMINGHAM CITY UNIVERSITY

DOCTORAL THESIS

Hybrid Metaheuristic Methods for
Ensemble Classification in

Non-stationary Data Streams

Author:
Hossein GHOMESHI

Supervisors:
Prof. Mohamed GABER

Dr. Yevgeniya

KOVALCHUK

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

School of Computing and Digital Technology

Birmingham City University

June 8, 2020

https://www.bcu.ac.uk
https://www.bcu.ac.uk/research/our-phds/our-researchers/profiles/hossein-ghomeshi
https://www.bcu.ac.uk/computing
https://www.bcu.ac.uk

iii

Declaration of Authorship
I, Hossein GHOMESHI, declare that this thesis titled “Hybrid Metaheuristic
Methods for Ensemble Classification in Non-stationary Data Streams” and
the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at Birmingham City University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always pro-
vided. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made it clear what exactly was done by others and what I have
contributed myself.

Signed:

Date:

v

BIRMINGHAM CITY UNIVERSITY

Abstract
Faculty of Computing, Engineering and the Built Environment

School of Computing and Digital Technology

Doctor of Philosophy

Hybrid Metaheuristic Methods for Ensemble Classification in
Non-stationary Data Streams

by Hossein GHOMESHI

The extensive growth of digital technologies has led to new challenges in terms of processing
and distilling insights from data that generated continuously in real-time. To address this
challenge, several data stream mining techniques, where each instance of data is typically
processed once on its arrival (i.e. online), have been proposed. However, such techniques of-
ten perform poorly over non-stationary data streams, where the distribution of data evolves
over time in unforeseen ways. To ensure the predictive ability of a computational model
working with evolving data, appropriate data-stream mining techniques capable of adapt-
ing to different types of concept drifts are required. So far, ensemble-based learning methods
are among the most popular techniques employed for performing data stream classification
tasks in the presence of concept drifts. In ensemble learning, multiple learners forming an
ensemble are trained to obtain a better predictive performance compared to that of a single
learner.

This thesis aims to propose and investigate novel hybrid metaheuristic methods for per-
forming classification tasks in non-stationary environments. In particular, the thesis offers
the following three main contributions. First, it presents the Evolutionary Adaptation to
Concept Drifts (EACD) method that uses two evolutionary algorithms, namely, Replicator
Dynamics (RD) and Genetic algorithm (GA). According to this method, an ensemble of dif-
ferent classification types is created based on various feature sets (called subspaces) randomly
drawn from the target data stream. These subspaces are allowed to grow or shrink based
on their performance using RD, while their combinations are optimised using GA. As the
second contribution, this thesis proposes the REplicator Dynamics & GENEtic (RED-GENE)
algorithm. RED-GENE builds upon the EACD method and employs the same approach
to creating different classification types and GA optimisation technique. At the same time,
RED-GENE improves the EACD method by proposing three different modified versions of
RD to accelerate the concept drift adaptation process. The third contribution of the thesis is
the REplicator Dynamics & Particle Swarm Optimisation (RED-PSO) algorithm that is based
on a three-layer architecture to produce classification types of different sizes. The selected
feature combinations in all classification types are optimised using a non-canonical version
of the Particle Swarm Optimisation (PSO) technique for each layer individually.

An extensive set of experiments using both synthetic and real-world data streams proves
the effectiveness of the three proposed methods along with their statistical significance to
the state-of-the-art algorithms. The proposed methods in this dissertation are consequently
compared with each other that proves each of the proposed methods has its strengths to-
wards concept drift adaptation in non-stationary data stream classification. This has led us
to formulate a list of suggestions on when to use each of the proposed methods with regards
to different applications and environments.

HTTPS://WWW.BCU.AC.UK
https://www.bcu.ac.uk/computing-engineering-and-the-built-environment
https://www.bcu.ac.uk/computing

vii

Acknowledgements
The research presented in this thesis was funded by Birmingham City

University as part of the STEAM scholars program and supported by many
individuals.

First and foremost, I would like to express my sincere gratitude to my
supervisory team, including my first supervisor, Prof. Mohamed Medhat
Gaber, and my second supervisor, Dr. Yevgeniya Kovalchuk, for their con-
tinuous support throughout my PhD study.

I am indebted to Mohamed for his insights, motivation, ideas, immense
knowledge and believing in me. His guidance has always helped me during
my research and writing of this thesis. I could not have imagined having a
better supervisor and mentor for my research.

I would like to gratefully thank Yevgeniya for her advice, inputs, ideas
and patience throughout my research. Her feedback, attention to detail and
knowledge has allowed me to shape this thesis and express the concepts be-
hind my research.

I would also like to thank the staff in the Doctoral Research College (DRC)
and the faculty of Computing, Engineering and the Built Environment (CEBE)
of Birmingham City University for their administrative support during my
research.

I want to acknowledge my colleagues and fellow PhD students at the Data
Analytics and Artificial Intelligence (DAAI) research group and other school
friends, who helped to make my PhD study an enjoyable and memorable
journey.

My special thanks go to my Mom and Dad, Batool and Mehdi, as well as
everyone else in my family, including Mohammad, Zahra, Ahmad, Parisa,
Sarina, Samyar and Sophia, for their continuous support and courage during
my study. No words can truly express how grateful I am for having them in
my life.

Last but not least, I owe a great thank you to my best friends, who were
of great emotional support during my journey. Thanks for being by my side
at all times.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Preamble . 1
1.2 Motivation . 3
1.3 Problem Statement . 5
1.4 Aims and Objectives . 6
1.5 Contributions . 7
1.6 Publications . 10
1.7 Thesis Overview . 11

2 An Analytical Study on Ensemble Dynamics in Non-stationary Data
Stream Classification 13
2.1 Introduction . 13
2.2 Ensemble Methods for Non-stationary Data Stream classification 14

2.2.1 Explicit Methods . 15
2.2.2 Implicit Methods . 16
2.2.3 Research Issues and a Proposed Approach 17

2.3 Metaheuristic Methods for Concept Drift Adaptation 18
2.4 Ensemble Dynamics in Non-stationary Data Stream Classifica-

tion . 19
2.4.1 Adding Classifiers . 20

Fixed Time of Addition 20
Dynamic Time of Addition 20

2.4.2 Removing Classifiers . 21
Full . 21
Performance-based . 21
Drift-detection-based . 21

x

No removal . 22
2.4.3 Updating Classifiers . 22
2.4.4 Ensemble Dynamics Taxonomy 22

2.5 A Generic Formal Description of Non-stationary Data Stream
Classification Methods . 25

2.6 Discussion . 30
2.7 Summary . 31

3 Background 33
3.1 Data Classification . 33

3.1.1 Classic Decision Tree Learners 35
3.1.2 Hoeffding Trees . 36

3.2 Replicator Dynamics . 37
3.2.1 Nash Equilibrium . 37
3.2.2 Replicator Equation . 38

3.3 Genetic Algorithm . 39
3.4 Particle Swarm Optimisation 41
3.5 Concept Drift Detection . 43

3.5.1 DDM: Drift Detection Method 43
3.5.2 EDDM: Early Drift Detection Method 44

3.6 Summary . 45

4 Experimental Methodology 47
4.1 Experimental Settings . 47
4.2 Datasets . 48

4.2.1 Artificial Data Streams 49
4.2.2 Real World Data Streams 54

4.3 Summary . 57

5 EACD: Evolutionary Adaptation to Concept Drifts in Data Streams 59
5.1 Introduction . 59
5.2 EACD Description . 61

5.2.1 Base Layer . 62
5.2.2 Optimisation Layer . 67
5.2.3 Theoretical Justification 69

5.3 Experimental Study . 70
5.3.1 EACD Variations . 70
5.3.2 Computational Complexity 71
5.3.3 Results . 72

xi

5.3.4 Statistical Analysis . 78
5.3.5 Discussion . 81

5.4 Summary . 84

6 RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm Ap-
proach to Adaptive Data Stream Classification 87
6.1 Introduction . 87
6.2 RED-GENE Description . 88

6.2.1 Base Layer . 88
RD1: Weighted Trees . 90
RD2: Voting without Considering Poor-performing Types 90
RD3: Weighted Trees + Voting without Considering Poor-

performing Types (RD1 + RD2) 91
6.2.2 Optimisation Layer . 91

6.3 Experimental Study . 96
6.3.1 RED-GENE Variations 96
6.3.2 Computational Complexity 97
6.3.3 Results and Discussion 97
6.3.4 Statistical Analysis . 103

6.4 Summary . 104

7 RED-PSO: REplicator Dynamics & Particle Swarm Optimisation Ap-
proach to Adaptive Data Stream Classification 107
7.1 Introduction . 107
7.2 RED-PSO Description . 109

7.2.1 RED-PSO Algorithm . 110
7.2.2 PSO Optimisation . 112

7.3 Experimental Study . 117
7.3.1 RED-PSO Variations and Parameter Tuning 117
7.3.2 Computational Complexity 118
7.3.3 Results and Discussion 119

Comparison of the Different RED-PSO Variations . . . 119
Comparison With Other Methods 120
Performance Over Different Types of Concept Drifts . 124

7.3.4 Statistical Analysis . 128
7.4 Summary . 128

8 Conclusion and Perspectives 131
8.1 Summary . 132

xii

8.2 Comparison among the Proposed Methods 134
8.2.1 Discussion . 135

8.3 Future Directions . 139

A Results of Experiments Presented in Chapter 5 141

B Results of Experiments Presented in Chapter 6 143

C Results of Experiments Presented in Chapter 7 145

Bibliography 147

xiii

List of Figures

1.1 Different types of concept drifts 4
1.2 A typical ensemble learning system. 5

2.1 Proposed taxonomy for ensemble’s dynamic behaviour 23

3.1 Illustration of a sample decision tree 34
3.2 Illustration of different terms used in Genetic Algorithms (GA) 40
3.3 Crossover operation of GA . 41
3.4 Before and after the mutation operation of GA. 41
3.5 Illustration of a typical GA. 42
3.6 Illustration of a particle’s movement according to the Particle

Swarm Optimisation algorithm 43

4.1 population size of different classes in SEA generator 51
4.2 Population size of different classes in Hyperplane generator . 52
4.3 Population size of different classes in RTG generator 53
4.4 Population size of different classes in LED generator 54
4.5 Number of instances for each class in Forest Covert-type dataset. 55
4.6 Number of instances for each class in Electricity dataset. . . . 55
4.7 Number of instances for each class in Airlines dataset. 56
4.8 Number of instances for each class in Poker-hand dataset. . . 57
4.9 Number of instances for each class in KDDcup99 dataset. . . . 57

5.1 Architecture of EACD. 63
5.2 Accuracy of the EACD variations over different data streams

in the immediate setting. 72
5.3 Accuracy of the EACD variations over different data streams

in the delayed setting. 73
5.4 Average accuracy of the EACD variations in the immediate

and delayed settings . 73
5.5 Average execution time of the EACD variations over different

data streams in the immediate setting. 74

xiv

5.6 Average accuracy of the EACDExp2 and other state-of-the-art
methods in the immediate and delayed settings. 76

5.7 Average time of executing the EACDExp2 and other state-of-
the-art methods over different data streams in the immediate
setting . 78

5.8 Behaviour of the EACDExp2 and other state-of-the-art methods
upon different concept drifts . 79

5.9 Comparison of the EACDExp and other state-of-the-art meth-
ods using the Nemenyi test . 80

6.1 Illustration of different RD strategies 92
6.2 Accuracy of the RED-GENE variations and EACDExp over dif-

ferent data streams in the immediate setting. 98
6.3 Accuracy of the RED-GENE variations and EACDExp over dif-

ferent data streams in the delayed setting. 99
6.4 Average accuracy of the RED-GENE variations and EACDExp

in the immediate and delayed settings 99
6.5 Average accuracy of the RD+GA RED-GENE variation and

other state-of-the-art methods in the immediate and delayed
settings . 102

6.6 Average execution time of the RED-GENE variations and the
EACDExp method . 102

6.7 Average execution time of the RD+GA RED-GENE variation
and other state-of-the-art methods in the delayed setting . . . 103

6.8 Comparison of the RD3+GA and other state-of-the-art meth-
ods using the Nemenyi test at α = 0.10. 104

7.1 Illustration of RED-PSO . 114
7.2 Average accuracy of the different RED-PSO variations over

different data streams in the immediate setting 120
7.3 Average accuracy of the different RED-PSO variations over

different data streams in the delayed setting 120
7.4 Average accuracy of the RED-PSO variations in the immediate

and delayed settings . 121
7.5 Average execution time of all RED-PSO variations over differ-

ent data streams in the immediate setting 121
7.6 Accuracy of the RED-PSO3 and other state-of-the-art methods

over different data streams in the immediate and delayed set-
tings . 124

xv

7.7 Accuracy of the RED-PSO3 and other state-of-the-art methods
over the SEA dataset upon different types of drifts in the de-
layed setting . 125

7.8 Average execution time of the RED-PSO3 and other state-of-
the-art methods over different data streams 126

7.9 Comparison of the RED-PSO3 and other state-of-the-art meth-
ods using the Nemenyi test . 129

8.1 Accuracy of the proposed methods in the immediate setting. . 135
8.2 Accuracy of the proposed methods in the delayed setting. . . 136
8.3 Overall execution time of the proposed methods 136

xvii

List of Tables

2.1 Overview of the dynamic behaviour of studied algorithms . . 24

4.1 Properties of each data stream used in this thesis 50
4.2 Properties of different data streams generated using the Hy-

perplane generator . 52
4.3 Properties of different data streams generated using RTG . . . 54

5.1 Accuracy (%) of EACDExp compared to the state-of-the-art meth-
ods in the immediate setting. 75

5.2 Accuracy (%) of EACDExp compared to the state-of-the-art meth-
ods in the delayed setting. 77

5.3 Average rank of the EACDExp and other state-of-the-art meth-
ods according to the Friedman test. 80

6.1 Accuracy of RED-GENE compared to the state-of-the-art meth-
ods in the immediate setting . 100

6.2 Accuracy of RED-GENE compared to the state-of-the-art meth-
ods in the delayed setting . 101

6.3 Average rank of the RD3+GA and other state-of-the-art meth-
ods according to the Friedman test. 103

7.1 General parameters used in the experiments for all variations
of RED-PSO. 118

7.2 Accuracy (%) of RED-PSO3 compared to the state-of-the-art
methods in the immediate setting 122

7.3 Accuracy (%) of RED-PSO3 compared to the state-of-the-art
methods in the delayed setting 123

7.4 KappaM statistic of the RED-PSO3 and other state-of-the-art
methods in the delayed setting. 126

7.5 Average rank of the RED-PSO3 and other state-of-the-art meth-
ods according to the Friedman test. 128

xviii

8.1 Suggested method(s) to utilise for different applications or en-
vironments. 138

A.1 Average accuracy of the EACD variations in the immediate
setting . 141

A.2 Average accuracy of the EACD variations in the delayed setting.142
A.3 Average execution time of the EACD variations. 142
A.4 Average execution time of the EACD and other state-of-the-art

methods in the immediate setting. 142

B.1 Average accuracy of the RED-GENE variations and EACDExp

in the immediate setting . 143
B.2 Average accuracy of the RED-GENE variations and EACDExp

in the delayed setting . 143
B.3 Average execution time of the RED-GENE variations and EACDExp

in the immediate setting . 144
B.4 Average execution time of the RED-GENE and other state-of-

the-art methods in the immediate setting. 144

C.1 Average accuracy of the RED-PSO variations in the immediate
setting . 145

C.2 Average accuracy of the RED-PSO variations in the delayed
setting . 145

C.3 Average execution time of the RED-PSO variations in the im-
mediate setting . 146

C.4 Average execution time of the RED-PSO3 and other state-of-
the-art methods in the immediate setting. 146

xix

List of Abbreviations

ADOB Adaptable Diversity-based Online Boosting
ARF Adaptive Random Forest
CV Cross Validation
DDM Drift Detection Method
DWM Dynamic Weighted Majority
EACD Evolutionary Adaptation (to) Concept Drifts
EDDM Early Drift Detection Method
GA Genetic Algorithm
GP Genetic Programming
Lev-Bag Levveraging Bagging
MOA Massive Oonline Analysis
NA Nash Equilibrium
OAUE Online Accuracy Updated Ensemble
OGA Online Genetic Algorithm
PSO Particle Swarm Optimisation
RD Replicator Dynamics
RED-GENE REplicator Dynamics (&) GENEtic algorithm
RED-PSO REplicator Dynamics (&) Particle Swarm Optimisation

xxi

Dedicated to my loving parents,

Mehdi and Batool,

whose unconditional love, affection, support and prayers

are my strength in everything I do.

1

Chapter 1

Introduction

1.1 Preamble

Data mining is the science of extracting useful knowledge from massive data
repositories [1]. This interdisciplinary field of computer science, which in-
volves machine learning and statistical techniques, has been widely applied
to problems in both industry and science [2]. Machine learning is a field of
computer science aiming at teaching computers how to learn from data and
automatically improve with experience [3].

A system built using a machine learning technique is called a machine
learning model. In general, machine learning techniques can be categorised
into supervised and unsupervised methods. In supervised learning, the aim
is to build a machine learning model using labelled instances to predict the
labels of future data. This is in contract with unsupervised learning, where
the aim is to find or distinguish patterns in data while the labels of instances
are not given. Other categories of machine learning techniques that have dif-
ferent degrees and patterns of supervision exist (e.g. semi-supervised learn-
ing and active learning where the number of labelled instances is limited)
[4]. In this thesis, the terms machine learning and data mining are used in-
terchangeably providing their significant overlap.

Classification is a supervised data mining technique used to label a data
record/instance with one of the predefined classes using a machine learning
model trained over a set of labelled data. This area of research has been
extensively studied considering many different applications [5] and is the
main focus of this thesis.

To perform a typical classification task, a static set of labelled data is em-
ployed to train and test a classification model. Training is performed to build
a model (classifier) using a machine learning technique, while testing is per-
formed to assess the model’s performance. Evaluation techniques such as

2 Chapter 1. Introduction

holdout or cross validation (CV) are typically used for the training and test-
ing purposes in classical machine learning supervised tasks [6]. The holdout
method divides the considered dataset into two mutually exclusive subsets
of data called a training set and a testing (holdout) set. The most common
way of splitting is to designate 70% of data to the training set and the re-
maining 30% to the testing set [6]. In contrast, the CV method repeatedly
splits the dataset into a training set and a validation set – so that each data
record (instance) can contribute to both training and validation sets.

Nevertheless, in many modern-world applications such as sensor net-
work analysis [7], traffic monitoring [8], weather forecasting [9], social me-
dia analysis, spam filtering systems [10], stock market prediction, fraud and
intrusion detection [11], healthcare systems [12] and web searches [7], data
come mainly in the form of data streams, with a high-volume of data be-
ing produced continuously. Mining data in such time-critical applications
requires online techniques to find recent patterns and perform accurate pre-
dictions.

Online mining of data streams is more challenging than classical data
mining of static datasets in the following aspects:

• First, due to the massive amount of continuous data points in data
streams, along with the time and memory constraints, each instance
(record) of data is processed only once on the arrival in most cases.
Hence, iterative processing and storing the data in-memory are not pos-
sible [13].

• Second, classical data mining evaluation techniques such as holdout
and CV are not suitable for data streams due to the infinite size and
high-volume of the data, where training over data streams cannot be
independent from testing the continuously updated model [14].

• Third, the underlying distribution of data often changes in many real-
world data streams. This can be caused by different factors such as
changes in the temporal and/or spatial context and possibly other en-
vironmental factors (e.g. natural disasters) [15].

These challenges necessitate proposing new data mining techniques or
modifying the existing classical techniques to enable the extraction of knowl-
edge structures from data streams. Indeed, a plethora of data stream mining
techniques has been proposed during the last two decades [16].

1.2. Motivation 3

The main objective in many data stream mining applications is to predict
the class of the incoming data records over the target data stream. The clas-
sification procedure in this context should be performed based on a trained
model (classifier(s)) built upon previous labelled data records (once avail-
able) using their features and the recent data distribution. This is related to
the problem of adaptation to concept drifts that will be discussed in the next
section.

As opposed to single-classifier models, multiple-classifier systems offer
diverse mechanisms for coping with concept drifts and have been demon-
strated to have a superior performance in stream classification tasks in non-
stationary environments [14][13]. Such multiple-classifier systems are typi-
cally based on ensemble learning, which is defined in the following section.

Metaheuristic algorithms is an emerging area in computing aiming at
solving problems using the principles of heuristic (partial search algorithms)
that may provide a sufficiently good solution to an optimisation problem
[17]. Such algorithms offer a natural solution to the changing environment
problems. In particular, it is believed that metaheuristic algorithms allow
the creation of new solutions with promising characteristics such as fault-
tolerance, self-replication or cloning, reproduction, evolution, adaptation,
learning and growth [18].

Providing that non-stationary data streams are typically generated by
evolving environments, metaheuristic methods are hypothesised to be a suit-
able solution for non-stationary data stream classification tasks. Hence, this
thesis studies the impact of using metaheuristic approaches when solving
non-stationary data stream classification tasks.

1.2 Motivation

A considerable effort of recent research has focused on data stream classifi-
cation tasks in non-stationary environments [15]. The main challenge in this
research area concerns the adaptation to concept drifts, that is, when the data
distribution changes over time in unforeseen ways. Concept drifts occur in
different forms and can be divided into four general types: abrupt (sudden),
gradual, incremental and recurrent (reoccurring). The different types of con-
cepts are depicted in Figure 1.1.

In abrupt (sudden) concept drifts, the data distribution at the time t sud-
denly changes to a new distribution at the time t+1. Incremental concept

4 Chapter 1. Introduction

drifts occur when the data distribution changes and stays in the new distri-
bution after going through some new, unstable, median data distributions.
In gradual concept drifts, the proportion of the new probability distribution
of incoming data increases, while the proportion of the data belonging to the
former probability distribution decreases over time. Recurring concept drifts
happen when the same old probability distribution of data reappears after
some time of a different distribution.

FIGURE 1.1: Different types of concept drifts. Adapted from
[15].

To cope with the concept drift problem in a data stream, it is important to
build a classification system that adapts to different concept drifts as quickly
as possible. Ensemble learning has proved its superiority for stream classi-
fication in non-stationary environments over other classification techniques
[14][13]. Ensemble learning is a machine learning approach, in which pre-
dictions of individual classifiers are combined using a combination rule to
predict incoming instances more accurately compared to a single learner. In
particular, a voting mechanism is used to combine different classifiers’ out-
puts to establish a single class label as the output of the ensemble (Figure 1.2).
The combination procedure is typically performed using majority voting or
weighted majority voting.

The advantage of using ensemble learning techniques in non-stationary
data stream classification lies in their ability to update swiftly according to
the most recent data instances. This is usually achieved by training the exist-
ing classifiers in the ensemble and changing their weights according to their
performance: adding new, well-performing classifiers, removing outdated,

1.3. Problem Statement 5

poor-performing classifiers and updating the existing classifiers. In single-
classifier systems, the only strategy to address the concept drift problem is
to update the classifier; however, this task can be challenging when dealing
with different types of concept drifts. The extensive range of applications
makes the task of non-stationary data stream classification even more chal-
lenging since various applications seek diverse purposes and have different
conditions.

FIGURE 1.2: A typical ensemble learning system.

1.3 Problem Statement

The following main features should be taken into consideration when design-
ing a versatile yet robust ensemble approach to non-stationary data stream
classification:

• Reliability: the main target of any classification approach is to achieve
a high degree of reliability in the results. The reliability of a classifica-
tion technique can be tested by calculating the method’s performance
using different performance metrics such as accuracy, precision, recall
and F1 score along with inter-rater reliability score (i.e. Cohen’s Kappa
statistic [19]) which is the score of consistency of agreement among dif-
ferent experts (classifiers) in a pool of experts. A versatile approach
should have reliable results over different applications having different
characteristics such as a various number of features/classes and vari-
ous imbalance ratios.

• Efficiency: in many applications, there are constraints on the system
in terms of the time and memory usage. When the time calculating an

6 Chapter 1. Introduction

output or the amount of available memory is limited, the learning time
and space of an approach should be minimised.

• Adaptation: when a concept drift happens in a data stream, the ac-
curacy of the ensemble drops. This is due to the change in the data
distribution and/or the target concept. It is important to minimise the
rate of misclassification and time of recovery upon different types of
concept drifts.

Consequently, an ideal approach to non-stationary data stream classifica-
tion should satisfy the following many-fold objective: having the highest degree
of reliability while minimising the computational complexity and quickly adapting to
possible concept drifts. However, to the best of our knowledge, there is no com-
prehensive approach able to satisfy these conditions at the same time in dif-
ferent environments. The majority of the state-of-the-art ensemble methods
for data stream classification are focused on either a specific type of concept
drifts or a specific type of applications.

1.4 Aims and Objectives

This thesis proposes different hybrid metaheuristic ensemble learning meth-
ods with the following aims:

• satisfy the recognised gap in the state-of-the-art research that is the lack
of a comprehensive approach able to satisfy all the conditions of an
ideal approach in non-stationary data stream classification tasks;

• perform well regardless of the concept drift type or application;

• demonstrate robustness using different data streams having a various
number of features/classes and various imbalance ratios;

• offer a natural solution to improving the accuracy of predictions.

To achieve these aims, the following objectives have been identified:

• study the state-of-the-art algorithms for non-stationary data stream clas-
sification tasks and explore different mechanisms for coping with the
current challenges in such tasks;

• employ evolutionary algorithms to develop a novel ensemble learning
technique for concept drift adaptation in data-streams;

1.5. Contributions 7

• propose efficient ways of deploying evolutionary algorithms in ensem-
ble methods designed to solve non-stationary data stream classification
tasks;

• optimise the proposed metaheuristic solutions for non-stationary data
stream classification by balancing out the exploration and exploitation
of metaheuristics.

1.5 Contributions

Achieving the objectives of the thesis has led to the following contributions.

An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

To address the first objective, the state-of-the-art ensemble methods for non-
stationary data stream classification are introduced and analysed compre-
hensively. Furthermore, we study the ensembles’ dynamic behaviour of the
existing ensemble methods (e.g. adding, removing and updating classifiers).
We propose a novel taxonomy to categorise the current methods based on
their dynamic behaviour. Finally, a new, compact, yet informative formalisa-
tion of state-of-the-art methods is proposed [20].

Evolutionary Adaptation to Concept Drifts

To address the second objective, the Evolutionary Adaptation to Concept
Drifts (EACD) [21] algorithm is proposed. EACD is a novel ensemble learn-
ing method for data stream classification in non-stationary environments.
This method uses random selections of features and two evolutionary algo-
rithms, namely, Replicator Dynamics (RD) and Genetic Algorithm (GA).

GA is a metaheuristic algorithm inspired by the process of natural selec-
tion, which is a subset of a bigger class of algorithms called evolutionary
algorithms. Such algorithms are commonly used to generate high-quality
solutions to optimisation and search problems relying on bio-inspired oper-
ators such as mutation, crossover and selection.

RD is a simple model of evolution and prestige-biased learning in game
theory [22][23]. It provides a solution for selecting useful types from a pop-
ulation of diverse types. In this model, the act of selection happens at dis-
crete times and the effectiveness of each type in the next selection operation

8 Chapter 1. Introduction

is specified by the replicator equation as a function of the type’s payoff and
its current proportion in the population [24].

In the proposed EACD method, an ensemble of different classification
types comprising randomly drawn features (subspaces) of the target data
stream is trained. These randomly drawn subspaces are then optimised us-
ing GA to cope with different concept drifts over time. The training of the
proposed ensemble is performed on sequential data blocks of the stream. The
proposed ensemble technique allows a dynamic set of classification types to
take action over time. In addition, the number of decision trees in a clas-
sification type (subspace) depends on the performance of this type on the
most recent data. Hence, well-performing types increase in size, while poor-
performing types decrease in size. Since the original RD and GA methods
are designed to work only on static sets of data, in the proposed method,
modified versions of RD and GA are proposed to enable their successful per-
formance over streaming data.

In summary, EACD allows the ensemble to handle different types of con-
cept drifts by employing two different evolutionary techniques. RD is used
to continuously determine well-performing and poor-performing types and
expand or shrink them accordingly. GA is used to compose new, improved
types out of the existing ones by iterating over the most recent data.

The comprehensive experiments conducted in this research show the sig-
nificant contribution of the EACD in non-stationary data stream classification
by comparing the proposed method to state-of-the-art methods in this area
and thus, led us to achieve the second objective outlined in this dissertation
(Section 1.4).

Replicator Dynamics & Genetic Algorithm

To address the third objective of this thesis, the REplicator Dynamics & GE-
NEtic algorithm (RED-GENE) method [25] built upon EACD [21] is pro-
posed. Both EACD and RED-GENE employ the same approach to creat-
ing different classification types and GA optimisation technique. However,
EACD employs only the most basic modified version of RD. RED-GENE im-
proves the state-of-the-art methods and offers the following further contri-
butions: (1) introducing three different modified versions of RD to accelerate
the concept drift adaptation process; (2) improving the classification accu-
racy for the majority of the considered experimental cases; and (3) reducing

1.5. Contributions 9

the running time of the algorithm by generating a lower number of types
while improving the total accuracy.

A set of experiments employing four artificial and five real-world data
streams are conducted to compare the performance of the proposed method,
RED-GENE, to EACD method and other state-of-the-art algorithms. Com-
paring to the EACD method, RED-GENE improves the performance of EACD
in most cases, however, there are some cases that EACD outperforms the
RED-GENE method as seen by average accuracy. Furthermore, comparing
to five state-of-the-art algorithms, RED-GENE achieves the highest average
accuracy in five out of nine datasets. Finally, the results show the significance
of deploying the proposed modifications of RD in improving the efficiency
of the metaheuristic algorithms in non-stationary data stream classification
tasks.

Replicator Dynamics & Particle Swarm Optimisation

To address the final objective of this thesis, the REplicator Dynamics & Parti-
cle Swarm Optimisation (RED-PSO) algorithm is proposed. RED-PSO [26] is
a novel method for non-stationary data stream classification that uses a mod-
ified metaheuristic algorithm, namely, Particle Swarm Optimisation (PSO),
to comply with the aforementioned characteristics of an ideal approach to
coping with evolving data streams in classification challenges.

PSO is a metaheuristic algorithm [27] inspired by the social behaviour of
the movement of organisms in a bird flock or fish school. The main target of
the PSO algorithm is finding the global minimum of a function. While PSO
does not guarantee an optimal solution, it has been shown to have promising
results in various applications [28].

The proposed RED-PSO technique comprises a three-layer architecture.
Each layer is initially assigned some predefined classification types randomly
created from a pool of features of the target data stream. RD is used first to
seamlessly cope with smooth (i.e. gradual or incremental) concept drifts; it
allows the classification types with a good performance to grow and those
with a poor performance to shrink in size. The combination of features in
all types is then optimised using a modified version of PSO for each layer
individually. This helps the method to cope with sudden (i.e. recurring or
abrupt) concept drifts. PSO allows the types in each layer to go towards
local (within the same type) and global (across all types) optimums with a
specified velocity.

10 Chapter 1. Introduction

The RED-PSO method is compared to seven state-of-the-art algorithms in
an extensive set of experiments. The results show the significant performance
of RED-PSO method in different environments and led us to achieve the final
objective identified in Section 1.4.

In summary, each of the proposed methods in this dissertation is a stand-
alone contribution to non-stationary data stream classification tasks that has
its strengths. In particular, when a concept drift is manifested in having some
features become irrelevant, EACD can outperform any other methods, be-
cause of its active addition and deletion of classifiers periodically. Further-
more, when the presented concept drifts in the data stream are mostly abrupt
or having a severe magnitude, RED-GENE can adapt to such concept drifts
more quickly than any other methods because of its dynamic RD modifica-
tions and also its concept drift detection mechanism. Eventually, when the
target data stream contains more recurrent concept drifts or noisy data, RED-
PSO can outperform any other methods. The reason for this is due to its capa-
bility of investigating both exploration and exploitation aspects of the search
space and also its implicit mechanism towards concept drifts that makes this
method resistant to false alarms.

We thoroughly analyse the conditions under which each method outper-
forms the others and provide recommendations on which method should be
used in which applications and also investigate their performance in differ-
ent scenarios (simulated by the datasets) in Section 8.2.

1.6 Publications

The following book chapter and journal papers have been published while
working towards this thesis:

• H. Ghomeshi, M.M. Gaber, and Y. Kovalchuk, Ensemble dynamics in
non-stationary data stream classification, in Learning from Data Streams
in Evolving Environments, Springer, 2018, pp. 123—153.

• H. Ghomeshi, M. M. Gaber, and Y. Kovalchuk, EACD: Evolutionary
adaptation to concept drifts in data streams, Data Mining and Knowl-
edge Discovery, vol. 33(3), pp. 663–694, Springer, 2019, ISSN: 1573-
756X.

• H. Ghomeshi, M.M. Gaber, and Y. Kovalchuk, A non-canonical hybrid
metaheuristic approach to adaptive data stream classification, Future
Generation Computer Systems, vol. 102, pp. 127–139, 2020.

1.7. Thesis Overview 11

• H. Ghomeshi, M.M. Gaber, and Y. Kovalchuk, An Evolutionary Game
Theoretic Approach to Adaptive Data Stream Classification, vol. 7, pp.
173944– 173954, IEEE Access (2019).

1.7 Thesis Overview

The rest of this thesis is organised as follows.
Chapter 2 provides an overview of related work in non-stationary data

stream classification tasks. Different ensemble learning techniques are re-
viewed and categorised into implicit and explicit methods based on their
concept drift adaptation mechanism. This is followed by an overview of the
current metaheuristic methods for concept drift adaptation. Then, we re-
view the dynamic behaviours of existing ensemble learning methods such as
adding new classifiers, removing old classifiers and updating current classi-
fiers. We propose a novel taxonomy for defining ensemble’s dynamics when
performing non-stationary data stream classification tasks. Finally, a formal-
isation method for classification algorithms for streaming analytics is pre-
sented to simplify the process of understanding different approaches in this
area.

Chapter 3 reviews the necessary background and theoretical explanation
of the algorithms used/modified in this thesis. RD, GA, PSO and Hoeffding
Trees (VFDT) are comprehensively reviewed and discussed in detail. This
is followed by a discussion on the concept drift detection mechanism used
as the main concept drift detector in the methods proposed in this thesis.
Furthermore, different evaluation techniques employed in our experiments
are introduced and justified.

Chapter 4 describes the experimental methodology containing the basic
information for conducting the experiments in this thesis. Particularly, this
chapter includes the experimental settings such as different methods used for
comparison, experimental environment and specification along with differ-
ent datasets and their characteristics (e.g. imbalance ratio, number of classes,
number of features and number of records) in the experiments conducted in
this thesis.

Chapter 5 presents the EACD method as our contribution towards the
first objective. This method employs modified versions of RD and GA to
enable their usage in data stream mining problems. Furthermore, it imple-
ments a seamless concept drift adaptation mechanism to reduce the recovery
time upon different concept drifts and maximise the overall performance of

12 Chapter 1. Introduction

the ensemble. The chapter also outlines the set of experiments employing
four artificial and five real-world data streams we conducted to compare the
performance of EACD with that of the state-of-the-art algorithms using the
immediate and delayed prequential evaluation methods.

Chapter 6 presents RED-GENE as the second contribution of this thesis.
This method is built upon EACD and employs three novel RD modifications
to improve the performance of the ensemble learning technique over differ-
ent types of concept drifts. The performance of RED-GENE is compared to
that of the EACD and other state-of-the-art methods using the same set of
experiments as described in Chapter 5.

Chapter 7 presents a novel ensemble technique called RED-PSO, which
is the last contribution of this thesis. RED-PSO is based on a three-layer ar-
chitecture to produce classification types of different sizes. RD is used in this
method to seamlessly adapt to different concept drifts. In addition, the se-
lected feature combinations in all classification types are optimised using a
non-canonical version of PSO for each layer individually. PSO allows the
types in each layer to go towards local (within the same type) and global
(across all types) optimums with a specified velocity. A similar set of exper-
iments as described in Chapter 5 is then employed to examine the perfor-
mance of RED-PSO.

Chapter 8 summarises the work presented in this thesis and draws con-
clusions by comparing the proposed methods in this thesis to each other. It
contains a brief description of the novel methods proposed in this thesis and
points out a few important directions for future research.

13

Chapter 2

An Analytical Study on Ensemble
Dynamics in Non-stationary Data
Stream Classification

To achieve the first objective of this thesis as identified in the previous chap-
ter, a comprehensive study of the current state-of-the-art algorithms for non-
stationary data stream classification problems is conducted in this chapter.
Furthermore, a novel taxonomy characterising ensemble’s dynamics in non-
stationary data stream classification is proposed. The work presented in this
chapter has been published as a book chapter titled “Ensemble dynamics in
non-stationary data stream classification” in “Learning from Data Streams in
Evolving Environments” [20].

2.1 Introduction

With the rapid growth of digital technology, more data become available in
the form of data streams (e.g. continuous sensor readings in the Internet of
Things (IoT) or credit card transactions). Hence, data stream classification
has started to play an important role in the areas of knowledge discovery
and big data analytics over the past few years. In the context of data streams,
the goal of classification is to predict the class label of incoming instances
from continuous data records that, generally, can be read only once provid-
ing a limited time and memory. This can be achieved by extracting useful
knowledge from the past data of a stream using machine learning techniques.
However, knowledge discovery from data streams is more complex than that
in the domains where all data are available at once.

General characteristics of data streams as considered by [29] include their
unlimited size, the online arrival of data elements, order of the data elements

14
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

that is not governable and restriction to process these elements only one time
(it is possible to process an element more than once but at a high cost of
storing elements).

From the data distribution point of view, there are two types of data
streams: stationary (stable) data streams, where the probability distribution of
instances is fixed, and non-stationary (evolving) data streams, where the prob-
ability distribution of incoming data evolves or target concepts (labelling
mechanism) change over time. The latter phenomena is called concept drift.
The presence of concept drifts in data streams makes classification tasks more
complex and difficult to handle. This chapter focuses on non-stationary data
stream classification.

2.2 Ensemble Methods for Non-stationary Data Stream

classification

The majority of the existing data stream mining approaches to non-stationary
environments use ensemble learning techniques for classification tasks [30]
[15] [13]. Ensemble learning methods offer more flexibility (by allowing addi-
tion, removal and retraining of classifiers) [14] compared to single classifier
techniques that use only one classifier for the classification task. This is an
advantage especially in the non-stationary environments in which the classi-
fication approach needs to have a swift adaptation to the new concept once a
concept drift happens.

Furthermore, many of the state-of-the-art ensemble learning methods for
non-stationary data stream classification tasks are adapted versions of bag-
ging [31] and boosting [32] and can be categorised into explicit and implicit
methods based on whether or not they use a concept drift detector to cope
with concept drifts. A concept drift detector is an algorithm able to detect
concept drifts in a data stream on the basis of the information about new
incoming examples and the model’s performance. Explicit methods use a
concept drift detection mechanism and have an explicit (immediate) reaction
to a drift when it is detected, whereas implicit methods do not have an im-
mediate reaction to concept drifts, and as such, adapt to drifts implicitly by
updating the state of the ensemble according to the most recent instances. We
review some of the ensemble learning explicit and implicit and techniques for
non-stationary data stream classification next.

2.2. Ensemble Methods for Non-stationary Data Stream classification 15

2.2.1 Explicit Methods

Adaptive Boosting (Aboost) [30] is one of the approaches that uses a concept
drift detection method. It builds one classifier per every block of data re-
ceived from a stream and classifies these instances. Then, it evaluates the en-
semble’s output and updates the weights of all classifiers based on whether
or not an instance is classified correctly by the ensemble, as well as the classi-
fier itself. Whenever a concept drift is detected, the weight of each classifier
in the ensemble is reset to one. Finally, once the size of the ensemble is ex-
ceeded, the oldest classifier is removed from it.

Adwin Bagging (AdwinBag) [33] is an approach that uses Oza’s online
bagging algorithm [34] for its learning mechanism and adds a concept drift
detector called ADaptive WINdowing (ADWIN) [35] to specify when a new
classifier is required. AdwinBag is enhanced in the Leveraging Bagging (Lev-
Bag) algorithm [36] by the same authors. LevBag aims to add randomi-
sation to the input and output of the classifiers and increase the extent of
re-sampling in the bagging technique. The re-sampling rate in LevBag is
changed from Poisson(1) to Poisson(λ), where λ is a user defined parameter.

Yet another explicit approach is Recurring Concept Drift (RCD) [37]. It
uses a buffer to store the context of each data type in the stream. This method
employs a two-phase concept drift detection mechanism. First, a new clas-
sifier is created and trained alongside a new buffer when the drift detection
mechanism signals a warning. If it then signals a drift, which means the con-
cept drift is approved, the system checks whether or not the new concept is
similar to another concept that has been previously stored in the buffer. If
there has been a recurring concept drift, RCD uses the classifier created with
that concept drift to classify the incoming data and then starts training the
classifier. If no similar concept drift can be found in the buffer, RCD stores
the newly trained buffer and classifier in the system and uses them to classify
the incoming instances. If the system does not get the drift signal to approve
the drift, it assumes it to be a false alarm; the system ignores the stored data
and continues to classify using the current classifier. Note, only one classifier
is activated at a time in this approach, while the rest are deactivated, unless
the same data concept happens again.

Adaptive Random Forest (ARF) [38] is an explicit ensemble learning tech-
nique, which is an adaptation of the classical Random Forest algorithm [39]
that grows decision trees by training them on re-sampled versions of the orig-
inal data and randomly selecting a small number of features that can be in-
spected at each node for split. ARF is based on a warning and drift detection

16
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

scheme per tree, such that after a warning has been detected for one tree,
another one (background tree) starts growing in parallel and replaces the
original tree only if the warning escalates to a drift.

Adaptable Diversity-based Online Boosting (ADOB) [40] is a modified
version of the online boosting [34], which aims to speed up the recovery of
classifiers after concept drifts. It uses ADaptive WINdowing (ADWIN) [35]
change detector as its concept drift detector. This algorithm changes the Pois-
son distribution parameter from a fixed value of 1 to an adjustable value of
λ according to the accuracy of its base classifiers, so that the samples can be
distributed efficiently among its base classifiers.

2.2.2 Implicit Methods

OzaBag [34] is an implicit method modifying the standard bagging technique
for it to work with data streams (i.e. in online environments). In this method,
every classifier in the pool is trained with k copies of the data received re-
cently. OzaBoost [34] is an online version of the standard boosting algorithm.
In OzaBoost method, each incoming instance is used to train all experts se-
quentially: the highest possible weight is assigned to the first decision tree,
while the weights calculated for the next decision trees are based on the eval-
uation of the older ones.

OSBoost [41] is an implicit algorithm that uses online boosting and com-
bines weak learners by producing a connection between online boosting and
batch boosting algorithms. It has been theoretically proven to achieve a small
error rate, as long as the numbers of weak learners and examples are suffi-
ciently large.

Dynamic Weighted Majority (DWM) [42] is an implicit approach for deal-
ing with online data by classifying them immediately. If a classifier misclas-
sifies an instance after a predefined period (p instances), the weight of this
classifier is reduced by a constant value regardless of the ensemble’s output
and all weights are normalised. Then, the classifiers with weights lower than
a predefined threshold (θ) are removed from the ensemble. Finally, when the
whole ensemble misclassifies an instance, a new classifier is built and added
to the ensemble. All classifiers are trained incrementally with incoming sam-
ples.

The Accuracy Updated Ensemble (AUE) [43] incrementally trains all old
classifiers and weights them based on their error within a constant time and
memory. In this algorithm, the incremental nature of Hoeffding trees [44] is

2.2. Ensemble Methods for Non-stationary Data Stream classification 17

combined with a normal block-based weighting mechanism. This approach
does not remove any old classifiers; therefore, a threshold for memory is as-
signed, so that whenever it is met, a pruning method is used to reduce the
size of classifiers. An online version of this approach (OAUE) was introduced
by the same authors [45].

Anticipative Dynamic Adaptation to Concept Changes (ADACC) [46] is
an implicit method that attempts to optimise stability of the ensemble by
recognising incoming concept changes. This is achieved by establishing an
enhanced forgetting strategy for the ensemble. ADACC takes snapshots of
the ensemble when a concept is recognised as stable and uses them when
there is instability in the system to cope with concept drifts.

Social Adaptive Ensemble (SAE) [47] is a method that has the same learn-
ing strategy as that of the DWM algorithm. It maintains an ensemble ar-
ranged as a network (undirected graph) of classifiers. Two classifiers are
connected to each other when they produce similar predictions. These con-
nections are weighted according to a similarity coefficient equation. The en-
semble is updated after a predefined number of instances. The same authors
extended their method to SAE2 [48].

2.2.3 Research Issues and a Proposed Approach

In summary, the main issue with explicit methods is their sensitivity to false
alarms (noise). Therefore, accuracy of the system using such methods can
be degraded severely by a wrongly detected concept drift. Furthermore, em-
ploying a good drift detection mechanism that can recognise different types
of concept drifts (gradual, recurring, abrupt and incremental) [15] is a diffi-
cult task. Thus, in this thesis, we propose an adapted version of RD offering
a smooth yet effective way of improving the performance of the ensemble
by increasing or reducing the number of trees in classification types. A clas-
sification type is a set of randomly drawn features (subspaces) of the target
data stream used to create a diverse set of learners (classifiers). Furthermore,
the main issue with implicit algorithms is their slowness in coping with con-
cept drifts since these algorithms do not react immediately to drifts. This
is the reason for using a concept drift detection algorithm in our proposed
methods, along with GA to immediately react to concept drifts and optimise
the combination of features in classification types. Overall, by combining RD
with concept drift detection methods and GA or different layers of Particle

18
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

Swarm Optimisation (PSO), it is feasible to have the advantages of both ex-
plicit and implicit methods alongside in the ensemble.

2.3 Metaheuristic Methods for Concept Drift Adap-

tation

To achieve the objectives identified in this thesis, different metaheuristic meth-
ods are applied to the problem of classification in non-stationary data streams.
In this section, we study the existing metaheuristic methods for concept drifts
adaptation.

Metaheuristic algorithms cannot be applied in their original state to the
problems in streaming applications since the entire set of instances is not ac-
cessible to the stream processing system. However, such algorithms can be
adapted to streaming data in different ways. In particular, the following al-
gorithms have been proposed in the literature for non-stationary data stream
classification.

The StreamGP algorithm [49] builds an ensemble of classifiers using Ge-
netic Programming (GP) along with the boosting algorithm to generate de-
cision trees, each trained on different parts of the data stream. This algo-
rithm is an explicit algorithm that uses a concept drift detection mechanism.
Whenever a concept drift is detected, a new classifier is created using CGPC
[50], which is a Cellular GP method generating classifiers as decision trees.
According to this algorithm, each population is initialised as a set of indi-
vidual data blocks (nodes) drawn randomly. The newly created classifier is
then added to the ensemble, and all classifiers are boosted by updating their
weights.

StreamGP is different from the methods proposed in this thesis. In par-
ticular, the aim of the optimisation technique used in StreamGP is to find the
best set of data blocks to create a new classifier, whereas the aim of the meta-
heuristic algorithms used in our methods is to optimise the combination of
features for the learning purposes.

Online Genetic Algorithm (OGA) [51] is a rule-based learning algorithm
that builds and updates a set of candidate rules for a data stream based on
the evolution of the data stream itself. In this algorithm, the rules are initially
set randomly, and after fully receiving a new data block, an iteration of GA
is performed to search for new (better) candidate rules for all classes in the
received data block. This process is repeated until the end of the stream.

2.4. Ensemble Dynamics in Non-stationary Data Stream Classification 19

The differences between OGA and our proposed algorithms are as fol-
lows. Primarily, OGA is a rule-based learning algorithm, whereas EACD,
RED-GENE and RED-PSO are ensemble learning algorithms. The aim of GA
in OGA is to create new rules or update the current rules, whereas the aim
of RD and GA in EACD and RED-GENE, and PSO in RED-PSO is to opti-
mise the classification types inside the ensemble. Furthermore, the iterations
in OGA are performed over different data blocks (an iteration per each data
block) and GA never stops its iterations (the maximum number of genera-
tions is unlimited), whereas in EACD and RED-GENE, the iterations are per-
formed over the same fixed data in the buffer for each round of GA, and
the number of generations is limited. The main issue with OGA is the long
time it takes to adapt to new concept drifts since GA takes only one data
block at each iteration, potentially requiring a large number of iterations to
completely cope with a concept drift. Further details regarding the meth-
ods proposed in this thesis, namely, EACD, RED-GENE and RED-PSO, are
provided in Chapters 5, 6 and 7, respectively.

2.4 Ensemble Dynamics in Non-stationary Data Stream

Classification

In non-stationary environments, where different types of concept drifts may
happen, it is expected that an ensemble adapts to a new concept drift swiftly.
Since the adaptation in such environments is typically achieved by adding
a new classifier to the ensemble, removing old classifiers and changing the
weights of the existing classifiers, understanding the dynamic behaviour of
the ensemble towards different types of concept drifts can help us to choose
the best approach for a specific application domain and develop new ensem-
ble learning techniques for the required purpose. This section discusses the
operations that form the ensemble dynamics of an approach. These oper-
ations are adding, removing and updating classifiers in the ensemble. The
following sections describe each of these operations in detail and outline
the comparison between different algorithms based on the criteria related
to dynamics. Over 20 different ensemble methods for non-stationary envi-
ronments are studied and compared for this purpose.

20
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

2.4.1 Adding Classifiers

Adding new classifiers trained with recent instances in a stream is one of
the most important operations that should be applied to the ensemble when
data is evolving. The aim of this operation is adapting to drifting data, as
well as improving classification accuracy of the ensemble based on the fact
that, in most cases, incoming data are more likely to be similar to upcoming
instances. One decision that should be taken when making a strategy for
the ensemble is to decide when to add new classifiers to the ensemble, or
in other words, what time frame should be taken for the addition operation.
Some algorithms use a fixed time of addition, while others use a dynamic time
for it.

Fixed Time of Addition

The algorithms using a fixed time to train and add new classifiers usually
use a similar strategy; they perform the addition operation after receiving a
new block of data or after receiving a predefined p instances. A considerable
number of the existing algorithms use this strategy to add new classifiers.
The main challenge when building or using such algorithms is to pick a de-
cent size of blocks, or p, to have the best possible output. Picking a large size
might decelerate the adaption, while using a small size might make the en-
semble sensitive to noise.

Dynamic Time of Addition

The algorithms using a dynamic time to train and add new classifiers are
more diverse than the ones using a fixed time. Some of them use a method
based on the concept drift detection to determine when to train and add new
classifiers. These types of algorithms start to train a new classifier when the
concept drift detector signals and identifies a concept drift. Such a mecha-
nism is called the detection-based dynamic approach to the addition operation.
Some algorithms start to build a new classifier once the ensemble misclas-
sifies an example. This strategy is called in this thesis misclassification-based
dynamic. Other mechanisms include adding a new classifier based on an ac-
ceptance factor [52]. This approach tries to add a new classifier when the
threshold of the acceptance factor has been passed and a new classifier is
required. Another approach trains and adds a new classifier once an old
classifier is removed and some free space is available [53].

2.4. Ensemble Dynamics in Non-stationary Data Stream Classification 21

All studied algorithms and their addition mechanisms are listed in Table
2.1.

2.4.2 Removing Classifiers

Removing classifiers is a strategy to forget the knowledge previously gained
from a data stream that is outdated in the current situation to adjust the en-
semble to an updated state. In many cases, removing classifiers from the
ensemble is performed when a predefined ensemble size is reached. How-
ever, in some algorithms, classifiers are removed when their accuracy drops
below a predefined threshold. In yet other algorithms, the size of ensemble
is set unlimited, hence no classifiers are eliminated from the ensemble unless
a pruning method is utilised. In summary, the removing strategies can be
categorised into the following four types (Table 2.1):

Full

Remove classifier(s) when a predefined ensemble size is reached and there
is a new classifier required to be added to the ensemble. The algorithms
employing this strategy eliminate classifiers based of the classifiers’ age in the
ensemble or their performance over recent data. These algorithms typically
use a ‘fixed’ strategy for adding new classifiers.

Performance-based

Remove a classifier when its performance for the last predefined k examples
drops below a specified threshold. When a classifier becomes ‘inaccurate’
in identifying a new concept, it is considered as an obsolete classifier and
removed from the ensemble.

Drift-detection-based

Remove classifier(s) once the concept drift detection method identifies a con-
cept drift. When the ensemble is full, one or multiple classifiers are elimi-
nated from the ensemble for every new concept drift detected by the drift de-
tection method. This is performed to forget the past concept of data and/or
emphasise the new classifier(s) added to the ensemble. All of such algorithms
use a dynamic mechanism for adding new classifiers.

22
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

No removal

A considerable number of algorithms do not remove any old classifiers from
the ensemble and only change the weights of all classifiers to avoid inaccu-
rate classification. This strategy is driven by the believe that when a classifier
becomes weak in an environment, it can become an accurate classifier once
again when a drift happens, especially when the drift is recurring. The algo-
rithms using this strategy typically have a pruning method in place to avoid
memory overload (providing that no classifier is removed from the ensem-
ble).

2.4.3 Updating Classifiers

Updating classifiers in the ensemble can be performed using two main ap-
proaches: either updating the weight/ranking of each classifier or training
old classifiers with incoming data. Providing that the latter approach re-
quires a lot of memory to train all classifiers with incoming data, the majority
of the current algorithms use the ’updating weights’ mechanisms to improve
accuracy (Table 2.1).

Updating the weight of each classifier is an efficient way to improve the
accuracy of the ensemble, especially when a concept drift happens and there
are diverse classifiers in the ensemble. This is usually achieved by evaluating
the effectiveness of each classifier providing the current state of the environ-
ment and changing their weights/rank so that classifiers with a higher accu-
racy towards the current condition have a bigger impact on the ensemble’s
output than weaker classifiers. Note that the algorithms using a simple ma-
jority voting mechanism for selecting the output of the ensemble are unable
to employ this procedure since there is no weight or rank set for each classi-
fier. Similar to the addition stage, the mechanisms for updating the weights
of classifiers can be categorised into those using fixed times and those using
dynamic times. The methods using dynamic times for updating classifiers
are typically employed when a drift is detected, except for the AddExp al-
gorithm [54], where updating is performed when a classifier misclassifies an
example.

2.4.4 Ensemble Dynamics Taxonomy

To summarise the above-mentioned operations, we propose a taxonomy for
defining ensemble’s dynamics in non-stationary data stream classification

2.4. Ensemble Dynamics in Non-stationary Data Stream Classification 23

(Figure 2.1). According to the proposed taxonomy, the dynamic behaviour
of ensemble techniques is categorised into three main operations of addition,
removal and updating. The addition mechanisms are partitioned into fixed
and dynamic methods, with the dynamic methods being further divided into
detection-based, performance-based and others (such as using an acceptance
factor). The removal techniques are partitioned into four categories: full,
performance-based, detection-based and no-removal. Finally, the updating
approaches are divided into two categories: updating the classifiers’ weights
(or ranks) and training old classifiers. The first updating category is parti-
tioned into those with fixed times, dynamic times and no-update, while the
second category includes algorithms that train old classifiers (yes) and those
that do not (no).

FIGURE 2.1: Proposed taxonomy for ensemble’s dynamics in
non-stationary data stream classification.

24
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

TABLE 2.1: Overview of the dynamic behaviour of studied al-
gorithms

Algorithm Adding Removing Updating TrainingReference

SEA Fixed Full No update No [55]
AWE Fixed Performance Fixed No [56]
CDC Other Performance Fixed No [53]
Aboost Fixed Full Dynamic No [30]
CBEA Fixed Full No update No [57]
AddExp Misclassify No removal Dynamic No [54]
ACE Detection No removal Dynamic No [58]
DWM Misclassify Performance Fixed Yes [42]
TRE Other No removal Fixed No [52]
Adwin
Bag

Detection Detection No update No [33]

BWE Detection Detection Fixed No [59]
Learn++ Fixed No removal Fixed No [60]
Heft-
Stream

Fixed Full Fixed No [61]

WAE Fixed Full Fixed No [62]
RCD Detection No removal Dynamic No [37]
DACC Fixed Full Fixed Yes [46]
ADACC Fixed Full Fixed Yes [46]
AUE Fixed Full Fixed Yes [43]
OAUE Fixed Full Fixed Yes [45]
Fast-AE Fixed Full Fixed No [63]

Legends. Fixed: Fixed time of adding/updating classifiers; Detection: Detection-
based (dynamic) times; Misclassify: Misclassification-based (dynamic) times of
adding classifiers; Full: Removing old classifier(s) when the ensemble is full; Per-
formance: removing when the performance of a classifier drops below a predefined
threshold.

2.5. A Generic Formal Description of Non-stationary Data Stream
Classification Methods

25

2.5 A Generic Formal Description of Non-stationary

Data Stream Classification Methods

Formalising algorithms is a suitable way to comprehend and modulate the
existing approaches to develop novel methods. In this section, a formalised
version of six different algorithms introduced earlier in this section is pre-
sented with the intention to simplify the process of examining and building
new approaches. These six algorithms are chosen based on their dynamic
behaviour covering a variety of mechanisms towards concept drift adapta-
tion. At the same time, the proposed formalisation technique can be applied
to any other algorithms.

The following functions are used in the chosen algorithms. Note that the
sequence of the functions is important in the proposed formalisation, and
the specific implementation of each function might be different for every al-
gorithm.

• Classify(): The ensemble classifies data according to its combinational
rule (e.g. weighted majority vote or majority vote).

• Eval(): Evaluating the whole ensemble or classifiers using an evaluation
method.

• Update(): Updating the weights (or ranks) of all or one classifier using
evaluation and updating mechanisms.

• Build(): Building a new classifier using recently received data.

• Add(): Adding the newly built classifier to the ensemble.

• Remove(): Removing one or some classifiers based on the ensemble’s
specific removal mechanism.

• Train(): Training all or some old classifiers using new data or a data
block.

• DriftDetection(): Detecting drifts using a concept drift detection method.

Aboost [30] takes blocks of data, classifies the instances and evaluates the en-
semble’s performance (see Algorithm 1). If a concept drift is detected, Aboost
updates all classifiers and assigns the default weight of one to them. Other-
wise, it assigns a weight to each instance in the block according to whether
or not the considered instance is classified correctly (lines 8-9 in Algorithm

26
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

1). High weights are assigned to misclassified instances, while the default
weight of one is assigned to all instances classified correctly. Finally, the old-
est classifier in the ensemble is removed and a new classifier is built and
added to the ensemble (based on the weighted instances in the block).

Algorithm 1: ABOOST Adaptive Boosting Algorithm
Input: Continuous data blocks, DB ={db1,db2,..,dbn}
Output: C: A set of classifiers c ={c1,c2,..,cm} and their corresponding

weights w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 Eval(Ensemble)
5 if DriftDetection()=1 (drift is detected) then
6 Update(c)

7 else
8 Eval(dbi)
9 Update(dbi)

10 Build(ci+1)
11 Add(ci+1)
12 Remove() //remove the oldest classifier
13 i = i + 1

In DWM [42], data arrive in real time and after a predefined period p (see
Algorithm 2). If a classifier misclassifies an instance, the weight of this classi-
fier is reduced by a constant value regardless of the ensemble’s output (lines
8-9 in Algorithm 2). After the predefined period p, all weights are normalised
and the classifiers with weights lower than a threshold (θ) are removed from
the ensemble. Finally, when the ensemble misclassifies an instance, a new
classifier is built and added to the ensemble. All classifiers are trained incre-
mentally with incoming samples.

In TRE [52], a new classifier is added only when the ensemble error reaches
a predefined permitted error rate (τ). Each classifier’s weight is updated
once the classifier’s performance drops below an acceptance factor (θ). This
approach does not remove old classifiers unless a pruning method is used.
The formalised version of this algorithm is shown in Algorithm 3

AdwinBag [33] uses a concept drift detection method to specify when
a new classifier is needed, in which case, the worst performing classifier is
removed to make a room for a new classifier. The formalised version of this
algorithm is shown in Algorithm 4.

2.5. A Generic Formal Description of Non-stationary Data Stream
Classification Methods

27

Algorithm 2: DWM Dynamic Weighted Majority algorithm
Input: A data stream, DS ={d1,d2,..,dn}
li: Real label of the ith example

1 Θ: Threshold for removing classifiers
2 p: specified period for adding, removing and updating classifiers.

Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding
weights w ={w1,w2,..,wm}

3

4 i := 1
5 while data stream is not empty do
6 for j = 1 to j = m do
7 Classify(di)
8 if Output(bj) 6= li and i mod p = 0 then
9 Update()

10 if i mod p = 0 then
11 while wj < θ do
12 Remove(cj)

13 Train(cj)

14 if Classify(di) 6= li then
15 Build()
16 Add()

17 i := i + 1

Algorithm 3: TRE Tracking Recurrent Ensemble
Input: Continuous data blocks, DB ={db1,db2,..,dbn}
τ: Permitted error θ: Acceptance factor
Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding

weights w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 for j = 1 to j = m do
5 Eval(cj)
6 if Eval(cj) < θ then
7 Update(cj)

8 Eval(Ensemble)
9 if Ensemble error > τ then

10 Build()
11 Add()

12 i := i + 1

28
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

Algorithm 4: ADWINBAG Adwin Bagging algorithm
Input: A data stream, DS ={d1,d2,..,dn}
M: Ensemble size
Output: A set of classifiers c ={c1,c2,..,cm}

1 i := 1
2 while data stream is not empty do
3 Classify(di)
4 if DriftDetection()=1 then
5 Build()
6 Add()

7 for j = 1 to j = m do
8 Eval(cj)

9 if Ensemble size = M then
10 Remove() //remove worst performing classifier

11 i := i + 1

RCD [37] uses a buffer to store the context related to each data distribution
in the stream (see Algorithm 5). When the concept drift detector signals a
warning, a new classifier is created and trained alongside with a new buffer.
If the concept drift detector signals a drift, which means the concept drift
is certain, RCD checks whether or not the new concept drift is similar to
previous concepts in the buffer (in case it is a recurring concept drift). If
the new concept is similar to an old concept based on a statistical test, RCD
uses the classifier created with that concept to classify incoming data and
starts training this classifier. If the data distribution (concept) is new, RCD
stores the new buffer and classifier in the system and uses the new classifier
to classify incoming data. Otherwise (i.e. if the signal was a false alarm),
the system ignores the stored data and continues to classify using the latest
classifier. In this approach, only one classifier is active at a time performing
the classification task.

OAUE [45] is designed to incrementally train all old classifiers and weight
them based on their error rate in a constant time and memory. Since this al-
gorithm requires a lot of memory due to training all classifiers with incoming
data, a threshold for memory is assigned, so that whenever the threshold is
met, a pruning method is used to decrease the size of the classifiers. The
formalised version of OAUE is presented in Algorithm 6.

2.5. A Generic Formal Description of Non-stationary Data Stream
Classification Methods

29

Algorithm 5: RCD Recurring Concept Drift method
Input: A data stream, DS ={d1,d2,..,dn}
Output: A set of classifiers c ={c1,c2,..,cm}, Buffer list b ={b1,b2,..,bm}

1 ca= Active classifier, ba= Active buffer
2 cn= New classifier, bn= New buffer
3 i := 1
4 while data stream is not empty do
5 Classify(di)
6 DriftDetection()
7 switch Drift Detection do
8 case DriftDetection()= Warning and cn = null do
9 Build(cn)

10 Build(bn)

11 case DriftDetection()= Warning and cn 6= null do
12 Train(cn)

13 case DriftDetection()= Drift do
14 if Statistic-Test()= 1 then
15 ca ← cm
16 ba ← bm

17 else
18 ca ← cn
19 ba ← bn

20 otherwise do
21 cn = bn = null

22 i := i + 1

30
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

Algorithm 6: OAUE Online Accuracy Updated Ensemble algorithm
Input: A continuous blocks of data, DB ={db1,db2,..,dbn}
M: Ensemble size, θ: Memory threshold
Output: A set of classifiers c ={c1,c2,..,cm} and their corresponding

weights w ={w1,w2,..,wm}
1 i := 1
2 while data stream is not empty do
3 Classify(dbi)
4 Eval(c)
5 Build(ci)
6 if i < M then
7 Add(ci)

8 else
9 Remove() //remove the least accurate classifier

10 Add(ci)

11 for j = 1 to j = m do
12 Update(cj)
13 Train(cj)

14 if Memory usage > θ then
15 Prune(c) //decrease the size of classifiers

16 i := i + 1

2.6 Discussion

Analysing existing solutions is the first step towards proposing novel meth-
ods. Studying the dynamic behaviour of different ensemble learning tech-
niques for non-stationary data stream classification and categorising them
based on their dynamic behaviour have helped us to identify several research
gaps. In particular, none of the reviewed methods offers a comprehensive
solution to stream mining that is (i) able to cope with different types of con-
cept drifts; (ii) resistant to noise and false alarms; and (iii) fast in adapting
(reacting) to all types of concept drifts. Aiming at addressing these short-
comings, this thesis proposes three novel approaches to analysing evolving
data streams based on several metaheuristic algorithms, namely, RD, GA
and PSO. These algorithms can offer natural solutions to the changing en-
vironment problems with promising characteristics such as fault-tolerance,
self-replication or cloning, reproduction, evolution, adaptation, learning and
growth.

To the best of our knowledge, metaheuristic algorithms have been applied
to this research area with a limited capacity. In particular, only two methods,

2.7. Summary 31

namely, StreamGP [49] and OGA [51], are identified to propose solutions to
the concept drift adaptation problem based on GP and GA. However, these
methods are different from the ones proposed in this thesis in the following
aspects. As the original metaheuristic algorithms cannot cope with the online
nature of data streams, novel modifications of those algorithms are proposed
in this thesis with the goal to optimise the combination of features used for
building different classifiers inside the ensemble. In StreamGP, GP is used to
select a data block (out of the available data blocks) to train a new classifier
based on it, while in OGA, which is a rule-based learning algorithm, GA is
used to create new rules and update the current ones. These applications of
GP and GA differ from the main goal of ensemble learning, that is to create a
pool of classifiers for the classification purpose. In particular, the main draw-
back of StreamGP is that no new classifier is created by the system unless a
concept drift is detected. This might negatively affect the performance upon
incremental and gradual concept drifts that are hard to detect. The main
drawback of OGA is the long time it takes to adapt to new concept drifts
since GA takes only one data block in each iteration, potentially requiring a
large number of iterations to completely cope with a concept drift.

In summary, this thesis proposes for the first time some modifications of
classical metaheuristic methods for performing online feature selection and
solution adaptation when solving data stream classification tasks.

2.7 Summary

This chapter offered an overview of different ensemble-based methods pro-
posed in the literature for solving non-stationary data stream classification
tasks and studied their mechanisms for adapting to dynamic changes of data
streams. Furthermore, a novel taxonomy was proposed based on the dy-
namic behaviour of these methods to help identifying different types of re-
actions to concept drifts. To simplify the process of understanding the dy-
namics of the current approaches and encourage the development of novel
algorithms, a formalisation method for studying classification algorithms for
streaming analytics was presented. The characteristics of some of the exist-
ing algorithms were investigated using this formalisation. Finally, this chap-
ter discussed the contributions of the thesis in the light of the reviewed lit-
erature, demonstrating the originality of the proposed methods. The next
chapter provides a detailed overview of the original classification technique

32
Chapter 2. An Analytical Study on Ensemble Dynamics in Non-stationary

Data Stream Classification

and different metaheuristic algorithms employed in the methods proposed
in this thesis.

33

Chapter 3

Background

In the previous chapter, a detailed study of the state-of-the-art work in the
area of non-stationary data stream mining has been presented, along with a
novel taxonomy characterising dynamic behaviours of the existing ensemble
learning methods and a novel formalisation technique for describing non-
stationary data stream classification methods. Understanding different clas-
sification methods and their dynamic behaviour has resulted in understand-
ing how different mechanisms address the challenges in non-stationary data
stream mining, which eventually has led to developing the novel methods
presented in this thesis to address the shortcomings of the current algorithms.
This chapter provides the background necessary to understand the proposed
solutions, along with the theoretical explanation of the algorithms employed
in these solutions. In particular, the algorithms introduced in this chapter are
either used or modified in the methods presented in Chapters 5, 6 and 7.

3.1 Data Classification

The main focus of this thesis is the classification task in non-stationary data
stream environments. This problem, in its general representation, can be de-
fined as a set of N instances in the form of (x, y), where x denotes a set of
numeric or qualitative features (attributes) d of an instance and y denotes the
corresponding class label of this instance. The goal of the classification task
is to train a model using the provided N instances to predict the class label y
of future examples x.

There are many classification algorithms offering different ways of build-
ing and training a classifier, including Decision Tree [64], Naive Bayes [65],
Artificial Neural Network (ANN) [66], Support Vector Machines (SVM) [67]
and k-Nearest Neighbours (k-NN) [68].

The Decision Tree algorithm is one of the most effective and popular clas-
sification methods [44] extensively used for creating ensembles. Providing

34 Chapter 3. Background

FIGURE 3.1: Illustration of a sample decision tree built over the
Iris flower dataset.

that the majority of stream mining algorithms are ensemble-based, we used
this algorithm as a base of the methods proposed in this thesis. Learners of
this type induce models in the form of decision trees, where each external
node (leaf) contains a class prediction and each internal node (non-leaf) is la-
belled with an input feature. The predicted label of an instance, y = DT(x),
is obtained by passing the instance through the tree starting from the root
until it reaches a leaf. The reached leaf is then assumed to be the predicted
value (y) of the instance. Figure 3.1 illustrates a sample decision tree built
using the Iris dataset [69]. The Iris dataset contains three classes with 50 in-
stances each, where each class refers to a type of the iris plant. Four features
were measured from each sample, namely, the length and width of sepals
and petals in centimetres1.

1https://archive.ics.uci.edu/ml/datasets/iris

https://archive.ics.uci.edu/ml/datasets/iris

3.1. Data Classification 35

3.1.1 Classic Decision Tree Learners

Classic decision tree learners such as the Iterative Dichotomiser 3 (ID3) [70],
C4.5 [71] and CART [72] assume that all training instances can be stored si-
multaneously in the main memory and are thus severely limited in the num-
ber of examples they can learn from. As an example, the ID3 algorithm con-
siders an entire set S to set the root node. It repeats through every unused fea-
ture of the set S and measures the entropy H(S) or information gain IG(S) of
that feature. The algorithm then chooses the feature with the largest informa-
tion gain (or smallest entropy) value. Next, the set S is partitioned according
to the selected feature to create subsets of the original data. As an example,
a node in this algorithm can be split into child nodes based on the subsets of
the population whose ages are less than 10, between 10 and 20, and greater
than 20.) The algorithm proceeds to iterate on each subset, considering only
the features that have never been chosen before.

H(S) is a measure of the amount of uncertainty in the (data) set S calcu-
lated as in Equation 3.1.

H(S) = ∑
x∈X
−P(x) log2 P(x), (3.1)

where S denotes the current dataset for which entropy is being calculated,
X denotes the set of classes in S and P(x) denotes the proportion of the num-
ber of elements in class x to the number of elements in the set S.

When H(S) = 0, the set S is ideally classified (i.e. all elements in S are
of the same class). In ID3, entropy is calculated for each remaining feature.
The feature with the largest information gain is used to split the set S on this
iteration.

Information Gain IG(A) is the measure of the difference in entropy before
to after the set S is split on a feature A. It measures how much uncertainty
in S has been demoted after splitting the set S on feature A. IG(A) can be
calculated as in Equation 3.2.

IG(S, A) = H(S)− ∑
t∈T

p(t)H(t) = H(S)− H(S|A), (3.2)

where H(S) denotes the entropy of the set S, T denotes the subsets created
from splitting the set S by attribute A, p(t) denotes the proportion of the
number of elements in the subset t to the number of elements in the set S and
H(t) denotes the entropy of the subset t.

36 Chapter 3. Background

In ID3, information gain is calculated instead of entropy for each remain-
ing attribute. The attribute with the largest information gain value is used to
split the set S in the current iteration.

Iterations on a subset of data can terminate in one of the following cases:

• Every instance in the subset refers to the same class, in this case, the
node is turned into a leaf node and identified as the class of the in-
stances.

• There are no more features to be picked while the instances still do not
refer to the same class. The node, in this case, is made a leaf node and
labelled with the most common class of the instances in the subset.

• There are no instances in the subset. This is when no instance in the
parent set was found to match a specific value of the selected feature.
In this case, a leaf node is created and labelled with the most common
class of the instances in the set of the parent node.

The output of ID3 algorithm is a decision tree with each non-terminal
node (internal node) representing the selected feature on which the data was
split and terminal nodes (leaf nodes) representing the class label of the final
subset of this branch.

In the context of data stream classification, the learner can only process
each instance once on its arrival to the system and the processed data are not
accessible in the future due to the high-volume of data and possible infinite
size of the entire dataset. Hence, ID3 is not suitable for data stream mining.

3.1.2 Hoeffding Trees

In contrast to ID3, the Hoeffding Tree algorithm [44] is an effective online
learning mechanisms proposed to build potentially complex decision trees
based on data streams. In particular, the first few instances of a given stream
of data are used to choose the root attribute of the decision tree, while the
succeeding instances are used to incrementally grow the tree employing the
Hoeffding bound [73] to decide on optimal splitting features.

Consider a real-valued random variable r whose range is R (e.g. for infor-
mation gain, the range is log c, where c is the number of classes). Suppose we
have made n independent observations of this variable and computed their
mean r. According to the definition of the Hoeffding bound, the true mean

3.2. Replicator Dynamics 37

of the variable is at least r− ε with the probability 1− δ, where ε is calculated
as in Equation 3.3.

ε =

√
R2 ln (1/δ)

2n
. (3.3)

The Hoeffding bound has a property of being independent of the probability
distribution generating the observation. The price of this generality is that
the bound is more conservative than distribution-dependent ones. Let G(Xi)

be the heuristic measure used to choose the best splitting attributes (e.g. the
measure could be information gain as in ID3). The goal of the Hoeffding Tree
algorithm is to ensure with a high probability that the attribute chosen using
n instances (where n is as small as possible) is the same as that would be
chosen using infinite examples.

3.2 Replicator Dynamics

RD is a simple model of evolutionary game-based learning in game theory
[22][23]. Game theory is defined as the study of mathematical models of
conflict and cooperation between intelligent rational decision makers. It pro-
vides general mathematical techniques for analysing the situation, in which
two or more individuals (players) make decisions impacting the welfare of
others [74]. It was appropriately fostered by evolutionary biologists2. The
resulting population-based evolutionary game theory has been applied to
many non-biological fields such as economics and learning theory, present-
ing an important enrichment of classical game theory, which is centred on the
concept of a rational individual. The following sections discuss the mathe-
matical fundamentals of the evolutionary game concepts, namely, the Nash
Equilibrium (NE) and Replicator Equation.

3.2.1 Nash Equilibrium

The simplest kind of games in the game theory has only two players, I and I I,
each one has a limited set of options or pure strategies, Strat(I) and Strat(I I),
respectively. We denote the payoff, or expected value of the players I and
I I as aij and bi j, when I uses a strategy i ∈ Strat(I) and I I uses a strategy
j ∈ Strat(I I). Hence, the payoffs can be represented as n×m matrices A and
B, where n and m denote the cardinalities of the sets of pure strategies.

2William D. Hamilton and John Maynard Smith

38 Chapter 3. Background

The mixed strategy of the player I considering i ∈ Strat(I) with the prob-
ability xi can be defined as a vector x = (x1, x2, ..., xn)T, which is an element
of the unit simplex Sn spanned by the vectors ei of the standard unit base;
these vectors can be identified using the elements of Strat(I). Similarly, the
unit simplex Sm spanned by the vectors f j corresponds to the set of mixed
strategies for the player I I. If the playerI uses x ∈ Sn and the player I I uses
y ∈ Sm, then the former has the expected payoff xT Ay and the latter has the
expected payoff xTBy. The strategy x ∈ Sn is said to be the best reply to
y ∈ Sm if the condition in Equation 3.4 is satisfied for all z ∈ Sn.

zT Ay ≤ xT Ay (3.4)

The set of all best replies to y is denoted as BR(y). A pair (x, y) ∈ Sn × Sm

is a Nashequilibrium(NE) if x ∈ BR(y) and (with the obvious abuse of the
notation) y ∈ BR(x). A simple fixed-point argument shows that such a NE
always exist. The pair is considered a strict NE if x is the unique best reply
to y and vice versa. In this sense, such an outcome satisfies the consistency
condition. To transfer this to a population setting, it is convenient at first to
reduce attention to the case, where the two players I and I I are interchange-
able individuals within the population, i.e. consider only the case, where the
two players do not appear in different roles but have the same strategy set
and payoff matrix. In particular, we can first consider symmetric games de-
fined as Strat(I) = Strat(I I) and A = BT. For symmetric games, players
cannot be distinguished and only symmetric pairs (x, x) of strategies are of
interest. Therefore, we can say that a strategy x ∈ Sn is a NE if the condition
in Equation 3.5 is satisfied for all z ∈ Sn, i.e. if x is the best reply to itself.

zT Ax ≤ xT Ax (3.5)

The equilibrium is said to be strict if it equally holds only for z = x.

3.2.2 Replicator Equation

Now a population consisting of n types can be considered. Let xi be the fre-
quency of type i. Then, the state of the population can be defined as x ∈ Sn.
Assume that xi are differentiable functions of time t (which requires to as-
sume that the population is infinitely large or that xi are expected values for
an ensemble of populations). We can then postulate the following law of mo-
tion for x(t). If individuals meet randomly and engage in a symmetric game

3.3. Genetic Algorithm 39

with the payoff matrix A, then (Ax)i is the expected payoff for an individual
of type i and xT Ax is the average payoff in the population state x.

In this model, the act of selection happens at discrete times, and the pop-
ulation of each type in the next selection can be determined according to the
replicator equation as a function of the type’s payoff and its current propor-
tion in the population [24]. In other words, a type’s expected payoff can be
determined using the payoff matrix, and hence, the population of each type
can be determined according to its expected payoff. The types scoring above
the average payoff increase in population, while the types scoring below the
average payoff decrease in population. The Replicator Equation can be written
as in Equation 3.6.

ẋi = xi[(Ax)i − xT Ax], (3.6)

where (Ax)i denotes the expected payoff for an individual and xT Ax denotes
the average payoff in the population state x.

3.3 Genetic Algorithm

GA is a metaheuristic algorithm inspired by the process of natural selection,
which is a subset of a bigger class of algorithms called evolutionary algo-
rithms. These algorithms are commonly used to generate high-quality solu-
tions to optimisation and search problems relying on bio-inspired operators
such as mutation, crossover and selection. We applied GA in the methods pro-
posed in this thesis due to it being superior to other optimisation methods
when there is a relatively large number of local optima [75]. Using feature
subspaces to optimise accuracy in a classification problem can typically form
local optima. Since the proposed methods use subspaces of features, we hy-
pothesise that GA can be a suitable solution to this problem (refer to Chapters
5 and 6 for further details).

A typical GA works as follows (Figure 3.2). An initial population is cre-
ated from a group of individuals randomly. The individuals (chromosomes)
in the population are then evaluated. An individual is characterised by a set
of parameters (variables) known as Genes. The evaluation function is pro-
vided by the programmer and gives the individuals a score based on how
well they perform at the given task. Some individuals are then selected based
on their fitness; the higher the fitness, the higher the chance of being selected.
These individuals then reproduce by exchanging their genes with another in-
dividual to create one or more offspring. This process is called crossover.

40 Chapter 3. Background

FIGURE 3.2: Illustration of Population, Chromosomes and
Genes used in Genetic Algorithms (GA).

Mutation is then applied by adding random genes to the offspring to main-
tain the diversity within the population. This process continues until a suit-
able solution is found or a predefined maximum number of generations is
reached [76].

The following operations are processed in a typical GA.

Fitness Function

The fitness function determines how fit an individual is (the ability of an
individual to compete with other individuals). It is used to assign a fitness
score to each individual. The probability that an individual is selected for
reproduction is based on its fitness score.

Selection

The purpose of the selection phase is to select the fittest individuals and let
them pass their genes to the next generation. The fittest individuals are se-
lected based on their fitness scores. Individuals with high fitness have more
chances to be selected for reproduction.

Crossover

Crossover is the most significant phase of GA. For each pair of parents to be
mated, a crossover point is chosen at random within the genes. Processing
this operation leads to creating offspring by exchanging the genes of parents
among themselves until the crossover point is reached (Figure 3.3). The new
offspring are then added to the population.

3.4. Particle Swarm Optimisation 41

FIGURE 3.3: A sample crossover operation of GA leading to
new offspring.

FIGURE 3.4: Before and after the mutation operation of GA.

Mutation

Some genes of the new offspring may be subjected to a mutation with a low
random probability. This implies that some of the bits in the bit string of
an offspring can be flipped (Figure 3.4). Mutation is applied to maintain the
diversity within the population and prevent premature convergence. Figure
3.5 demonstrates how such a typical GA process works.

3.4 Particle Swarm Optimisation

PSO is a metaheuristic algorithm [27] inspired by the social behaviour of the
movement of organisms in a bird flock or fish school. The main target of
the PSO algorithm is finding the global minimum of a function. While PSO
does not guarantee an optimal solution, it has been demonstrated to provide
promising results in various applications [28].

A typical PSO algorithm is initialised by creating an initial random pop-
ulation (swarm) of candidate solutions (particles). The particles then move
around the search space with a dynamic velocity (according to a specific for-
mulae) to find the best possible solution. The movement of the particles is
directed by two factors called ‘local best’ (Lbest) and ‘global best’ (Gbest) po-
sitions being updated from one iteration to another. The Lbest position is a
particle’s best position throughout the history, while the Gbest position is the

42 Chapter 3. Background

FIGURE 3.5: Illustration of a typical GA.

best position achieved by all particles in the swarm. This process is repeated
at each iteration so that a satisfactory solution can be discovered. The veloc-
ity (V) and position (P) of the particles are updated according to Equations
3.7 and 3.8 respectively.

Vi(t + 1) = ωVi(t) + β1(Lbest(i, t)− Pi(t)) + β2(Gbest(t)− Pi(t)), (3.7)

Pi(t + 1) = Pi(t) + Vi(t + 1), (3.8)

where ω denotes the inertia weight used to balance the global and local ex-
ploitation, while β1 and β2 are positive constant parameters called accelera-
tion coefficients (inertia weights).

Figure 3.6 demonstrates how a particle (X) moves during a period from
time i to i + 1 based on the Gbest position, Lbest position and inertia weight.

A canonical PSO algorithm is designed to iterate over a static data, where
there is only one possible optimal solution. In contract, in data stream clas-
sification tasks, data come in an online manner and the optimal solution is
subject to change over time. Therefore, a non-canonical version of PSO is
proposed in Chapter 7 to adapt PSO to streaming environments.

3.5. Concept Drift Detection 43

FIGURE 3.6: Illustration of a typical movement of a particle (X)
according to the Particle Swarm Optimisation algorithm during
a period from time i to i + 1. Gbest and Lbest denote the best

global and local positions, respectively.

3.5 Concept Drift Detection

An emerging problem in data stream mining is the detection of concept drifts.
Concept drift detection methods aim at detecting changes in the concept be-
ing learnt so far. The majority of these methods are based on statistical anal-
ysis of recent data points received from a data stream. Below, we discuss two
effective concept drift detection algorithms, namely, Drift Detection Method
(DDM) and an extension of this method called Early Drift Detection Method
(EDDM). We use EDDM as a base concept drift detector to start GA itera-
tions in two of the three methods proposed in this thesis, namely, EACD and
RED-GENE.

3.5.1 DDM: Drift Detection Method

Some approaches pay attention to the number of errors thrown by a learning
model through the prediction stage. The DDM method [77] uses a binomial
distribution providing a generic form of the probability for the random vari-
able representing the number of errors in a sample of n examples. For each
point i in the sequence being sampled, the error rate is the probability of
misclassifying (pi) with the standard deviation si =

√
pi(1− pi)/i. In DDM

44 Chapter 3. Background

algorithm, it is assumed that the error rate of the learning algorithm (pi) de-
creases while the number of examples increases if the distribution of exam-
ples is stationary. A significant increase in the error of the algorithm suggests
that the class distribution is changing, therefore, the original decision model
is supposed to be inappropriate. As a result, the values of pi and si are stored
when pi + si reaches its minimum value during the process (obtaining pmin

and smin), and the following conditions are triggered:

• pi + si ≥ pmin + 2× smin for the warning level; beyond this level, exam-
ples are stored in anticipation of a possible change of the context;

• pi + si ≥ pmin + 3× smin for the drift level; beyond this level, the concept
drift is supposed to be true, the model induced by the learning method
is reset and a new model is learnt using the examples stored since the
warning level was triggered; the values for pmin and smin are reset.

This approach has a good performance in detecting abrupt and gradual
changes when the gradual change is not very slow. However, its performance
drops when the change is slowly gradual, in which case, examples are stored
for a long time, the drift level can take too much time to be triggered and the
memory required to store examples can be exceeded.

3.5.2 EDDM: Early Drift Detection Method

The Early Drift Detection Method (EDDM) [78] was proposed to improve the
performance of the DDM method in the presence of gradual concept drifts
while keeping a good performance in the presence of abrupt concept drifts.
The basic idea of EDDM is to consider the distance between the errors of two
consecutive classification results instead of only the error values. In particu-
lar, the distance between two consecutive errors is expected to increase as the
method improves its predictions while learning. The values of the average
distance between two errors p

′
i and its standard deviation s

′
i can be calculated

and stored when p
′
i + 2× s

′
i reaches its maximum value (obtaining p

′
max and

s
′
max). In other words, the value of p

′
max + 2× s

′
max corresponds to the point,

where the distribution of the distances between the errors is maximum. This
point is reached when the induced model best approximates the current con-
cepts of the considered dataset. The following two thresholds are defined in
EDDM:

• (p
′
i + 2× s

′
i)/(p

′
max + 2× s

′
max) < α for the warning level; beyond this

level, the examples are stored prior to a possible change of the context.

3.6. Summary 45

• (p
′
i + 2× s

′
i)/(p

′
max + 2× s

′
max) < β for the drift level; beyond this level,

the concept drift is supposed to be true, the model induced by the learn-
ing method is reset and a new model is learnt using the examples stored
since the warning level was triggered. The values of p

′
max and s

′
max are

reset too.

In our implementation of EDDM, a minimum of 30 errors are calculated
(note that the method may parse a large number of examples before obtain-
ing 30 classification errors). This number was selected because we want to
estimate the distribution of the distances between two consecutive errors and
compare it with future distributions to find differences. Thus, p

′
max + 2× s

′
max

represents the 95% of the distribution. After obtaining 30 classification errors,
the method uses the above-defined thresholds to detect a possible concept
drift.

In our experiments, the values of the thresholds α and β were set to 0.95
and 0.90 consecutively. These values were determined after conducting a set
of experiments on a synthetic data stream generator (SEA data stream gener-
ator). This is done due to the possibility of applying different concept drifts
manually to the data stream that allows us to analyse the results by compar-
ing the exact time of introducing the concept drifts and the detected time of
concept drift using EDDM method. A good selection of α parameter helps
our method to start storing data once a concept drift has started to change
the distribution of data. A good selection of β parameter helps our method
to detect the concept drifts properly and be able to distinguish between the
actual concept drifts and noises throughout the data stream. It is worth men-
tioning that if the similarity between the actual value of p

′
i + 2× s

′
i and the

maximum value p
′
max + 2× s

′
max increases over the warning threshold, the

stored examples are removed and the method returns to normality.

3.6 Summary

This chapter discussed the necessary background and theoretical definitions
of the algorithms used as building blocks of the novel methods proposed in
this thesis (EACD, RED-GENE and RED-PSO). In particular, the Hoeffding
Tree algorithm is employed as the base classification algorithm to build and
train the classifiers for the three proposed methods. Furthermore, RD is used
in the proposed methods to optimise the number of classifiers in each ran-
domly drawn classification types, while GA or PSO are used to optimise the
combination of the features for each classification type inside the ensemble

46 Chapter 3. Background

when a concept drift is detected. Finally, EDDM is employed as the base con-
cept drift detection algorithm to initialise the GA procedure. GA and EDDM
are used in EACD (Chapter 5) and RED-GENE (Chapter 6), whereas PSO is
utilised in RED-PSO (Chapter 7). The experimental methodology including
the details of experimental settings and different datasets used in this thesis
is provided in the next chapter.

47

Chapter 4

Experimental Methodology

In the previous chapter, we reviewed in detail the necessary background and
provided theoretical explanations of the algorithms modified and used in
the methods proposed in this thesis. This chapter discusses the basic details
necessary for conducting the experiments in this thesis. In particular, we de-
scribe the experimental settings that include different methods used for com-
parison, experimental environment and specification, evaluation runs along
with different datasets and their characteristics in the experiments.

4.1 Experimental Settings

To evaluate the proposed algorithms, a set of experiments was conducted
using nine datasets, including four artificial (synthetic) data stream genera-
tors and five real-world data streams. In particular, we compared EACD to
the state-of-the-art ensemble methods for non-stationary data stream classi-
fication that have shown a good performance and reliable results [45][38],
including DWM [42], OAUE [45], OSBoost [41], LevBag [36] and ARF [38].
These methods are introduced in Chapter 2.

The methods proposed in this thesis are implemented in Java program-
ming language using the Massive Online Analysis (MOA) API [79]. All other
algorithms are already included in the MOA framework [79], which we used
as the experimental environment. MOA is an open-source framework for
data stream mining in evolving environments. When running LevBag, ARF,
DWM, OAUE and OSBoost, their default parameters as set in MOA were
used. The parameters for our proposed methods are listed in Sections 5.3.1
(EACD), 6.3.1 (RED-GENE) and 7.3.1 (RED-PSO).

To ensure a thorough set of experiments with precise results, 10 different
variants for every artificial (synthetic) data stream were generated and each
method was tested on all variants. These variants were generated by chang-
ing different parameters in all artificial streams. The selected parameters for

48 Chapter 4. Experimental Methodology

each data stream generator are specified later in Section 4.2. For every real-
world data stream, each experiment was repeated 10 times over the same
data stream. In other words, for each synthetic data stream, 10 different sets
of streams (using different parameters to create the dataset) are generated to
conduct the experiments and the result shown for each data stream is the av-
erage of those 10 variations. While for each real-world data stream, the same
experiment is conducted 10 times over the same set of data and the results
shown for each data stream is the average of those 10 repeated experiments
over the same data.

We performed two different evaluation runs for each experiment. The
first run involved passing one of the chosen datasets through a specific algo-
rithm using the prequential evaluation technique with an immediate access
to the real labels of the instances assigned by the system. This evaluation
run is called the immediate setting. The second run also involved passing each
dataset through a specific algorithm using the prequential evaluation; how-
ever, the real labels of the instances could be accessed with a delay. This
evaluation technique, called the delayed setting, can provide more realistic ex-
periments, since the actual labels of streaming data are usually not available
immediately in the real world. The classification performance estimates were
calculated in the same way for both the immediate and delayed settings. For
the delayed setting, the parameter of delay was set to an arbitrary value of
1, 000; hence, the label of each instance was revealed after passing 1,000 in-
stances. The window size (width) of the experiments was set to 1,000 for both
the immediate and delayed settings.

Hoeffding trees was used in the experiments as the base classifiers (deci-
sion trees). Hoeffding tree, also known as the Very Fast Decision Tree (VFDT)
method [44], is an incremental decision tree algorithm capable of learning
from massive data streams.

The experiments were performed on a machine equipped with an Intel
Core i7-4702MQ CPU @ 2.20GHz and 8.00 GB of installed memory (RAM).

4.2 Datasets

A total of 9 different data streams including 4 artificial (synthetic) data stream
generators and 5 real-world datasets are used for conducting the experiments
in this thesis. For each of the synthetic data generators namely SEA gener-
ator [55], Hyperplane Generator [80], Random Tree Generator [44] and LED
generator [81] we have generated 10 different variations by manipulating

4.2. Datasets 49

different parameters such as noise, the magnitude of change, number of at-
tributes/classes and seed for random numbers. All artificial data streams
used in this thesis and the way we generated them for our experiments are
explained in Section 4.2.1.

For each of the real-world datasets, namely Forest cover-type [82], Elec-
tricity [83], Airlines, Poker-Hand and KDDcup99 [84] we have conducted
the same experiment 10 times over the same data. This is done to examine
the robustness of each method to different variations of each data generator
and also to see the effects of using non-deterministic methods that use ran-
domisation approaches. All of the mentioned data streams are introduced in
details in Sections 4.2.2 and 4.2.1. All real-world data streams used in this
thesis are introduced in Section 4.2.1.

Table 4.1 shows the properties of each data stream used in this thesis (the
type of dataset, number of features, number of records, number of classes
and imbalance ratio). The Imbalance Ratio (IR) is calculated as IR =

Pmajority
Pminority

,
where Pmajority is the population size of the majority class and Pminority is the
population size of the minority class. For example, if we have 100, 400, 2000,
5000, 10000 as the population size of a 5 class dataset, then the imbalance
ratios would be 1:4:20:50:100 which can be simplified to 1: ... :100. The pop-
ulation sizes of all the classes of each data stream are illustrated in Sections
4.2.1 and 4.2.2. It is worth mentioning that the imbalance ratios calculated for
synthetic data stream in Table 4.1 are approximate values as we have created
10 different variations for each synthetic data stream and those values may
slightly change in different variations.

4.2.1 Artificial Data Streams

The following four artificial (synthetic) data stream generators were employed
to simulate data for the experiments: SEA generator, Hyperplane genera-
tor, Random Tree Generator (RTG) and LED generator. Ten different stream
variants were created for each of the considered data generators using their
respective parameters to examine the performance of the tested algorithms
depending on the type of the concept drifts. In case of the SEA generator, the
variants were built by changing the random seed along with the type of man-
ually added concept drifts. For the Hyperplane generator, different variants
were built by tweaking the number of drifting attributes and magnitude of
changes in data. For the RTG, the random seed number, along with the num-
ber of attributes and classes, were changed. Finally, for the LED generator,

50 Chapter 4. Experimental Methodology

TABLE 4.1: Properties of each data stream used in the experi-
ments conducted in this thesis.

Dataset Type # records # features # classes Imbalance
Ratio (IR)

SEA synthetic 1,000,000 3 2 1:1.8

Hyperplane synthetic 1,000,000 10 2 1:1

RTG synthetic 1,000,000 10 to 18 2 to 6 1:1.3:1.9:3.5

LED synthetic 1,000,000 24 10 1: ... :1

Forest real-world 99,940 54 7 1: ... :30.90

Electricity real-world 45,312 8 2 1:1.36

Airlines real-world 539,383 7 2 1:1.24

Poker real-world 829,200 10 10 1: ... :200K

KDDcup99 real-world 494,021 41 23 1: ... :113K

4.2. Datasets 51

different variants were built by tweaking the number of drifting attributes
and random seed number.

SEA Generator

The SEA generator [55] is a synthetic data stream generator that aims to
simulate concept drifts over time. It generates random points in a three-
dimensional feature space; however, only the first two features are relevant.
The concept drifts in this data stream are generated by changing the relevant
features throughout the stream. Figure 4.1 illustrates the population size of
different classes in the generated data streams using SEA generator.

FIGURE 4.1: Number of instances for each class in the data
streams generated using SEA generator.

Each variant of the SEA generator was set to include one million instances.
In addition, different concept drifts were manually chosen to happen in the
instance numbers 200K, 400K, 600K and 800K. For the first five variants, two
abrupt concept drifts with a width (width of concept drift change) of one
were added at the instance numbers 200K and 400K, and two recurrent con-
cept drifts with the same width were added at the instance numbers 600K
and 800K. For the remaining five variants, two gradual concept drifts with
a width of 10,000 were added at the instance numbers 200K and 400K, and
two recurrent concept drifts with the same width were added at the instance
numbers 600K and 800K.

Hyperplane Generator

The Hyperplane generator [80] is an artificial data stream with drifting con-
cepts based on hyperplane rotation. It simulates concept drifts by chang-
ing the location of the hyperplane. The smoothness of drifting data can be

52 Chapter 4. Experimental Methodology

TABLE 4.2: The number of drifting attributes and magnitude of
change selected for different stream variants of the Hyperplane

generator.

Variant No. of drift-
ing att.

Mag. of
change

Variant No. of drift-
ing att.

Mag. of
change

1 2 0.01 2 2 0.02
3 3 0.01 4 3 0.02
5 4 0.01 6 4 0.02
7 5 0.01 8 5 0.02
9 6 0.01 10 6 0.02

changed by adjusting the magnitude of the changes. Figure 4.2 illustrates
the population size of different classes in the generated data streams using
Hyperplane generator.

FIGURE 4.2: Number of instances for each class in the data
streams generated using Hyperplane generator.

In the presented experiments, abrupt concept drifts are added to the data
stream by increasing the magnitude of change parameter in the Hyperplane
generator. The number of classes and attributes were set to two and ten,
respectively, and the number of drifting attributes and magnitude of changes
were set as indicated in Table 4.2. The number of instances in each stream
was set to one million.

Random Tree Generator

The Random Tree Generator (RTG) [44] builds a decision tree by randomly
selecting attributes as split nodes and assigning random classes to them. Af-
ter the tree is built, new instances are obtained through the assignment of
uniformly distributed random values to each attribute. The leaf reached af-
ter a traverse of the tree determines its class value according to the attribute

4.2. Datasets 53

values of an instance. The RTG allows customising the number of nominal
and numeric attributes, as well as the number of classes. Figure 4.3 illustrates
the population size of different classes in the generated data streams using
RTG generator.

(A) 2-class variations.

(B) 4-class variations.

(C) 6-class variations.

FIGURE 4.3: Number of instances for each class in the data
streams generated using RTG generator.

In the experiments, the number of classes, number of features and ran-
dom seed number were chosen as indicated in Table 4.3.

LED Generator

LED [81] is a well-known data stream generator. The goal here is to predict
the next digit to be displayed on the LED display. The generator contains 24

54 Chapter 4. Experimental Methodology

TABLE 4.3: Total number of attributes, number of classes and
random seed number of different stream variants of the RTG.

Variant Attributes Classes Seed
No.

Variant Attributes Classes Seed
No.

1 10 2 1 2 10 2 2
3 12 3 1 4 12 3 2
5 14 4 1 6 14 4 2
7 16 5 1 8 16 5 2
9 18 6 1 10 18 6 2

Boolean features, 17 of which are irrelevant and the remaining seven features
correspond to each segment of a seven-segment LED display. Each feature
has a 10% chance of being inverted. In our experiments, the LED generator
was used to simulate concept drifts by swapping four of its features resulting
in ten different stream variants. Figure 4.4 illustrates the population size of
different classes in the generated data streams using LED generator.

FIGURE 4.4: Number of instances for each class in the data
streams generated using LED generator.

For the first five variants, the number of drifting attributes were chosen
to be 1, 2, 3, 4 and 5, respectively. For the next five variants, only the random
seed was changed, while the drifting attributes remained the same as in the
first five variants.

4.2.2 Real World Data Streams

Forest Cover-type Dataset

The Forest Cover-type data stream [82] is a real-world dataset from the UCI
Machine Learning Repository 1. It contains forest cover types of 30 × 30

1http://archive.ics.uci.edu/ml

4.2. Datasets 55

meter cells obtained from the US Forest Service (USFS). It consists of 99,940
instances and 54 attributes. The goal in this case is to predict the forest cover
type from cartographic variables. Figure 4.5 demonstrates the population
size of each class in this dataset.

FIGURE 4.5: Number of instances for each class in Forest
Covert-type dataset.

Electricity Dataset

Electricity is a widely used dataset by [83] collected from the Australian New
South Wales electricity market. In this market, prices are not fixed and af-
fected by demand and supply. The Electricity dataset contains 45,312 in-
stances. Each instance contains eight attributes, and the target class specifies
the change of the price (whether it goes up or down) according to its moving
average over the last 24 hours. Figure 4.6 demonstrates the population size
of each class in this dataset.

FIGURE 4.6: Number of instances for each class in Electricity
dataset.

56 Chapter 4. Experimental Methodology

Airlines Dataset

Airlines2 is a non-stationary classification dataset. The task is to predict
whether a flight will be delayed providing the information on its scheduled
departure. This dataset has two classes (whether a flight is delayed or not)
and contains 539,383 records with seven attributes (three numeric and four
nominal). Figure 4.7 demonstrates the population size of each class in this
dataset.

FIGURE 4.7: Number of instances for each class in Airlines
dataset.

Poker-Hand Dataset

The Poker-Hand dataset from the UCI Machine Learning Repository3 con-
sists of 829,200 instances and 10 attributes. Each record of the Poker-Hand
dataset is an example of a hand consisting of five playing cards drawn from
a standard deck of 52. The total number of classes in this dataset is 10 that
shows the poker hand. Figure 4.8 demonstrates the population size of each
class in this dataset.

KDDcup99

KDDcup99 [84] is the dataset used in the Third International Knowledge
Discovery and Data Mining Tools Competition. The competition task was
to build a network intrusion detector – a predictive model capable of dis-
tinguishing between “bad” connections (intrusions or attacks) and “good”
(normal) connections. KDDcup99 contains a standard set of data to be au-
dited, which includes a wide variety of intrusions simulated in a military

2http : //kt.ijs.si/elenaikonomovska/data.html
3https : //archive.ics.uci.edu/ml/datasets/Poker + Hand

4.3. Summary 57

FIGURE 4.8: Number of instances for each class in Poker-hand
dataset.

network environment. The preprocessed version of this dataset which con-
tains 494,021 records, 41 attributes and 23 classes. Figure 4.9 demonstrates
the population size of each class in this dataset.

FIGURE 4.9: Number of instances for each class in KDDcup99
dataset.

4.3 Summary

This chapter discussed the necessary details needed for conducting the ex-
periments in this thesis. In particular, we described the experimental settings
and introduced different methods and datasets involved in the experiments.
The experimental settings and datasets introduced in this chapter are used
for running the experiments to compare our proposed methods to other state-
of-the-art methods in non-stationary data stream classification tasks. The

58 Chapter 4. Experimental Methodology

details of the proposed methods and the results of the experiments are dis-
cussed in the next chapters.

59

Chapter 5

EACD: Evolutionary Adaptation to
Concept Drifts in Data Streams

In the previous chapter, we reviewed the necessary details for conducting our
experiments throughout the thesis by describing experimental settings and
introducing different datasets along with their characteristics. In this chap-
ter, we propose a novel ensemble learning method using Hoeffding Trees,
RD, GA, and EDDM to address the second objective of this thesis as outlined
in Section 1.4: use evolutionary algorithms to propose a novel ensemble
learning technique for concept drift adaptation in data-streams. The work
discussed in this chapter is published as a full paper titled “EACD: evolu-
tionary adaptation to concept drifts in data streams” in the “Data Mining
and Knowledge Discovery” journal [21].

5.1 Introduction

A considerable effort of recent research has focused on data stream classifi-
cation tasks in non-stationary environments [15]. The main challenge in this
research area concerns the adaptation to concept drifts, that is, when the data
distribution changes over time in unforeseen ways. Concept drifts occur in
different forms and can be divided into four general types: abrupt (sudden),
gradual, incremental and recurrent (reoccurring). In abrupt (sudden) con-
cept drifts, the data distribution at the time t suddenly changes to a new
distribution at the time t+1. Incremental concept drifts occur when the data
distribution changes and stays in the new distribution after going through
some new, unstable, median data distributions. In gradual concept drifts,
the proportion of new probability distribution of incoming data increases,
while the proportion of data that belong to the former probability distribu-
tion decreases over time. Recurring concept drifts happen when the same

60
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

old probability distribution of data reappears after some time of a different
distribution.

Ensemble learning has proved its superiority over other techniques for
stream classification, especially in non-stationary environments [14], [13].
Ensemble learning is a machine learning approach, in which predictions of
individual classifiers are combined using a combination rule to predict in-
coming instances more accurately. The advantage of using ensemble learning
techniques for non-stationary data stream classification lies in their ability to
update swiftly according to the most recent data instances. This is usually
achieved by training the existing classifiers in the ensemble and changing
their weights according to their performance: adding new, well-performing
classifiers and removing outdated, poor-performing classifiers. Applications
requiring the analysis of non-stationary data streams include spam filtering
systems, stock market prediction systems, fraud detection in banking net-
works, weather forecasting systems, data analysis in IoT networks, traffic
and forest monitoring systems, among many others. The extensive range of
applications makes the task of non-stationary data stream classification even
more challenging, as various applications seek diverse purposes and have
different conditions.

To ensure a versatile yet robust ensemble approach in this context, the
following main aspects should be taken into consideration: (1) improving
the average accuracy of the ensemble; (2) improving the efficiency of the un-
derlying algorithm by minimising its learning time and computational com-
plexity; and (3) minimising the rate of misclassification and recovery time of
adaptation upon different types of concept drifts.

The majority of the existing ensemble methods are either focused on one
or two of the aforementioned factors, or concentrate on a specific type of
data streams. For instance, some approaches do not remove old classifiers
[60], [52]; hence, the number of classifiers is unbounded in this case, which
can cause a low efficiency in terms of the time and memory usage. Other ap-
proaches are designed to cope with recurring concept drifts only [37]; there-
fore, such algorithms are only suitable for a limited number of applications
and environments.

To overcome these limitations, we propose a novel ensemble learning
method for data stream classification in non-stationary environments called
EACD. It uses random selection of features and two evolutionary algorithms,
namely, RD and GA. According to EACD, an ensemble of different classifi-
cation types consisting of randomly drawn features (subspaces) of the target

5.2. EACD Description 61

data stream are trained first. These randomly drawn subspaces are then op-
timised using GA to allow the ensemble to cope with different concept drifts
over time. Training of the ensemble is performed on sequential data blocks in
the stream. EACD allows a dynamic set of classification types to take action
over time. The number of decision trees in a classification type (subspace)
depends on the performance of this type on the most recent data. Hence,
well-performing types increase in size, while poor-performing types decrease
in size.

In summary, our solution allows the ensemble to handle different types
of concept drifts by employing two different evolutionary techniques. RD
is used to continuously determine well and poorly performing types and ex-
pand or shrink them accordingly. GA is used to compose new, improved
types out of the existing ones by iterating over the most recent data.

The rest of this chapter is organised as follows. Section 5.2 describes the
proposed EACD method in detail and provides its theoretical justification.
Section 5.3 outlines the experimental setup and results of comparing (i) dif-
ferent variations of EACD; and (ii) the best performing variation to other
state-of-the-art methods. Section 5.3.5 comprehensively discusses the results
of the experiments. Finally, conclusions and the summary of this chapter are
presented in Section 5.4.

5.2 EACD Description

In the proposed novel ensemble learning algorithm suitable for non-stationary
data stream classification, data come as continuous data blocks. For the study
described in this chapter, each data block consists of 1,000 samples. While
this number was selected arbitrarily, it can be set to any other value as re-
quired. The algorithm comprises of two different layers called the base layer
and optimisation layer. Each layer has a set of classifiers that classify the in-
coming data independently. The base layer is always active, whereas the
optimisation layer is only active when GA has made its generations and the
types are mature enough. The classifiers making up the second (genetic) layer
are set up to have more weight than the classifiers making up the base layer
to achieve optimality of the types.

The base layer is built using a random selection of features, which is then
extended using RD. The optimisation layer is built by applying GA to the set
of features randomly selected from the base layer and introduces a new set
of classification types optimised using recent instances stored in a buffer. The

62
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

base and optimisation layers are detailed in the following subsections, while
Figure 5.1 illustrates how EACD works.

The rationale behind the proposed architecture is as follows. The main
problem with the existing explicit methods (the ones that use a concept drift
detection mechanism) is their sensitivity to false alarms. In addition, detect-
ing some types of concept drifts (especially gradual and incremental) is a
hard task. Hence, the detection mechanisms employed in explicit methods
might not detect such drifts or detect them with a delay. In this scenario,
RD offers a smooth yet effective way to improve the performance of the en-
semble by increasing and reducing the number of trees in the classification
types. Furthermore, the main problem with the existing implicit algorithms
(the ones without a concept drift detection mechanism) is their slowness in
coping with concept drifts since they do not have an immediate reaction to
drifts. This is the reason for using a concept drift detection algorithm along
with GA to immediately react to concept drifts and optimise the combination
of the features in classification types. Overall, by combining RD with concept
drift detection methods and GA, it is feasible to have the advantages of both
explicit and implicit methods as discussed in Chapter 2.

5.2.1 Base Layer

As illustrated in Figure 5.1, the base layer of EACD uses a random selection
of features (subspaces) to create a variety of classification types in the ensem-
ble, which ensures the ensemble diversity. RD is then applied to make the
proposed method compatible with non-stationary environments and able to
seamlessly adapt to the most current types of data and concepts. In other
words, RD is used to increase the number of well-performing classification
trees and reduce the number of unhelpful ones.

The base layer is built using the following steps. First, p percent of all
features are randomly selected from the pool of data features (attributes) of
the target data stream. This phase is called random subspace. In other words,
the total number of features to be selected randomly from the pool of features
is established as in Equation 5.1.

n =
p

100
× f , (5.1)

where n denotes the total number of features to be selected, p is an arbitrary
number (0 < p < 100) showing the percentage of the features that should be
selected randomly and f denotes the total number of features of the target

5.2. EACD Description 63

FIGURE 5.1: Architecture of EACD.

64
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

data stream. Each iteration of this step produces a set of randomly selected
features (subspace) from the pool of features that we call a type. This step is
repeated m times; hence, there are m independent classification types at the
end of this step. Note that m is a parameter of our proposed model refer-
ring to the total number of classification types in the ensemble and is chosen
depending on the total number of features of the target stream; there should
be a balance between the number of types (m) and the number of features in
each type (p× f).

Next, a decision tree is built per every classification type (subspace) when
the first block of data (samples) is received by the system. Given the maxi-
mum number of classifiers for each type max, this step is repeated for the first
max

2 data blocks received by the system for the types to shape and reach a spe-
cific maturity level. This phase is called the initial training, during which, an
average number of classifiers for every type in the ensemble is built. Note that
for every data block received by the ensemble, all decision trees classify the
instances and majority voting then determines the ensemble’s output. This
is called the voting step.

Once the initial training phase is completed, each decision tree is evalu-
ated after classifying incoming instances. The accuracy (a) of each decision
tree in a type is calculated as in Equation 5.2.

ai =
ci

db
, (5.2)

where ci denotes the number of correctly classified instances in ith data block
and db denotes the total number of instances in each data block. The total
accuracy of each type is the average accuracy of its related decision trees. The
accuracy of the whole ensemble can be determined similar to Equation 5.2.
This phase is called the evaluation phase.

Next, the RD stage is applied. This is when each type’s accuracy (the av-
erage accuracy of all related trees) is taken into consideration and assessed
with an expected payoff (explained previously in Chapter 3). The expected
payoff for the study presented in this chapter is set to the average accuracy of
all types in each data block. However, it can be determined in any other way,
such as assigning a fixed number. The types with a higher payoff (accuracy)
than the expected payoff get a new decision tree (i.e. a new decision tree is
built for such data types based on the last block’s samples), whereas the types
with a lower payoff (accuracy) than the expected payoff lose a decision tree.
In other words, as in the conditions in Equation 5.3.

5.2. EACD Description 65


a(ti) ≥ ∑m

i=1 a(ti)
m ⇒ grow

a(ti) <
∑m

i=1 a(ti)
m ⇒ shrink

, (5.3)

where a(ti) denotes the accuracy of the ith type and m denotes the total num-
ber of types.

Finally, every decision tree in the ensemble is trained with the samples
from a newly received data block in the retraining phase. The purpose of this
phase is to have a more updated ensemble, especially when a concept drift
happens. In this situation, retraining can lead to a fast adaptation since all
classifiers are trained with the newly evolved data.

To limit the size of the ensemble, an upper bound for the number of de-
cision trees (classifiers) in a type is assigned. When the maximum size of a
type is exceeded, the least performing decision tree of that specific type is re-
moved. The upper bound (max) for the number of classifiers for the study
presented in this chapter is set to an arbitrary value of max = 20. Further-
more, a lower bound (min) is assigned to all types to prevent the types from
complete removal. The minimum size of all types is set to min = 1 in this
study. Hence, a tree is not removed upon poor performance if it is the only
one decision tree related to a type left.

Algorithm 7 shows how the base layer is built and works. In this algo-
rithm, tj denotes the jth type of the ensemble (1 ≤ j ≤ m) and a(tj) denotes
the accuracy of this type. The following functions are used in the presented
algorithm:

• Classify(): the ensemble classifies data using majority voting;

• Evaluate(): evaluate the accuracy of all types in the ensemble using Equa-
tion 5.2;

• Grow(): add a new classifier (decision tree) to the specified type (if Equa-
tion 5.3 stands);

• Shrink(): remove one classifier (decision tree) from the specified type
based on the ensemble’s removal mechanism (if Equation 5.3 stands); if
this type has only one classifier, then do nothing;

• Train(): train all classifiers using the samples from a newly received
data block.

66
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

Algorithm 7: EACD BASE LAYER

Input: A continuous block of data, DB ={db1,db2,..,dbn}
n: number of features that should be selected in each type
m: total number of types
max: maximum number of classifiers in each type.
Output: Classified Samples

1 i := 1
2 for t := 1 to t := m do
3 Randomly select n features

4 while data stream is not empty do
5 if i ≤ max

2 then
6 Classify(dbi)
7 Grow(T) for all the types

8 else
9 Classify(dbi)

10 Evaluate()

11 if a(tj) ≥
∑n

j=1 a(tj)

m then
12 Grow(tj)

13 else
14 Shrink(tj)

15 Train()
16 i := i + 1

5.2. EACD Description 67

In the presented algorithm, lines 2 and 3 refer to the random subspace phase.
Lines 5, 6 and 7 are the initial training phase. The evaluation phase is imple-
mented in line 10, the RD phase is in lines 11 to 14, and finally, the retraining
phase is in line 15. Decision trees are removed based on their performance;
the tree that performs the worst in the specified type is removed.

5.2.2 Optimisation Layer

As demonstrated in Figure 5.1, this layer is built using the existing classifica-
tion types of the base layer. GA takes all randomly drawn classification types
(subspaces) as its input and tries to form the best possible combination of
the features in each type. This is achieved by iterating over a fixed data that
has been received by the system recently (buffer). The optimisation layer is
different from the base layer only in this part (i.e. the combination of classi-
fication types), whereas the classification, training and updating mechanisms
are the same as explained for the first layer.

Algorithm 8 shows how the optimisation layer is being built. First, the set
of randomly drawn subspaces is taken from the base layer and considered
as the first GA population. Note that in this algorithm, each classification
type is considered as an individual in GA, and each feature inside a type is a
chromosome of this individual.

The buffer always keeps the most recently labelled instances received by
the system. It serves as a search space for the GA optimisation task. When-
ever GA starts or restarts, it copies the data inside the buffer into the memory
and uses them for its procedures, i.e. the selection stage and fitness function.

Selection stage: for every GA iteration, the classification types with a bet-
ter accuracy than the overall average accuracy of all types over the search
space are selected for the crossover stage. Hence, the GA fitness function is
the types’ average accuracy over the search space. The “Selection()” function
in Algorithm 8 corresponds to the Selection stage.

Crossover stage: the types selected in the selection stage are chosen for
GA breeding purposes. This lets the types with a better accuracy to pair with
other well-performing types to make offspring. The “Crossover()” function
in Algorithm 8 corresponds to the Crossover stage.

Mutation stage: the mutation rate of 5% applies upon breeding of the
types. Hence, there is a 5% chance for an offspring to get a random feature
from the pool of features instead of getting all of them from its parents. The
“Mutation()” function in Algorithm 8 corresponds to the Mutation stage.

68
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

When the maximum number of generations is achieved, the resulting
classification types form a new set of classifiers that starts to be trained and
evaluated with incoming data. The new ensemble model is said to be ma-
ture enough when its performance on the latest data block is better than the
average performance of the algorithm. As mentioned before, the base layer
is always active, whereas the optimisation layer is active when the GA has
done its job and the layer has reached its maturity level. All classifiers inside
the base layer of the proposed algorithm are given an arbitrary weight of one
(Wb = 1), whereas all classifiers inside the optimisation layer are given an ar-
bitrary weight of two (Wg = 2). This intensifies the effect of the optimisation
layer on the algorithm given the optimality of the types.

Once a new data block is received by the system, it goes to both layers,
and the classifiers inside each layer classify the instances and send their pre-
dictions to the decision making part of the algorithm independently (Figure
5.1). The decision maker then considers all predictions received from the ac-
tive classifiers and performs the voting procedure according to the weight
of each prediction. This decision maker also tracks and keeps the average
accuracy of each layer. Whenever GA is due to restart its procedures, the
optimisation layer is deactivated and cleared to make room for a new set of
types. To determine when to start a new set of GA generations (i.e. reset the
optimisation layer), one implicit and one explicit mechanisms are proposed
in this chapter.

In the implicit mechanism, GA starts resetting the optimisation layer when
the base layer has proved to have a better average accuracy over the last ar-
bitrarily set number of data blocks (we used 10 data blocks). This evaluation
part is calculated continuously by the decision maker part mentioned previ-
ously in this section. In the implicit variants, the buffer inside the optimisa-
tion layer stores the last data block received by the system.

In the explicit mechanism, a concept drift detection method is utilised
to specify when to reset the optimisation layer. When the concept drift de-
tector signals a drift, GA starts to rebuild its layer. In this study, we used
EDDM [78] as the explicit mechanism; however, any concept drift detection
method can be used as the drift detector. EDDM is especially designed to
improve the detection in the presence of gradual concept drifts compared to
other drift detection methods. The basic idea of EDDM is to consider the dis-
tance between two consecutive errors instead of only the error values in the
classification process. In the explicit variants of EACD, the buffer inside the
optimisation layer starts storing the instances once the concept drift detector

5.2. EACD Description 69

signals a warning. Hence, when the drift detector signals a drift, the instances
inside the buffer represent the new concept. The “DriftDetector()” function
in Algorithm 8 corresponds to the concept drift detection stage.

Algorithm 8: EACD OPTIMISATION LAYER

Input: Buffer
g: Maximum number of generations
Resetting mechanism: [implicit/explicit]
Randomly drawn subspaces (types) from the base layer, TB ={t1,t2,..,tm}
Output: New set of classification types, TG ={t1′,t2′,..,tm′}

1 for i := 1 to i := g do
2 Selection()
3 Crossover()
4 Mutation()

5 if Resetting mechanism=Implicit then
6 repeat
7 Evaluate(TB) /*Evaluates base layer over the last 10 data

blocks*/
8 Evaluate(TG) /*Evaluates the optimisation layer over the last 10

data blocks*/
9 until Average accuracy (TG) ≤ Average accuracy (TB)

10 Reset(GA) /*Clear the optimisation layer and restart GA*/

11 else
12 repeat
13 DriftDetector()
14 until DriftDetector() = Drift /*when the detector signals a drift*/
15 Reset(GA) /*Clear the optimisation layer and restart GA*/

5.2.3 Theoretical Justification

In the literature of mining non-stationary data streams, there is no determin-
istic method that can guarantee to find the global optima. This is due to
the evolving nature of the data that come in the form of a stream. Hence,
a single classifier of a data stream that is optimal in a specific environment
can become the worst classifier once the data has evolved in the same data
stream. By adding randomisation to create different classification types in the
first layer of the proposed method, it is feasible to have a variety of classifiers
in the ensemble. This leads to a diverse set of available solutions to quickly
cope with an occurring concept drift. However, having different classifica-
tion types can also cause problems such as degrading the accuracy in case
of using one or more poor types. This problem is tackled by employing RD

70
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

to increase the number of well-performing types and reduce the number of
poor-performing ones in the base layer of the proposed algorithm.

Furthermore, “stochastic search and optimisation pertains to problems
where there is random noise in the measurements provided and/or there
is injected randomness in the algorithms itself” [85]. Hence, GA is used in
the second (genetic) layer to create new classification types to optimise the
combination of features of the random types used in the first (base) layer. GA
is a powerful and broadly applicable stochastic optimisation technique [86]
that can be used in dynamic environments (e.g. generating data streams)
after adding a few changes to its mechanism as explained in this chapter.

5.3 Experimental Study

This section provides the details of the experiments conducted to investigate
the performance of the proposed method in this chapter. We introduce dif-
ferent variations of EACD along with their parameters and computational
complexity. Different variations are then compared with each other and the
best performing variation is compared with the state-of-the-art algorithms
in non-stationary data stream classification tasks. Eventually, the results are
statistically analysed and discussed thoroughly. It is worth mentioning that
the details necessary for conducting the experiments in this thesis (e.g. ex-
perimental settings, compared methods, evaluation runs, datasets, etc.) are
discussed in Chapter 4.

5.3.1 EACD Variations

Eight different variations of the proposed algorithm were implemented and
compared in the experiments to evaluate the impact of each EACD charac-
teristic and discuss the effect of employing different parameters in the EACD
algorithm. The base variations only use the base layer of the proposed algo-
rithm, while GA optimisation is not applied; only base4 variation uses the
concept drift detector to restart the layer upon drifts. The implicit (Imp)
variations use an implicit mechanism, whereas the explicit (Exp) variations
use an explicit mechanism to specify when the optimisation layer should be
restarted (as explained in Section 5.2.2). The specific parameters of the eight
proposed variations are as follows:

• EACDbase: p = 60% and m = 0.6× f ;

5.3. Experimental Study 71

• EACDbase2: p = 30% and m = 0.3× f ;

• EACDbase3: p = 60% and m = 0.3× f ;

• EACDbase4: p = 60%, m = 0.6× f and restarting the ensemble upon
drifts;

• EACDImp: g = 15, z = 5%, p = 60% and m = 0.6× f ;

• EACDImp2: g = 15, z = 0%, p = 60%, m = 0.6× f ;

• EACDExp: g = 15, z = 5%, p = 60%, m = 0.6× f ;

• EACDExp2: g = 15, z = 0%, p = 60%, m = 0.6× f ;

where p denotes the number of features in each classification type, m denotes
the number of classification types in the layer, f denotes the total number of
features in the data stream, g denotes the total number of generations for
each GA iteration and z denotes the mutation rate of GA.

5.3.2 Computational Complexity

Assuming the number of classes c, number of attributes in each classification
type p, values per attribute v and maximum number of trees in the ensem-
ble k, no more than p attributes can be considered in a single Hoeffding tree
[44]. Each attribute at a node requires computing v values. Since calculat-
ing information gain requires c arithmetic operations, the cost of k Hoeffd-
ing trees at each time-step in the worst case scenario is O(kcpv). Given the
number of classification types in the ensemble m and the fact that RD uses
m arithmetic operations to calculate payoffs, the cost of applying RD to the
ensemble is only O(m). Hence, the time complexity of deploying the base
variations of the proposed method (EACDbase, EACDbase2 and EACDbase3) is
O(m + (kcvp)).

Assuming the size s of the GA population and total number of genera-
tions g, the cost of GA optimisation is O(sg) at each time when the optimi-
sation layer needs to be restarted. Hence, the time complexity of deploying
the implicit variations of the proposed method (EACDImp and EACDImp2) is
O(m + (kcvp) + (sg)).

Finally, given d as the number of instances in each data block and f as the
total number of features in the dataset, the EDDM drift detection method,
which uses J48 (C4.5) decision tree as its learning mechanism, requires O(d f 2)
of time. Hence, the time complexity of deploying the explicit variations of the

72
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

proposed method (EACDExp and EACDexp2) is O(m+(kcvp)+ (sg)+ (d f 2)).
Note that the cost of running evolutionary methods is minimised providing
the variations applied to EACD as previously discussed.

5.3.3 Results

The considered algorithms are compared using standard criteria, namely, the
classification accuracy and overall execution time (including the time of mak-
ing predictions, training and evaluating the ensemble). There are two set-
tings for each experiment (immediate and delayed).

FIGURE 5.2: Accuracy (%) of the EACD variations over the con-
sidered nine datasets in the immediate setting.

Figures 5.2 and 5.3 (Tables A.1 and A.2 in Appendix A) illustrate the av-
erage accuracy for the proposed EACD variations over the mentioned nine
datasets in the immediate and delayed settings, respectively. As can be no-
ticed from the tables, EACDExp has the best average accuracy over the Hy-
perplane, LED, SEA, Airlines, Electricity and Poker-Hand datasets. It also
has the best overall average accuracy in both the immediate and delayed set-
tings. EACDImp has the best average accuracy over the Forest Cover-type
and RTG datasets, whereas EACDExp2 has the best average accuracy over
the KDDcup99 dataset.

Figure 5.4 illustrates the average accuracy (throughout all datasets) of all
EACD variations in both immediate and delayed settings. It is clear that the

5.3. Experimental Study 73

FIGURE 5.3: Accuracy (%) of the EACD variations over the con-
sidered nine datasets in the delayed setting.

EACDExp variation has the best average performance in both immediate and
delayed settings.

FIGURE 5.4: Average accuracy (%) of the EACD variations in
the immediate and delayed settings.

As the difference between EACDImp and EACDImp2 is in their number
of generations used in each GA iteration, their accuracy is not significantly
different, and EACDImp, which has a higher number of generations (15), per-
forms better over all datasets. It is clear that the execution time of EACDImp2

74
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

is less than that of EACDImp since GA performs faster on 10 generations com-
pared to 15 generations. Similarly, as the difference between EACDExp and
EACDExp2 is in their GA mutation rate parameter, they both have compa-
rable accuracy and execution time, and only EACDExp accuracy is slightly
better for the majority of the datasets.

FIGURE 5.5: Average time (in seconds) of executing the EACD
variations over the considered nine datasets in the immediate

setting.

Figure 5.5 (Table A.3 in Appendix A) shows the overall execution time of
the proposed EACD variations in seconds. It is clear that EACDbase2, which
does not use the optimisation layer and has the lowest values of both p and m
parameters, is the fastest variation. EACDImp and EACDImp2 are slightly less
time-consuming compared to EACDExp and EACDExp2 because they do not
use a concept drift detection algorithm. Finally, the execution times of the
explicit variations of EACD (EACDExp and EACDExp2) are similar as their
only difference is in the GA mutation rate, which does not affect the times
severely. Note that the execution times do not have significant difference in
the immediate and delayed settings; hence, only the execution times of the
immediate setting are listed.

Tables 5.1 and 5.2 show the average, minimum and maximum accuracy
along with the standard deviation of the proposed EACDExp method com-
pared to the other state-of-the-art methods over the nine datasets in the im-
mediate and delayed settings, respectively. Note that the minimum, maxi-
mum, average and standard deviation of the accuracies are based on the 10
different evaluation runs (each evaluation run has its specific accuracy) that

5.3. Experimental Study 75

TABLE 5.1: Accuracy (%) of EACDExp compared to the state-of-
the-art methods in the immediate setting. Bold values indicate

the best performance for each dataset.

Dataset Criteria ARF DWM LevBag OAUE OSBoost EACDExp

Hyper.

Ave. 88.17 89.64 91.03 91.42 85.85 90.59
σ 1.90 0.83 1.60 1.46 3.01 1.95
Min 85.96 88.45 88.92 89.66 81.80 87.67
Max 91.31 90.94 93.54 93.63 89.87 93.76

LED

Ave. 74.05 75.05 74.22 73.99 74.15 75.45
σ 0.31 3.10 0.31 0.10 0.11 1.99
Min 73.58 73.86 73.93 73.89 74.05 71.04
Max 74.45 83.83 74.52 74.09 74.26 78.50

RTG

Ave. 78.35 59.35 90.78 88.88 93.40 91.42
σ 8.12 8.87 2.26 3.26 1.45 2.82
Min 65.86 48.26 87.38 83.39 90.63 86.31
Max 88.03 73.86 93.72 92.56 95.24 94.56

SEA

Ave. 88.67 87.72 87.59 88.69 85.56 90.08
σ 0.58 0.57 1.67 0.58 0.35 2.94
Min 88.40 87.18 85.41 88.13 85.25 86.54
Max 89.55 88.26 89.28 89.25 85.86 93.74

Airlines

Ave. 63.53 63.97 59.42 64.02 61.98 66.61
σ 1.23 0 0.73 0 0 3.10
Min 62.08 63.97 58.45 64.02 61.98 60.34
Max 65.46 63.97 60.62 64.02 61.98 70.23

Elec.

Ave. 92.17 75.73 92.09 91.60 88.02 92.14
σ 0.94 0 1.48 0 0 1.76
Min 90.45 75.73 89.56 91.60 88.02 89.56
Max 93.19 75.73 93.70 91.60 88.02 94.72

Forest

Ave. 93.57 83.75 92.73 90.70 84.45 91.73
σ 1.58 0 2.10 0 0 3.10
Min 91.11 83.75 89.45 90.70 84.45 88.34
Max 95.09 83.75 95.40 90.70 84.45 95.12

KDDcup

Ave. 99.81 99.04 99.82 99.80 99.74 99.78
σ 0.06 0 0.01 0 0 0.10
Min 99.74 99.04 99.80 99.80 99.74 99.54
Max 99.91 99.04 99.83 99.80 99.74 99.85

Poker

Ave. 84.19 74.37 88.52 80.74 84.31 86.21
σ 4.55 0 3.34 0 0 2.37
Min 80.08 74.37 84.67 80.74 84.31 82.34
Max 90.06 74.37 93.56 80.74 84.31 89.34

76
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

are conducted for each method and (each setting). More information on dif-
ferent evaluation runs for each data stream is provided in Section 4.2.

The EACDExp variant is chosen among all considered variants because it
performs the best over the majority of considered datasets (see Tables A.1,
A.2 in Appendix A and 5.3). Note the best results for each dataset are high-
lighted in bold. In the immediate setting (Table 5.1), EACDExp has the best
average accuracy over four datasets, LevBag performs the best over two
datasets, while OAUE, OSBoost and ARF achieve the best accuracy over
one dataset. In the delayed setting (Table 5.2), EACDExp has the best av-
erage accuracy over five datasets, OAUE achieves the best performance over
two datasets, while OSBoost and LevBag achieve the best accuracy over one
dataset.

Figure 5.6 illustrates the average accuracy of EACD (EACDExp2) com-
pared to the other state-of-the-art methods over all datasets in both the im-
mediate and delayed settings. As can be observed from this figure, EACD
has the best average accuracy in both the immediate and delayed settings.

FIGURE 5.6: Average accuracy of the EACDExp2 and other
state-of-the-art methods in the immediate and delayed settings.

Figure 5.7 (Table A.4 in Appendix A) shows the overall execution time of
EACDExp compared to the other state-of-the-art methods. For the majority of
the datasets, DWM and OSBoost achieve the shortest execution time by far,
while EACD has the longest execution time for the majority of the datasets.

Figure 5.8 demonstrates the behaviour of the proposed EACDExp method
along with the other considered methods over the SEA data stream upon

5.3. Experimental Study 77

TABLE 5.2: Accuracy (%) of EACDExp compared to the state-of-
the-art methods in the delayed setting. Bold values indicate the

best performance for each dataset.

Dataset Criteria ARF DWM LevBag OAUE OSBoost EACDExp

Hyper.

Ave. 88.05 89.41 90.77 91.10 85.74 90.02
σ 2.02 0.95 1.71 1.59 3.06 2.01
Min 85.56 88.25 88.60 89.21 81.70 86.64
Max 91.35 90.86 93.37 93.55 89.78 92.95

LED

Ave. 74.00 74.14 74.21 74.06 74.13 75.26
σ 0.40 0.16 0.15 0.14 0.04 1.33
Min 73.62 73.99 74.07 73.93 74.10 72.94
Max 74.49 74.30 74.36 74.19 74.17 77.04

RTG

Ave. 78.24 59.49 90.91 88.72 85.53 91.05
σ 8.06 8.67 2.48 5.13 2.90 3.75
Min 65.81 49.16 86.94 82.17 81.17 84.64
Max 87.92 73.73 93.69 93.47 88.70 94.56

SEA

Ave. 88.94 87.48 88.70 88.54 85.31 89.22
σ 0.59 1.02 1.45 0.70 0.42 2.43
Min 88.28 86.01 86.89 87.81 84.92 86.04
Max 89.51 88.21 90.32 89.21 85.91 91.89

Airlines

Ave. 61.42 60.57 58.49 62.73 61.80 63.35
σ 1.12 0 0.89 0 0 3.78
Min 61.22 60.57 57.03 62.73 61.80 59.06
Max 63.32 60.57 59.65 62.73 61.80 68.34

Elec.

Ave. 83.51 67.43 81.78 80.20 79.04 85.03
σ 1.19 0 0.88 0 0 2.50
Min 81.78 67.43 80.54 80.20 79.04 80.45
Max 84.80 67.43 83.00 80.20 79.04 88.85

Forest

Ave. 85.65 74.93 86.22 86.84 74.47 84.83
σ 02.60 0 2.72 0 0 2.36
Min 83.67 74.93 84.30 86.84 74.47 81.45
Max 90.49 74.93 84.30 86.84 74.47 88.23

KDDcup

Ave. 99.80 99.12 99.81 99.78 99.74 99.76
σ 0.07 0 0.01 0 0 0.11
Min 99.72 99.12 99.79 99.78 99.74 99.48
Max 99.90 99.12 99.83 99.78 99.74 99.84

Poker

Ave. 67.95 59.31 76.78 73.81 81.23 80.21
σ 2.92 0 3.72 0 0 2.01
Min 64.94 59.31 70.51 73.81 81.23 76.35
Max 73.29 59.31 79.34 73.81 81.23 83.24

78
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

FIGURE 5.7: Average time (in seconds) of executing the
EACDExp2 and other state-of-the-art methods over the consid-

ered nine datasets in the immediate setting.

different concept drifts (abrupt, gradual and recurrent) added manually to
different stages of the data stream (instance numbers 200K, 400K, 600K and
800K) in the immediate (Figures 5.8(a, c, b and g)) and delayed (Figures 5.8(b,
d, f and h)) settings. In Figures 5.8(a) and 5.8(b), an abrupt concept drift
centred in the instance number 200K is added with a width of one. In Figures
5.8(c) and 5.8(d), a recurrent concept drift centred in the instance number
600K is added with a width of one. In Figures 5.8(e) and 5.8(f), a gradual
concept drift centred in the instance number 400K is added with a width
of 10,000. And finally in Figures 5.8(g) and 5.8(h), a recurrent concept drift
centred in the instance number 800K is added with a width of 10,000.

5.3.4 Statistical Analysis

The Friedman test [87] is a non-parametric statistical test similar to the para-
metric repeated measures ANOVA (Analysis of Variance). It is used to detect
differences across several algorithms in multiple test attempts (datasets). For
this test, we need to demonstrate that the Null-hypothesis (stating that there
is no significant difference between different algorithms) is rejected [88].

The Friedman test is distributed according to Equation 5.4 with k− 1 de-
grees of freedom:

χ2
F =

12N
k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
, (5.4)

5.3. Experimental Study 79

FIGURE 5.8: Behaviour of the EACDExp2 and other state-of-
the-art methods upon different concept drifts added to the SEA
dataset in the immediate setting (left column; a,c,e and g) and
delayed setting (right column; b,d,f and h). The red boxes indi-

cate the location and length of the added concept drifts.

80
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

TABLE 5.3: Average rank of the EACDExp and other state-of-
the-art methods according to the Friedman test.

Setting ARF DWM LevBag OAUE OSBoost EACDExp
Immediate 3.33 4.78 2.89 3.44 4.44 2.11
Delayed 3.78 5.11 2.67 3 4.44 2

FIGURE 5.9: Comparison of the EACDExp and other state-of-
the-art methods using the Nemenyi test with 90% confidence

level for the (a) immediate and (b) delayed settings.

where Rj denotes the rank of the j-th of k algorithms and N denotes the num-
ber of datasets. Table 5.3 shows the average rank of each method included in
the experiments in both the immediate and delayed settings.

Note that for each setting, k = 6 and N = 9, as there are six methods and
nine different datasets. Providing the value of the Friedman test statistic is
χ2

F = 12.49 for the immediate setting and χ2
F = 17.38 for the delayed setting

with 5 (k− 1) degrees of freedom, and the critical value for the Friedman test
given k = 6 and N = 9 is 10.78 at the significance level α = 0.05, we can
conclude that the accuracy values of the studied methods are significantly
different in both settings as their χ2

F values (12.49 and 17.38) are greater than
the critical value (10.78).

Now that the Null-hypothesis is rejected, we can proceed with a post-hoc
test. The Nemenyi test [89] can be used when several classifiers are compared
to each other [88]. The performance of two classifiers is significantly different
if their corresponding average ranks differ by at least the critical difference
(CD).

The critical value in our experiments with k = 6 and α = 0.10 is q0.10 =

2.28. As a result, the accuracy of the proposed EACDExp method is signif-
icantly different from that of DWM and OSBoost, whereas it is not signifi-
cantly different from LevBag, ARF and OAUE. Figure 5.9 graphically repre-
sents the comparison of the methods in both settings based on the Nemenyi
test.

5.3. Experimental Study 81

5.3.5 Discussion

As can be observed from Figures 5.2, 5.3 and 5.5, the average accuracy values
of the explicit variations (EACDExp and EACDExp2) are slightly better than
those of the implicit variations (EACDImp and EACDImp2). Furthermore, the
accuracy values of the variations that use the GA optimisation technique are
significantly better than those of the base variations for all datasets. By look-
ing at the results of EACDbase, EACDbase4 and EACDExp, it can be concluded
that using a concept drift detection mechanism alone cannot improve the
results significantly, whereas using the concept drift detector along with a
stochastic optimiser (GA) improves the accuracy significantly.

Among the variations that use only the base layer of the proposed algo-
rithm, those that use a higher number of types and a higher number of fea-
tures in each type (EACDbase4 and EACDbase) perform better compared to the
other variations in the majority of the experiments. This is because the for-
mer variations create more classifiers on each time-step, with each classifier
covering more features. This also justifies why they are more time consum-
ing compared to the other base-layer variations. Furthermore, when using
a concept drift detection mechanism along with the base layer in EACDbase4

variation, it fails to improve the accuracy significantly compared to the vari-
ation with the same parameters but without using a concept drift detector in
EACDbase (improving only by 0.25% in the immediate setting and by 0.33%
in the delayed setting). The explanation for this might be that while concept
drift detectors can be very helpful for achieving a fast reaction to evolving
data, they can also be destructive upon false alarms, especially when trained
classifiers are removed immediately upon concept drifts.

While the average accuracy of the explicit variations is significantly bet-
ter than that of the base variations, their execution time is significantly longer
than that of the base variations in all experiments. This is because the base
variations use only the first layer of the proposed architecture and not the op-
timisation layer, unlike the implicit and explicit variations that use both lay-
ers. Furthermore, since the combination of the features in random subspaces
(types) in the base variations is not optimised during the run, and only the
number of classifiers in each subspace is changed, the overall accuracy de-
pends greatly on the initial selection of the features. However, in the implicit
and explicit variations, the combination of the features in each subspace is
reconstructed by GA when needed.

The difference between the implicit and explicit variations of the pro-
posed method is in the time it takes them to decide when to let GA start

82
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

optimising a set of subspaces using the buffer of recently stored instances.
Since the average accuracy of EACDExp is about 1.13% higher than that of
EACDImp in the immediate setting and 1.02% higher in the delayed setting,
we can conclude that one of the most challenging parts of the proposed ar-
chitecture is to decide when GA needs to reconstruct the combination of clas-
sification types in the optimisation layer.

When looking at the results presented in Tables 5.1 and 5.2, it can be no-
ticed that DWM, OAUE and OSBoost have the same standard deviation of
zero for all real-world datasets, whereas RD3+GA, LevBag and ARF have
different standard deviation values. This is because the latter algorithms use
randomisation in their procedures, whereas the former do not. Since the ex-
periments over the real-world datasets are repeated 10 times over the same
data, the results obtained from all deterministic algorithms in all iterations
are the same.

It can be further noticed from Tables 5.1 and 5.2 that for the artificial
datasets, the standard deviation values for OSBoost, OAUE and DWM vary
greatly throughout the experiments, reaching the value of about 8% for the
RTG dataset. At the same time, the standard deviation values for LevBag,
ARF and EACDExp do not vary a lot, hardly reaching the value of 3.78%.
This might be because the first three methods (OSBoost, OAUE and DWM)
are implicit and do not use any concept drift detection mechanisms, whereas
the other methods (LevBag, ARF and EACDExp) are explicit and use concept
drift detection mechanisms. As explicit methods have an immediate reaction
to concept drifts, their accuracy does not drop for a long time throughout the
experiments.

From Table 5.7, it can be noticed that DWM has the lowest execution time
over four datasets, OSBoost – over three datasets, whereas ARF and OAUE –
over one dataset. The main drawback of the EACDExp variation of the pro-
posed algorithm is its execution time, which is the longest for the majority
of the datasets (six out of nine). The main reason for this is that this vari-
ation uses two different evolutionary algorithms (RD and GA) along with
a concept drift detection method (EDDM). However, the other variations
of the proposed method offer slightly shorter execution times in EACDImp

and EACDImp2, and significantly shorter times in EACDbase, EACDbase2 and
EACDbase3. This is because the implicit variations of the EACD algorithm use
both evolutionary algorithms but no concept drift detection method, while
the base variations use only one evolutionary algorithm (RD) with no drift
detection method.

5.3. Experimental Study 83

From Figure 5.8(a) featuring an abrupt concept drift, it can be noticed that
the EACDExp and ARF methods coped with the drift better than the other
methods with almost similar reactions (DWM, OAUE and LevBag coped
with the drift more slowly, while OSBoost failed to adapt to it in a good
time). The same good performance of EACDExp and ARF can be observed
for this drift in the delayed setting (Figure 5.8(b)); however, the accuracy
drop upon the drift is more drastic in ARF compared to EACDExp. Using
different random types in the base layer of EACDExp results in a more robust
performance, especially over drifting data, when the data distribution is not
known in advance. At the same time, both the EACDExp and ARF meth-
ods use explicit strategies allowing them to detect concept drifts as soon as
they occur and use their recovery mechanisms. Furthermore, abrupt concept
drifts are generally easier to detect for methods using drift detectors since the
data distribution changes suddenly in such drifts.

From Figures 5.8(c) and 5.8(d) featuring a recurrent concept drift with a
width of one at the instance number 600K, it can be noticed that the accuracy
of all methods dropped, with EACDExp taking less time to adapt to the new
data distribution and gain its average accuracy back again in both the im-
mediate and delayed settings. This might be because the proposed method
uses two different mechanisms to cope with new environments: one (RD)
weights the classification types based on their performance, while the other
(GA) optimises the combination of the attributes of these types.

From Figures 5.8(e) and 5.8(f) featuring a gradual concept drift with a
width of 10,000 and centred in the instance number 400K, it is clear that
EACDExp coped with this concept drift in a more robust manner compared
to the other methods in both settings. In the situations when a concept drift
happens gradually, the time of detecting the drift plays an important role in
how the drift is addressed since the majority of explicit methods start their
adaptation procedure at that time. Hence, failing to detect a gradual drift on
time can cause the methods to suffer from a late adaptation. In the proposed
method, the adaptation to drifts can be divided into two stages: (1) before
the drift is detected, when the algorithm tries to seamlessly adapt to the drift
using RD; and (2) after the drift is detected, when GA starts to optimise the
combination of the attributes in the optimisation layer. This justifies the bet-
ter performance of the proposed method, especially upon gradual concept
drifts.

From Figure 5.8(g) featuring a recurrent concept drift with a width of
10,000 in the immediate setting, it can be seen that the accuracy of all methods

84
Chapter 5. EACD: Evolutionary Adaptation to Concept Drifts in Data

Streams

dropped within the same rate. However, EACDExp took less time to adapt
compared to the other methods. In Figure 5.8(h), where the the same drift is
shown in the delayed setting, the behaviour of all methods except OSBoost
is relatively similar; however, the accuracy of EACDExp degrades less than
that of the other methods during the drifting period (shown by the red box).
In both settings, OSBoost fails to continue improving its performance for at
least 14,000 instances from the instance number 805K. This behaviour of OS-
Boost is similar to its results upon abrupt and gradual concept drifts, which
shows that the method lacks a sound adaptation mechanism over different
types of concept drifts.

Overall, the main advantage of the proposed EACDExp method is its ac-
curacy; it has the best average rank compared to the other state-of-the-art
methods used in the experiments (as shown in Table 5.3). It also proved to
have the fastest reaction over evolving data on most occasions, especially
upon abrupt, gradual and recurrent concept drifts, as shown in Figure 5.8.

While EACD is specifically designed to cope with non-stationary environ-
ments, it is possible to use it in stationary environments. However, the main
limitation in this case would be the unnecessary overhead that the method
puts on the ensemble since EACD always builds classifiers over different
time-stamps of the target data stream, while there is no need to do that when
a data stream does not evolve.

5.4 Summary

In this chapter, we proposed a novel method for non-stationary data stream
classification capable of seamlessly adapting to different types of concept
drifts. This method, called EACD, employs a two-layer architecture with
a set of classifiers in each layer. The first layer (base layer) is constructed by
creating a randomly drawn set of subspaces (classification types) from the
pool of features of the target data stream. Each type is the basis for building
decision trees (classifiers) in a layer. To allow EACD to seamlessly adapt to
concept drifts, RD is used to increase or reduce the number of trees in each
type according to their recent performance in the data stream. The second
layer (optimisation layer) uses randomly drawn subspaces from the first layer
as the first population for GA employed to optimise the classification types
with the most recent instances. The process of creating new and training the
current classifiers in this layer is the same as in the base layer. For the optimi-
sation layer, two different mechanisms are proposed to determine when to

5.4. Summary 85

restart GA. The first mechanism is based on comparing the performance of
the two layers (implicit EACD), whereas the second one uses a concept drift
detection method to check when a new concept drift occurs (explicit EACD).

To test the proposed method and its variations, a set of experiments with
five real-world and four artificial datasets was conducted. First, the perfor-
mance of different variations of the proposed method was compared; then,
the best performing variation was compared to the state-of-the-art methods
proposed in the literature. All experiments were executed in two different
settings: immediate prequential and delayed prequential. The results showed
that the proposed EACD method (namely, its EACDexp variant) achieves the
highest average accuracy and best average rank among all compared meth-
ods in both settings. However, the overall execution time of the proposed
method is the longest in six out of nine datasets, which makes the execution
time to be the main drawback of EACD.

Using the Friedman statistical test, it was demonstrated that the accuracy
values of the studied methods are significantly different. According to the
Nemenyi test (which is a post-hoc test of the Friedman test), the accuracy of
the proposed EACD method is significantly different from that of DWM and
OSBoost, while it is not significantly different from that of ARF, LevBag and
OAUE.

To improve the execution time and average performance of EACD, we
propose the REplicator Dynamics & GENEtic algorithm (RED-GENE) method
in the next chapter, which satisfies the third objective identified in this the-
sis (see Section 1.4). RED-GENE extends EACD by proposing three different
modifications of RD employed in its base layer.

87

Chapter 6

RED-GENE: Efficient Replicator
Dynamics & Genetic Algorithm
Approach to Adaptive Data Stream
Classification

In the previous chapter, we described a novel method called Evolutionary
Adaptation to Concept Drifts (EACD) addressing the second objective of this
thesis (see Section 1.4). This chapter introduces the REplicator Dynamics &
GENEtic algorithm (RED-GENE) method aiming at improving the execution
time and average performance of EACD, which satisfies the third objective of
this thesis, namely, to propose efficient ways of deploying evolutionary al-
gorithms for non-stationary data stream classification problems. In partic-
ular, we propose three novel modifications of RD over its version employed
in the base layer of EACD. The work presented in this chapter is published as
a full paper titled “RED-GENE: An Evolutionary Game Theoretic Approach
to Adaptive Data Stream Classification” in the “IEEE Access” journal [25].

6.1 Introduction

The majority of the state-of-the-art ensemble methods for data stream clas-
sification are focused on either a specific type of concept drifts or a specific
type of applications. In this chapter, we propose a novel ensemble learn-
ing method called RED-GENE that performs well regardless of the concept
drift type or application. As an improvement of EACD, RED-GENE employs
the same approach to creating different classification types and GA optimisa-
tion as described in Chapter 5. However, in contrast to the most basic modi-
fied version of RD employed in EACD, three novel evolutionary game-theoretic

88
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

strategies based on RD are proposed in RED-GENE to retain the classification
accuracy upon different concept drifts. As such, in addition to the contribu-
tions of Chapter 5, this chapter offers the following further contributions: (1)
three novel modifications of RD to accelerate the concept drift adaptation
process and advance the way RD is employed; (2) improving the classifica-
tion accuracy of EACD for the majority of the considered experimental cases;
and (3) reducing the running time of EACD by generating a lower number
of classifiers.

The rest of this chapter is organised as follows. Section 6.2 details the pro-
posed RED-GENE method. Section 6.3 outlines the experimental setup and
presents the results of comparing (i) different variations of RED-GENE; and
(ii) the best performing variation to other state-of-the-art methods. Finally,
conclusions and the summary of the chapter are provided in Section 6.4.

6.2 RED-GENE Description

This section introduces a novel ensemble learning method for data stream
classification tasks in non-stationary environments, namely, the RED-GENE
method. The architecture of RED-GENE comprises two layers, the base layer
and optimisation layer, described in Sections 6.2.1 and 6.2.2, respectively. In
the base layer, several classification types are created based on randomly se-
lected features (subspaces) of the target data stream to form an ensemble.
These classification types are trained using one of the three proposed RD
strategies. The combination of features inside each types is then optimised
in the optimisation layer similar to the optimisation layer of EACD as outlined
in Section 5.2.2.

6.2.1 Base Layer

As a first step of the RED-GENE algorithm, p percent of data features (at-
tributes) are randomly selected from a pool of features of the target data
stream as n = p

100 × f , where p denotes the percentage of the attributes (fea-
tures) to be selected randomly (p ∈ (0, 100)), f denotes the total number of
attributes of the target dataset and n denotes the total number of attributes to
be chosen in this stage. Each iteration of this step creates a single classifica-
tion type in the ensemble. Hence, it should be repeated m times to generate m
different classification types, each having n randomly selected attributes. In
the proposed method, m is a parameter representing the maximum number

6.2. RED-GENE Description 89

of classification types to be selected for the ensemble and should be chosen
based on the total number of attributes in each type.

In this study, we assume that data received by the system are in the form
of data blocks of 100 instances. After receiving the true labels of all instances
inside each data block, m new classifiers (decision trees in this case, one for
each type) are trained. These classifiers are then used to classify the next
instances inside the data stream. In particular, the majority voting is per-
formed, and the class with the biggest number of votes is considered as the
final output of the base layer of the ensemble.

Every classification type is evaluated once the true labels of instances in
a specific data block are available. The accuracy of each classification type
is assumed to be the average accuracy of all classifiers built using the same
set of features (i.e. classification type), namely, ai =

ci
db , where ci denotes the

number of correctly classified instances in the ith data block and db denotes
the total number of instances in each data block. To allow the types to reach
a maturity level, the classifiers are not evaluated during the first max

2 data
blocks, where max denotes the maximum number of classifiers allowed in
each classification type.

Next, the replicator dynamics step is applied (see Algorithm 9), where each
type’s accuracy is taken into consideration and assessed in terms of its ex-
pected payoff as in Equation 6.1.a(ti) ≥ ∑m

i=1 a(ti)
m ⇒ grow

a(ti) <
∑m

i=1 a(ti)
m ⇒ shrink,

(6.1)

where a(ti) denotes the accuracy of ith type and m denotes the total number
of types. In RED-GENE, a classification type comprising randomly selected
features of data acts as a single replicator according to the replicator equation
explained in Section 3.2. The expected payoff for each replicator is set to the
average accuracy of all replicators (classification types), while a replicator’s
payoff is the average accuracy of the classifiers built using the same classifi-
cation type.

Once the types to be grown or shrunk are identified using the replicator
dynamics step, the pool of classifiers is reformed based on one of the pro-
posed strategies. In particular, the following three novel RD-based strategies
employed in RED-GENE are among the main contributions of this thesis.

90
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

RD1: Weighted Trees

According to the original RD algorithm, the number of trees to be added to
or removed from the ensemble is specified dynamically as in Equation 6.2.

Ta(i) = b(a(ti)−
∑m

i=1 a(ti)

m
)× Tn(i)c,

Tr(i) = b(
∑m

i=1 a(ti)

m
− a(ti))× Tn(i)c,

(6.2)

where Ta(i) denotes the number of trees to add, Tr(i) denotes the number of
trees to remove, a(ti) denotes the accuracy of subspace i being processed, m
denotes the total number of types and Tn(i) denotes the total number of trees
currently being inside classification type i. However, adding more than one
classifier (at one time-step) is not possible in an online environment, where
one-time processing is applied to incoming data (prequential evaluation).
Therefore, a higher weight is assigned to a decision tree (classifier) instead
of training more than one classifier in the first proposed RD variation. This
is achieved using the original Equation 6.2, where Ta(i) is assumed to de-
note the weight to be assigned to the newly built classifier. In other words,
assigning a weight of k to a classifier means that the same classifier gets k
votes instead of only one according to the voting mechanism. The removing
mechanism in this strategy is similar to that of the original RD algorithm and
is based on the performance of the trees; e.g. when the number of trees to
remove is k, the k least accurate trees (over the last data block) are removed
from the ensemble. Path 1 in Figure 6.1 depicts the flowchart of this strategy.

RD2: Voting without Considering Poor-performing Types

According to the second proposed RD variation, a subspace is temporarily
eliminated from the ensemble’s voting mechanism when it is recognised as
poor-performing based on its accuracy (i.e. identified as to be shrunk accord-
ing to Equation 6.1). The evaluation of such subspaces continues as normal
and they are re-activated once they start to perform better (and thus grow
in size) again. Furthermore, the number of trees to be added or removed is
fixed to Ta(i) = 1 and Tr(i) = 1, respectively. Therefore, in case of grow-
ing/shrinking, only one tree is supposed to be added/removed. Path 2 in
Figure 6.1 shows the flowchart of RD2.

6.2. RED-GENE Description 91

RD3: Weighted Trees + Voting without Considering Poor-performing Types
(RD1 + RD2)

The third proposed RD variation combines the first two strategies (RD1 and
RD2). Hence, the number of trees to add or remove is set dynamically based
on Equation 6.2, and poor-performing types are eliminated from the ensem-
ble’s voting system unless they start to grow again. Figure 6.1 depicts the
flowchart of this strategy.

Note that all classifiers inside the ensemble are updated (retrained) using
all incoming data blocks. This can lead to a faster adaptation to concept drifts
in the evolving data stream. To restrict the size of the ensemble and avoid
adding overhead to the system, an upper bound is assigned to the number of
classifiers of each classification type (in this study, the upper bound was set to
an arbitrary value of max = 20). When the maximum size of a classification
type is exceeded, a classifier should be removed from the same type before
adding a new classifier. This is achieved by removing the least accurate clas-
sifier for the last data block. Furthermore, a lower bound for each type is set
to a minimum number of min = 1 to prevent the types to be completely re-
moved. Hence, when only one decision tree related to a type remains, it is
not being removed upon a poor performance.

6.2.2 Optimisation Layer

Similar to EACD (see Chapter 5), GA is used in RED-GENE to optimise the
combination of attributes in each classification type (subspace) using the ex-
isting types drawn randomly in the first phase of the proposed algorithm. In
particular, features act as individuals or genes, while classification types act as
chromosomes according to GA. Therefore, in each iteration of GA, the related
operations (selection, crossover and mutation) are applied to the population,
and the fitness of each type is calculated over a fixed set of data stored in
the system as a buffer keeping the most recent data records and their corre-
sponding labels. This buffer acts as a search space for the GA algorithm to
perform the most up-to-date evaluation. Note that the buffer is kept fixed
during each iteration of the GA algorithm.

GA is applied to all randomly drawn classification types (from the base
layer). It performs optimisation once a drift detector verifies a concept drift.
The optimisation layer is different from the base layer only in this part (i.e. re-
combining types upon concept drifts), while the classification, training and

92
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

FIGURE 6.1: Illustration of the proposed variations of Replica-
tor Dynamics; RD1: Path 1, RD2: Path 2, RD3: Paths 1 and 2.

6.2. RED-GENE Description 93

Algorithm 9: PROPOSED RD STRATEGIES

Input: Continuous block of data DB ={db1,db2,. . . ,dbn}
n: number of features to be selected in each type
m: total number of types
max: maximum number of classifiers in each type.
Output: Classified samples

1 i := 1
2 for t := 1 to t := m do
3 Randomly select n features

4 while data stream is not empty do
5 if i ≤ max

2 then
6 Classify(dbi)
7 Grow(T) for all types

8 else
9 Classify(dbi)

10 Evaluate()

11 if a(tj) ≥
∑n

j=1 a(tj)

m then
12 Grow(tj) /* Based on the strategy */

13 else
14 Shrink(tj) /* Based on the strategy */

15 Train()
16 i := i + 1

94
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

updating mechanisms are the same as explained for the base layer (see Sec-
tion 6.2.1).

Algorithm 10 outlines the process of the optimisation layer.
Selection stage: selection of chromosomes (classification types) in this

stage is based on their performance over the search space (i.e. data inside
the buffer). The types with a higher accuracy than the overall average accu-
racy are selected as the candidates for the crossover stage. The “Selection()”
function in Algorithm 10 corresponds to the Selection stage.

Crossover stage: the classification types selected in the Selection stage
are paired with each other to produce new offspring. In other words, the
attributes (Genes) of well-performing types (Chromosomes) are mixed with
each other to produce new types. The “Crossover()” function in Algorithm 10
corresponds to the Crossover stage.

Mutation stage: to prevent different types from getting too similar to each
other (i.e. using the same features), the mutation step is applied during the
breeding procedure. For this purpose, the mutation rate, which is a parame-
ter of the proposed method, should be specified. In this study, the mutation
rate was set to the arbitrary value of 5%. The “Mutation()” function in Algo-
rithm 10 corresponds to the Mutation stage.

The proposed GA modification is iterated over the fixed data inside the
buffer until the maximum number of generations are produced. The result-
ing classification types are grown by training new classifiers over the incom-
ing data blocks. The newly built classifiers are then evaluated over the in-
coming data. Once their average performance reaches the average accuracy
of the ensemble, they are used in its voting mechanism.

In RED-GENE, all classifiers inside the base layer are assigned with an
initial weight of one (Wb = 1), while those inside the optimisation layer – two
(Wg = 2). This intensifies the effect of the optimisation layer on the algorithm
given the optimality of the types.

In general, the proposed RED-GENE method works as follow. All in-
stances inside a new data block are classified by classifiers inside both layers
of the ensemble (base and optimisation layers). The predictions of active
classifiers are then summarised by the decision making part of the ensemble
according to their weight and output. A concept drift detection mechanism
is employed to determine when to start/restart the GA procedure. When GA
is due to start its procedure, the classifiers inside its layer (i.e. optimisation
layer) are removed from the ensemble to make room for a new collection of
classification types due to be built.

6.2. RED-GENE Description 95

Once the concept drift detector confirms a drift inside the data stream,
GA starts to iterate the necessary operations over the fixed data inside the
buffer. We use EDDM [78] specifically designed to improve the detection
in the presence of gradual concept drifts. At the same time, any other drift
detection methods can be employed at this stage. When the concept drift de-
tector signals a warning, the buffer starts storing the incoming data. Once the
drift is confirmed by the detector (signalling a drift), GA starts its procedures
with all data inside the buffer being fixed for the fitness calculation process.
The “DriftDetector()” function in Algorithm 10 corresponds to the Concept
Drift Detection stage of RED-GENE.

Using concept drift detectors can sometimes lead to false positives and
false negatives, resulting in an accuracy drop in the classification process.
False positives that is when the concept drift detector wrongly signals a drift,
should not negatively affect the accuracy of RED-GENE since the new set of
classification types is based on the most recent data, and only an extra over-
head would be required to perform additional GA optimisation. False nega-
tives that do not trigger the optimisation layer can lead to a delay in adapting
to a concept drift only if the concept drift is abrupt and significant. On the
other hand, the base layer always grows well-performing types and shrinks
poor-performing types according to the most recent data, which would help
the system to adapt to a concept drift even if it is not detected.

Algorithm 10: GA OPTIMISATION

Input: Buffer
g: Maximum number of generations
Resetting mechanism: [implicit/explicit]
Randomly drawn subspaces (types) from the base layer, TB ={t1,t2,..,tm}
Output: New set of types, TG ={t1′,t2′,..,tm′}

1 for i := 1 to i := g do
2 Selection()
3 Crossover()
4 Mutation()

5 repeat
6 DriftDetector()
7 until DriftDetector() = Drift /*When the detector signals a drift*/
8 Reset(GA) /*Clear optimisation layer and restart GA*/

96
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

6.3 Experimental Study

This section provides the details of the experiments conducted to investigate
the performance of the proposed method in this chapter. We introduce differ-
ent variations of RED-GENE along with their parameters and computational
complexity. Different variations are then compared with each other and the
best performing variation is compared with the state-of-the-art algorithms
in non-stationary data stream classification tasks. Eventually, the results are
statistically analysed and discussed thoroughly. It is worth mentioning that
the details necessary for conducting the experiments in this thesis (e.g. ex-
perimental settings, compared methods, evaluation runs, datasets, etc.) are
discussed in Chapter 4.

6.3.1 RED-GENE Variations

The following nine variations of RED-GENE were compared to evaluate the
effects of the proposed RD strategies and their parameters:
RD1 uses RD with weighted trees (see Section 6.2.1) and the following pa-
rameters: p = 60% and m = 0.6× f ;
RD2 uses RD without weighted trees and does not consider poor-performing
types in voting, as explained in Section 6.2.1, with p = 60% and m = 0.6× f ;
RD3 uses RD with weighted trees and does not consider poor-performing
types in voting, with p = 60% and m = 0.6× f ;
RD1Lite is a lite version of RD1 with p = 40% and m = 0.4× f ;
RD2Lite is a lite version of RD2 with p = 40% and m = 0.4× f ;
RD3Lite is a lite version of RD3 with p = 40% and m = 0.4× f ;
RD1+GA is a version of RD1 optimised using GA with the number of genera-
tions (g) set to 15 and the mutation rate set to 5% (other parameters: p = 60%,
m = 0.6× f);
RD2+GA is a version of RD2 optimised using GA with the number of genera-
tions (g) set to 15 and the mutation rate set to 5% (other parameters: p = 60%,
m = 0.6× f);
RD3+GA is a version of RD3 optimised using GA with the number of genera-
tions (g) set to 15 and the mutation rate set to 5% (other parameters: p = 60%,
m = 0.6× f).

6.3. Experimental Study 97

6.3.2 Computational Complexity

Assuming the number of classes c, number of attributes in each classification
type p, values per attribute v and maximum number of trees in the ensemble
k, no more than p attributes can be considered in a single Hoeffding tree
[44]. Each attribute at a node requires computing v values. Since calculating
information gain requires c arithmetic operations, the cost of k Hoeffding
trees at each time-step in the worst case scenario is O(kcpv).

Given the number of classification types in the ensemble m and assuming
the proposed RD modifications use m arithmetic operations to calculate pay-
offs, the cost of applying RD to the ensemble is only O(m). Hence, the time
complexity of deploying the RED-GENE variations without GA optimisation
(RD1, RD2, RD3, RD1Lite, RD2Lite and RD3Lite) is O(m + (kcvp)).

Assuming the size s of the GA population and total number of genera-
tions g, the cost of GA optimisation is O(sg) at each time when the optimi-
sation layer is restarted. Furthermore, given d as the number of instances
in each data block and f as the total number of features in the dataset, the
EDDM drift detection method, which uses J48 (C4.5) decision tree as its learn-
ing mechanism, requires O(d f 2) of time. Hence, the time complexity of de-
ploying the RED-GENE variations that use GA optimisation (RD1+GA and
RD2+GA) is O(m + (kcvp) + (sg) + (d f 2)).

6.3.3 Results and Discussion

The considered methods are compared based on standard criteria, namely,
the classification accuracy and overall execution time (including the time of
making predictions, training and evaluating the ensemble). Figures 6.2 and
6.3 (Tables B.1 and B.2 in Appendix B) show the average accuracy scores for
all variations of RED-GENE and EACDExp (explained in Chapter 5) over the
nine datasets in the immediate and delayed settings, respectively. The GA-
optimised variations (RD1+GA, RD2+GA, RD3+GA and EACDExp) perform
better than the RD-only variations (RD1, RD2 and RD3) and significantly
better than the RDLite variations (RD1Lite, RD2Lite and RD3Lite). This is
because the former variations include a concept drift detection mechanism
enabling the system to optimise the combination of features in every type of
the ensemble, especially upon concept drifts. RD3+GA has the best aver-
age accuracy over seven out of nine datasets in the immediate setting, five
out of nine datasets in the delayed setting and the best overall average ac-
curacy in both the immediate and delayed settings. Furthermore, since the

98
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

same parameters were employed for both EACDExp and the RD3+GA vari-
ation, we can analyse the impact of applying the proposed RD variations.
Consequently, it is evident that the proposed RD strategies improve the clas-
sification accuracy compared to the basic RD variation used in EACDExp.

FIGURE 6.2: Accuracy (%) of the RED-GENE variations and
EACDExp over the considered nine datasets in the immediate

setting.

Figure 6.4 illustrates the average accuracy (throughout all datasets) of all
EACD variations in both immediate and delayed settings. It is clear that the
RD3 + GA variation has the best average performance in both immediate
and delayed settings.

Tables 6.1 and 6.2 list the average accuracy scores and their standard devi-
ation, minimum and maximum values of the RD3+GA variation (as the best
performing RED-GENE variation) and considered state-of-the-art methods
in the immediate and delayed settings, respectively. Note that the minimum,
maximum, average and standard deviation of the accuracies are based on
the 10 different evaluation runs (each evaluation run has its specific accu-
racy) that are conducted for each method. More information on different
evaluation runs for each data stream is provided in Section 4.2.

It can be noticed from the tables that RD3+GA has the best average ac-
curacy over Hyperplane, LED, SEA, Airlines, Electricity and Poker-Hand
datasets, as well as the best overall average accuracy in both the immediate
and delayed settings. It can also be noticed that DWM, OAUE and OSBoost
have the same standard deviation of zero for all real-world data sets, while

6.3. Experimental Study 99

FIGURE 6.3: Accuracy (%) of the RED-GENE variations and
EACDExp over the considered nine datasets in the delayed set-

ting.

FIGURE 6.4: Average accuracy (%) of the RED-GENE variations
and EACDExp in the immediate and delayed settings.

RD3+GA, LevBag and ARF have different standard deviation values. This
is because the latter algorithms use randomisation in their procedures, while
the former do not.

Figure 6.5 illustrates the average accuracy (throughout all datasets) of
EACD (EACDExp) method compared to other state-of-the-art methods in
both immediate and delayed settings. As can be observed from this figure,

100
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

TABLE 6.1: Average accuracy (%) scores and their standard de-
viation, minimum and maximum values of RED-GENE and
the compared methods in the immediate setting. RD3+GA
achieves the highest average accuracy in five out of 9 datasets.

Bold values indicate the best performance for each dataset.

Dataset Criteria ARF DWM LevBag OAUE OSBoost RD3+GA

Hyper. Ave.(%) 88.17 89.64 91.03 91.42 85.85 92.84
σ(%) 1.90 0.83 1.60 1.46 3.01 2.02
Min(%) 85.96 88.45 88.92 89.66 81.80 89.91
Max(%) 91.31 90.94 93.54 93.63 89.87 95.24

LED Ave.(%) 74.05 75.05 74.22 73.99 74.15 77.65
σ(%) 0.31 3.10 0.31 0.10 0.11 2.45
Min(%) 73.58 73.86 73.93 73.89 74.05 73.34
Max(%) 74.45 83.83 74.52 74.09 74.26 81.24

RTG Ave.(%) 78.35 59.35 90.78 88.88 93.40 92.03
σ(%) 8.12 8.87 2.26 3.26 1.45 2.00
Min(%) 65.86 48.26 87.38 83.39 90.63 89.31
Max(%) 88.03 73.86 93.72 92.56 95.24 94.66

SEA Ave.(%) 88.67 87.72 87.59 88.69 85.56 89.14
σ(%) 0.58 0.57 1.67 0.58 0.35 2.43
Min(%) 88.40 87.18 85.41 88.13 85.25 85.20
Max(%) 89.55 88.26 89.28 89.25 85.86 91.11

Airlines Ave.(%) 63.53 63.97 59.42 64.02 61.98 66.88
σ(%) 1.23 0 0.73 0 0 1.43
Min(%) 62.08 63.97 58.45 64.02 61.98 64.34
Max(%) 65.46 63.97 60.62 64.02 61.98 68.32

Electricity Ave.(%) 92.17 75.73 92.09 91.60 88.02 91.03
σ(%) 0.94 0 1.48 0 0 3.14
Min(%) 90.45 75.73 89.56 91.60 88.02 87.54
Max(%) 93.19 75.73 93.70 91.60 88.02 93.16

Forest Ave.(%) 93.57 83.75 92.73 90.70 84.45 92.73
σ(%) 1.58 0 2.10 0 0 2.83
Min(%) 91.11 83.75 89.45 90.70 84.45 88.92
Max(%) 95.09 83.75 95.40 90.70 84.45 94.24

KDDcup Ave.(%) 99.81 99.04 99.82 99.80 99.74 99.78
σ(%) 0.06 0 0.01 0 0 0.14
Min(%) 99.74 99.04 99.80 99.80 99.74 99.60
Max(%) 99.91 99.04 99.83 99.80 99.74 99.84

Poker Ave.(%) 84.19 74.37 88.52 80.74 84.31 90.15
σ(%) 4.55 0 3.34 0 0 1.08
Min(%) 80.08 74.37 84.67 80.74 84.31 88.24
Max(%) 90.06 74.37 93.56 80.74 84.31 92.40

EACD method has the best average accuracy in both immediate and delayed
settings.

Figure 6.6 (Table B.3 in Appendix B) demonstrates the execution time (that
includes the time of making predictions, training and evaluating the ensem-
ble) of the RED-GENE variations and EACDExp method in seconds in the
immediate setting. It is clear that the variations without GA optimisation are
faster than the ones with it due to the time complexity of GA. Furthermore,
all RDLite variations are faster than the other variations as they have fewer

6.3. Experimental Study 101

TABLE 6.2: Average accuracy (%) scores and their standard de-
viation, minimum and maximum values of RED-GENE and the
compared methods in the delayed setting. RD3+GA achieves
the highest average accuracy in five out of nine datasets. Bold

values indicate the best performance for each dataset.

Dataset Criteria ARF DWM LevBag OAUE OSBoost RD3+GA

Hyper. Ave.(%) 88.05 89.41 90.77 91.10 85.74 92.03
σ(%) 2.02 0.95 1.71 1.59 3.06 2.00
Min(%) 85.56 88.25 88.60 89.21 81.70 89.85
Max(%) 91.35 90.86 93.37 93.55 89.78 94.45

LED Ave.(%) 74.00 74.14 74.21 74.06 74.13 76.73
σ(%) 0.40 0.16 0.15 14.00 0.04 2.63
Min(%) 73.42 73.99 74.07 73.74 74.02 72.15
Max(%) 74.49 74.30 74.36 74.19 74.17 80.21

RTG Ave.(%) 78.24 59.49 90.91 88.72 85.53 90.24
σ(%) 8.06 8.64 2.48 5.13 2.90 2.41
Min(%) 65.81 47.16 86.94 82.17 81.17 85.19
Max(%) 87.92 73.73 93.49 92.47 88.70 92.90

SEA Ave.(%) 88.94 87.48 88.70 88.54 85.31 88.56
σ(%) 0.59 1.02 1.45 0.70 0.42 2.41
Min(%) 88.28 86.01 86.89 87.81 84.92 84.17
Max(%) 89.51 88.21 90.32 89.21 85.91 90.73

Airlines Ave.(%) 61.42 60.57 58.49 62.73 61.80 64.45
σ(%) 1.12 0 0.89 0 0 1.90
Min(%) 61.22 60.57 57.03 62.73 61.80 61.63
Max(%) 63.32 60.57 59.65 62.73 61.80 67.04

Electricity Ave.(%) 83.51 67.43 81.78 80.20 79.04 83.41
σ(%) 1.19 0 0.88 0 0 2.84
Min(%) 81.78 67.43 80.54 80.20 79.04 79.58
Max(%) 84.80 67.43 83.00 8020 79.04 86.25

Forest Ave.(%) 85.65 74.93 86.22 86.84 74.47 87.19
σ(%) 2.60 0 2.72 0 0 2.04
Min(%) 83.67 74.93 83.02 86.84 74.47 85.34
Max(%) 90.49 74.93 89.50 86.84 74.47 91.04

KDDcup Ave.(%) 99.80 99.12 99.81 99.78 99.74 99.76
σ(%) 0.07 0 0.01 0 0 0.07
Min(%) 99.72 99.12 99.79 99.78 99.74 99.59
Max(%) 99.90 99.12 99.83 99.78 99.74 99.80

Poker Ave.(%) 67.95 59.31 76.78 73.81 81.23 83.11
σ(%) 2.92 0 3.72 0 0 1.62
Min(%) 64.94 59.31 70.51 73.81 81.23 81.55
Max(%) 73.29 59.31 79.34 73.81 81.23 86.09

types and features in each type. Figure 6.7 (Table B.4 in Appendix B) illus-
trates the overall execution times of RED-GENE and the considered state-
of-the-art methods in seconds in the immediate setting. DWM and OSBoost
have the shortest execution time by far for the majority of the datasets (DWM
over SEA, Airlines, Electricity and Poker-Hand datasets, and OSBoost over
Hyperplane, LED and Forest Cover-type datasets), while the proposed RED-
GENE RD3+GA variation has the longest execution time in most cases.

In summary, the main advantage of RED-GENE is its accuracy providing

102
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

FIGURE 6.5: Average accuracy (%) of the RD+GA RED-GENE
variation and other state-of-the-art methods in the immediate

and delayed settings.

FIGURE 6.6: Average time (in seconds) of executing the RED-
GENE variations and EACDExp over the considered nine

datasets in the immediate setting.

the best average rank compared to the state-of-the-art methods and robust
performance in evolving environments with concept drifts. In addition, the
RD strategies proposed in this chapter are more efficient than the basic RD
strategy used in our previously proposed EACD method (Chapter 5). The
main drawback of the best performing RD3+GA variation of RED-GENE is
its longest execution time over six out of nine datasets, which is due to the
employment of two different evolutionary algorithms (RD and GA), along
with a concept drift detection method (EDDM). At the same time, the RD1,
RD2 and RD3 variations of RED-GENE offer slightly shorter execution times,

6.3. Experimental Study 103

FIGURE 6.7: Average time (in seconds) of executing the RD+GA
RED-GENE variation and other state-of-the-art methods over

the considered nine datasets in the immediate setting.

TABLE 6.3: Average rank of the RD3+GA and other state-of-
the-art methods according to the Friedman test.

Dataset ARF DWM LevBag OAUE OSBoost RD3+GA
Rj 3.500 4.944 2.888 3.333 4.500 1.833
R2

j 12.250 24.447 8.346 11.111 20.250 3.361

and significantly shorter times in their lite versions (RD1Lite, RD2Lite and
RD3Lite), while maintaining a high accuracy in many cases.

6.3.4 Statistical Analysis

We performed the Friedman [87] and Nemenyi [89] statistical tests to further
analyse the results of our experiments regarding the RD3+GA variation of
RED-GENE and considered state-of-the-art methods.

Table 6.3 shows the average rank and its squared value for each methods
considered in our experiments with k = 6 and N = 18. Providing that the
value of the Friedman test statistic is χ2

F = 31.80 with 5 (k − 1) degrees of
freedom, and the critical value for the Friedman test given k = 6 and N = 18
is 14.63 at a significance level of α = 0.01, we can conclude that the accuracy
values of the studied methods are significantly different (31.80 is greater than
14.63).

Now that the Null-hypothesis is rejected, we can proceed with a post-hoc
test. The Nemenyi test [89] can be used for comparing classifiers to each
other [88]. The performance of two classifiers is significantly different if the
corresponding average ranks differ by at least the critical difference (CD).

104
Chapter 6. RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm

Approach to Adaptive Data Stream Classification

FIGURE 6.8: Comparison of the RD3+GA and other state-of-
the-art methods using the Nemenyi test at α = 0.10.

The critical value in our experiments with k = 6 and α = 0.10 is q0.10 =

1.614. As a result, the accuracy of the proposed RD3 + GA method is signif-
icantly different from that of ARF, DWM, and OSBoost methods, while it is
not significantly different from that of LevBag and OAUE methods. Figure
6.8 graphically represents the comparison of the different methods employed
in our experiments based on the Nemenyi test.

6.4 Summary

In this chapter, we proposed a method, called RED-GENE, capable of cop-
ing with different concept drifts when performing data stream classification
tasks. RED-GENE combines three novel RD strategies with a GA optimisa-
tion technique. RD was used to grow and shrink a randomly drawn set of
subspaces (classification types) in the ensemble according to the most recent
instances of the data stream. GA was employed to optimise the combination
of features of the types when a concept drift was detected by EDDM.

To test the proposed method, a set of experiments was conducted with
four synthetic and five real-world data streams. Nine different variations of
RED-GENE were implemented to examine different strategies of adopting
RD in online learning and assess the effect of selecting its different parame-
ters. In addition, RED-GENE was compared to the existing state-of-the-art

6.4. Summary 105

methods and the previously proposed EACD method (Chapter 5). The re-
sults of the comparison demonstrated that RED-GENE had the highest av-
erage accuracy and best average rank among all compared methods in two
different settings (immediate and delayed). However, the execution time of
RED-GENE was the longest over the majority of the considered datasets com-
pared to other state-of-the-art methods.

Consequently, using the Friedman statistical test, it was shown that the
performance of the methods studied in the experiments was significantly
different. Furthermore, using the Nemenyi test, it was proved that the per-
formance of RED-GENE was significantly better than that of ARF, DWM and
OSBoost, while it was not significantly better than that of LevBag and OAUE.

RED-GENE presents an improvement over EACD in terms of the average
accuracy score and execution time, which leads to achieving the third objective
of this thesis (as outlined in Section 1.4). In the next chapter, we propose
the REplicator Dynamics & Particle Swarm Optimisation (RED-PSO) method
that uses RD and PSO to tackle the last objective of this thesis by balancing
out the exploration and exploitation aspects of the search space.

107

Chapter 7

RED-PSO: REplicator Dynamics &
Particle Swarm Optimisation
Approach to Adaptive Data Stream
Classification

The previous chapter presented a novel ensemble learning method RED-
GENE built upon the EACD method described in Chapter 5. EACD and
REG-GENE were proposed to address the second and third objectives of this
thesis as stated in Section 1.4, respectively. In this chapter, the REplicator Dy-
namics & Particle Swarm Optimisation (RED-PSO) method is proposed to
address the final objective of this thesis, namely, to optimise the metaheuris-
tic solutions in non-stationary data stream classification by balancing out
the exploration and exploitation of metaheuristics. To achieve this, RED-
PSO uses RD to optimise the number of classifiers in each classification type
and PSO to optimise the combination of features in each type. The findings
presented in this chapter are published as a full paper titled “A non-canonical
hybrid metaheuristic approach to adaptive data stream classification” in the
“Future Generation Computer Systems” journal [26].

7.1 Introduction

An ideal approach to non-stationary data stream classification should satisfy
the following objective: achieve the least possible misclassification rate while
minimising the computational complexity and quickly adapting to possible
concept drifts. At present, there is a lack of a comprehensive approach sat-
isfying this objective. To address this gap, this chapter introduces a novel

108
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

method, called RED-PSO, that is based on a modified metaheuristic algo-
rithm, namely, PSO. In particular the classical PSO algorithm is extended by
taking into consideration both the exploration (local optima) and exploitation
(global optima) aspects of the search space (combination of features).

The architecture of RED-PSO includes three layers. Each layer is initially
assigned some predefined classification types randomly created from a pool
of features of the target data stream. Similar to EACD and RED-GENE, RED-
PSO employs RD to seamlessly cope with smooth (i.e. gradual or incremen-
tal) concept drifts. In particular, RD allows the classification types with a
good performance to grow and those with a poor performance to shrink in
size. The combination of features in all types is then optimised using a mod-
ified version of PSO for each layer individually. This helps the method to
cope with more sudden (i.e. recurring or abrupt) concept drifts. PSO allows
the types in each layer to move towards local (within the same type) and
global (in all types) optimums with a specified velocity.

RED-PSO was evaluated using the four synthetic data stream generators
and five real-world data streams introduced in Section 4.2. Different types
of concept drifts were added to the synthetic datasets to examine how the
proposed method adapts to different concept drifts compared to the state-of-
the-art methods. Many real-world data streams can be categorised into com-
pletely and partially labelled. Complete labelling can be achieved when the
true labels of respective instances are completely accessible either instantly or
after a delay, presenting no or small overhead to the system. This is the case
in many forecasting tasks such as weather forecasting, stock market analysis,
forest monitoring, airline predictions and bill estimation. Partial labelling is
performed when the real labels are accessible with an extra overhead to the
system via a third party (usually human). This is the case when the real labels
are retrieved after an analysis of the related data in the stream (e.g. medical
diagnosis in health data and anomaly/fraud detection in credit card transac-
tions). RED-PSO was designed to deal with completely labelled data streams.
Hence, the experimental part of this chapter assumes that the true labels of
instances are completely accessible either instantly or after a specified delay.
In this respect, each dataset was processed twice: once in the delayed set-
ting (where the actual labels of instances are accessible after a specified time)
and once in the immediate setting (where the actual labels are accessible in-
stantly).

7.2. RED-PSO Description 109

The rest of this chapter is organised as follows. Section 7.2 details the pro-
posed RED-PSO method. Section 7.3 outlines the experimental setup and re-
sults of comparing (i) different RED-PSO variations; and (ii) the best perform-
ing variation to other state-of-the-art methods. Finally, Section 7.4 presents
conclusions and outlines the summary of this chapter.

7.2 RED-PSO Description

In this section, we present RED-PSO, a novel ensemble learning method for
non-stationary classification using the RD and PSO techniques. RED-PSO
trains an ensemble of classifiers comprising three categories (layers) of differ-
ent classification types generated by randomly selecting features (subspaces)
from a set of attributes of the target dataset. To make the proposed method
effective in evolving environments and ensure its seamless adaptation to the
most recent types of the data distribution, we apply RD to all layers of the
ensemble to grow well-performing types and shrink poor-performing ones
in size. Since the original RD is designed specifically for static datasets, we
modify it to be compatible with streaming data in the same manner as de-
scribed for EACD (Chapter 5) and RED-GENE (Chapter 6). Unlike EACD
and RED-GENE, where GA is applied after RD, in the next step of RED-PSO,
the randomly drawn classification types (subspaces) are optimised using a
modified version of PSO applied to each layer individually to ensure fast
adaptation to different concept drifts.

PSO is a metaheuristic algorithm [27] inspired by the social behaviour of
the movement of organisms in a bird flock or fish school. This algorithm is
introduced in Chapter 3 in detail. The main goal of the PSO algorithm is find-
ing the global minimum of a function using both exploration and exploita-
tion aspects of the search space. While PSO does not guarantee an optimal
solution, it is shown to have promising results in various applications [28].

A canonical PSO algorithm is designed to iterate over a static data, where
there is only one possible optimal solution. In contrast, in data stream clas-
sification tasks, data arrive in an online manner, and the optimal solution is
subject to change with time. Therefore, we propose a non-canonical version
of PSO as described in the next section to enable the classical PSO algorithm
to work in streaming environments.

110
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

7.2.1 RED-PSO Algorithm

First, three different layers are created, with each layer containing a prede-
fined number of types and each classification type covering a predefined per-
centage of features from a pool of features. There is a negative linear cor-
relation between the percentage of features in each type and the number of
types in each layer. In other words, the bigger the number of types inside each
layer is, the smaller the number of features each type is required to cover in
the same layer, which can be represented as in Equation 7.1.

m
f
= 1− n

f
, (7.1)

where m denotes the total number of types, n denotes the total number of
features that are to be selected for each type and f denotes the total number
of features of the target data stream.

Once the parameters of each layer are specified, nl features (attributes)
are randomly selected from the set of all attributes, where nl is nth parameter
for the layer number l (l=1, 2 or 3). This step is repeated ml times for each
layer, where ml is mth parameter for the layer number l. As a result, ml

independent types are obtained for each layer at the end of this step.
When all layers are created using a random subspace of features in each

layer, the ensemble is trained using RD. According to the original RD algo-
rithm, the number of trees to be added to a subspace is specified dynamically
as in Equation 7.2.

Ta(i) = b(a(ti)−
∑m

i=1 a(ti)

m
)× Tn(i)c, (7.2)

Tr(i) = b(
∑m

i=1 a(ti)

m
− a(ti))× Tn(i)c, (7.3)

where Ta(i) denotes the number of trees to add, Tr(i) denotes the number of
trees to remove, a(ti) denotes the accuracy of the subspace i being processed,
m denotes the total number of types and Tn(i) denotes the total number of
trees currently present inside the subspace i. When the number of trees to be
added to a subspace is more than one, different trees are created using the
bootstrap aggregating (bagging) model. However, prequential evaluation
is impossible in this case (i.e. when incoming data are used for testing and
then training) since only one tree can be created at each time step. Hence,
instead of creating different trees in a subspace at each time step, only one
tree is created but with a higher weight assigned to it for the voting purpose.

7.2. RED-PSO Description 111

For example, a tree with weight = 2 has two votes in the voting mechanism
(i.e. having a higher impact) instead of only one. The removing mechanism
in this strategy is based on the performance of the classifiers; e.g. when the
number of trees to remove is 2, two least accurate trees (in the last data block)
are eliminated from the ensemble.

Once the first data block is obtained by the ensemble, a classifier is built
for every type (subspace) inside all layers. Given max as the maximum num-
ber of decision trees for each type, this step is repeated for the first max

2 blocks
of data to shape the types and allow them to reach a specific maturity level.
This phase is called the initial training and performed to build an average
number of classifiers for every type in the ensemble. Note that for every data
block received by the ensemble, all decision trees classify the instances, and
the majority voting is applied to determine each layer’s output. Then the en-
semble’s output is determined by combining the output of each layer using
their weights obtained as in Equation 7.4.

Wi = Wi−1 + α(Pi−1 − Ai−1), (7.4)

where Wi−1 denotes the weight of a layer at (i− 1)th data block, Pi−1 denotes
the accuracy of the same layer over (i − 1)th data block, Ai−1 denotes the
average accuracy of all layers over (i − 1)th data block and α denotes the
coefficient for recent data, which is an arbitrary parameter of the proposed
algorithm (α > 1). This phase is called the voting step.

Once the initial training phase is completed, each decision tree in a type is
evaluated after classifying incoming instances by calculating its accuracy as
in Equation 7.5.

ai =
ci

db
, (7.5)

where ci denotes the number of correctly classified instances in ith data block
and db denotes the total number of instances in each data block. The accuracy
of each type is the average accuracy of its constituent decision trees. The
accuracy of the whole ensemble can be determined similarly to Equation 7.5.
This phase is called the evaluation step.

Next, the RD step is applied similar to that in EACD (see Chapter 5),
where each type’s accuracy is taken into consideration and assessed in terms

112
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

of the expected payoff calculated for each layer individually, as in the condi-
tions in Equation 7.6. 

a(ti) ≥ ∑m
i=1 a(ti)

m ⇒ grow

a(ti) <
∑m

i=1 a(ti)
m ⇒ shrink,

(7.6)

where a(ti) denotes the accuracy of ith type and m denotes the total number
of types.

The expected payoff in this study is set to the average accuracy of all
types in each layer. Algorithm 11 shows how the RD step works. In this
algorithm, tj denotes the jth type of the ensemble (1 ≤ j ≤ m) and a(tj)

denotes the accuracy of this type. The following functions are used in the
presented algorithm:

• Classify(): classifying data using the majority voting;

• Evaluate(): evaluating the accuracy of classifiers/types in the ensemble
using Equation 7.5;

• Grow(): adding a new classifier (decision tree) to the specified type (if
Equation 7.6 stands);

• Shrink(): removing one, the worst performing classifier (decision tree)
from the specified classification type (if Equation 7.6 stands); if this type
has only one classifier, then do nothing;

• Train(): training all classifiers of the ensemble using the samples from a
newly received data block.

To set a boundary for the number of classifiers (decision trees), an arbi-
trary upper bound of max = 10 was set in this study for all types in the
ensemble. Hence, once the number of classifiers of a type is exceeded, the
weakest performing decision tree of the same type is removed to make room
for the newly built classifier. Furthermore, to prevent the types from complete
removal, a lower bound of min = 1 was assigned to all types.

7.2.2 PSO Optimisation

The following non-canonical version of PSO is used in RED-PSO to optimise
the combination of features of the classification types inside each layer. Ini-
tially, the new PSO algorithm takes all randomly drawn types as its input and

7.2. RED-PSO Description 113

Algorithm 11: MODIFIED RD ALGORITHM

Input: Continuous block of data DB ={db1,db2,..,dbn}
l: layer number (1 ≤ l ≤ 3)
nl: number of features to be selected in each type for the lth layer
ml: total number of types for the lth layer
max: maximum number of classifiers in each type.
Output: Updated state of classification types

1 l := 1
2 t := 1
3 for l := 1 to l := 3 do
4 for t := 1 to t := ml do
5 Randomly select nl features
6 t := t + 1

7 l := l + 1

8 i := 1
9 while data stream is not empty do

10 if i ≤ max
2 then

11 Classify(dbi)
12 Grow(T) for all types

13 else
14 Classify(dbi)
15 Evaluate()

16 if a(tj) ≥
∑n

j=1 a(tj)

m then
17 Grow(tj) /* According to Equation 7.6 */

18 else
19 Shrink(tj) /* According to Equation 7.6 */

20 Train()
21 i := i + 1

114
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

FIGURE 7.1: Illustration of the two-layer architecture of RED-
PSO. The left triangle represents the relationship between the
number of classification types and the number of features they
contain depending on the layer: the first layer has a smaller
number of classification types with more features in each type,
whereas the third layer has a larger number of classification
types with less features in each type. The right triangle rep-
resents the different velocity at which each classification type
moves towards global and local optimums in each layer: the
lower the number of features a classification type has, the faster

it moves towards optimums (i.e. has a higher velocity).

moves them towards the global best (gbest) and local best (pbest) solution
types with a predefined velocity in each iteration (when a new data block
is received). ‘Moving a particle to a specific space with a velocity’ means
reforming the combination of features of a particle (classification type) to re-
semble a specific subspace of features with a defined proportion (velocity).

Let the gbest subspace include a set of features G, pbest include a set of
features L and the current subspace include a set of features T. Then, the
space towards which a type can move is in S = [(G− T) ∩ (L− T)]. This set
has features in the two ’best’ subspaces that are not in the current subspace
(i.e. S is the set of features the current particle can add to resemble (1) the best
performing previous location of the same particle and (2) the currently best
performing particle in the whole swarm). If the space is empty, the particle
would move to the space S = [(G − T) ∪ (L − T)]. To compensate for any
newly added features from S, the algorithm removes a set B = [T − (G ∩

7.2. RED-PSO Description 115

L)] of features in T that are not among the good particles and may have
contributed to a lower performance (i.e. B is a set of features that are not in
the well-performing particles (types) and thus may be irrelevant to the current
concept).

The velocity of each particle (i.e. how fast a particle moves towards local
and global optima) is calculated as follows. If the difference (distance) be-
tween a particle (classification type) and its corresponding space S is greater
than x%, then the maximum velocity of the particle is set to β× 100%, where
β (0 < β ≤ 1) is a constant value (coefficient) different for each layer and
used to add more diversity to the layers (i.e. prevent classification types from
being similar in terms of their features). If the distance between a particle
(classification type) and its corresponding space S is less than x%, then the
particle is moved according to how far it is from the space S (β× d

x), where d
is the distance between each particle and the space S. If |S| > |B|, only B is
used out of S just to maintain the same number of features in a type (i.e. when
the number of features that can be added to S is greater than the number of
features that can be removed from B; B is set to be the upper bound on the
number of features to be added, maintaining the same number of features
from one iteration to the next). In the experiments presented below, the val-
ues for the constant β were arbitrarily set to be 1, 0.7 and 0.4 for the layers 3, 2
and 1, respectively. Hence, the maximum velocity in layer 3 having the low-
est number of features in each type was set to 100%. Similarly, the maximum
velocities for layers 2 and 1 were set to 70% and 40%, respectively.

Algorithm 12 shows how the modified PSO stage works. In addition to
the functions previously introduced in this section, the following functions
are used in this algorithm:

• Update(): update the weight of each layer according to Equation 7.4;

• Update-optimal(): update the layer’s global optimal gbest and each type’s
previous optimal (pbest) using the evaluated accuracy for each type;

• Move(): move each type inside the layer towards its gbest and pbest with
a specified velocity based on its distance (in accuracy) of each type to the
average accuracy of optima (as explained earlier in this section).

PSO is performed in each layer of RED-PSO individually and iterated in
every data block received by the ensemble. As a result, particles (types) inside
each layer of the ensemble move towards gbest and pbest of the same layer
with the specified velocity calculated based on their performance over the

116
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

last data block with known true labels. Note that each iteration in Algorithm
12 starts only after the same data block is processed by Algorithm 11.

Figure 7.1 illustrates the main concepts of RED-PSO. The left triangle in
the figure shows types (closed curves) in each layer and features (dots) in each
type. The right triangle demonstrates how types (particles) move towards a
specific particle (gbest ∩ pbest) with a specific velocity (arrows). The smaller
the classification types are (i.e. having a small number of features), the faster
they move towards optimums (i.e. having a high velocity).

In summary, RED-PSO uses an evolutionary method (RD) to seamlessly
adapt to the concept drifts that are more smooth in nature (such as grad-
ual and incremental concept drifts) by increasing the size of well-performing
types and reducing the number of trees of poor-performing types. At the same
time, it uses a modified version of PSO to optimise the combination of fea-
tures in each layer individually, which is suitable for coping with more imme-
diate concept drifts (such as abrupt and recurring concept drifts) that usually
take longer to adapt to using the state-of-the-art methods. Finally, having
three layers of different types built using different parameters, such as the
number of types (m) and number of features (n) in each type, can help the al-
gorithm to be less sensitive to drifting features by minimising their effects on
each layer.

Algorithm 12: MODIFIED PSO OPTIMISATION

Input: Continuous block of data DB ={db1,db2,..,dbn}
Randomly drawn subspaces (types) for each layer, Tl ={t1,t2,..,tm}
W ={w1,w2,w3} /* initial weight for each layer*/
Output: New set of types, Tl ′ ={t1′,t2′,..,tm′}

1 i := 1 while data stream is not empty do
2 Classify(dbi)
3 for l := 1 to l := 3 do
4 Evaluate(Tl)
5 Update-optimal(gbest)
6 for j := 1 to j := m do
7 Evaluate(tj)
8 Update-optimal(pbest)
9 Move(tj) /*move to gbest/pbest according to its velocity */

10 Update(wl) /*update the weight of each layer*/

7.3. Experimental Study 117

7.3 Experimental Study

This section provides the details of the experiments conducted to investigate
the performance of the proposed method in this chapter. We introduce dif-
ferent variations of RED-PSO along with their parameters and computational
complexity. Different variations are then compared with each other and the
best performing variation is compared with the state-of-the-art algorithms
in non-stationary data stream classification tasks. Eventually, the results are
statistically analysed and discussed thoroughly. It is worth mentioning that
the details necessary for conducting the experiments in this thesis (e.g. ex-
perimental settings, compared methods, evaluation runs, datasets, etc.) are
discussed in Chapter 4.

In addition to the methods mentioned in Chapter 4 as the comparing
methods and providing the fact that RED-PSO is designed to deal with all
types of concept drifts, two more state-of-the-art methods, namely ADOB [40]
and Learn++.NSE [60] are also included in the experimental study for this
chapter.

7.3.1 RED-PSO Variations and Parameter Tuning

We compared the following five different variations of RED-PSO to evaluate
the effect of its different characteristics and discuss the impact of employing
different parameters.

RED1 uses the proposed three-layer architecture, along with RD to grow
well-performing types and shrink poor-performing ones; it does not use PSO.
The following parameters were employed for each layer in this variation:
Layer1 ⇒ m = 0.3× f and n = 0.7× f ; Layer2 ⇒ m = 0.5× f and n =

0.5× f ; Layer3⇒ m = 0.7× f and n = 0.3× f .
RED2 is the same as RED1 but with the following parameters: Layer1⇒

m = 0.5 × f and n = 0.5 × f ; Layer2 ⇒ m = 0.3 × f and n = 0.7 × f ;
Layer3⇒ m = 0.1× f and n = 0.9× f .

RED-PSO1 is the same as RED1 but also includes PSO and the following
additional parameter for the threshold of the maximum velocity (x): x = 2%.

RED-PSO2 is the same as RED2 but also includes PSO and the following
additional parameter for the threshold of the maximum velocity (x): x = 4%.

RED-PSO3 is the same as RED2 but also includes PSO and the following
additional parameter for the threshold of the maximum velocity (x): x = 2%.

Other general parameters for all variations of RED-PSO tested in the ex-
periments are listed in Table 7.1, where D denotes the number of instances in

118
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

TABLE 7.1: General parameters used in the experiments for all
variations of RED-PSO.

D min max β1 β2 β3 W1 W2 W3
1000 1 10 1.0 0.7 0.4 1 2 4

each data block, min/max denotes the minimum/maximum number of clas-
sifiers (trees) in each classification type, βi denotes the diversity coefficient
used for ith layer and wi denotes the initial weight assigned for ith layer.

7.3.2 Computational Complexity

Assuming the number of classes c, number of features in each classification
type p, maximum number of values per feature v and maximum number of
trees in the ensemble k, no more than p features are considered in a single
Hoeffding tree [44]. Each feature at a node requires computing v values.
Since calculating information gain requires c arithmetic operations, the cost
of k Hoeffding trees at each time-step (iteration) in the worst case scenario is
O(kcpv). Given the number of all classification types in the ensemble m and
the fact that RD uses m arithmetic operations to calculate payoffs, the cost of
applying RD to the ensemble is only O(m). Hence, the computational com-
plexity of RED1 and RED2 variations (deploying Hoeffding trees along with
RD) is O(m + (kcvp)). Furthermore, assuming that the number of classifica-
tion types in each layer of the ensemble is mi (1 ≤ i ≤ 3) and the number
of iterations for each data block is 1, the PSO optimisation procedure uses
m1 + m2 + m3 arithmetic operations in each time-step. Therefore, the com-
putational complexity of RED-PSO variations (RED-PSO1, RED-PSO2 and
RED-PSO3) of the proposed framework is O(m + (kcvp) + m1 + m2 + m3).

In summary, the procedure of reading, processing and classifying data in
RED-PSO is as follows. Once a new block of data has been filled up to its
full capacity (d = 1000 instances in this case), the system starts reading and
classifying the instances in a synchronous manner using all current classi-
fiers in the ensemble. Since each processing layer of RED-PSO has a specific
weight assigned to its classifiers, the majority voting takes place to determine
the predicted class of each instance. Once the real labels of all instances in a
data block are received, the classifiers inside each layer start moving based
on the local and global optimum values according to the optimisation proce-
dure described above. Finally, in the evaluation step, the weights of all layers
are updated based on their performance over the last data block.

7.3. Experimental Study 119

7.3.3 Results and Discussion

All algorithms are compared using standard criteria, namely, the prequential
accuracy in the immediate and delayed settings, Kappa M (comparison with
a majority-class classifier) and overall execution time (including the time of
making predictions, training and evaluating the ensemble). The first set of
experiments is related to comparing different RED-PSO variations to under-
stand the effects of using different mechanisms and parameters such as the
modified versions of RD and PSO.

Comparison of the Different RED-PSO Variations

Figures 7.2 and 7.3 (Tables C.1 and C.2 in Appendix C) illustrate the average
accuracy of all RED-PSO variations over the nine datasets in the immediate
and delayed settings. It is clear that the PSO-optimised variations (RED-
PSO1, RED-PSO2 and RED-PSO3) perform better than the RD-only varia-
tions (RED1 and RED2). This is because the former variations include an
additional optimisation technique to move all types in each layer towards the
best possible spaces (gbest and pbest) in the same layer. This enables the sys-
tem to optimise the combination of features in every type according to the
time and most recent data received by the system, especially upon concept
drifts. RED-PSO3 has the best average accuracy over the Hyperplane, RTG,
SEA, KDDcup, Airlines and Forest Cover-type datasets, and the best overall
average accuracy in both the immediate and delayed settings.

Figure 7.4 illustrates the average accuracy (throughout all datasets) of all
RED-PSO variations in both the immediate and delayed settings. It is clear
that the RED-PSO3 variation has the best average accuracy in both the im-
mediate and delayed settings.

Figure 7.5 (Table C.3 in Appendix C) shows the execution time of different
RED-PSO variations in the immediate setting (the variability of the execution
times between the immediate and delayed settings is negligible). It is clear
that the variations without PSO optimisation are faster than the ones with it
due to the time complexity of PSO being added to the ensemble. The RED2
variation has the shortest execution time over seven out of nine datasets com-
pared to the other variations used in the experiments, while RED-PSO2 and
RED-PSO3 have the longest execution time for the majority of the datasets.

120
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

FIGURE 7.2: Average accuracy of the different RED-PSO vari-
ations over the considered nine datasets in the immediate set-

ting.

FIGURE 7.3: Average accuracy of the different RED-PSO varia-
tions over the considered nine datasets in the delayed setting.

Comparison With Other Methods

The second set of experiments involves comparing seven different state-of-
the-art methods to the best performing RED-PSO variation, namely, RED-
PSO3. Tables 7.2 and 7.3 list the average accuracy scores and their standard
deviation, minimum and maximum values of RED-PSO3 compared to that

7.3. Experimental Study 121

FIGURE 7.4: Average accuracy (%) of the RED-PSO variations
in the immediate and delayed settings.

FIGURE 7.5: Average time (in seconds) of executing the RED-
PSO variations over the considered nine datasets in the imme-

diate setting.

of the considered state-of-the-art methods over all datasets. Note that the
minimum, maximum, average and standard deviation of the accuracies are
based on the 10 different evaluation runs (each evaluation run has its specific
accuracy) that are conducted for each method. More information on different
evaluation runs for each data stream is provided in Section 4.2.

It can be noticed that RED-PSO3 has the best average accuracy over the
Hyperplane, LED, Airlines, Electricity and Poker-hand datasets in both the

122
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

TABLE 7.2: Average accuracy (%) scores and their standard de-
viation, minimum and maximum values of RED-PSO3 and the
compared methods in the immediate setting. Bold values indi-

cate the best performance for each dataset.

Dataset Criteria ARF DWM LevBag OAUE OSBoost Learn++ ADOB RED-
PSO3

Hyper. Ave.(%) 88.17 89.64 91.03 91.42 85.85 87.2 49.54 92.54
σ(%) 1.90 0.83 1.60 1.46 3.01 2.81 7.39 2.56
Min(%) 85.96 88.45 88.92 89.66 81.80 86.51 53.37 89.60
Max(%) 91.31 90.94 93.54 93.63 89.87 89.72 47.32 95.01

LED Ave.(%) 74.05 75.05 74.22 73.99 74.15 68.28 11.70 76.29
σ(%) 0.31 3.10 0.31 0.10 0.11 1.05 3.53 3.09
Min(%) 73.58 73.86 73.93 73.89 74.05 67.58 9.28 74.01
Max(%) 74.45 83.83 74.52 74.09 74.26 69.05 13.55 79.87

RTG Ave.(%) 78.35 59.35 90.78 88.88 93.40 56.68 92.40 91.09
σ(%) 8.12 8.87 2.26 3.26 1.45 8.26 1.84 1.59
Min(%) 65.86 48.26 87.38 83.39 90.63 52.46 90.77 89.92
Max(%) 88.03 73.86 93.72 92.56 95.24 60.05 93.61 93.51

SEA Ave.(%) 88.67 87.72 87.59 88.69 85.56 74.90 71.75 89.50
σ(%) 0.58 0.57 1.67 0.58 0.35 1.84 3.18 0.80
Min(%) 88.40 87.18 85.41 88.13 85.25 73.00 68.91 88.95
Max(%) 89.55 88.26 89.28 89.25 85.86 76.73 73.65 90.45

Airlines Ave.(%) 63.53 63.97 59.42 64.02 61.98 60.50 46.98 66.98
σ(%) 1.23 0 0.73 0 0 0 0 2.15
Min(%) 62.08 63.97 58.45 64.02 61.98 60.50 46.98 64.11
Max(%) 65.46 63.97 60.62 64.02 61.98 60.50 46.98 68.86

Electricity Ave.(%) 92.17 75.73 92.09 91.60 88.02 71.53 72.70 92.96
σ(%) 0.94 0 1.48 0 0 0 0 0.86
Min(%) 90.45 75.73 89.56 91.60 88.02 71.53 72.70 92.03
Max(%) 93.19 75.73 93.70 91.60 88.02 71.53 72.70 93.61

Forest Ave.(%) 93.57 83.75 92.73 90.70 84.45 89.69 21.59 91.71
σ(%) 1.58 0 2.10 0 0 0 0 2.59
Min(%) 91.11 83.75 89.45 90.70 84.45 89.69 21.59 89.67
Max(%) 95.09 83.75 95.40 90.70 84.45 89.69 21.59 93.89

KDDcup Ave.(%) 99.81 99.04 99.82 99.80 99.74 27.55 99.88 99.80
σ(%) 0.06 0 0.01 0 0 0 0 0.02
Min(%) 99.74 99.04 99.80 99.80 99.74 27.55 9.88 99.78
Max(%) 99.91 99.04 99.83 99.80 99.74 27.55 9.88 99.83

Poker Ave.(%) 84.19 74.37 88.52 80.74 84.31 63.41 69.64 89.89
σ(%) 4.55 0 3.34 0 0 0 0 3.94
Min(%) 80.08 74.37 84.67 80.74 84.31 63.41 69.64 85.91
Max(%) 90.06 74.37 93.56 80.74 84.31 63.41 69.64 92.03

immediate and delayed settings and the best accuracy over SEA in the im-
mediate setting.

Figure 7.6 illustrates the average accuracy (across all datasets) of RED-
PSO3 compared to other state-of-the-art methods in both the immediate and
delayed settings. It is evident that RED-PSO3 has the best average accuracy
in both settings. Therefore, it can be concluded that RED-PSO3 has the most
consistent performance compared to that of the other methods for different
data streams. This is opposed to the ADOB algorithm that has a drastically
weak performance over the LED and Forest Cover-type datasets, whereas it
has the best performance over the KDDcup99 dataset. One possible expla-
nation for the more stable performance of the proposed method is that in
RED-PSO3, different strategies are adopted for different environments and
concept drifts using the three layers and their dynamic weights during PSO

7.3. Experimental Study 123

TABLE 7.3: Average accuracy (%) scores and their standard de-
viation, minimum and maximum values of RED-PSO3 and the
compared methods in the delayed setting. Bold values indicate

the best performance for each dataset.

Dataset Criteria ARF DWM LevBag OAUE OSBoost Learn++ ADOB RED-
PSO3

Hyper. Ave.(%) 88.05 89.41 90.77 91.10 85.74 86.84 49.54 91.48
σ(%) 2.02 0.95 1.71 1.59 3.06 2.76 8.06 2.93
Min(%) 85.56 88.25 88.60 89.21 81.70 83.99 42.80 88.90
Max(%) 91.35 90.86 93.37 93.55 89.78 89.45 54.29 94.39

LED Ave.(%) 74.00 74.14 74.21 74.06 74.13 67.80 10.10 75.91
σ(%) 0.40 0.16 0.15 14.00 0.04 1.51 0.89 2.74
Min(%) 73.42 73.99 74.07 73.74 74.02 65.00 9.03 72.27
Max(%) 74.49 74.30 74.36 74.19 74.17 69.59 12.61 77.32

RTG Ave.(%) 78.24 59.49 90.91 88.72 85.53 56.28 87.80 89.81
σ(%) 8.06 8.64 2.48 5.13 2.90 6.90 2.32 2.40
Min(%) 65.81 47.16 86.94 82.17 81.17 49.61 84.53 86.29
Max(%) 87.92 73.73 93.49 92.47 88.70 59.98 90.19 92.01

SEA Ave.(%) 88.94 87.48 88.70 88.54 85.31 74.75 70.75 88.80
σ(%) 0.59 1.02 1.45 0.70 0.42 1.91 2.12 1.61
Min(%) 88.28 86.01 86.89 87.81 84.92 71.03 67.55 86.24
Max(%) 89.51 88.21 90.32 89.21 85.91 76.86 74.43 90.01

Airlines Ave.(%) 61.42 60.57 58.49 62.73 61.80 50.58 46.98 64.54
σ(%) 1.12 0 0.89 0 0 0 0 2.51
Min(%) 61.22 60.57 57.03 62.73 61.80 50.58 46.98 60.96
Max(%) 63.32 60.57 59.65 62.73 61.80 50.58 46.98 67.91

Electricity Ave.(%) 83.51 67.43 81.78 80.20 79.04 56.60 65.81 84.18
σ(%) 1.19 0 0.88 0 0 0 0 1.11
Min(%) 81.78 67.43 80.54 80.20 79.04 56.60 65.81 81.79
Max(%) 84.80 67.43 83.00 8020 79.04 56.60 65.81 86.57

Forest Ave.(%) 85.65 74.93 86.22 86.84 74.47 87.42 16.59 86.19
σ(%) 2.60 0 2.72 0 0 0 0 1.99
Min(%) 83.67 74.93 83.02 86.84 74.47 87.42 16.59 83.70
Max(%) 90.49 74.93 89.50 86.84 74.47 87.42 16.59 88.37

KDDcup Ave.(%) 99.80 99.12 99.81 99.78 99.74 31.68 99.88 99.77
σ(%) 0.07 0 0.01 0 0 0 0 0.02
Min(%) 99.72 99.12 99.79 99.78 99.74 31.68 99.88 99.74
Max(%) 99.90 99.12 99.83 99.78 99.74 31.68 99.88 99.81

Poker Ave.(%) 67.95 59.31 76.78 73.81 81.23 63.87 55.11 81.89
σ(%) 2.92 0 3.72 0 0 0 0 2.16
Min(%) 64.94 59.31 70.51 73.81 81.23 63.87 55.11 79.15
Max(%) 73.29 59.31 79.34 73.81 81.23 63.87 55.11 83.03

optimisation.
The next step in our comparison is the evaluation of the classification per-

formance according to KappaM statistic, which is a robust inter-rater agree-
ment for qualitative items. Table 7.4 lists the average KappaM values for the
RED-PSO3 and other state-of-the-art methods in the delayed setting. The
proposed RED-PSO3 variation has the best performance over the Hyper-
plane, SEA, Airline and Poker-hand datasets and the highest average KappaM

value. Taken together, these results demonstrate that the majority of the
agreements in the ensemble did not occur by chance.

Figure 7.8 (Table C.4 in Appendix C) shows the execution time of RED-
PSO compared to that of the other state-of-the-art methods in the immediate
setting. Since the execution time values in the delayed setting are similar to
those in the immediate setting, respectively, we only show the results for

124
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

FIGURE 7.6: Average accuracy of the RED-PSO3 and other
state-of-the-art methods over the considered nine datasets in
the immediate (blue bars) and delayed (orange bars) settings.

the immediate setting. According to the experimental results, DWM and
OSBoost algorithms have the shortest execution time by far for the major-
ity of the datasets (DWM over the SEA, Airlines, Electricity and Poker-Hand
datasets, and OSBoost over the Hyperplane and LED datasets), while the
ADOB method has the longest execution time over four out of nine datasets
(RTG, Airlines, Electricity, Forest Cover-type and Poker-Hand). According
to the overall execution times of different methods, ADOB and Learn++ are
the most time consuming methods by far comparing to the other six methods
(by more than 10,000 s). Apart from the high execution times of Learn++ and
ADOB, the proposed method (RED-PSO3) has the longest overall execution
time compared to that of the other methods (by about 1000 s compared to the
ARF method which is the next slowest method). It seems possible that this
is due to having three different layers of optimisation running in parallel in
RED-PSO. It is worth noting that given the design of our proposed classifi-
cation system, the three optimisation layers can greatly benefit from parallel
processing, as they operate independently when optimising the classification
types. This can potentially provide a multi-fold speed-up of the system.

Performance Over Different Types of Concept Drifts

We added different types of concept drifts to the datasets generated by the
SEA data stream generator and compared the prequential performance of the
considered algorithms in each case. Details on how different concept drifts

7.3. Experimental Study 125

FIGURE 7.7: Classification accuracy of the RED-PSO3 and other
state-of-the-art methods over the SEA dataset upon different
types of concept drifts in the delayed setting. The red boxes

indicate the length and location of the added concept drifts.

126
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

TABLE 7.4: KappaM statistic of the RED-PSO3 and other state-
of-the-art methods in the delayed setting. Bold values indicate

the best performance for each dataset.

Dataset ARF DWM Lev-
Bag

OAUE OS-
Boost

Learn-
++

ADOB RED-
PSO3

Hyper. 75.45 78.24 81.03 81.7 70.69 72.63 -4.87 81.19
LED 71.03 70.85 70.86 70.76 70.84 64.71 -2.06 70.99
RTG 66.89 35.84 85.10 81.98 76.87 40.52 82.89 80.98
SEA 72.01 68.57 70.81 71.95 60.55 43.78 36.61 73.11
Airlines 13.14 9.06 4.4 13.96 11.91 -13.60 -24.27 15.80
Elec. 67.44 30.19 60.38 57.60 55.03 7.06 26.77 65.21
Forest 46.92 0.58 35.68 65.51 6.72 32.25 -341.3 32.49
KDDcup 99.45 97.99 99.59 99.50 99.41 -57.12 99.72 99.43
Poker 24.63 -7.06 51.15 36.47 54.38 5.99 -11.77 57.3

FIGURE 7.8: Average time (in seconds) of executing the RED-
PSO3 and other state-of-the-art methods over the considered

nine datasets in the immediate setting.

were added to the data streams are discussed in Chapter 4.2. The reason for
choosing a synthetic dataset for these experiments is that the exact time and
actual type of concept drifts present in real-world data streams often remain
unknown.

Figure 7.7(a) illustrates how different methods adapt to an abrupt drift
with a width of 1 at an instance number of 200K. It is evident that RED-
PSO3 has the highest accuracy value right after the concept drift happens.
Furthermore, RED-PSO3 recovers from the introduced concept drift faster
than the other methods, whereas LevBag and OSBoost fail to recover from

7.3. Experimental Study 127

the concept drift in a timely manner. Figure 7.7(b) illustrates the case when
a gradual drift was added with a width of 10K. It can be noticed from the
figure that all methods except OSBoost fully recovered right after the drift is
over. This result suggests that in the case of gradual concept drifts, OSBoost
may take a long time to have a full recovery. Figure 7.7(c) illustrates the
behaviour of the methods upon a recurrent drift with a width of 1. Again,
RED-PSO3 has the lowest accuracy drop compared to the other methods. At
the same time, it struggles to fully recover from the drift initially. In this case,
the ARF method adapts to the introduced concept drift faster than the other
methods. Furthermore, ADOB and Learn++ demonstrate a drastic decrease
in accuracy and fail to recover from the drift in a timely manner. Finally,
Figure 7.7(d) illustrates the case when a recurrent drift was added with a
width of 10K at an instance number of 795K. It is evident that the accuracy
of all algorithms did not change drastically upon the drift. It is worth noting
that both ADOB and Learn++ still struggled to adapt to the previous concept
drift introduced at an instance number of 600K. A possible explanation may
be that their concept drift detectors fail to detect the drift.

In summary, according to the experimental results, the main advantage
of RED-PSO3 is its accuracy and robust performance. In particular, the pro-
posed method demonstrated the best average rank and consistent perfor-
mance compared to the other state-of-the-art methods in both the immediate
and delayed settings and upon introducing different types of concept drifts.
The main drawback of RED-PSO3 is its execution time. While the overall
execution time of the proposed method is not the longest among all consid-
ered state-of-the-art methods, it is relatively long, especially over the datasets
with a high number of features such as Forest Cover-type. This is due to the
fact that the number of classifiers in the ensemble increases with the number
of features in the target data stream. Furthermore, the adoption of an evo-
lutionary algorithms (RD) along with a bio-inspired optimisation algorithm
(PSO) in RED-PSO leads to a high computational complexity of the system.
To overcome these limitations, other variations of RED-PSO such as RED1
and RED2 can be used in case of high-dimensional and time-restricted ap-
plications. Furthermore, parallel processing can be applied to speedup the
execution time of RED-PSO.

128
Chapter 7. RED-PSO: REplicator Dynamics & Particle Swarm Optimisation

Approach to Adaptive Data Stream Classification

TABLE 7.5: Average rank of the RED-PSO3 and other state-of-
the-art methods according to the Friedman test.

Dataset ARF DWM Lev-
Bag

OAUE OS-
Boost

Learn-
++

ADOB RED-
PSO3

Rj 3.833 5.333 3.167 3.528 4.889 6.722 6.500 2.028
R2

j 14.694 28.444 10.028 12.445 23.901 45.188 42.250 4.111

7.3.4 Statistical Analysis

The Friedman test [87] is a popular non-parametric statistical test that can be
used to detect differences across several algorithms in multiple test attempts
(e.g. datasets).

Table 7.5 shows the average rank of each algorithm considered in our
experiments and their squared values with k = 8 and N = 18 since the
total number of methods is eight and the total number of datasets in both the
immediate and delayed settings is 18 (9 + 9). Providing that the value of the
Friedman test statistic is χ2

F = 57.18 with 7 (k − 1) degrees of freedom, and
the critical value for the Friedman test given k = 8 and N = 18 is 18.48 at
a significance level of α = 0.01, we can conclude that the accuracy values of
the studied methods are significantly different (57.18 is greater than 14.63).

Now that the Null-hypothesis is rejected, we can proceed with a post-hoc
test. The Nemenyi test [89] can be used when all classifiers are compared to
each other [88].

The critical value in our experiments with k = 8 and α = 0.10 is CD0.10 =

1.805. As a result, the accuracy of the proposed RED-PSO3 method is signifi-
cantly different from that of the DWM, OSBoost, Learn++ and ADOB meth-
ods, while it is not significantly different from that of the LevBag, OAUE and
ARF methods. Figure 7.9 illustrates the statistical comparison of the methods
considered in the experiments based on the Nemenyi test.

7.4 Summary

In this chapter, we proposed a novel ensemble learning method called RED-
PSO to seamlessly adapt to different concept drifts when performing classi-
fication tasks in non-stationary data streams. RED-PSO is based on a three-
layer architecture to produce classification types of different size created by
randomly selecting features from a pool of features of the target data stream.
RD is used in RED-PSO to seamlessly adapt to different concept drifts, while

7.4. Summary 129

FIGURE 7.9: Comparison of the RED-PSO3 and other state-of-
the-art methods using the Nemenyi test at α = 0.10.

a modified version of PSO is applied to optimise the combination of features
in each classification type in all layers.

A set of experiments was conducted to compare the performance of the
different RED-PSO variations and that of the best-performing variation (RED-
PSO3) to some state-of-the-art algorithms over five real-world and four syn-
thetic data streams using the immediate and delayed prequential evaluation
methods. According to the experimental results, RED-PSO3 has the low-
est rank and highest average accuracy compared to those of the other RED-
PSO variations and considered state-of-the-art methods. Using the Friedman
statistical test, it was shown that the accuracy values of the studied meth-
ods were significantly different. Furthermore, according to the Nemenyi
test, the accuracy of RED-PSO3 was significantly different from four out of
seven compared methods (DWM, Learn++, ADOB and OSBoost), while it
was not significantly different from the other three methods (LevBag, OAUE
and ARF). The main drawback of RED-PSO is its long overall execution time
in the case when the target data stream has a high number of features, which
can be addressed in the future by parallelising the optimisation of the three
layers providing that they operate independently.

By presenting RED-PSO in this chapter, we address the final objective of
this thesis (see Section 1.4). Providing that all four objectives are addressed
in Chapters 2, 5, 6 and 7, respectively, the next chapter summarises the work
presented in this thesis and draws conclusions. It contains a brief description
of the novel methods proposed in this thesis and points out several important
directions for future research.

131

Chapter 8

Conclusion and Perspectives

This thesis studies the impact of applying metaheuristic methods to address
the main challenges in non-stationary data stream classification tasks. The
aims and objectives identified in the thesis are mainly concerned with study-
ing the state-of-the-art methods and proposing novel metaheuristic methods
to improve the performance of the existing approaches, offer efficient ways
of deploying metaheuristic algorithms and optimise the adaptation process
by balancing out the exploration and exploitation of metaheuristics.

Chapter 1 presents an introduction to data stream mining tasks and the
main challenges in this area of research. This is followed by stating the iden-
tified research gaps, as well as the aims and objectives recognised for this
thesis. Chapter 2 addresses the first objective outlined in Section 1.4. In par-
ticular, the chapter discusses the existing ensemble-based methods for non-
stationary data stream classification tasks and presents an analytical study on
ensemble dynamics of these classification methods. After a thorough anal-
ysis of the existing methods, it has become clear that there is lack of a com-
prehensive approach that is (1) able to cope with different types of concept
drifts; (2) resistant to noise and false alarms; and (3) has a fast adaptation
mechanism (reaction) to all types of concept drifts. Hence, this thesis focuses
on overcoming these limitations.

Chapter 3 reviews the necessary background and theoretical explanation
of the algorithms employed in the novel methods proposed in this thesis.
Chapter 4 discusses the necessary details for conducting the experiments in
this thesis. In particular, the experimental settings are described and different
methods and datasets involved in the experiments are introduced along with
a description of how each evaluation run is conducted.

The second objective of this thesis is addressed in Chapter 5 by proposing
the EACD method using a modified version of two evolutionary algorithms,
namely, RD and GA. This approach is extended in Chapter 6 resulting in
a novel algorithm called RED-GENE to achieve the third objective outlined

132 Chapter 8. Conclusion and Perspectives

in this thesis. The final objective of this thesis is addressed in Chapter 7 by
proposing a three-layer architecture and employing modified versions of two
metaheuristic algorithms, namely, RD and PSO. A reflection on how the ob-
jectives of this work have been achieved is provided in the following section.

Overall, we conclude the thesis by presenting (1) a summary of the re-
search carried out in this thesis; (2) a comparison of the novel algorithms
proposed to achieve the objectives of the thesis; and (3) a discussion of some
future directions and perspectives of the contributions of this thesis.

8.1 Summary

Data stream mining has been a growing area of research in recent years due
to the advancements of modern digital technologies such as the IoT, social
media networks, fraud detection and predictive systems and World Wide
Web. The main challenge in this area of research is the ability to cope with
the changing behaviour of data in real-world applications. This changing
behaviour is caused by the presence of concept drifts, which can be defined
as unforeseen changes in the data distribution of a data stream. Ensemble
learning techniques using a pool of classifiers have proved superiority over
single classifier techniques when addressing this challenge [13].

Despite the current progress in solving non-stationary data stream classi-
fication problems, to the best of our knowledge, there is a lack of a ubiquitous
classification algorithm meeting the following requirements:

• performing effectively over various data streams with different number
of features;

• seamlessly adapting to different types of concept drifts such as gradual,
abrupt, incremental and recurrent in a timely manner;

• combining exploitation and exploration approaches when dealing with
the dynamic nature of data streams;

• offering different variations of the same processing method in the pres-
ence of certain limitations such as time or memory constraints.

To understand different mechanisms developed so far for adapting to
concepts drifts and identify a research gap within the area of stream mining,
the state-of-the-art ensemble learning techniques were first comprehensively

8.1. Summary 133

studied to achieve the first objective of this thesis: “study the state-of-the-
art algorithms for non-stationary data stream classification tasks and ex-
plore different mechanisms to cope with current challenges in such tasks”.
This study then inspired the core idea of this thesis to use metaheuristic
methods for analysing non-stationary data streams. In particular, we believe
that metaheuristic methods can offer a natural solution to the changing be-
haviour of non-stationary data streams due to the known characteristics of
these methods such as self-replication, self-tolerance, reproduction, evolu-
tion, adaptation, learning and growth [18]. However, in their canonical form,
metaheuristic methods can only work with stationary datasets collected in
advance. Hence, their adaptation to processing evolving data streams arriv-
ing continuously in real-time is required.

Consequently, in Chapter 5, we proposed our first novel method called
EACD to address the second objective of this thesis: “use evolutionary al-
gorithms to propose a novel ensemble learning technique for concept drift
adaptation in data streams”. EACD has a two-layer architecture and em-
ploys ensemble learning to train an ensemble of different classification types
consisting of randomly drawn features (subspaces) of the target data stream.
These randomly drawn subspaces are grown and shrunk in the first layer of
EACD using a modification of the RD algorithm. Furthermore, the combina-
tion of features selected for each classification type is optimised in the second
layer of EACD using a modification of GA to cope with different concept
drifts over time. This solution allows the ensemble to handle different types
of concept drifts: RD helps dealing with more gradual (hard to detect) con-
cept drifts, while GA helps dealing with more abrupt (easy to detect) concept
drifts.

Next, RED-GENE was presented in Chapter 6 to address the third ob-
jective of this thesis, namely, “propose efficient ways of deploying evolu-
tionary algorithms for performing non-stationary data stream classification
tasks”. RED-GENE was built based on the EACD method. Both methods
employ the same approach to creating different classification types and a GA
optimisation technique. However, in contrast to RED-GENE, only the most
basic modified version of RD proposed for processing streaming data was
used in EACD. RED-GENE improves the EACD method by offering the fol-
lowing further contributions: (1) proposing three different modified versions
of RD to accelerate the concept drift adaptation process; (2) improving the
classification accuracy for the majority of the considered experimental cases;
and (3) reducing the running time of the algorithm by generating a lower

134 Chapter 8. Conclusion and Perspectives

number of types while improving the total accuracy.
Finally, the last objective of this thesis, that is, “optimise the metaheuris-

tic solutions for non-stationary data stream classification by balancing out
the exploration and exploitation of metaheuristics” was achieved in Chap-
ter 7 by proposing a novel RED-PSO method. RED-PSO has a three-layer
architecture; each layer is initially assigned some predefined classification
types randomly created from a pool of features of the target data stream. Sim-
ilar to EACD and RED-GENE, RED-PSO employs RD to seamlessly adapt to
smooth (i.e. gradual or incremental) concept drifts. However, unlike the first
two proposed methods, RED-PSO further applies a modified version of PSO
to each of its layers individually to optimise the combination of features in all
classification types. In this way, both exploration and exploitation are prac-
tised in the search space by moving particles (classification types) towards
local and global optima.

8.2 Comparison among the Proposed Methods

The proposed EACD, RED-GENE and RED-PSO methods are individually
compared to the state-of-the-art methods for non-stationary data stream clas-
sification in Chapters 5, 6 and 7, respectively. It was demonstrated that the
proposed method offer significant contributions to the area of data stream
mining as they allow to efficiently adapt to all types of concept drifts. In
this section, we compare the results of EACD, RED-GENE and RED-PSO to
analyse and discuss how each algorithm addressed the identified objectives
of this thesis. The experimental settings for the analysis presented in this
section are detailed in Section 5.3 and the adopted parameters for each algo-
rithm are the same as discussed in each of the respective chapter.

Figure 8.1 shows the average accuracy (in %) of the three proposed meth-
ods over the nine datasets specified in Section 4.2 in the immediate setting.
According to the results, RED-GENE performs the best over the Hyperplane,
LED, RTG, Forest cover-type and Poker-hands datasets, while RED-PSO per-
forms the best over the Arilines, Electricity and KDDcup99 datasets and
EACD performs the best over the SEA dataset.

Figure 8.2 shows the average accuracy (in %) of the three proposed meth-
ods over the same datasets in the delayed setting. In can be noticed from the
figure that RED-GENE performs the best over the Hyperplane, LED, Forest
cover-type and Poker-hand datasets, RED-PSO performs the best over the

8.2. Comparison among the Proposed Methods 135

FIGURE 8.1: Accuracy of the proposed methods in the immedi-
ate setting.

Airlines and KDDcup99 datasets and EACD performs the best over the SEA,
RTG and Electricity datasets.

Figure 8.3 shows the overall time (in seconds) of executing the proposed
methods over the same nine datasets in the immediate setting. It is clear
that RED-PSO is the most time-efficient method compared to the other two
methods, with RED-GENE being more time-efficient than EACD.

8.2.1 Discussion

As can be observed from Figures 8.1, 8.2 and 8.3, each of the proposed meth-
ods in this dissertation has its strengths towards concept drift adaptation
in non-stationary data stream classification. The advantage of each method
can be studied further by taking into consideration the characteristics of data
streams used in the experiments. The datasets used in this thesis are intro-
duced in Section 4.2.

The concept drifts in the SEA dataset are manifested in having some fea-
tures become irrelevant. As can be seen from Figures 8.1 and 8.2, EACD
can outperform any other methods over this dataset, because of its active
addition and deletion of classifiers periodically. This is needed for a quick re-
covery of this type of concept drifts because irrelevant features can be taken
off the new classifiers (decision trees) and replaced by classifiers that do not
model any irrelevant features.

136 Chapter 8. Conclusion and Perspectives

FIGURE 8.2: Accuracy of the proposed methods in the delayed
setting.

FIGURE 8.3: Overall time (in seconds) of executing the pro-
posed methods over the considered nine datasets in the imme-

diate setting.

8.2. Comparison among the Proposed Methods 137

Furthermore, in the Hyperplane dataset that the concept drifts are mostly
abrupt with various severity, the RED-GENE method outperforms other meth-
ods in both immediate and delayed settings. As this method uses a concept
drift detection mechanism and abrupt concept drifts can be easily detected
by concept drift detectors, the RED-GENE allows a quick adaptation proce-
dure using GA and its dynamic RD modifications.

Moreover, when the target data stream contains more noisy data such as
in Airlines dataset, RED-PSO can outperform any other methods as shown in
Figures 8.1 and 8.2. The reason for this is due to its capability of investigating
both exploration and exploitation aspects of the search space and also its
implicit mechanism towards concept drifts that makes this method resistant
to false alarms.

By comparing the results of the proposed methods in the immediate and
delayed settings, it can be concluded that while EACD performs the best over
only one dataset in the immediate setting (over SEA dataset), it performs
the best over three of the datasets (SEA, RTG and Electricity) in the delayed
setting. This demonstrates that the late arrival of instances has less impact
on the accuracy of EACD than it does on the accuracy of RED-GENE and
RED-PSO.

According to the results, RED-GENE being built upon EACD slightly im-
proves its average accuracy for the majority of the datasets. At the same
time, RED-GENE takes less time to execute compared to EACD (about 35
seconds less on average for each dataset). This makes RED-GENE more effi-
cient than EACD and justifies the proposed three different modifications of
RD employed in RED-GENE to satisfy the third objective of this thesis.

Furthermore, it is clear that the RED-PSO method consumes significantly
less time compared to EACD and RED-GENE. This is because RED-PSO is
an implicit classification method that does not use any concept drift detec-
tion methods, while both EACD and RED-GENE are explicit algorithms that
use a concept drift detection method. Moreover, the combinations of fea-
tures in RED-PSO are optimised using PSO, which is less complex compared
to GA employed in RED-GENE and EACD. Since the PSO algorithm takes
into consideration both local optima (exploration aspect) and global optima
(exploitation aspect) of the search space (the combination of features), it can
naturally deal with recurrent concept drifts (when an old concept drift reap-
pears after some time).

138 Chapter 8. Conclusion and Perspectives

TABLE 8.1: Suggested method(s) to utilise for different applica-
tions or environments.

When? (applications/environments) What? (suggested
method)

Feature irrelevance is the main cause of concept
drift

EACD

Concept drifts are mostly abrupt RED-GENE

Concept drifts are mostly gradual or recurrent RED-PSO

The number of features of the target data stream
is higher than 10

RED-GENE

Systematic noise is added to the synthetic data
streams

RED-PSO

The true label of each record is released to the sys-
tem with a delay

EACD & RED-GENE

Time- and memory-constrained applications RED-PSO

Imbalanced data streams (where the ratio of mi-
nority and majority classes differs significantly)

RED-GENE

In summary, each method proposed in this thesis makes a novel contri-
bution towards concept drift adaptation in non-stationary data stream clas-
sification tasks. In particular, EACD improves the performance of the state-
of-the-art ensemble learning methods and suggests the use of evolutionary
algorithms as a natural way for adapting to concept drifts. The different vari-
ations of RD in RED-GENE make novel contributions to both evolutionary
game theory and efficient adaptation to concept drifts in data stream classi-
fication. Finally, RED-PSO makes a novel contribution to mining evolving
data streams by taking into consideration the historical information of the
search carried out for each classification type in the search space (local op-
tima), as well as the information on the best performing classification type
(global optima). This approach helps the ensemble to cope with recurrent
concept drifts in a timely manner and optimise the combination of features
in all classification types.

Based on the results of the experiments presented in Chapters 5, 6 and 7,
along with the method comparison presented in this chapter, a set of sugges-
tions can be formulated regarding when to use each of the proposed meth-
ods. Table 8.1 lists different conditions and suggested method(s) to use for
each one of them.

8.3. Future Directions 139

8.3 Future Directions

The methods proposed in this thesis open the door to new developments
that should be theoretically analysed and practically tested in the future. The
following ideas for future work can be put forward, to mention some:

• detecting the classification types that have not been useful for a long
time in different environments to remove them and eventually make a
room for new, better performing types to be added;

• applying other metaheuristic algorithms such as Simulated annealing
(SA), Ant Colony Optimisation (ACO) and Harmony Search (HS) to
seamlessly adapt to different concept drifts in non-stationary data stream
classification;

• using a different removal mechanism when the maximum number of
trees for a classification type is reached and a classifier (decision tree)
should be removed; e.g. removing the oldest classifier inside the type
instead of removing the worst performing one as proposed in this the-
sis;

• conducting a more in-depth analysis on real-world data streams regard-
ing how different noises/concept drifts effect the performance of the
proposed methods methods.

• proposing a novel concept drift detection algorithm by analysing the
behaviour of the classification types in the RD method.

In conclusion, this thesis takes a step forward and opens up new opportu-
nities for solving non-stationary data stream classification tasks by proposing
hybrid metaheuristic methods that offer a natural solution to this problem.

141

Appendix A

Results of Experiments Presented
in Chapter 5

TABLE A.1: Average accuracy (%) of the EACD variations in the
immediate setting. Bold values indicate the best performance

for each dataset.

Dataset base base2 base3 base4 Imp Imp2 Exp Exp2
Hyper. 86.31 77.47 80.52 84.74 89.23 88.54 90.59 90.53
LED 68.78 63.05 64.12 67.75 74.78 74.02 75.45 75.42
RTG 88.03 79.34 86.34 89.93 91.89 91.23 91.42 91.41
SEA 87.35 82.43 84.56 88.90 87.43 85.78 90.08 90.00
Airlines 62.97 60.09 61.78 62.08 64.37 63.98 66.61 66.60
Elec. 81.01 77.34 80.45 81.76 90.30 90.23 92.14 92.10
Forest 83.56 70.34 80.67 85.83 92.64 91.94 91.73 91.73
KDDcup 98.76 98.67 98.89 99.76 99.76 99.76 99.78 99.79
Poker 80.24 73.45 75.23 79.51 83.45 82.78 86.21 86.17
Overall
Average

82.00 75.80 79.17 82.25 85.98 85.36 87.11 87.08

142 Appendix A. Results of Experiments Presented in Chapter 5

TABLE A.2: Average accuracy (%) of the EACD variations in
the delayed setting. Bold values indicate the best performance

for each dataset.

Dataset base base2 base3 base4 Imp Imp2 Exp Exp2
Hyper. 84.35 75.34 78.23 83.40 88.43 88.05 90.02 89.98
LED 68.17 62.67 64.00 67.69 73.60 73.14 75.26 75.25
RTG 87.16 79.02 84.23 87.92 91.24 90.20 91.05 91.01
SEA 85.94 80.56 82.43 87.38 87.06 85.24 89.22 89.20
Airlines 60.45 56.07 58.12 62.48 62.18 62.56 63.35 63.14
Elec. 74.35 73.67 84.35 75.01 83.32 84.35 85.03 84.97
Forest 79.45 70.34 79.23 80.05 85.90 85.34 84.83 84.80
KDDcup 98.76 98.67 98.84 99.75 99.75 99.76 99.76 99.77
Poker 77.92 70.78 73.37 76.90 78.03 77.45 80.21 79.24
Overall
Average

79.73 74.12 78.09 80.06 83.28 82.90 84.30 84.15

TABLE A.3: Average time (in seconds) of executing the EACD
variations. Bold values indicate the best performance for each

dataset.

Dataset base base2 base3 base4 Imp Imp2 Exp Exp2
Hyper. 189 147 162 195 297 290 349 349
LED 183 143 149 186 419 417 423 420
RTG 233 202 227 251 515 509 607 606
SEA 304 289 293 316 667 663 880 870
Airlines 228 216 220 232 665 659 657 651
Elec. 5.8 4.7 5.1 6.0 9.5 9.5 10.4 10.4
Forest 756 547 694 756 887 860 935 917
KDDcup 305 291 303 319 435 430 536 536
Poker 240 205 225 273 319 317 346 346

TABLE A.4: Average time (in seconds) of executing the EACD
and other state-of-the-art methods in the immediate setting.

Bold values indicate the best performance for each dataset.

Dataset ARF DWM LevBag OAUE OSBoost EACDExp
Hyperp. 208 130 144 107 93 349
LED 188 851 246 227 174 423
RTG 394 195 207 148 1141 607
SEA 751 98 409 139 162 880
Airlines 495 66 531 366 74 657
Elec. 7.73 1.48 5.12 3.05 2.06 10.45
Forest 153 148 206 180 114 935
KDDcup 56 581 130 204 138 536
Poker 167 46 81 66 64 346

143

Appendix B

Results of Experiments Presented
in Chapter 6

TABLE B.1: Average accuracy (%) of the RED-GENE variations
and EACDExp method in the immediate setting over different
datasets. Bold values indicate the best performance for each

dataset.

Dataset RD1 RD2 RD3 RD1Lite RD2Lite RD3Lite RD1+GA RD2+GA RD3+GA EACD
Hyperplane 87.21 87.84 89.26 79.46 78.27 81.20 91.15 90.84 92.84 90.59
LED 74.83 75.69 76.23 70.24 70.16 71.54 76.04 77.24 77.65 75.45
RTG 88.06 88.42 89.05 81.43 82.08 81.93 91.67 91.63 92.03 91.42
SEA 89.30 89.34 89.54 79.21 78.36 79.83 89.23 89.71 89.14 90.08
Airlines 64.32 63.63 64.39 62.81 61.06 61.45 66.89 66.45 66.88 66.61
Electricity 86.91 88.06 89.14 78.35 76.32 79.34 88.45 90.56 91.03 92.14
Forest 85.61 86.43 87.45 75.32 77.02 76.13 89.78 91.03 92.73 91.73
KDDcup99 99.72 99.71 99.75 99.45 99.51 99.19 99.75 99.78 99.78 99.78
Poker 87.49 88.24 87.82 79.24 80.74 81.51 89.65 90.05 90.15 86.21
Overall
Ave.

84.83 85.26 85.85 78.39 78.16 79.12 86.84 87.25 87.98 87.11

TABLE B.2: Average accuracy (%) of the RED-GENE varia-
tions and EACDExp method in the delayed setting over differ-
ent datasets. RD3+GA achieves the highest average accuracy
over five out of nine data sets. Bold values indicate the best

performance for each dataset.

Dataset RD1 RD2 RD3 RD1Lite RD2Lite RD3Lite RD1+GA RD2+GA RD3+GA EACD
Hyperplane 86.94 87.23 88.86 79.53 78.14 80.04 90.52 90.92 92.03 90.02
LED 75.15 75.69 75.23 71.34 70.25 70.93 76.01 76.54 76.73 75.26
RTG 88.06 87.42 87.05 81.30 81.54 81.32 89.44 89.08 90.24 91.05
SEA 87.30 88.34 87.52 78.46 78.03 79.24 88.34 89.24 88.54 89.22
Airlines 63.85 62.03 62.39 61.67 60.78 61.06 65.49 64.34 64.45 63.35
Electricity 81.91 81.20 81.42 75.35 74.20 77.25 83.56 82.90 83.41 85.03
Forest 84.61 85.43 85.83 75.19 76.24 75.50 86.42 86.50 87.19 84.83
KDDcup99 99.73 99.72 99.73 99.46 99.49 99.50 99.74 99.73 99.76 99.76
Poker 80.49 79.53 80.56 77.16 78.42 78.92 82.65 82.10 83.11 80.21
Overall
Ave.

83.12 82.95 83.18 77.71 77.45 78.19 84.69 84.58 85.05 84.30

144 Appendix B. Results of Experiments Presented in Chapter 6

TABLE B.3: Average time of executing the RED-GENE vari-
ations and EACDExp in the immediate setting over different
datasets. Bold values indicate the best performance for each

dataset.

Dataset RD1 RD2 RD3 RD1Lite RD2Lite RD3Lite RD1+GA RD2+GA RD3+GA EACD
Hyperplane 181 180 181 134 136 136 360 352 358 349
LED 186 185 188 132 130 134 400 398 418 423
RTG 338 335 339 200 198 200 510 505 512 607
SEA 404 398 411 303 299 302 708 680 776 880
Airlines 402 399 401 245 229 249 596 584 598 657
Electricity 10.32 10.48 10.36 10.01 10.02 10.00 10.44 10.45 10.46 10.45
Forest 787 777 791 502 499 512 841 803 885 935
KDDcup99 352 359 359 240 245 246 498 500 530 536
Poker 291 274 297 232 202 232 367 336 356 346

TABLE B.4: Average time (in seconds) of executing the RED-
GENE and other state-of-the-art methods in the immediate set-
ting. Bold values indicate the best performance for each dataset.

Dataset ARF DWM LevBag OAUE OSBoost RD3+GA
Hyperplane 208 130 144 107 93 358
LED 188 851 246 227 174 418
RTG 394 195 207 148 1141 512
SEA 751 98 409 139 162 776
Airlines 495 66 531 366 74 598
Elec. 7.73 1.48 5.12 3.05 2.06 10.46
Forest 153 148 206 180 114 885
KDDcup 56 581 130 204 138 530
Poker 167 46 81 66 64 356

145

Appendix C

Results of Experiments Presented
in Chapter 7

TABLE C.1: Average accuracy (%) of the RED-PSO variations
in the immediate setting over different datasets. Bold values

indicate the best performance for each dataset.

Dataset RED1 RED2 RED-PSO1 RED-PSO2 RED-PSO3
Hyperp. 87.83 87.94 90.43 91.92 92.54
LED 75.41 75.88 76.01 76.54 76.29
RTG 87.06 88.32 89.44 89.98 91.09
SEA 87.30 86.78 88.01 87.74 88.50
Airlines 61.85 61.06 63.49 65.34 66.68
Electricity 90.61 89.34 93.56 92.43 92.86
Forest 81.56 88.01 88.42 92.99 93.71
KDDcup 99.53 99.67 99.62 99.79 99.80
Poker 85.89 87.34 88.56 90.10 89.89

TABLE C.2: Average accuracy (%) of the RED-PSO variations in
the delayed setting over different datasets. Bold values indicate

the best performance for each dataset.

Dataset RED1 RED2 RED-PSO1 RED-PSO2 RED-PSO3
Hyperp. 87.74 88.14 91.32 91.18 91.48
LED 70.29 75.12 73.61 75.03 75.91
RTG 86.89 87.90 88.16 89.26 89.81
SEA 86.66 86.14 88.14 87.34 88.80
Airlines 58.01 59.76 62.29 62.87 64.54
Electricity 82.45 81.90 85.51 84.00 84.18
Forest 78.34 82.34 82.42 87.32 88.19
KDDcup 99.73 99.70 99.60 99.76 99.77
Poker 78.54 79.05 80.56 82.06 81.98

146 Appendix C. Results of Experiments Presented in Chapter 7

TABLE C.3: Average time (in seconds) of executing the RED-
PSO variations in the immediate setting. Bold values indicate

the best performance for each dataset.

Dataset RED1 RED2 RED-
PSO1

RED-
PSO2

RED-
PSO3

Hyper. 184 172 279 230 253
LED 204 189 400 379 388
RTG 281 243 405 358 379
SEA 163 176 296 320 308
Airlines 398 365 528 494 543
Elec. 9.3 8.9 17.8 16.1 16.4
Forest 741 722 10871 1167 1334
KDDcup 269 229 349 301 308
Poker 152 159 201 228 210

TABLE C.4: Average time (in seconds) of executing the RED-
PSO3 and other state-of-the-art methods in the immediate set-
ting. Bold values indicate the best performance for each dataset.

Dataset ARF DWM Lev-Bag OAUE OS-
Boost

Learn-
++

ADOB RED-
PSO3

Hyper. 208 130 144 107 93 239 298 253
LED 188 851 246 227 174 301 340 388
RTG 394 195 207 148 1141 531 1261 379
SEA 751 98 409 139 162 240 284 308
Airlines 495 66 531 366 74 977 2140 543
Elec. 7.73 1.48 5.12 3.05 2.06 5.9 221 16.4
Forest 153 148 206 180 114 67 2292 1334
KDDcup. 56 581 130 204 138 9819 5979 308
Poker 167 46 81 66 64 1720 2006 210
Overall 2419 2116 1959 1440 1942 13899 14821 3409

147

Bibliography

[1] S. Chakrabarti, M. Ester, U. Fayyad, J. Gehrke, J. Han, S. Morishita,
G. Piatetsky-Shapiro, and W. Wang, “Data mining curriculum: A pro-
posal (version 1.0)”, Intensive Working Group of ACM SIGKDD Curricu-
lum Committee, vol. 140, 2006.

[2] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learn-
ing, 10. Springer series in statistics New York, 2001, vol. 1.

[3] C. M. Bishop, Pattern recognition and machine learning. Springer Science+
Business Media, 2006.

[4] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[5] C. C. Aggarwal, Data classification: algorithms and applications. CRC press,
2014.

[6] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection”, in Ijcai, Montreal, Canada, vol. 14,
1995, pp. 1137–1145.

[7] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data streams:
A review”, ACM Sigmod Record, vol. 34, no. 2, pp. 18–26, 2005.

[8] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra, J. Dull,
K. Sarkar, M. Klein, M. Vasa, et al., “Vedas: A mobile and distributed
data stream mining system for real-time vehicle monitoring”, in Pro-
ceedings of the 2004 SIAM International Conference on Data Mining, SIAM,
2004, pp. 300–311.

[9] M. PhridviRaj and C. GuruRao, “Data mining–past, present and future–
a typical survey on data streams”, Procedia Technology, vol. 12, pp. 255–
263, 2014.

[10] Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang, “Twitter
spammer detection using data stream clustering”, Information Sciences,
vol. 260, pp. 64–73, 2014.

148 BIBLIOGRAPHY

[11] W. Fan, Y.-a. Huang, H. Wang, and P. S. Yu, “Active mining of data
streams”, in Proceedings of the 2004 SIAM International Conference on
Data Mining, SIAM, 2004, pp. 457–461.

[12] V.-D. Ta, C.-M. Liu, and G. W. Nkabinde, “Big data stream comput-
ing in healthcare real-time analytics”, in 2016 IEEE International Confer-
ence on Cloud Computing and Big Data Analysis (ICCCBDA), IEEE, 2016,
pp. 37–42.

[13] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey”, Information
Fusion, vol. 37, pp. 132–156, 2017.

[14] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey on
ensemble learning for data stream classification”, ACM Computing Sur-
veys (CSUR), vol. 50, no. 2, p. 23, 2017.

[15] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation”, ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[16] M. M. Gaber, “Advances in data stream mining”, Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 79–85,
2012.

[17] L. N. De Castro and F. J. Von Zuben, Recent developments in biologically
inspired computing. Igi Global, 2005.

[18] C. Teuscher, D. Mange, A. Stauffer, and G. Tempesti, “Bio-inspired com-
puting tissues: Towards machines that evolve, grow, and learn”, Biosys-
tems, vol. 68, no. 2-3, pp. 235–244, 2003.

[19] M. L. McHugh, “Interrater reliability: The kappa statistic”, Biochemia
medica: Biochemia medica, vol. 22, no. 3, pp. 276–282, 2012.

[20] H. Ghomeshi, M. M. Gaber, and Y. Kovalchuk, “Ensemble dynamics in
non-stationary data stream classification”, in Learning from Data Streams
in Evolving Environments, Springer, 2019, pp. 123–153.

[21] ——, “Eacd: Evolutionary adaptation to concept drifts in data streams”,
Data Mining and Knowledge Discovery, vol. 33, no. 3, pp. 663–694, 2019.

[22] I. M. Bomze, “Lotka-volterra equation and replicator dynamics: A two-
dimensional classification”, Biological cybernetics, vol. 48, no. 3, pp. 201–
211, 1983.

BIBLIOGRAPHY 149

[23] J. Hofbauer and K. Sigmund, “Evolutionary game dynamics”, Bulletin
of the American Mathematical Society, vol. 40, no. 4, pp. 479–519, 2003.

[24] K. Fawgreh, M. M. Gaber, and E. Elyan, “A replicator dynamics ap-
proach to collective feature engineering in random forests”, in Research
and Development in Intelligent Systems XXXII, Springer, 2015, pp. 25–41.

[25] H. Ghomeshi, M. M. Gaber, and Y. Kovalchuk, “Red-gene: An evo-
lutionary game theoretic approach to adaptive data stream classifica-
tion”, IEEE Access, 2019.

[26] ——, “A non-canonical hybrid metaheuristic approach to adaptive data
stream classification”, Future Generation Computer Systems, vol. 102, pp. 127–
139, 2020.

[27] J Kennedy and R Eberhart, Particle swarm optimization, proceedings of ieee
international conference on neural networks (icnn’95) in, 1995.

[28] R. Poli, “An analysis of publications on particle swarm optimization
applications”, Essex, UK: Department of Computer Science, University of
Essex, 2007.

[29] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and
issues in data stream systems”, in Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
ACM, 2002, pp. 1–16.

[30] F. Chu and C. Zaniolo, “Fast and light boosting for adaptive mining
of data streams”, in Pacific-Asia Conference on Knowledge Discovery and
Data Mining, Springer, 2004, pp. 282–292.

[31] L. Breiman, “Bagging predictors”, Machine learning, vol. 24, no. 2, pp. 123–
140, 1996.

[32] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting”, Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[33] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, “New
ensemble methods for evolving data streams”, in Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM, 2009, pp. 139–148.

[34] N. C. Oza, “Online bagging and boosting”, in Systems, man and cyber-
netics, 2005 IEEE international conference on, IEEE, vol. 3, 2005, pp. 2340–
2345.

150 BIBLIOGRAPHY

[35] A. Bifet and R. Gavalda, “Learning from time-changing data with adap-
tive windowing”, in Proceedings of the 2007 SIAM International Confer-
ence on Data Mining, SIAM, 2007, pp. 443–448.

[36] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for evolv-
ing data streams”, Machine Learning and Knowledge Discovery in Databases,
pp. 135–150, 2010.

[37] P. M. Gonçalves Jr and R. S. M. De Barros, “Rcd: A recurring concept
drift framework”, Pattern Recognition Letters, vol. 34, no. 9, pp. 1018–
1025, 2013.

[38] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Pfharinger,
G. Holmes, and T. Abdessalem, “Adaptive random forests for evolving
data stream classification”, Machine Learning, pp. 1–27, 2017.

[39] L. Breiman, “Random forests”, Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[40] S. G. T. de Carvalho Santos, P. M. G. Júnior, G. D. dos Santos Silva,
and R. S. M. de Barros, “Speeding up recovery from concept drifts”, in
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, Springer, 2014, pp. 179–194.

[41] S.-T. Chen, H.-T. Lin, and C.-J. Lu, “An online boosting algorithm with
theoretical justifications”, arXiv preprint arXiv:1206.6422, 2012.

[42] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An ensem-
ble method for drifting concepts”, Journal of Machine Learning Research,
vol. 8, no. Dec, pp. 2755–2790, 2007.

[43] D. Brzezinski and J. Stefanowski, “Reacting to different types of con-
cept drift: The accuracy updated ensemble algorithm”, IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 81–94,
2014.

[44] P. Domingos and G. Hulten, “Mining high-speed data streams”, in Pro-
ceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2000, pp. 71–80.

[45] D. Brzezinski and J. Stefanowski, “Combining block-based and online
methods in learning ensembles from concept drifting data streams”,
Information Sciences, vol. 265, pp. 50–67, 2014.

[46] G. Jaber, “An approach for online learning in the presence of concept
change”, PhD thesis, Citeseer, 2013.

BIBLIOGRAPHY 151

[47] H. M. Gomes and F. Enembreck, “Sae: Social adaptive ensemble clas-
sifier for data streams”, in Computational Intelligence and Data Mining
(CIDM), 2013 IEEE Symposium on, IEEE, 2013, pp. 199–206.

[48] ——, “Sae2: Advances on the social adaptive ensemble classifier for
data streams”, in Proceedings of the 29th Annual ACM Symposium on Ap-
plied Computing, ACM, 2014, pp. 798–804.

[49] G. Folino, C. Pizzuti, and G. Spezzano, “An adaptive distributed en-
semble approach to mine concept-drifting data streams”, in Tools with
Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference
on, IEEE, vol. 2, 2007, pp. 183–188.

[50] ——, “Gp ensembles for large-scale data classification”, IEEE Transac-
tions on Evolutionary Computation, vol. 10, no. 5, pp. 604–616, 2006.

[51] P. Vivekanandan and R. Nedunchezhian, “Mining data streams with
concept drifts using genetic algorithm”, Artificial Intelligence Review,
vol. 36, no. 3, pp. 163–178, 2011.

[52] S. Ramamurthy and R. Bhatnagar, “Tracking recurrent concept drift
in streaming data using ensemble classifiers”, in Machine Learning and
Applications, 2007. ICMLA 2007. Sixth International Conference on, IEEE,
2007, pp. 404–409.

[53] K. O. Stanley, “Learning concept drift with a committee of decision
trees”, Informe técnico: UT-AI-TR-03-302, Department of Computer Sci-
ences, University of Texas at Austin, USA, 2003.

[54] J. Z. Kolter and M. A. Maloof, “Using additive expert ensembles to cope
with concept drift”, in Proceedings of the 22nd international conference on
Machine learning, ACM, 2005, pp. 449–456.

[55] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification”, in Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM, 2001,
pp. 377–382.

[56] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers”, in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining,
AcM, 2003, pp. 226–235.

152 BIBLIOGRAPHY

[57] J. Rushing, S. Graves, E. Criswell, and A. Lin, “A coverage based en-
semble algorithm (cbea) for streaming data”, in Tools with Artificial In-
telligence, 2004. ICTAI 2004. 16th IEEE International Conference on, IEEE,
2004, pp. 106–112.

[58] K. Nishida and K. Yamauchi, “Adaptive classifiers-ensemble system
for tracking concept drift”, in Machine Learning and Cybernetics, 2007
International Conference on, IEEE, vol. 6, 2007, pp. 3607–3612.

[59] M. Deckert, “Batch weighted ensemble for mining data streams with
concept drift”, in International Symposium on Methodologies for Intelligent
Systems, Springer, 2011, pp. 290–299.

[60] R. Elwell and R. Polikar, “Incremental learning of concept drift in non-
stationary environments”, IEEE Transactions on Neural Networks, vol. 22,
no. 10, pp. 1517–1531, 2011.

[61] H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, and L. Wan, “Heterogeneous en-
semble for feature drifts in data streams”, Advances in Knowledge Dis-
covery and Data Mining, pp. 1–12, 2012.

[62] M. Woźniak, “Application of combined classifiers to data stream clas-
sification”, in Computer Information Systems and Industrial Management,
Springer, 2013, pp. 13–23.

[63] A. Ortíz Díaz, J. del Campo-Ávila, G. Ramos-Jiménez, I. Frías Blanco,
Y. Caballero Mota, A. Mustelier Hechavarría, and R. Morales-Bueno,
“Fast adapting ensemble: A new algorithm for mining data streams
with concept drift”, The Scientific World Journal, vol. 2015, 2015.

[64] S. R. Safavian and D. Landgrebe, “A survey of decision tree classi-
fier methodology”, IEEE transactions on systems, man, and cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[65] I. Rish et al., “An empirical study of the naive bayes classifier”, in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3, 2001,
pp. 41–46.

[66] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial
neural network classification models: A methodology review”, Journal
of biomedical informatics, vol. 35, no. 5-6, pp. 352–359, 2002.

[67] C. Cortes and V. Vapnik, “Support-vector networks”, Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[68] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for intru-
sion detection”, Computers & security, vol. 21, no. 5, pp. 439–448, 2002.

BIBLIOGRAPHY 153

[69] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems”, Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[70] J. R. Quinlan, “Induction of decision trees”, Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[71] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[72] L. Breiman, Classification and regression trees. Routledge, 2017.

[73] W. Hoeffding, “Probability inequalities for sums of bounded random
variables”, in The Collected Works of Wassily Hoeffding, Springer, 1994,
pp. 409–426.

[74] R. B. Myerson, Game theory. Harvard university press, 2013.

[75] E. Elyan and M. M. Gaber, “A genetic algorithm approach to optimis-
ing random forests applied to class engineered data”, Information sci-
ences, vol. 384, pp. 220–234, 2017.

[76] A. Mantri, S. N. S. Kendra, G. Kumar, and S. Kumar, High Performance
Architecture and Grid Computing: International Conference, HPAGC 2011,
Chandigarh, India, July 19-20, 2011. Proceedings. Springer, 2011, vol. 169.

[77] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection”, in Brazilian symposium on artificial intelligence, Springer, 2004,
pp. 286–295.

[78] M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà,
and R. Morales-Bueno, “Early drift detection method”, 2006.

[79] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive on-
line analysis”, Journal of Machine Learning Research, vol. 11, no. May,
pp. 1601–1604, 2010.

[80] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams”, in Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ACM, 2001, pp. 97–106.

[81] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
regression trees. CRC press, 1984.

[82] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial neu-
ral networks and discriminant analysis in predicting forest cover types
from cartographic variables”, Computers and electronics in agriculture,
vol. 24, no. 3, pp. 131–151, 1999.

[83] M. Harries and N. S. Wales, “Splice-2 comparative evaluation: Electric-
ity pricing”, 1999.

154 BIBLIOGRAPHY

[84] K. Cup, “Data (1999)”, URL: http://kdd.ics.uci.edu/databases/kddcup99, 1999.

[85] J. C. Spall, Introduction to stochastic search and optimization: estimation,
simulation, and control. John Wiley & Sons, 2005, vol. 65.

[86] M. Gen and R. Cheng, Genetic algorithms and engineering optimization.
John Wiley & Sons, 2000, vol. 7.

[87] M. Friedman, “A comparison of alternative tests of significance for the
problem of m rankings”, The Annals of Mathematical Statistics, vol. 11,
no. 1, pp. 86–92, 1940.

[88] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets”, Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[89] P. Nemenyi, “Distribution-free multiple comparisons”, in Biometrics,
INTERNATIONAL BIOMETRIC SOC 1441 I ST, NW, SUITE 700, WASH-
INGTON, DC 20005-2210, vol. 18, 1962, p. 263.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Preamble
	Motivation
	Problem Statement
	Aims and Objectives
	Contributions
	Publications
	Thesis Overview

	An Analytical Study on Ensemble Dynamics in Non-stationary Data Stream Classification
	Introduction
	Ensemble Methods for Non-stationary Data Stream classification
	Explicit Methods
	Implicit Methods
	Research Issues and a Proposed Approach

	Metaheuristic Methods for Concept Drift Adaptation
	Ensemble Dynamics in Non-stationary Data Stream Classification
	Adding Classifiers
	Fixed Time of Addition
	Dynamic Time of Addition

	Removing Classifiers
	Full
	Performance-based
	Drift-detection-based
	No removal

	Updating Classifiers
	Ensemble Dynamics Taxonomy

	A Generic Formal Description of Non-stationary Data Stream Classification Methods
	Discussion
	Summary

	Background
	Data Classification
	Classic Decision Tree Learners
	Hoeffding Trees

	Replicator Dynamics
	Nash Equilibrium
	Replicator Equation

	Genetic Algorithm
	Particle Swarm Optimisation
	Concept Drift Detection
	DDM: Drift Detection Method
	EDDM: Early Drift Detection Method

	Summary

	Experimental Methodology
	Experimental Settings
	Datasets
	Artificial Data Streams
	Real World Data Streams

	Summary

	EACD: Evolutionary Adaptation to Concept Drifts in Data Streams
	Introduction
	EACD Description
	Base Layer
	Optimisation Layer
	Theoretical Justification

	Experimental Study
	EACD Variations
	Computational Complexity
	Results
	Statistical Analysis
	Discussion

	Summary

	RED-GENE: Efficient Replicator Dynamics & Genetic Algorithm Approach to Adaptive Data Stream Classification
	Introduction
	RED-GENE Description
	Base Layer
	RD1: Weighted Trees
	RD2: Voting without Considering Poor-performing Types
	RD3: Weighted Trees + Voting without Considering Poor-performing Types (RD1 + RD2)

	Optimisation Layer

	Experimental Study
	RED-GENE Variations
	Computational Complexity
	Results and Discussion
	Statistical Analysis

	Summary

	RED-PSO: REplicator Dynamics & Particle Swarm Optimisation Approach to Adaptive Data Stream Classification
	Introduction
	RED-PSO Description
	RED-PSO Algorithm
	PSO Optimisation

	Experimental Study
	RED-PSO Variations and Parameter Tuning
	Computational Complexity
	Results and Discussion
	Comparison of the Different RED-PSO Variations
	Comparison With Other Methods
	Performance Over Different Types of Concept Drifts

	Statistical Analysis

	Summary

	Conclusion and Perspectives
	Summary
	Comparison among the Proposed Methods
	Discussion

	Future Directions

	Results of Experiments Presented in Chapter 5
	Results of Experiments Presented in Chapter 6
	Results of Experiments Presented in Chapter 7
	Bibliography

