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Abstract

The timing of sodium bicarbonate (NaHCO3) supplementation has been suggested to be

most optimal when coincided with a personal time that bicarbonate (HCO3
–) or pH peaks in

the blood following ingestion. However, the ergogenic mechanisms supporting this ingestion

strategy are strongly contested. It is therefore plausible that NaHCO3 may be ergogenic by

causing beneficial shifts in the strong ion difference (SID), though the time course of this

blood acid base balance variable is yet to be investigated. Twelve highly trained, adolescent

swimmers (age: 15.9 ± 1.0 years, body mass: 65.3 ± 9.6 kg) consumed their typical pre-

competition nutrition 1–3 hours before ingesting 0.3 g�kg BM-1 NaHCO3 in gelatine cap-

sules. Capillary blood samples were then taken during seated rest on nine occasions (0, 60,

75, 90, 105, 120, 135, 150, 165 min post-ingestion) to identify the time course changes in

HCO3
–, pH, and the SID. No significant differences were found in the time to peak of each

blood measure (HCO3
–: 130 ± 35 min, pH: 120 ± 38 min, SID: 98 ± 37 min; p = 0.08); how-

ever, a large effect size was calculated between time to peak HCO3
– and the SID (g = 0.88).

Considering that a difference between time to peak blood HCO3
– and the SID was identified

in adolescents, future research should compare the ergogenic effects of these two individu-

alized NaHCO3 ingestion strategies compared to a traditional, standardized approach.

Introduction

Sodium bicarbonate (NaHCO3) is recommended to athletes based upon strong evidence of a

performance enhancing effect [1]. It is well acknowledged that NaHCO3 ingestion enhances

buffering capacity by increasing bicarbonate (HCO3
–) and pH concentrations within the
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blood, although the magnitude of these increases is variable between individuals [2, 3].

Increasing blood alkalosis alters the pH gradient between the intracellular and extracellular

compartments, subsequently leading to the upregulation of the lactate–hydrogen ion (H+) co-

transporter to efflux acidic H+ from the active musculature and into circulation [4, 5]. During

exercise, accelerating the removal of H+ is purported to offset fatigue since intracellular acido-

sis is associated with debilitating effects on the capacity to sustain muscle force production [6–

10]. Specifically, cellular acidosis is suggested to inhibit muscle shortening velocity and cross-

bridge cycling by reducing calcium ion (Ca2+) sensitivity and myosin ATPase activity [10, 11].

Further impairments of key glycolytic enzymes [12, 13] and the strong ion difference (SID) [7,

14, 15] are also associated with exacerbated H+ accumulation, hence limiting the available

ATP substrates and action potentials necessary to maintain muscular contractions, respec-

tively. However, each of these fatiguing mechanisms are strongly contested [16–18]. Despite

this, NaHCO3 continues to provide an ergogenic benefit to exercise performance, subse-

quently requiring further investigation of the biochemical changes that occur following

ingestion.

There is an apparent increase in the ergogenic potential of NaHCO3 when baseline blood

HCO3
– is increased by +5 mmol�L-1, whereas increases above +6 mmol�L-1 are associated with

almost certain performance enhancement [19, 20]. However, the time taken to reach these

thresholds varies considerably between individuals when NaHCO3 is consumed in either cap-

sule (range: 40–240 min [3, 21, 22]) or solution form (range: 40–125 min [2, 23–25]), therefore

highlighting a potential flaw in the current dosing guidelines (i.e., 60–150 min pre-exercise for

all athletes [1]). Contemporary research is addressing this issue by timing exercise to coincide

with an individual peak blood HCO3
– concentration [21, 23–25], though at present, only Boeg-

man et al. [21] has directly compared exercise performance between NaHCO3 ingested at time

to peak HCO3
– (40–160 min pre-exercise) versus a traditional dosing protocol (60 min pre-

exercise for all athletes). The individualized approach significantly improved the rowing per-

formance (2000 m time-trial) of 18 of 23 world-class rowers (Individualized = 367.0 ± 10.5 s

vs. Traditional = 369.0 ± 10.3 s), however, this result occurred with only a small difference in

pre-exercise HCO3
– (Individualized = +6 mmol�L-1 vs. Traditional = +5.5 mmol�L-1). It is

therefore plausible that another mechanism besides those associated with increased HCO3
– is

involved with the ergogenic properties of NaHCO3 supplementation.

Alternatively, NaHCO3 may mitigate fatigue by altering the intracellular and extracellular

balance of strong ions such as potassium (K+), sodium (Na+), chloride (Cl–), and Ca2+ [26].

Specifically, NaHCO3 increases the influx of K+ into the muscle following ingestion and atten-

uates losses in intramuscular K+ during exercise, subsequently improving the capacity to sus-

tain muscle excitability [27–30]. A concomitant increase in muscular Cl−uptake is also

observed post-ingestion [27, 29, 30], which is suspected to work synergistically with K+ to pro-

tect force and excitability when muscles begin to depolarize [31]. These effects are further

strengthened by an increased plasma Na+ [2, 3, 27, 28], which together with changes in K+ and

Cl–, could indicate an upregulation of Na+/K+–ATPase and Na+/K+/2Cl––ATPase activity to

limit depolarization and preserve excitation-contraction coupling following NaHCO3 inges-

tion [16, 30, 31]. Currently, only Gough et al. have reported changes in the collective SID fol-

lowing NaHCO3 ingestion and whole-body exercise [24, 27]. Interestingly, both studies

identified an ergogenic effect of NaHCO3 (4 km cycling time-trial: 1.4% faster [24]; treadmill

time-to-exhaustion: 28% further [27]) when blood HCO3
– increases (+7.0 mmol�L-1 [24]; +8.8

mmol�L-1 [27]) were identified alongside an increased SID (+6 mEq�L-1 [24]; +10 mEq�L-1

[27]) prior to exercise. Given that the role of H+ accumulation is controversial within exercise

fatigue [16–18], the resultant performance improvements could instead be attributed to an

increased plasma SID. However, no study to date has purposely intended to identify a peak
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SID measurement. If a time difference exists between the time taken to reach peak blood

HCO3
– and the SID concentrations, then it is plausible that future NaHCO3 dosing strategies

based upon a time to peak SID could optimize the SID mechanisms associated with perfor-

mance enhancement.

Adolescence (age: 15–19 years) is a critical time in an athlete’s career, whereby competitive

success is essential for continued sports participation [32]. Young athletes are therefore

attracted to nutritional ergogenic aids to support their performance, though in practice, these

are not always ingested in an evidence-based fashion [33]. Moreover, whether NaHCO3 sup-

plementation is appropriate for trained adolescents is unclear, with there being little evidence

to suggest that large increases in blood alkalosis occur following ingestion. For example, nei-

ther Zajac et al. (+3.4 mmol�L-1 [34]) or Guimarães et al. (+3.4 mmol�L-1 [35]) observed a

blood HCO3
– increase above the proposed +5 mmol�L-1 ‘ergogenic threshold’ when measured

at 60 and 90 min post-ingestion, respectively. Despite similar HCO3
– increases, however, both

of these studies differed in performance outcomes (time to complete 4 x 50 m swimming

sprints: 1.3% faster [34] vs. time to complete 6 x 35 m running sprints: no change [35]). Why

this discrepancy occurred remains unknown, though the authors speculated that individual

factors such as genetics and gastrointestinal (GI) physiology may have had a role [35]. Indeed,

both studies did not account for individual differences since standardized ingestion strategies

were employed and HCO3
– changes were reported at the group level only. In order to optimize

NaHCO3 supplementation for adolescent athletes, it is therefore necessary to first understand

the possible acid-base balance alterations that occur following ingestion. The purpose of this

study was to explore the time course changes and peak blood concentrations of three acid-base

balance variables (HCO3
–, pH, and the SID) in highly trained adolescent swimmers following

the ingestion of 0.3 g�kg BM-1 NaHCO3.

Materials and methods

Participants

Twelve national level swimmers from a performance swim programme volunteered to partici-

pate in this study (Table 1). Three of the swimmers had recently represented Great Britain at

either the European Junior Swimming Championships or the European Youth Olympic Festi-

val in 2019, whilst seven had qualified for the senior British Swimming Championships in

April 2020. At the time of the study, all swimmers were ranked within the top 25 in Great Brit-

ain in at least one event within their respected age group (mean FINA points = 696 ± 62) and

were completing a minimum of 7 x 2.5 hours pool-based and 2 x 1-hour land-based training

sessions per week. The study was granted institutional ethical approval (Birmingham City

Table 1. Characteristics of study participants (± SD).

Characteristics Males (n = 5) Females (n = 7) Combined (n = 12)

Age (years) 16.4 ± 1.1 15.6 ± 0.8 15.9 ± 1.0

Height (m) 1.78 ± 0.6 1.70 ± 0.4 1.73 ± 0.6

Body mass (kg) 72.4 ± 10.7 60.3 ± 4.8 65.3 ± 9.6

Sum of 8 skinfolds (mm) 55.2 ± 11.3 82.1 ± 21.5 70.9 ± 22.1

Time as a competitive junior swimmer (years) 8.2 ± 1.6 8.0 ± 0.8 8.1 ± 1.2

Personal best swimming times (freestyle–long course)

50 m (sec) 26.0 ± 2.6 29.4 ± 1.5 28.0 ± 2.6

100 m (sec) 54.7 ± 3.0 61.2 ± 1.4 58.8 ± 15.6

200 m (min: sec) 1:57.7 ± 4.9 2:11.3 ± 3.6 2:05.6 ± 8.1

https://doi.org/10.1371/journal.pone.0248456.t001

PLOS ONE Sodium bicarbonate effects on time to peak HCO3
–, pH, and SID in trained adolescents

PLOS ONE | https://doi.org/10.1371/journal.pone.0248456 July 1, 2021 3 / 17

https://doi.org/10.1371/journal.pone.0248456.t001
https://doi.org/10.1371/journal.pone.0248456


University Ethics Committee: Newbury/3649/R(B)/2019 /Nov/HELS FAEC) and both the

swimmers and their parents/guardians provided written informed consent prior to their par-

ticipation in the study.

Pre-experimental procedures

Each participant was required to attend the laboratory as per their usual training time (17:00–

20:30 hrs) having eaten as they normally would prior to a competitive race (i.e., self-selected

timing and meal composition). Previous studies have assessed time course changes in HCO3
–

and pH in a fasted state [2, 3, 36] or following a standardized meal [22], however, these condi-

tions do not replicate the variance in nutritional intakes that would take place in competition.

This ingestion method was selected to consider the effects of individualized nutrition on base-

line acid-base balance, electrolyte status, and absorption rate that would occur in practice [37].

In addition, the ingestion of a meal has shown to reduce the occurrence and severity of poten-

tial GI side effects that are associated with NaHCO3 ingestion [38]. Each swimmer completed

a 24-hour dietary recall before NaHCO3 ingestion, which was used to calculate diet composi-

tion (Table 2) using an online nutrition application (Nutritics, version 5.64, Dublin, Ireland).

Similarly, water was permitted to be consumed ad libitum (mean intake: 1.2 ± 0.5 L, range:

0.5–2.0 L), though ingestion of further nutrients were restricted once NaHCO3 had been con-

sumed. Participants were also asked to refrain from additional exercise outside of their regular

swim training programme in the 48 hours prior to participating in the study. No swimmers

had ingested caffeine, although concurrent ingestion of creatine (participants 5, 8, 9, 10, and

11) and beta-alanine (participants 9 and 10) were reported. Neither of these supplements was

expected to affect the blood acid-base balance alterations that would occur following NaHCO3

ingestion [39, 40]. All trials were carried out between December 2019 and February 2020 dur-

ing a specific race preparation training period (weekly swimming volume = 50.9 ± 3.4 km).

Protocol and measurements

Upon arrival to the laboratory, participants engaged in five min of seated rest before a baseline

capillary sample of whole blood was collected from the fingertip into a 100 μL sodium-heparin

coated glass clinitube (Radiometer Medical Ltd., Copenhagen, Denmark). Blood samples were

immediately analysed using a blood gas analyser (ABL9, Radiometer Medical Ltd., Copenhgen,

Table 2. The dietary intake of the participant cohort in the 24 hours preceding NaHCO3 ingestion.

24 hours pre-ingestion 1–3 hours pre-ingestion

Total energy (kcal) 2852 ± 926 655 ± 285

Relative energy (kcal�kg BM-1) 43.3 ± 9.8 10.0 ± 3.7

Total carbohydrate (g) 362 ± 135 75.4 ± 46.0

Relative carbohydrate (g�kg BM-1) 5.5 ± 1.4 1.2 ± 0.6

Total protein (g) 153 ± 37 30.9 ± 9.0

Relative protein (g�kg BM-1) 2.3 ± 0.4 0.5 ± 0.1

Total fat (g) 88.4 ± 31.1 25.6 ± 13.4

Relative fat (g�kg BM-1) 1.3 ± 0.4 0.4 ± 0.2

Total Na+ (mg) 3211 ± 1110 901 ± 409

Total K+ (mg) 3546 ± 1185 559 ± 560

Total Ca2+ (mg) 1428 ± 501 276 ± 229

Total Cl−(mg) 4755 ± 1558 1374 ± 601

Na+ = Dietary sodium. K+ = Dietary potassium. Ca2+ = Dietary calcium. Cl− = Dietary chloride.

https://doi.org/10.1371/journal.pone.0248456.t002
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Denmark) for measurements of HCO3
–, pH, K+, Na+, Ca2+, and Cl–. An additional 5 μL sam-

ple was taken for the analysis of blood lactate (La–) (Lactate Pro 2, Arkray, Japan) which was

used in the following formula to calculate the apparent SID using a freely available spreadsheet:

K+ + Na+ + Ca2+–Cl––La−[41]. This method of calculating the apparent SID has been previ-

ously utilised in similar research investigating the SID alongside NaHCO3 ingestion [24, 27].

Participants then ingested 0.3 g�kg BM-1 NaHCO3 (Dr. Oetker, Bielefeld, Germany) contained

in gelatine capsules (1 g NaHCO3 per capsule; Size 00, Bulk Powders, Colchester, UK) within a

five min period prior to 165 min of quiet seated rest. Blood samples were obtained and ana-

lysed on eight more occasions (60, 75, 90, 105, 120, 135, 150, and 165 min post-NaHCO3 inges-

tion) with further samples taken at 180 (n = 4) and 195 min (n = 1) to ensure a peak HCO3
–

was found. No samples were taken within the first 60 min since 0.3 g�kg-1 BM NaHCO3 in cap-

sule form was not expected to display peak HCO3
– concentrations in this time [3, 22].

Gastrointestinal side effects were monitored using nine 200 mm visual analogue scales

(VAS) for nausea, flatulence, stomach cramping, belching, stomach ache, bowel urgency, diar-

rhoea, vomiting and stomach bloating consistent with previous NaHCO3 research [2, 24, 25,

42]. The VAS scales were labelled “no symptom” on the left side and “severe symptom” on the

right side.

Statistical analysis

Data was normally distributed (Shapiro-Wilks) and sphericity was assumed (Mauchly) prior

to statistical analysis. If sphericity was violated, Huyn-Feldt (epsilon value >0.75) or Green-

house-Geiser (epsilon value <0.75) corrections were applied. A repeated measures ANOVA

was conducted to establish mean differences between the time to peak of the three alkalotic

variables (HCO3
–, pH, and the SID) and group mean differences for each blood metabolite

(HCO3
–, pH, SID, K+, Na+, Ca2+, and Cl–) at each sampling time point. Post hoc comparisons

were determined by the Bonferroni correction and effect sizes are reported as partial eta

squared (Pη2). Additional effect sizes were calculated for each time course change using the

Hedges’ g bias correction, which was selected based on the small sample size (n <20) included

in this study [43]. Effect sizes were interpreted as trivial (g =<0.20), small (g = 0.20–0.49),

medium (g = 0.50–0.79), and large (g =�0.80) [44]. Coefficient of variation (CV) was calcu-

lated using SD/mean�100 and described the inter-individual variance between participants for

time course and absolute blood analyte changes. A Spearman’s rank-order correlation (rs) was

used to investigate associations between dietary intake (energy, macronutrients, and electro-

lytes consumed 24 and 3 hours before to NaHCO3 ingestion) and the time to peak, absolute

change, and baseline measures of blood HCO3
–, pH, and the SID. This non-parametric corre-

lation was selected due to violations in the sphericity of nutritional data. All statistical tests

were completed using Statistical Package for the Social Sciences (SPSS), version 25 (IBM, Chi-

cago, USA). All data are reported as mean ± SD with statistical significance set at p<0.05.

Results

Blood analyte changes

No statistical significance was found between the time to peak concentrations of each blood

acid-base variable (HCO3
– = 130 ± 34 min, pH = 120 ± 38 min, SID = 98 ± 37 min; p = 0.077,

Pη2 = 0.208). Despite this, a large effect size (g = 0.88) separated the time to peak SID and

HCO3
– following a mean difference of 33 min being observed between these two measures. A

moderate effect size was also observed between time to peak SID and pH (23 min, g = 0.58),

whereas the effect size was small between time to peak HCO3
– and pH (10 min, g = 0.26).

Large inter-individual variations were present in the time to peak (CV: HCO3
– = 27%;
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pH = 32%; SID = 37%;) and absolute increase from baseline observed for each alkalotic mea-

sure (HCO3
– = +6.8 ± 2.4 mmol�L-1, CV = 35%; pH = +0.10 ± 0.04 units, CV = 42%; SID =

+3.7 ± 2.2 mEq�L-1, CV = 61%). Individual data for all blood acid-base balance variables is pre-

sented in Table 3, whereas the time course changes in HCO3
– and the SID has been plotted in

Figs 1 and 2 for four different participants to emphasise the individuality in blood responses.

Across the sampling timeframe, marked increases in acid-base variables were observed

(HCO3
–: p<0.001, Pη2 = 0.609; pH: p<0.001, Pη2 = 0.529; SID: p = 0.029, Pη2 = 0.212; Fig 3).

Blood bicarbonate was elevated 60 min post-ingestion (+3.2 ± 2.6 mmol�L-1, p = 0.046) and

remained +4–6 mmol�L-1 until 165 min post-ingestion (all p<0.030). At 105 min mean blood

HCO3
– had increased by 5.2 ± 2.5 mmol�L-1 and remained elevated above the proposed

Table 3. Individual metabolite responses to 0.3 g�kg BM-1 sodium bicarbonate (NaHCO3).

Participant (Gender)

1 (M) 2 (M) 3 (F) 4 (F) 5 (M) 6 (M) 7 (F) 8 (F) 9 (F) 10 (M) 11 (F) 12 (F)

HCO3
–baseline (mmol�L-1) 26.5 28.0 23.3 23.9 26.0 25.6 24.8 25.9 24.7 26.4 26.4 23.6

HCO3
– peak (mmol�L-1) 34.3 35.3 32.3 34.5 32.8 33.9 31.4 28.3 30.5 32.7 34.8 26.4

Absolute change (mmol�L-1) +7.8 +7.3 +9.0 +10.6 +6.8 +8.3 +6.6 +2.4 +5.8 +6.3 +8.4 +2.8

Time to peak (min) 90 75 120 150 150 165 75 120 150 150 135 180

pH baseline (units) 7.41 7.46 7.40 7.40 7.40 7.41 7.39 7.41 7.41 7.40 7.38 7.43

pH peak (units) 7.57 7.52 7.52 7.54 7.49 7.53 7.54 7.45 7.51 7.48 7.49 7.47

Absolute change (units) +0.16 +0.06 +0.12 +0.14 +0.09 +0.12 +0.15 +0.04 +0.10 +0.08 +0.11 +0.04

Time to peak (min) 90 75 90 135 180 165 90 105 165 150 120 75

SID baseline (mEq�L-1) 33 37 33 32 33 35 33 33 31 30 34 32

SID peak (mEq�L-1) 36 38 38 38 37 35 38 35 35 38 38 34

Absolute change (mEq�L-1) +3 +1 +5 +6 +4 0 +5 +2 +4 +8 +4 +2

Time to peak (min) 90 60 90 135 120 60 165 120 60 135 75 60

https://doi.org/10.1371/journal.pone.0248456.t003

Fig 1. The time course change in blood bicarbonate (HCO3
–) over a 165 min period following NaHCO3 ingestion for

A) participant 1, B) participant 8, C) participant 7, and D) participant 5. The dotted line represents a +5 mmol�L-1

increase from baseline blood HCO3
–.

https://doi.org/10.1371/journal.pone.0248456.g001
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+5 mmol�L-1 ergogenic threshold until the final 165 min time point (peak: 150 min, +5.9 ± 2.7

mmol�L-1, +23%). An increased pH occurred at 75 min post-ingestion (+0.06 ± 0.04 units,

+0.8%, p = 0.010) and this level of increase was sustained at all remaining points in time

(+0.06–0.08 units, all p<0.030). Peak pH occurred at 165 min post-ingestion (+0.08 ± 0.05

units, +1.1%). The SID increased by 2.0 ± 1.5 mEq�L-1 (+6%, p = 0.024) at 60 min post-inges-

tion and peaked at 135 min post-ingestion (+2.4 ± 2.6 mEq�L-1, +7%), however, this did not

reach statistical significance.

Ingestion of NaHCO3 produced ionic shifts in the balance of strong ions (K+: p = 0.005,

Pη2 = 0.215; Na+: p = 0.044, Pη2 = 0.160; Ca2+: p <0.001, Pη2 = 0.562; Cl–: p = 0.016, Pη2 =

0.306). The electrolytes with the greatest absolute changes were K+ and Cl–. Large inter-indi-

vidual variations restricted the ability to detect statistical significances for all metabolites,

therefore group level results are described using effect sizes (Fig 4). This analysis showed that

K+ reduced gradually from baseline before reaching peak declines at 120 (–0.93 ± 1.07

mmol�L-1, –18%, g = 1.26) and 150 min (–1.03 ± 0.93 mmol�L-1, –20%, g = 1.64) post-ingestion.

Large effect sizes were calculated for the reductions in Cl−from 105 to 165 min post-ingestion

(all g>0.80) with the lowest point also occurring at 150 min post-ingestion (–3.5 ± 1.9

mmol�L-1, –3%, p = 0.002). The time that each individual participant reached their lowest val-

ues of K+ (133 ± 28 min, CV = 21%), Cl−(124 ± 27 min, CV = 21%), and Ca2+ (141 ± 32 min,

CV = 23%) averaged within 20 min of one another, albeit with large inter-individual variances.

Conversely, Na+ was largely unchanged throughout the sampling period. The absolute changes

from baseline displayed high inter-individual variation for each variable (K+: –1.28 ± 0.88

mmol�L-1, CV = 69%; Cl–: –4.5 ± 2.1 mmol�L-1, CV = 47%; Ca2+: –0.16 ± 0.07 mmol�L-1,

CV = 43%; Na+: +1.6 ± 1.3 mmol�L-1, CV = 83%).

The energy and macronutrient composition of the pre-ingestion meal had no statistically

significant correlations with the increases observed in blood HCO3
–, pH, or the SID (Table 4).

However, the macronutrient consumption of the meal did affect the time course behaviour of

blood HCO3
–, with protein (rs = –0.581) and fat intakes (rs = –0.594) both having moderate,

negative correlations with time to peak HCO3
–. Conversely, protein intake had a strong,

Fig 2. The time course change in blood strong ion difference (SID) over a 165 min period following NaHCO3

ingestion for A) participant 10, B) participant 2, C) participant 12, and D) participant 3.

https://doi.org/10.1371/journal.pone.0248456.g002
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positive correlation (rs = 0.711) with time to peak SID. The total energy content of the pre-

ingestion also had a moderate, positive correlation with time to peak SID, although this did

not reach statistical significance (rs = 0.555, p = 0.061). The fat content of the pre-ingestion

meal was associated with baseline blood acid-base balance, as both HCO3
– (rs = 0.609) and the

SID (rs = 0.639) displayed strong, positive correlations. The amount of Na+ consumed 1–3

hours before NaHCO3 ingestion also had a strong, positive correlation with baseline HCO3
–

(rs = 0.644, p = 0.024), but not with pH (rs = –0.315, p = 0.318), or the SID (rs = 0.171,

p = 0.596). No other correlations were found between Na+, K+, Cl–, or Ca2+ ingestion and time

course changes in blood acid-base balance.

Fig 3. Group mean time course changes in A) blood bicarbonate (HCO3
–), B) pH, and C) the strong ion difference

(SID) over a 165 min period following NaHCO3 ingestion. � = a large effect size compared to baseline (g>0.80). # = a

large effect size compared to 60 min post-ingestion (g>0.80).

https://doi.org/10.1371/journal.pone.0248456.g003
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Gastrointestinal discomfort

All participants reported at least one GI side effect, though the severity of these instances was

rated�5/10 in 94% (29/31) of occurrences (Table 5). Of the reported side effects, 71% (22/31)

Fig 4. Group mean time course changes in A) blood sodium (K+), B) potassium (Na+), C) calcium (Ca2+), and D)

chloride (Cl–) over a 165 min period following NaHCO3 ingestion. � = a large effect size compared to baseline (g
>0.80). # = a large effect size compared to 60 min post-ingestion (g>0.80).

https://doi.org/10.1371/journal.pone.0248456.g004

Table 4. The associations between the composition of the pre-ingestion meal with the time course changes in acid-base balance variables following NaHCO3

ingestion.

Dietary intake 1–3 hours before NaHCO3 ingestion Correlations with time to peak

HCO3
– (min) pH (min) SID (min)

Energy (kcal) p = 0.202, rs = –0.397 p = 0.785, rs = –0.088 p = 0.061, rs = 0.555

Carbohydrate (g) p = 0.506, rs = –0.213 p = 0.784, rs = –0.088 p = 0.194, rs = 0.403

Protein (g) p = 0.048, rs = –0.581� p = 0.870, rs = –0.053 p = 0.010, rs = 0.711�

Fat (g) p = 0.042, rs = –0.594� p = 0.411, rs = –0.262 p = 0.539, rs = 0.197

Dietary intake 1–3 hours before NaHCO3 ingestion Correlations with absolute change

HCO3
– (mmol�L-1) pH SID (mEq�L-1)

Energy (kcal) p = 0.430, rs = 0.252 p = 0.084, rs = 0.519 p = 0.827, rs = 0.071

Carbohydrate (g) p = 0.372, rs = 0.284 p = 0.127, rs = 0.466 p = 0.814, rs = 0.076

Protein (g) p = 0.476, rs = 0.228 p = 0.054, rs = 0.569 p = 0.221, rs = 0.381

Fat (g) p = 0.846, rs = 0.063 p = 0.316, rs = 0.316 p = 0.259, rs = –0.354

Dietary intake 1–3 hours before NaHCO3 ingestion Correlations with baseline concentrations

HCO3
– (mmol�L-1) pH SID (mEq�L-1)

Energy (kcal) p = 0.285, rs = 0.336 p = 0.645, rs = –0.149 p = 0.569, rs = 0.171

Carbohydrate (g) p = 0.652, rs = 0.146 p = 0.801, rs = –0.082 p = 0.920, rs = 0.033

Protein (g) p = 0.724, rs = 0.114 p = 0.114, rs = –0.480 p = 0.826, rs = 0.071

Fat (g) p = 0.036, rs = 0.609� p = 1.000, rs = <0.001 p = 0.025, rs = 0.639�

https://doi.org/10.1371/journal.pone.0248456.t004
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of instances peaked in severity at 60 and 75 min post-ingestion. The most common symptom

was belching (58%, 7/12), followed by stomach bloating and nausea (50%, 6/12).

Discussion

This was the first study to compare the time to peak of three different methods of measuring

peak alkalosis (i.e., HCO3
–, pH, and the SID) following the ingestion of 0.3 g�kg BM-1

NaHCO3 in highly trained adolescent male and female swimmers. Though no statistical signif-

icance was observed between the three measures, there was a 33 min difference between the

average time that HCO3
– and the SID peaked in the blood of trained adolescents. This study

also identified large inter-individual variances in the time to peak of each alkalotic measure,

whereby individual peak concentrations were identified across the sampling timeframe

(between 60–180 min post-ingestion). It is possible that this difference was related to the pro-

tein content of a meal consumed 1–3 hours before NaHCO3 ingestion, with this macronutrient

positively and negatively correlated with time to peak SID and HCO3
–, respectively. Finally,

this study provides justification for utilising individualised NaHCO3 dosing strategies in ado-

lescents since some sustained HCO3
– increases exceeding 5 mmol�L-1 for over 60 min (n = 6),

whereas others either reached this threshold for a 30–60 min period (n = 4), or did not reach

this threshold at all (n = 2). Based on the individuality in blood responses, future work should

aim to clarify whether personalised NaHCO3 strategies (i.e., time to peak HCO3
– and time to

peak SID) have a greater ergogenic effect for adolescents than standardised dosing procedures.

The average time that HCO3
– and pH peaked within the blood of trained adolescents

occurred within 10 min of one another, supporting the relationship between these two mea-

surements when NaHCO3 is consumed in gelatine capsules [3, 22, 38]. This discussion will

therefore focus on the blood HCO3
– time course since this measure displays less variance and

Table 5. The three most severe symptoms of gastrointestinal discomfort experienced following the ingestion of 0.3 g�kg BM-1 sodium bicarbonate (NaHCO3).

Participant (Body

mass)

Caps Symptom 1 Severity (n/

10)

Peak

(mins)

Symptom 2 Severity (n/

10)

Peak

(mins)

Symptom 3 Severity (n/

10)

Peak

(mins)

Aggregated

1 (90.7 kg) 28 Belching 4.9 60 Stomach

bloating

4.9 60 Nausea 2.3 60 17.7

2 (69.5 kg) 21 Belching 2.7 60 Stomach

bloating

1.7 135 Stomach

cramp

1.1 60 6.6

3 (55.8 kg) 17 Nausea 4.1 75 Stomach

bloating

1.4 60 None 0.0 N/A 5.5

4 (62.2 kg) 19 Belching 3.9 60 Stomach

bloating

2.4 60 Nausea 0.7 75 6.9

5 (72.1 kg) 22 Belching 1.7 75 None 0.0 N/A None 0.0 N/A 1.7

6 (64.6 kg) 20 Stomach

ache

4.0 165 None 0.0 N/A None 0.0 N/A 4.0

7 (60.6 kg) 19 Nausea 1.4 60 None 0.0 N/A None 0.0 N/A 1.4

8 (54.3 kg) 17 Belching 4.9 60 Flatulence 3.9 165 Stomach

ache

1.5 135 11.0

9 (57.7 kg) 18 Nausea 2.6 60 None 0.0 N/A None 0.0 N/A 2.6

10 (65.0 kg) 20 Belching 5.0 60 None 0.0 N/A None 0.0 N/A 5.0

11 (67.9 kg) 21 Flatulence 2.6 150 Stomach

bloating

2.1 60 Bowel

urgency

1.5 165 6.1

12 (63.7 kg) 20 Vomiting 10.0 105 Nausea 10.0 105 Stomach

ache

1.5 90 22.3

Aggregated = Sum of the most severe incidence of all nine symptoms (n/90). Caps = Number of capsules consumed (1 g of NaHCO3 per capsule).

https://doi.org/10.1371/journal.pone.0248456.t005
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greater reliability compared to pH [2, 21]. Time to peak blood HCO3
– varied considerably

within trained adolescents (75–180 min), which is in accordance with the blood responses of

recreational adults following the ingestion of NaHCO3 capsules in a fed or fasted state [3, 21,

22]. Whereas no comparisons can presently be made for the time course changes in the SID,

the time to peak concentration was also highly variable between each individual (60–165 min).

Interestingly, the average time that the SID peaked in trained adolescents occurred 33 min

before time to peak HCO3
–, which may have implications for NaHCO3 timing in applied prac-

tice. Why this time difference occurred is currently unknown, though meal preference in the

1–3 hours prior to NaHCO3 ingestion may be a contributing factor. Indeed, higher protein

intakes were correlated (rs = 0.711) with a delayed time to peak SID, whereas in contrast,

higher protein intakes were also correlated (rs = –0.581) with a faster time to peak blood

HCO3
–. Since NaHCO3 will usually be supplemented with a pre-competition meal in practice,

it is plausible that these two measurements will also be separated prior to performance. How-

ever, since this research did not measure a performance outcome, future work should aim to

determine whether either of these individualised approaches (i.e., time to peak SID and

HCO3
–) has an enhanced ergogenic benefit versus a traditional, fixed ingestion method (i.e.,

120 min pre-exercise).

The participants in the present study demonstrated a peak blood HCO3
– concentration that

exceeded the 5–6 mmol�L-1 threshold (+6.8 ± 2.4 mmol�L-1), contrasting previous studies

when trained adolescents ingested NaHCO3 prior to exercise [34, 35]. A possible explanation

for this difference is that high-level swimmers often have an early maturation onset [45],

which likely occurred in the current participants and aided their selection for the high-perfor-

mance swimming programme in which they were recruited. For comparison, both the male

(72 ± 11 kg) and female (60 ± 5 kg) swimmers from the present study carried considerably

more body mass than the ‘well trained’ male swimmers (56 ± 1 kg) recruited by Zajac et al.

[34], despite being the same age. Consequently, the current participants may have benefitted

from maturity-related differences in gut physiology (i.e., caecal pH, distal microbiota) that

potentially enhanced their capacity to uptake NaHCO3 from the GI tract [46, 47]. Moreover,

the advanced training age of the participants could have also enhanced muscle and blood buff-

ering capabilities (e.g., monocarboxylate transporter density, Na+/HCO3
– co-transport) [48–

50], which could have enabled greater blood HCO3
– increases to occur. However, it should be

noted that two participants (both aged 15 years) did not increase their blood HCO3
– concen-

trations above 3 mmol�L-1, therefore adding support to previous speculations that less biologi-

cally mature adolescents might have less capacity increase blood HCO3
– by more than 5–6

mmol�L-1. Though it is unclear whether this range is necessary for performance enhancement

in adolescents, it is perhaps appropriate to suggest that less biologically mature individuals do

not require NaHCO3 supplementation at their stage of development [51].

Highly trained adolescents also demonstrated an increased blood SID following NaHCO3

ingestion. This supports contemporary evidence by Gough et al. [24, 27] whereby an elevated

SID was reported prior to exercise in trained adults. Surprisingly, both studies by Gough et al.

demonstrated greater group mean increases in the SID compared to the present study (+4 vs.

+6–10 mEq�L-1), despite not purposely seeking to identify a peak concentration. The current

study also observed lower baseline (33 vs. 36–38 mEq�L-1) and absolute peak SID concentra-

tions (37 vs. 42–46 mEq�L-1), inferring that adolescents might also be limited with their capac-

ity for strong ion movements (e.g., reduced Na+/K+ pump activity) [48]. Furthermore, these

lower concentrations occurred despite food consumption 1–3 hours before NaHCO3 inges-

tion, though the energy, macronutrient, or electrolyte (Na+, K+, Cl–, and Ca2+) composition of

this meal was not correlated with baseline SID or the absolute SID increases that were

achieved. Since water was also permitted to be consumed ad libitum, it is possible that plasma
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volume also increased and masked some of the ionic movements that took place [52]. For

example, the absolute increases observed in plasma Na+ were mitigated (+1.6 vs. +3.0 mmol�L-

1) in comparison to previous research that investigated NaHCO3 ingestion in a fasted state [2,

3, 27]. Nonetheless, large effect sizes were calculated for plasma reductions of K+, Ca2+, and

Cl−between 120–150 min post-ingestion, therefore suggesting that an intramuscular uptake of

these ions did occur at this time [53]. Given that this study did not consider changes in the

intramuscular SID or plasma volume, however, future research is required in order to further

elucidate the role of NaHCO3 on the SID during exercise performance.

Comparable to adults, each blood analyte displayed a large inter-individual variance with

regards to time to peak and absolute increases that occurred from baseline concentrations [2,

3, 22]. Why this phenomenon occurs remains elusive, though it is postulated that genetic dif-

ferences in the rate of gastric emptying, intestinal motility, and GI blood flow may contribute

to NaHCO3 uptake characteristics [54, 55]. Despite the individual differences, the process of

identifying a personal time to peak HCO3
– measurement has recently been criticised [22].

Ingesting NaHCO3 capsules has consistently been shown to produce increases in blood

HCO3
– (>5 mmol�L-1) that last for over 100 min in adults [3, 22, 23], therefore producing a

long lasting ‘ergogenic window’ that undermines the necessity of a single ingestion time point.

However, when considering the HCO3
– time course on an individual basis, only half (n = 6) of

the trained adolescent participants demonstrated a +5 mmol�L-1 HCO3
– increase that lasted

for more than 90 min. Moreover, the time that each participant spent above the +5 mmol�L-1

threshold occurred at completely separate periods within some individuals (i.e., 60–120 min,

135–165 min post-ingestion), whereas two participants had small reductions in blood HCO3
–

(~1 mmol�L-1) at 60–75 min post-ingestion before concentrations increased over the next 60–

75 min. Due to these erratic time course differences, it is recommended that adolescents

undergo time to peak testing prior to supplementation in order to identify a personal time

frame for NaHCO3 to elicit a sufficient blood HCO3
– response. However, considering that this

is an expensive procedure, adolescents should remain cautious since the effects of individual-

ised ingestion methods on exercise performance are currently untested within this cohort.

There were minimal incidents of severe GI side effects when trained adolescents ingested

NaHCO3 capsules 1–3 hours after consuming a self-selected meal. Whilst each participant

reported at least one side effect, the severity of these symptoms was rated less than 5 out of 10

on 94% (29/31) of occasions. This low level of GI disturbance therefore supports the findings

of Carr et al. [38], whereby the co-ingestion of NaHCO3 capsules with a meal provided the

best mitigation against GI distress (vs. NaHCO3 solution/fasted state). Both capsules and meal

consumption are suggested to slow the reduction of NaHCO3 to Na+ and carbonic acid

(H2CO3), subsequently reducing the rate of acid-base disturbances that occur in the stomach

(e.g., increases in carbon dioxide and water) [56, 57]. Alternatively, the age of the participants

might have contributed to the lack of GI symptoms observed in this study, therefore support-

ing the lack of GI disturbances in adolescents from previous NaHCO3 research [34, 35]. Whilst

there is currently no clear explanation for the lack of GI disturbances in adolescents, it is plau-

sible that a lower acidity of the GI fluids compared to adults may mediate the acid-base distur-

bances that occur in the stomach when an alkaline substance is ingested [58]. Another general

observation is that athletes of a higher body mass (>75 kg) typically display greater GI distress

than lighter individuals [42, 59]. Adolescents, being smaller in stature than their adult peers,

may therefore experience less GI disturbances due to a reduced absolute NaHCO3 dosage

entering the stomach. However, this study did observe vomiting in one participant, which

indicates that the severity GI side effects should be assessed on an individual basis.

The study methods were applied based on the logistical (e.g., taking highly trained swim-

mers out of training) and ethical considerations of the participant cohort (e.g., repeated blood
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analysis of young athletes). This limited the current study from including a placebo experiment

or repeatability measures that could have altered the interpretation of results. Nonetheless, pre-

vious work found a placebo to cause no blood time course changes for either HCO3
–, pH, or

Na+ [2, 22], therefore it may be assumed that a placebo would not have altered baseline

HCO3
–, pH, or SID within an adolescent cohort. The repeatability of time to peak HCO3

– is

controversial, however, when 0.3 g�kg BM-1 NaHCO3 capsules are ingested in a fed state.

Indeed, Boegman et al. [21] reported an excellent repeatability (ICC = 0.77) within world-class

rowers when NaHCO3 was ingested alongside a standardised snack (energy: 682 kcal; protein:

20 g; carbohydrate: 140 g). Conversely, Oliveira et al. [22] found repeatability to be poor

(ICC = 0.34) when recreational adults ingested NaHCO3 60 min following a standardised

breakfast (energy: 563 kcal; protein: 9 g; carbohydrate: 90 g). Since both studies differed in

meal composition, participant training status, time post-prandial, and blood analysis methods

(capillary [21] vs. venous [22] samples), this leaves the repeatability of the current data unclear.

However, the main purpose of this research was to identify the time course changes in three

alternate blood acid-base balance variables following NaHCO3 ingestion in a highly trained

adolescent cohort. Since this was the first study to suggest that a difference in time to peak

HCO3
– and SID may exist in practice, future studies should therefore aim to determine the

repeatability of these two measures under different competitive scenarios (e.g., pre-competi-

tion meal, after warm-up).

Conclusion

This study shows that highly trained adolescent swimmers have significant increases and

highly individual time course changes in blood HCO3
–, pH, and SID following the ingestion of

NaHCO3 capsules. Importantly, the post-ingestion time point in which the individual time to

peak occurred for HCO3
– and the SID was separated by a large effect size. Given that the effects

of acidosis on exercise performance are controversial, future studies should seek to identify

NaHCO3 dosing strategies based upon a peak SID concentration could be more ergogenic

than standardised ingestion strategies, or individualised approaches based upon a time to peak

blood HCO3
–. This study also suggests that highly trained adolescent athletes do not have a

long lasting ‘ergogenic window’ following the ingestion of NaHCO3 capsules, therefore sup-

porting the practice of identifying an individualised time point whereby a peak alkalosis

occurs. It is acknowledged that a lack of control surrounding pre-ingestion food and fluids

may have influenced the findings of this study, however, these conditions better replicate the

actual changes that would occur when athletes are in full competition preparation.
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