

UNIVERSITY OF LEEDS

Numerical Study of Thermophoresis Mass Transport in Binary Fluid Mixtures Using OpenFoam

Jose Lorenzo Alejandro Barba-Piña¹, Alan Burns¹, Xiaoan Mao¹, Zinedine Khatir^{2,3}

¹School of Chemical and Process Engineering, University of Leeds, United Kingdom ²School of Mechanical, University of Leeds, United Kingdom ³School of Engineering and the EngineeringBuilt Environment, Birmingham City University, United Kingdom

INTRODUCTION

- In <u>fluid homogeneous mixtures</u>, the mass transport process induced by the dependance of species concentration on temperature gradients is known as thermophoresis, thermodiffusion or "Soret effect".
- In absence of other external forces, the mass flux of the reference component "a" can be written as follows:

$$J_a = \rho D_{a,b} \nabla w_a - \rho D_T w_{a_0} (1 - w_{a_0}) \nabla T$$

* $D_{a,b}$ is the mass diffusivity, w_{a_0} is the initial mass fraction of component "a" and D_T is the thermodiffusion coefficient.

- For binary gaseous mixtures: Heavy component usually moves to the colder region, while light component moves to the hotter region.
- When steady state is reached, $J_a = 0$ and concentration gradient can be written as:

$$\nabla w_a = \frac{D_T}{D_{a,b}} \ w_{a_0} (1 - w_{a_0}) \nabla T$$

 Thermodiffusion transport can be found in: Natural processos: 	Filling hole
 Natural processes. Thermohaline convection currents in oceans caused by the dependance of salinity gradients on temperature differences. 	Cavities for hot (cold) water circulation
Thermo-gravitational segregation in natural hydrocarbon reservoirs.	⋈ <mark>-</mark> □
Particle deposition on hot/cold surfaces, etc.	Sampling
 Industrial processes: 	Working
Isotope separation of liquid and gaseous mixtures with the Clusius-Dickel Column.	
Separation and characterization of polymers.	
Surface coating.	
Particle decontamination.	Copper plates
	-Sketch of a Clusius-Dickel column, Retrieved from Lapeyra et al. 2017

^{*}Lapeyra, E., Ghebardt M., Triller, T., Mialdun, A., Kolher, W., Shevtsova, V., Mounir-Bou Ali, *M. Transport properties of the binary mixtures of the three organic liquids toluene, methanol, and cyclohexane.* 2017. The Journal of Chemical Physics. 146(9):094507.

Numerical Analysis Of Thermophoresis

- Application of CFD on thermodiffusion processes:
 - Compliments experimental analysis where visualization is limited.
 - Quantification and parametrization of mass transfer dependency on thermophysical and geometrical variables.
 - Testing of different physical conditions (e.g., residual or zero gravity, ideal adiabatic systems, etc.) that are hard to replicate in experimental environments.

Thermodiffusion Model in OpenFOAM

- A basic thermodiffusion model is included into OpenFOAM's thermophysical properties library.
- Thermodiffusion coefficient is calculated with initial parameters: mass diffusivity $D_{a,b}$, initial molar fraction $x_{a,0}$, and thermodiffusion factor α_T .
- Then, thermodiffusion coefficient is corrected with the temperature variation of the simulation:

$$D_T = \frac{\alpha_T x_{a,0} (1 - x_{a,0}) D_{a,b}}{T}$$

- This new implementation was added into <u>two solvers</u> for <u>convective</u> and <u>non-convective</u> thermodiffusion cases.
- Laplacian solver for non-convective simulation
 - Species transport equation:

$$\frac{\partial w_a}{\partial t} + = D_{a,b} \nabla^2 w_a + D_T w_{a,0} (1 - w_{a,0}) \nabla^2 T$$

• Energy equation:

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

- Compressible solver for convective simulation,
 - Navier-Stokes equation:

$$\frac{\partial(\rho v)}{\partial t} + v \cdot \nabla(\rho v) = \nabla P - \nabla \cdot \tau$$
$$\tau = -\mu(\nabla v + (\nabla v)^T) + \frac{2}{3}(\nabla \cdot v)\delta$$

• Energy equation in terms of enthalpy:

$$\frac{\partial(\rho h)}{\partial t} + \nabla \cdot (\rho v h) + \frac{\partial(\rho K)}{\partial t} + \nabla \cdot (\rho v K) - \frac{\partial P}{\partial t} = -\nabla \cdot q + \nabla \cdot (\tau \cdot v)$$

$$q = -\kappa \nabla T; \qquad \qquad K = \frac{|v|^2}{2}$$

• species transport equation:

$$\frac{D(\rho w_a)}{\partial t} + v \cdot (\rho \nabla w_a) = D_{a,b} \nabla^2 (\rho w_a) + D_T w_{a,0} (1 - w_{a,0}) \nabla^2 (\rho T)$$

OpenFOAM Thermodiffusion Solvers Test

- Two cases from *Kuwatani et. AI 2012* were selected for testing the new thermodiffusion solvers in OpenFOAM.
- Case 1 closed system:
 - H2-CO2 mixture
 - Geometry: Insulated region, with fixed temperature at left and right boundaries.
 - Hexahedral mesh of 3200 elements.
 - · Zero flux condition at solid boundaries:

$$\nabla w_a = \frac{D_T}{D_{a,b}} w_{a_0} (1 - w_{a_0}) \nabla T$$

Simulation	<i>T_c</i> [K]	$T_{H}[\mathbf{K}]$	<i>x</i> _{a,0}	α_T	$D_{a,b}\left[m/s\right]$
1	273.15	473.15	0.48	0.3602	$6.34e^{-5}$
2		523.15			
3		573.15			
4		593.15			
5		693.15			
6		723.5			
Experiment	313.15	670.15			

- Sketch of thermophoresis separation open system, (retrieved from Kuwatani et Al. 2012)

Notice: Molar fraction is converted to mass fraction for species transport equation consistency for both cases.

*Kuwatani, S., Watanabe, S., Ono, N. Study and Development of a Mini-Tube Gas Separator Utilizing the Soret Effect. 2012. Journal of Thermal Science and Technology. 7(1), 31-43.

- Case 2 Open system :
 - H2-CO2 mixture.
 - Forced convection, absolute pressure, $P = 1e^5$
 - 6000 hexahedral elements.
 - Zero flux condition at solid boundaries and outlet boundary:

$$\nabla w_a = \frac{D_T}{D_{a,b}} w_{a_0} (1 - w_{a_0}) \nabla T$$

Volume flow rate (mL/min)	T _{inlet} [K]	<i>T_c</i> [K]	$T_H[\mathbf{K}]$	<i>x</i> _{<i>a</i>,0}
150	300.15	273.15	4	0.5
$D_{a,b}\left[m/s ight]$	α_T	$\mu \left[Pa \cdot s \right]$	$Cp\left[\frac{J}{Kg\cdot K}\right]$	$Pr = rac{\mu Cp}{ ho\kappa}$
$6.34e^{-5}$	0.3596	$1.02e^{-5}$	1427	0.217

- Sketch of thermophoresis separation open system, (retrieved from Kuwatani et Al. 2012)

CASE 1: CONCENTRATION DIFFERENCE IN THE CLOSED SYSTEM

• Results of the six different steady-state simulations are compared with theoretical calculations and simulations from *Kuwatani et al. 2012. Theoretical calculations are computed by:*

$$\Delta x = -K_T \ln\left(\frac{T_h}{T_c}\right)$$

$$K_T = \frac{D_T}{D_{a,b}} T = \alpha_T x_{a,0} (1 - x_{a,0})$$

 Comparison with experimental case data (Tc=313.15k, Th=670.15):

$$\Delta x_{OF} = 7.3\%$$
$$\Delta x_{theory} = 6.8\%$$
$$\Delta x_{exp} = 6.6\%$$

 Greater differences between OpenFOAM results and theoretical calculations are appreciated for higher temperature differences.

Case 2: Concentration Difference in the Closed System

Mole Fraction X2 (H2) 3.9e-01 0.395 0.4 0.405 0.41 0.415 0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455 4.6e-01

Case 2: Concentration Difference in the Open System

- Qualitative agreement can be observed although the numerical results differ greatly from Kuwatani et al. 2012 reported data.
- Computations were carried out by considering convective terms for transport equations, while theoretical calculations, other CFD results and Series solution does not consider those terms.

CASE 2: CONCENTRATION DISTRIBUTION, OPENFOAM SIMULATION VS. KUWATANI ET AL., 2012

