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Abstract: 

We investigate how economic growth in a demand-driven economy with semi-

endogenous productivity growth can be compatible with a stable employment path. Our 

model uses a Sraffian supermultiplier (SSM), and we endogenize the growth rate of 

autonomous demand, and semi-endogenize productivity growth. The basic model has a 

steady state that is consistent with a stable employment rate, and in which the growth 

rate is determined by R&D expenditures. Consumption smoothing (between periods of 

high and low employment) by workers is the mechanism that ensures that demand keeps 

up with productivity growth and that the growing economy is stable. We also introduce a 

version of the model where the burden for stabilization falls upon government fiscal 

policy. This also yields a stable growth path, although the parameter restrictions for 

stability are more demanding in this case.  
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1. Introduction 

The core of Keynesian economics is the rejection of Say’s Law, or, phrased in a more 

positive way, the importance of the demand side of the economy. Demand is often broken 

down into two parts, one part dependent on current income, and another part being 

autonomous, i.e., independent of current income. This leads to the idea of the multiplier, 

which, put simply, says that the income-dependent part of demand has important indirect 

effects, i.e., production that is undertaken to meet (autonomous) demand leads to income 

(e.g., for workers), which leads to more demand, and, in turn, to more income, etc. If the 

marginal propensity to consume out of current income is smaller than one, this process 

will converge (each new round of induced spending is smaller than the previous one) and 

the level of economic activity (GDP) is found by the product of the multiplier and 

autonomous demand (possibly including investment). 

In macroeconomics, this insight is applied, among other things, to the problem of 

unemployment (e.g., Mitchell et al., 2019). This is usually done in the context of the 

business cycle, i.e., without consideration of the long-run growth potential of the economy 

as expressed, for example, by productivity growth. However, Keynesian approaches to 

growth also exist, e.g., Kaldor (1957), Pasinetti (1981), Freitas and Serrano (2015) to 

name only a few (see Lavoie, 2014 and Blecker and Setterfield, 2020 for an extensive 
overview). 

However, in a dynamic (growth) context, demand may pose a major challenge in terms of 

stability of the growth path. Imagine, for example, an economy where wage-earners 

consumer a larger share of their current income than profit earners, and in which wages 

adjust in the labour market. In such a context, a shock that drives unemployment up will 

tend to decrease wages, and lower overall demand (through the different propensities to 

consume). This will tend to amplify the initial shock, driving the economy further away 

from the normal utilization rates (of labour and capital), in a downward spiral towards 

sustained (mass) unemployment. 

In the empirical reality, we observe such instability in limited periods of depression, not 

in epochal eras. For example, in the USA over the period 1948 to the first quarter of 2021, 

the monthly unemployment rate never fell below 3.8% or rose above 14.8%, with the 

average at 5.8%. Similarly, since 1967, the capital utilization rate moved between the 

extremes of 64.2% and 89.4%, at an average of 80%.1 These bounds imply sizeable short-

to medium-run fluctuations, but not secular instability. Hence a dynamic theory of 

demand and growth must reflect this relative stability. Our aim in this paper is to develop 

a growth model in which demand plays a major role (i.e., we model a multiplier-based 

economy) and in which both the employment rate and the capital utilization rate show 

long-run stability. The main version of our model has no government, i.e., a stable growth 

path is obtained through the dynamics of private behaviour alone. In an extension, we 

consider the role of the government in stabilizing the growth path.  

We choose the Sraffian supermultiplier (SSM, Freitas and Serrano, 2015) as the basis for 

the model. In this model, investment is endogenized as a fraction of GDP, which implies 
 

1 Data taken from the FRED database at https://fred.stlouisfed.org/. The indicated starting dates are the 
earliest for which data is available. 

https://fred.stlouisfed.org/
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that the multiplier becomes larger, ceteris paribus, as compared to the simple Keynesian 

model where investment is exogenous in the short run. In the simple Keynesian model, 

the multiplier is equal to 1 (1 − 𝑐)⁄ , where c is the marginal propensity to consume, while 

in the supermultiplier model, the multiplier becomes 1 (1 − 𝑐 − ℎ)⁄ > 1 (1 − 𝑐)⁄ , with h 
as the (time-varying) propensity to invest. 

The choice for the supermultiplier model is primarily a convenience choice: the SSM 

model already generates a stable growth path for the rate of capacity utilization (through 

endogenous adjustments of h), and thus only the task of modelling a stable path for the 

employment rate remains. This is, however, not a trivial task, because, as we will show 

below in detail, the basic SSM model can only generate a stable employment rate if the 

exogenous rates of growth of labour productivity and of autonomous spending are equal 

to each other (provided that labour supply does not adjust). This is reminiscent of the 

notion of Harrodian instability, because these two exogenous rates will only equalize by 

chance.  

Productivity growth (especially labour productivity growth) is an important source of 

economic growth (Maddison, 1991) that is usually considered as a supply-side force. In 

turn, technological change is seen as an endogenous driver of productivity. This puts 

Research and Development (R&D) at the center of analysis (e.g., Aghion and Howitt, 1992 

in the mainstream tradition, or Nelson & Winter, 1982 and Silverberg and Verspagen, 

1994 in the evolutionary tradition).  

Many R&D-based growth models (certainly all of the ones cited in the paragraph above, 

although we will consider a few exceptions in the next section) ignore the demand side of 

the economy. Usually, they simply assume that output is equal to capacity output, which, 

implicitly, calls Say’s Law to working. Our model has R&D-based productivity growth, but 

we also explicitly model the way in which demand adjusts in the long run. This means that 

demand plays an important role in growth (without demand adjustment no stable growth 

rate exists), but that the magnitude of the growth rate is determined by supply-side 
parameters related to R&D and technical change. 

The key question that the model poses is whether demand adjustment and productivity 

growth will simultaneously yield a stable long-run employment path. If demand grows 

persistently slower than productivity, the economy will tend towards a zero employment 

rate, whereas if demand grows persistently faster than productivity, labour will become 

a constraint for growth. In our model, demand and productivity growth are seen to adjust 

to each other, and a dynamic macroeconomic steady state emerges in which the 

(super)multiplier is the main economic coordination mechanism rather than price 
flexibility (Meijers et al., 2019).  

In terms of the flow of our exposition, we first extend the basic SSM model by including 

employment and productivity. We then semi-endogenize2 productivity with R&D as the 

main driving factor, and fully endogenize autonomous demand. The central question that 

the model tries to address is how, and under which parameter settings, demand, both 

autonomous (i.e., not dependent on current income) and non-autonomous, and 
 

2 By semi-endogenization we mean that productivity growth depends in an indirect way on a parameter 
which influences the relative accumulation of fixed capital and R&D capital. 
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productivity growth will adjust to each other to produce a meaningful and stable steady 

state growth path. 

After this introduction, we present a brief literature review in section 2. Section 3 presents 

our model. Subsections of Section 3 present the baseline model from Freitas & Serrano 

(2015), our proposal to endogenize (the growth of) autonomous demand and semi-

endogenize technological change (productivity growth), the steady state solutions to our 

model, stability analysis, and several extensions of our main model, including a 

rudimentary way to deal with returns to financial investments, and a government 

stabilization mechanism. In section 4 we summarize the main arguments. More technical 

details on the model can be found in the appendices. 

 

2. A brief review of some relevant literature 

Adjustment of the employment rate plays a central role in our research question, and in 

the model that is developed in the next section. Here we briefly review a number of recent 

approaches to labour market adjustment in demand-led growth models. We limit 

ourselves to models in the supermultiplier tradition, because this is the specific context 
in which our own model is developed.  

The employment rate is the central feature of the labour market that we are interested in. 

Changes in the employment rate, and whether or not it will be stable in the longer run, 

depends on the rate of growth of output, the rate of productivity growth, and the rate of 

growth of labour supply. A stable employment rate requires that the growth rate of labour 

productivity plus the growth rate of labour supply matches the rate of growth of output. 

Each of these factors has received attention in the demand-led growth (supermultiplier) 

literature.  

In the supermultiplier tradition, the growth rate of output is equal to the growth rate of 

autonomous consumption spending (this will be illustrated formally in the next section). 

In Serrano (1995b, fn. 9, p. 15-16) autonomous consumption can take a wide variety of 

forms, it includes “the consumption of capitalists; the discretionary consumption of richer 

workers that have some accumulated wealth and access to credit; residential 'investment' 

by households ; firms' discretionary expenditures … that do not include the purchase of 

produced means of production such as consultancy services, research & development, 

publicity, executive jets, etc. …; government expenditures (both consumption and 

investment); and total exports.”  

Most of the items on this long list have been followed up in more recent literature. For 

Freitas and Serrano (2015), autonomous consumption is just “financed by credit” (p. 261). 

Pariboni (2016) develops the idea of credit-financed (autonomous) consumption in full. 

Lavoie (2016) develops the idea of capitalists’ consumption, while Nah & Lavoie (2017) 

focus on exports, and Allain (2015) covers government expenditures. Allain (2019) adds 

subsistence consumption including an unemployment benefits system to the list. 

Caminati & Sordi (2019) and Deleidi & Mazzucato (2019) have proposed government 

R&D as the autonomous expenditure mechanism. However, all these model expansions 
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consider autonomous expenditure as an exogenous variable, as in the basic 

supermultiplier model that we will outline in the next section. 

Of more interest to our approach are attempts to endogenize autonomous consumption 

(or “non-productive” expenditures by firms). Brochier & Silva (2019) link autonomous 

consumption to the accumulated wealth of the workers, which is an approach that we will 

follow. Their model is simulated instead of solved analytically, and there are additional 

mechanisms influencing the dynamics of the employment rate, which means it is difficult 

to isolate the impact of endogenizing autonomous consumption by workers’ wealth. 

Turning to the rate of productivity growth, Fazzari et al. (2020), Nah & Lavoie (2019b), 

and Palley (2019) all have endogenous labour productivity adjustment, which leads to 

convergence of productivity growth to the exogenous growth rate (of autonomous 

spending). Palley (2019) assumes that productivity is sensitive to the employment rate. 

When the employment rate increases, productivity growth increases, because of learning 

effects, and when the employment rate falls, the productivity growth rate falls 

accordingly. With a falling employment rate, productivity growth may become negative 

in this approach. Fazzari et al. (2020) who also adopt this particular assumption, discuss 

a host of justifications for this specification.  

Caminati & Sordi (2019) introduce R&D as a source of productivity growth. In their 

approach, the potential of a given amount of R&D to generate productivity growth 

decreases with the already-achieved level of productivity, and there are also decreasing 

returns to productivity-adjusted R&D. Because they assume that the amount of 

(productivity-adjusted) R&D is exogenous, labour productivity grows at a fixed rate. 

Deleidi & Mazzucato (2019) also have R&D in their model. In this case, business R&D 
expenditures depend on government R&D. 

These R&D-based models, including the model we will present below, are rooted in the 

neo-Schumpeterian evolutionary tradition, which mainly looks at technology as a supply 

phenomenon (something that it shares with the mainstream growth theory). However, 

this tradition criticizes the static orthodox framework of the Walrasian general 

equilibrium and proposes a new theory for economic microeconomic dynamics with 

bounded rationality and innovation as a core factor (Nelson and Winter, 1982; Silverberg 

and Verspagen, 1994). The basis of growth resides in the market implementation of new 

technologies, in a scenario of competition through innovation, but in a disequilibrium 

setting. The system follows a process of natural selection, in which the best adapted firms 
remain in the market.  

Hanusch & Pyka (2007) call for a focus of the neo-Schumpeterian literature on the 

uncertain developments in the socio-economic system, observing the effects of productive 

transformation also on other aspects (such as the public and monetary aspects) being 

“concerned with the conditions for and consequences of a removal and overcoming of the 

economic constraints limiting the scope of economic development.” (Hanusch & Pyka, 2007, 

p.276). In our view, this includes the modelling of the demand side of the economy in the 

form of a multiplier-based model, i.e., the rejection of Say’s law (Meijers et al, 2019). This 

is a prime motivation for our model that combines (semi-) endogenous technological 
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change (productivity growth) and a (super)multiplier mechanism as the main form of 

coordination in the economic system.  

The inclusion of productivity growth is also often done by adding a Kaldor-Verdoorn 

learning effect (Allain, 2019; Brochier, 2020; Deleidi & Mazzucato, 2019; Nah and Lavoie, 

2019b), in which, because of learning by doing, productivity growth depends (positively) 

on the capital accumulation rate or on the growth rate of output. However, the inclusion 

of the Kaldor-Verdoorn effect, even if it includes an exogenous component of productivity 

growth, has only a transitory effect on the capital accumulation rate (which is equal to the 

growth rate of the economy), unless, as in Nah and Lavoie (2019b), the investment 

equation is modified to include productivity growth. Kaldor-Verdoorn is neither a 

necessary nor a sufficient condition to guarantee employment stability. For example, Nah 

and Lavoie (2019b, p. 289) conclude that “it can (…) be seen (…) that an increase in the 

autonomous component of technical progress (…) will lead to a one-to-one fall in the long-

run growth rate of employment. (…) [T]his conclusion can only be evaded (…) if we 

assume that faster technical change also generates an increase in the growth rate of the 

non-capacity-creating autonomous components of effective demand.” 

Finally, the supply of labour has also been proposed as endogenous. Fazzari et al. (2020) 

and Nah & Lavoie (2019a) argue that labour supply growth reacts to the employment rate, 

with high (low) employment rates causing faster (slower) growth of the labour force. Such 

a mechanism may arise if people base their decision to enter the labour market on the 

perceived probability of finding a job. With labour supply endogenized in this way, the 

employment rate will converge to a stable value when the economy grows at the 
exogenous rate of autonomous spending. 

 

3. The model 

We will now present our model in a step-by-step fashion. The first step (sub-section) will 

be to show how the basic SSM model (Freitas and Serrano, 2015) cannot produce a stable 

path for the employment rate. After this, we will introduce some new mechanisms to the 

basic SSM model: first semi-endogenous productivity growth, and then (fully) 

endogenous growth of autonomous spending. With those two additions in place, we can 

derive the steady state and investigate its stability. Finally, we present two extensions: 

one that introduces a rate of return to financial investment, and another that introduces 

government as a stabilizing force. We conclude the model analysis by investigating 

stability of the growth path with these extensions in place.  

The models that we present are all for a closed economy, and, except for section 3.7, we 

assume that there is no government.  

3.1. Exogenous growth 

The key characteristic of the supermultiplier approach is the role of autonomous 

spending, which we will model as autonomous consumption (but see our review of 

alternative interpretations in the previous section). Autonomous consumption appears in 

the consumption function. Contrary to the basic SSM model, we will distinguish between 
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wage-income and profit-income, because this is a foundation of our later extensions of the 

model. The consumption function thus makes a distinction between the two sources of 
income:3 

𝐶 = 𝜎𝑌𝑐𝑤 + (1 − 𝜎)𝑌𝑐𝑝 + 𝑍𝑤 + 𝑍𝑝       (1) 

where C is consumption, the parameter c is a marginal consumption rate, Y is GDP, 𝜎 is 

the share of wage income in GDP (we will consider this as a parameter, although we would 

think that further development of the model would endogenize this), Z is autonomous 

consumption (i.e., independent of current GDP) and is exogenous for now, and the 

subscripts w and p represent wage income and profit income.  

An important part of the model is how GDP is determined in the short run. Besides the 
consumption function, this also requires the investment function, which is simply 

𝐼 = ℎ𝑌 

where I is investment (the only capacity-creating variable), and h is the propensity to 

invest (and is an induced variable), which is an endogenous variable in the model for 

which we will specify an equation below. GDP is then determined by a Keynesian 
multiplier process, which becomes clear if we derive GDP in the well-known way: 

𝑌 = 𝐶 + ℎ𝑌 = 𝜎𝑌𝑐𝑤 + (1 − 𝜎)𝑌𝑐𝑝 + 𝑍𝑤 + 𝑍𝑝 + ℎ𝑌 ⇒  

𝑌 = (𝑍𝑤 + 𝑍𝑝)
1

1−𝜎𝑐𝑤−(1−𝜎)𝑐𝑝−ℎ
       (2) 

where 1 (1 − 𝜎𝑐𝑤 − (1 − 𝜎)𝑐𝑝 − ℎ)⁄  is the supermultiplier. Note that, contrary to the 

usual or “normal” multiplier, the supermultiplier includes the share of investment of GDP 

(the variable h). 

To make our model resemble that of Freitas and Serrano, we can assume 𝑐𝑤 = 𝑐𝑝 ≡ 𝑐 and 

define 1 − 𝑐 ≡ 𝑠. We then also drop the distinction between 𝑍𝑤 and 𝑍𝑝, and denote total 

autonomous consumption by 𝑍. Then the supermultiplier becomes 1 (𝑠 − ℎ)⁄  and 

equation (2) reduces to 

𝑌 = 𝑍
1

𝑠−ℎ
          (3) 

The standard approach of the SSM tradition (Freitas and Serrano, 2015) is to model 
investment as a dynamic function of the capacity utilization rate: 

ℎ̇ = ℎ𝛾(𝑢 − 𝜇)         (4) 

Here, 𝛾, the speed of adjustment, and 𝜇, the normal long-run capacity utilization rate, are 

parameters, u is the capacity utilization rate. The latter is defined as follows: 

𝑢 =
𝑌

𝑌𝐾
, 𝑌𝐾 =

𝐾

𝜈
 

 
3 Notation (variables and parameters) is tabulated in Appendix 0. 
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where Y is output (GDP) K is the stock of fixed capital, 𝜈 is the normal capital-output ratio, 

and YK is full-capacity output. 

Writing the growth rate of Z as 𝑔𝑍 ≡ 𝑍̇ 𝑍⁄  (a dot above a variable will denote a time 

derivative), and still referring to the reduced (Freitas and Serrano) version of the model, 

we can write the growth rate of GDP in the following way: 

𝑌̇

𝑌
≡ 𝑔 = 𝑔𝑍 +

ℎ̇

𝑠−ℎ
         (5) 

This equation allows us to return to the growth context of the model. The original Freitas 

and Serrano model consists of two equations: (4) and a differential equation for the capital 

utilization rate u. By its definition, the growth rate of u is equal to the growth rate of GDP 

(𝑔 as in 5) minus the growth rate of the capital stock. We denote the latter as 𝑔𝐾 ≡ 𝐾̇ 𝐾⁄ . 

Like Freitas and Serrano, we assume that capital accumulation is a perpetual inventory 

process, with a fixed depreciation rate 𝛿: 

𝐾̇ = 𝐼 − 𝛿𝐾 = ℎ𝑌 − 𝛿𝐾 ⇒ 𝑔𝐾 =
ℎ𝑢

𝜈
− 𝛿      (6) 

With this, we can write the differential equation for the capacity utilization rate: 

𝑢̇

𝑢
= 𝑔 − 𝑔𝐾 = 𝑔𝑍 +

ℎ̇

𝑠−ℎ
−

ℎ𝑢

𝜈
+ 𝛿       (7) 

As we are interested not only in the capacity utilization rate but also in employment, we 

will derive a similar expression for the employment rate, which we will denote by E. We 

will assume a constant labour force and a fixed labour coefficient in the short run, i.e., 𝑎 =

𝑌 𝐿⁄ , where a is labour productivity. Then 

𝐿 =
𝑌

𝑎
⇒

𝐿̇

𝐿
= 𝑔 −

𝑎̇

𝑎
 

We will allow for labour productivity to grow over time, and will set 𝑎̇ 𝑎⁄ ≡ 𝜌. Then the 
above equation turns into 

𝐸̇

𝐸
= 𝑔 − 𝜌 = 𝑔𝑍 +

ℎ̇

𝑠−ℎ
− 𝜌        (8) 

If we consider 𝑔𝑍 and 𝜌 as exogenous, we already have a full model that consists of 

equations (4), (7) and (8), with variables h, u, and E. In the steady state of this model, 

equation (4) dictates that 𝑢 = 𝜇 so that ℎ̇ = 0, and it follows (from equations 7 and 8) that 

𝑢̇ 𝑢⁄ = 𝑔𝑍 − 𝑔𝐾 and 𝐸̇ 𝐸⁄ = 𝑔𝑍 − 𝜌. This implies that for any steady state values of u and E 

to exist, we must have  

𝑔𝑍 = 𝑔𝐾 = 𝜌          (9) 

In this equation, which is in line with the analysis in Palley (2019) and Fazzari et al. 

(2020), 𝑔𝐾 is endogenous, but (so far) 𝑔𝑍 and 𝜌 remain exogenous. If, like Freitas and 

Serrano, we set 𝜌 = 0, and disregard equation (8) (i.e., do not consider employment to be 
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a variable of interest)4, then equation (7) solves for ℎ = (𝑔𝑍 + 𝛿)𝜈 𝜇⁄ . In this steady state, 

𝑔𝐾 will adjust to become equal to 𝑔𝑍, and hence the first equality in (9) is satisfied. 

But what about the second equality? A (positive) steady state value for the rate of 

employment, E, requires equality of the two exogenous growth rates (𝜌 = 𝑔𝑍). If this is 

satisfied, 𝑔𝐾 will adjust to become equal to 𝜌 = 𝑔𝑍. However, if 𝜌 ≷ 𝑔𝑍, and with both of 

these rates exogenous, there is no chance of a steady state with both capital utilization 
and employment constant (and positive).  

Because there is no a priori good reason why in a model of exogenous growth 𝜌 = 𝑔𝑍, we 

proceed to endogenize both these rates. The task is not only to specify how these two rates 

are equalized, but also whether (and how) the steady state that results from equalization 

will be stable. Here we do not take the notion of a stable steady state as an approximation 

of economic reality, as we know well enough that growth paths (including employment 

rates) are seldom smooth steady states in actual economic history. Instead, we look at the 

stable steady state that our model looks after as a baseline economic mechanism upon 

which we must ultimately seek to add turbulence by means of additional economic factors 

that will remain unspecified in our current analysis. 

 

3.2. Semi-endogenizing the rate of labour productivity growth 

In the model with semi-endogenous productivity growth, we start by assuming that a 

share 𝜏 of GDP is spent (out of profit income) on Research and Development (R&D), which 
we denote by Θ: 

Θ = 𝜏𝑌 

We consider 𝜏 as an exogenous parameter, but propose that further development of the 

model would endogenize this parameter. In this way, R&D is modelled similar to 

investment I, although we consider R&D as non-capacity-creating expenditures (in the 

strict sense5) that are also non-autonomous. We assume that R&D (and the resulting 

innovation) does not affect the quality of capital, as it would in a vintage model (e.g., 
Silverberg and verspagen, 1994). 

With R&D included in the model, equation (2) changes to 

𝑌 = (𝑍𝑤 + 𝑍𝑝)
1

1−𝜎𝑐𝑤−(1−𝜎)𝑐𝑝−𝜏−ℎ
       (2a) 

Productivity change depends on the accumulated knowledge stock (not just on current 

R&D activities), and hence we introduce an R&D-capital stock (denoted by R). We follow 

the empirical literature that addresses the relation between R&D and productivity (see, 

e.g., Hall et al., 2010) in assuming that R evolves as a stock in the same way as fixed capital 

 
4 Not considering employment not only assumes that labour is not a constraint to growth, but also, and 
perhaps more importantly, that unemployment is not a factor of interest. Palley (2019), Brochier (2020) 
and Fazzari et al. (2020) are exceptions in the SSM literature who recognize the importance of including 
employment in the model. 
5 We follow the existing literature (see Section 2) in calling R&D non-capacity-creating, although it clearly 
enhances the capacity of labour to produce output. 
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K, with a fixed depreciation rate Δ (for most of our steady state calculations, we will 

assume Δ = 𝛿, i.e., R&D capital and fixed capital depreciate at the same rate, which will 
simplify the mathematics):  

𝑅̇ = Θ − Δ𝑅 = 𝜏𝑌 − Δ𝑅        (10) 

Further, we define the ratio of the R&D-capital stock to the stock of fixed capital as 

Φ ≡ 𝑅 𝐾⁄  

Using (6) and (10), we get 

Φ̇ = Φ (
𝜏𝑢

Φ𝜈
− Δ −

ℎ𝑢

𝜈
+ 𝛿) = Φ

𝑢

𝜈
(

𝜏

Φ
− Δ − ℎ + 𝛿)     (11) 

Finally, we again follow the empirical literature in assuming that productivity growth 

results from R&D intensity (in our case intensity relative to the capital stock), more 
specifically, from the value of Φ: 

𝜌 = 𝜌̅ + 𝜑Φ          (12) 

where 𝜌̅ (the exogenous part of productivity growth) and 𝜑 are parameters. Note that if 

we set 𝜏 = 0, it follows that Φ = 0, or if we set 𝜑 = 0, we are back in the realm of 

completely exogenous productivity growth (𝜌 = 𝜌̅). 

 

3.3. Endogenizing the growth rate of autonomous spending: the private sector6 

We will now set out to fully endogenize autonomous spending. This means that demand 

will become fully endogenous to the model (non-autonomous demand is already fully 

endogenous). With productivity growth semi-endogenous, i.e., ultimately dependent on 

the rate of R&D investment 𝜏, this implies that the magnitude of the growth rate will 

become dependent on the R&D parameters (which are all supply side). However, demand 

will still play an important role in the model because without demand adjustment, the 

growth path cannot be stable.  

The first idea that we will employ for endogenizing 𝑔𝑍 is that private autonomous 

consumption depends on accumulated wealth. This is the foundation of the first (and 

main) model that we present, while in a later subsection we will consider government 

fiscal policy as another source of endogenous autonomous spending in the economy in an 

alternative model.  

In the appendix, we present a model where, in line with the general consumption function 

(2), we distinguish between consumption out of wage income as well as profit income, 

and accumulated wealth is also from wage income and accumulated wealth from profit 

income. For clarity in exposition, here, in the main text, we will focus on a special case, 

where there is no consumption out of profit income, nor out of accumulated wealth out of 

profits. In other words, only wage income and the accumulated savings out of wage 

 
6 We understand an endogenous variable as a variable that depends on other variable(s) in the model, while 
an autonomous variable is one that is independent of current GDP. In our endogenization of 𝑔𝑍, it remains 
independent of current GDP, i.e., it remains autonomous, which is in line with the SSM tradition. 
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income are used for consumption. In this special case, the basic outcomes of the model in 

terms of growth are unchanged relative to the more general appendix model, and the 

formal expressions for steady state values are significantly simplified relative to the 

general case.  

The basic idea for endogenizing 𝑔𝑍 is taken from Brochier (2020), and states that 

autonomous consumption is dependent on accumulated wealth. In the specific case that 

we consider here in the main text, this wealth is defined as accumulated savings purely 

out of labour income (wages). The appendix deals with the more general model in which 
also accumulated wealth out of profit income is considered. 

We denote accumulated savings out of labour income by 𝑊𝑤, and specify its motion by the 

following equation:7 

𝑊̇𝑤 = (1 − 𝑐𝑤)𝜎𝑌 − 𝑍𝑊 − 𝛿𝑊𝑤       (A2a) 

The first part of the righthand side ((1 − 𝑐𝑤)𝜎𝑌 − 𝑍𝑊) simply represents savings out of 

current labour income. The term −𝛿𝑊𝑤 represents depreciation of wealth. This arises 

from the specific setup of the model, explained in more detail in the appendix, in which 

total accumulated wealth in the economy is equal to the sum of the productive capital 

stocks (both R&D capital R and fixed capital K). In this way, 𝑊𝑤 is seen as an entitlement 

of the holders (wage earners) on the stock 𝑅 + 𝐾. The term −𝛿𝑊𝑤 is included because the 

entitlement to 𝑅 + 𝐾 will depreciate with the stocks themselves, and we assume, for 
simplicity, that R&D capital and fixed capital depreciate at the same rate Δ = 𝛿.  

The general model has a corresponding wealth variable 𝑊𝑝, which represents assets held 

by profit earners. As the appendix shows, 𝑊𝑤 + 𝑊𝑝 = 𝑅 + 𝐾. Because of the specific 

assumptions made here (no autonomous consumption out of 𝑊𝑝), we do not need the 

variable 𝑊𝑝 in the exposition in the main text. However, we do have to introduce the 

variable 𝑥 ≡ 𝑊𝑤 (𝑊𝑤 + 𝑊𝑝)⁄ = 𝑊𝑤 (𝐾 + 𝑅)⁄ , which represents the share of wage earners 

in total wealth of the economy.  

The endogenization of 𝑔𝑍 then proceeds by positing 

𝑍𝑤 = 𝜁𝑤𝑊𝑤           (A4a) 

𝑍𝑝 = 𝜁𝑝𝑊𝑝            (A4b) 

Here 𝜁𝑤  is a new variable that represents the (marginal) propensity to consume out of 

accumulated workers’ savings, and similarly 𝜁𝑝 is a parameter that represents the 

marginal propensity to consume out of profit earners’ assets. Note that we assume 𝜁𝑝 = 0 

(as well as 𝑐𝑝 = 0) in the main text, i.e., equation (A4b) is only reported here for 

completeness (these assumptions are relaxed in Appendix 1). Our assumption is also that 

the variable 𝜁𝑤  is a behavioural variable that serves to smooth (autonomous) 

 
7 Equation numbers starting with A refer to one of the three appendices. These equations are introduced 
and discussed in some detail in the appendices, in this case the context of the model with generalized 
consumption function. 
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consumption spending for changes in workers’ income that result from changes in the 

employment rate. More specifically, we specify 

𝜁𝑤̇ = 𝜄𝜁𝑤(𝐸̅ − 𝐸)         (13) 

Here 𝜄 and 𝐸̅ are parameters (both >0). 𝐸̅ specifies a neutral rate of employment at which 

current wage income is considered satisfactory. When the employment rate drops below 

𝐸̅, current labour income also falls below the satisfactory level (remember we assume a 

fixed real wage rate), and workers have to “compensate” by drawing to a larger extent on 

their accumulated wealth for consumption. This means that 𝜁𝑤  will have to rise. Similarly, 

when employment rises above 𝐸̅, labour income is considered high, and there is less of a 

need for consumption out of accumulated wealth. Hence 𝜁𝑤  will fall. We adopt the 

shorthand term “consumption smoothing” (James et al., 2007; Kim et al., 2014) for the 

idea specified by equation (13), which is a key mechanism in our model that proves to 
provide stability to the growth path in terms of ensuring a stable employment rate.  

It is easy to see how equation (13) has the potential to stabilize the economy. If 

employment falls below the neutral value (𝐸̅), autonomous consumption will tend to 

increase (𝑊𝑤 will be fixed initially, while 𝜁𝑤  increases), and ceteris paribus the multiplier, 

GDP will increase, bringing the employment back towards the neutral rate 𝐸̅. Note that 

such stabilization works exclusively through quantity adjustment (of autonomous 

demand). Because demand in our model depends largely on consumption out of wage 

income, it is hard to imagine how flexible prices would achieve stabilization. For example, 

a traditional Phillips curve regulating (real) wages would have a de-stabilizing effect, 

because wages (and hence demand) would fall when employment falls below a threshold 

level, leading to a spiral that bring the economy further away from a stable employment 

rate.  

The ultimate model (with semi-endogenized 𝜌 and fully endogenized 𝑔𝑍) contains six 

variables: h, u, E, Φ, 𝜁𝑤  and x. We have already specified differential equations for h, Φ and 

𝜁𝑤  (equations 4, 11 and 13, respectively). We also have general forms (equations 7 and 8) 

for the differential equations for u and E, in which we still need to specify the endogenized 
variable 𝑔𝑍. We also need to specify the differential equation for x. 

Let us start by writing the expression for 𝑔𝑍, which will give us two differential equations. 

Clearly, from equation (A4a), 𝑔𝑍 = (𝜁𝑤̇ 𝜁𝑤⁄ ) + (𝑊𝑤̇ 𝑊𝑤⁄ ). The first of the terms on the 

righthand side of this follows directly from equation (13). With the assumption that 
autonomous consumption out of profit income is zero, we can also write 

𝑔𝑊 ≡
𝑊𝑤̇

𝑊𝑤
= 𝜁𝑤𝑥 (

𝜏+ℎ

1−𝑐𝑤𝜎−𝜏−ℎ
) − 𝛿       (14) 

(This equation is a specific case of equation A6). This leads to 

𝑔𝑍 = 𝜄(𝐸̅ − 𝐸) + 𝜁𝑤𝑥 (
𝜏+ℎ

1−𝑐𝑤𝜎−𝜏−ℎ
) − 𝛿      (15) 

(the more general form of this is A7). 

And then: 
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𝑢̇ = 𝑢 (𝜄(𝐸̅ − 𝐸) + 𝜁𝑤𝑥 (
𝜏+ℎ

1−𝑐𝑤𝜎−𝜏−ℎ
) +

ℎ̇

1−𝑐𝑤𝜎−𝜏−ℎ
−

ℎ𝑢

𝜈
)    (7’) 

𝐸̇ = 𝐸 (𝜄(𝐸̅ − 𝐸) + 𝜁𝑤𝑥 (
𝜏+ℎ

1−𝑐𝑤𝜎−𝜏−ℎ
) +

ℎ̇

1−𝑐𝑤𝜎−𝜏−ℎ
− 𝛿 − 𝜌̅ − 𝜑Φ)  (8’) 

Finally, we can derive the last differential equation from the definition 𝑥 =

𝑊𝑤 (𝑊𝑤 + 𝑊𝑝)⁄ : 

𝑥̇ =
(𝜁𝑤𝑥+𝜁𝑝(1−𝑥))((1−𝑐𝑤)𝜎−𝑥(𝜏+ℎ))

1−𝑐𝑤𝜎−𝑐𝑃(1−𝜎)−𝜏−ℎ
− 𝜁𝑤𝑥       (16) 

 

3.4. Steady state 

In this section, we will analyze the steady state of the model with semi-endogenous 

productivity growth and endogenous 𝑔𝑍 as specified in the previous section (i.e., private 

autonomous spending as the source of 𝑔𝑍). We will ignore the trivial steady state solution 

where all variables are zero.  

We can start by setting equations (4) and (13) to zero, which immediately yields 𝑢∗ = 𝜇 

and 𝐸∗ = 𝐸̅ (we will denote steady state solutions by a * superscript). Next, setting 

equations (7’) and (8’) to zero, re-arranging and equating the results of both equations, as 

well as substituting (15), yields the following quadratic equation for Φ: 

𝜑Φ2 + (𝛿 + 𝜌̅)Φ −
𝜏𝜇

𝜈
= 0        (17) 

Obviously, this equation has two solutions, but only one of them yields a positive value for 

Φ: 

Φ∗ =
−(𝛿+𝜌̅)+√(𝛿+𝜌̅)2+

4𝜑𝜏𝜇

𝑣

2𝜑
        (18) 

To derive the steady state value for h, two routes are now open. One of these is to set 
equation (11) to zero, which yields (remember we assume Δ = 𝛿 for simplicity): 

Φ̇ = Φ
𝑢

𝜈
(

𝜏

Φ
− ℎ) = 0 ⇒

𝜏

Φ∗
= ℎ∗       (19) 

Equation (18) could be substituted into (19) to obtain ℎ∗ as a function of only parameters. 

The other route is to set (7’) and (8’) to zero, solve each of these for 𝜁𝑤  and equate the two 
expressions, which yields 

ℎ∗ =
𝑣

𝜇
(𝛿 + 𝜌̅ + 𝜑Φ∗)        (20) 

Again, we can substitute (19) to obtain an (alternative) expression for ℎ∗ as a function of 

only parameters. Equation (20) also shows that the steady state value for the investment 

rate h depends on the rate of technological change (or productivity growth): as 

productivity growth rate is faster, capital needs to accumulate at the same rate (see 
equation 9), which requires a higher value of h. 

However, rather than actually presenting either one of these expressions (which are 

equivalent), we show in Figure 1 how the parameter 𝜏 influences the simultaneous 
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determination of the steady state solutions Φ∗ and ℎ∗, as well as the resulting rate of 

productivity growth, 𝜌. The figure shows that all three of these steady state outcomes are 

concave functions of 𝜏. In other words, increasing the rate of R&D spending as a fraction 

of GDP will have a positive but declining effect on the steady state values of the investment 

rate (h), the ratio of the R&D stock to the stock of fixed capital (Φ), and, as a result of the 

latter, the rate of productivity growth. 

 

 

Figure 1. Steady state values of Φ, ℎ and 𝜌 as a function of 𝜏 

 

Next, we set equation (16) to zero, solve for 𝜁𝑤  and equate this to the expression for  𝜁𝑤  
that can be derived from setting (8’) to zero. This yields the steady state solution for x: 

𝑥∗ = 1 −
(1−𝜎)

(𝜏+ℎ∗)
         (21) 

Obviously, the denominator of the fraction on the righthand side (𝜏 + ℎ∗) is the fraction 

of GDP that needs to be invested (in fixed capital and R&D) in the steady state. The higher 

this share is, the more firms need to borrow from workers to fund investment, and hence 
the higher the steady state value of 𝑥. 

Finally, we can use any of the expressions that were derived for 𝜁𝑤  and substitute 𝑥∗ to 

obtain 

𝜁𝑤
∗ =

(1−𝜎𝑐𝑤−(𝜏+ℎ∗))ℎ∗𝜇

𝑣

(𝜏+ℎ∗)−(1−𝜎)
        (22) 
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In this expression, as long as 𝜏 + ℎ∗ < 1, 𝜎 has a negative effect on 𝜁𝑤
∗  (the higher the share 

of wages in GDP, the lower the resulting rate of autonomous consumption spending). The 

effect of 𝜏 is also negative, which is in line with our conclusion on equation (21) (the higher 

𝜏, the more firms tend to borrow). The effect of ℎ∗ is harder isolate, but it appears to be 
negative, with the same intuition as the effect for 𝜏.  

With all steady state values of the endogenous variables derived, we are able to look at 

how growth works in this model. Equation (9) states that 𝑔𝑍 = 𝑔𝐾 = 𝜌, and we also know 

that in the steady state the growth rate of GDP (g) is equal to this. Using equation (12), we 

see that in the steady state 𝜌 = 𝜌̅ + 𝜑Φ∗, and equation (18) shows that Φ∗ depends on a 

range of parameters, which includes 𝛿, 𝜏, 𝜇, and 𝑣 (𝜌̅ and 𝜑 were already included).  

As was already predicted above, all of these are supply-side parameters, and some (𝜏, 𝜌̅ 

and 𝜑) are directly related to technological change. Demand-side parameters, such as 𝑐𝑤, 

𝐸̅ or even 𝜎 do not enter the expression for the long-run growth rate of the economy. What 

happens is that 𝑔𝑍 (the demand side) adjusts to the growth rate of productivity. This also 

implies that the endogenization of the demand side (𝑔𝑍) is crucial for the existence and 

stability of a steady state. In fact, we could keep the rate of productivity growth completely 

exogenous (e.g., 𝜑 = 0), and, as long as we keep the endogenization of 𝑔𝑍, the steady state 

of the model would still exist. 

In the next section, we will consider whether demand side adjustment can produce a 

stable path towards the steady state values that we derived. Before we undertake to 

answer this question, we can also note that the general model, for which we document the 

steady state expressions in the appendix, arrives at the same conclusion with regard to 

the unique importance of the supply side in determining the growth rate. In other words, 

also if we relax the assumption that only wage earners consume, we see no change in the 

steady state growth rate of the economy. Only the steady state values of 𝑥 and 𝜁𝑤  will 

change if we relax those assumptions. 

 

3.5. Stability analysis 

We used numerical simulations to explore the behaviour of the model as specified so far.8 

These simulations were done in R, using the ssmmod function, which numerically 

integrates the equations. Figure 2 documents the time paths for the variables of the model 

in the baseline simulation, which uses the following parameter values: 𝜏 = 0.05, 𝛿 = 0.05, 

𝑣 = 2, 𝜇 = 0.8, 𝐸̅ = 0.8, 𝑐𝑤 = 0.875, 𝜎 = 0.8, 𝜑 = 0.1, 𝜌̅ = 0.01, 𝜄 = 1.4, 𝛾 = 0.15 as well 

as 𝑐𝑝 = 0 and 𝜁𝑝 = 0 which we assumed throughout the main text so far. We see that, for 

these parameter values, the model converges (with dampened fluctuations) to the steady 

state. The steady state values of the variables are as follows: 𝑢∗ = 0.8, ℎ∗ = 0.210, 𝐸∗ =
0.8, 𝑥∗ = 0.230, 𝜁𝑤

∗ = 0.057, Φ∗ = 0.239. 

 

 
8 For a more detailed calibration of the baseline SSM, see Haluska et al. (2021) for the US economy. 



15 
 

 

Figure 2. Model simulation showing stability of the steady state 

 

In order to obtain a more comprehensive overview of stability, we used Matlab’s symbolic 

math toolbox to derive the Jacobian matrix corresponding to the model. This enables us 

to do a grid search of parameter space, and numerically calculate the eigenvalues of the 

Jacobian matrix at the steady state, for each particular parameter constellation. With 11 

(or even 13) parameters, it is impossible to do a complete search. Therefore, we limited 

our search of parameter space to just 5 parameters, which are 𝜏, 𝜎,  𝑐𝑤, 𝜄 and 𝛾. The other 

parameters are fixed at the values listed above. Note that while we have reasonably good 

ideas for what are plausible values for some of these parameters (𝜏, 𝜎,  𝑐𝑤), we do not have 

such expectations for 𝜄 and 𝛾. This is why we choose to put these latter two parameters 
on the axes in the figures below. 

The parameter grid search not only gives information about stability of the steady state. 

It also provides insights into the sign of some of the steady state values of the variables. 

In the broad and coarse grid search that we implemented9, it appeared that there are 

parameter sets in which either 𝑥 or 𝜁𝑤  (or both) are negative (and stable). While such 

negative values are not impossible to interpret (essentially, they represent an indebted 

working class), we will focus on parameter values that yield positive values for 𝑥 and 𝜁𝑤 . 

The parameter grid search suggests that we need fairly high values of 𝜎 (typically 0.75 or 

higher for the restricted model of the main text) and 𝜏 (typically 0.05 or larger) to ensure 

this. Relaxing the assumption that profit earners do not consume reduces the likelihood 
 

9 We analyzed the following ranges in this broad and coarse grid search 𝜏: 0.01 – 0.07; 𝜎: 0.5 – 0.9; 𝑐𝑤: 0.4 – 
0.9, 𝜄: 0.01 – 1.5; and 𝛾: 0.01 – 0.25. 
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of negative steady state values for 𝑥 or 𝜁𝑤  considerably. The key parameter to relax this 

assumption is 𝜁𝑝. If we set 𝜁𝑝 = 0.15, values of 𝜎 = 0.7 or lower still generate positive 

values for 𝑥 and 𝜁𝑤 . 

 

 

Figure 3. The role of parameters 𝛾 and 𝜄 in the main model for stability of the 

steady state 

 

Inspection of the results of the grid search suggests that the parameters 𝜄 and 𝛾 play a 

crucial role in stability. In particular, we need a minimum value of the ratio 𝜄 𝛾⁄  for the 

steady state to be stable. This is illustrated in Figure 3, which documents, for different 

(and fixed) values of the parameters other than 𝜄 and 𝛾, on the vertical axis the minimum 

value of 𝜄 that yields a stable steady state given the value of 𝛾 on the horizontal axis.10 For 

example, the grey line (which is drawn for a value 𝜎 = 0.75) shows that if 𝛾 = 0.15, stable 

steady state values are obtained for values of 𝜄 ≧ 0.7. All lines in the figure are 

(approximately) linear, which means that along each line, the ratio 𝜄 𝛾⁄  is fixed, and we 

 
10 A stable steady state, in this case means that all eigenvalues (of the Jacobian matrix evaluated at the steady 
state) are either non-imaginary and negative, or imaginary with a negative real part. We also checked for 
zero real (parts of) eigenvalues, but this did not happen in the cases we considered. 
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need this ratio to be larger than the slope of the line for the model to have a stable steady 

state. This implies that 𝜄 needs to be relatively large for stability, and that larger values of 
𝛾 require larger values of 𝜄. 

The figure also provides different lines for varying values of 𝜎. These indicate that the 

lower 𝜎 is (e.g., the blue line represents the lowest value of 𝜎 that we considered here, 

0.7), the higher the required ratio 𝜄 𝛾⁄  is. Given 𝛾, higher values of pose lower restrictions 

on 𝜄 for stability. For example, the individual simulation run that we documented above 

(with 𝜎 = 0.8, 𝛾 = 0.15 and 𝜄 = 0.85) lies well above the yellow line. 

 

 

Figure 4. The role of parameters 𝛾 and 𝜄 in the main model with zero and positive 

𝜁𝑝 for stability of the steady state 

 

Figure 4 documents similar results, but now comparing to a more general case where we 
relax the assumption 𝜁𝑝 = 0 and instead set 𝜁𝑝 = 0.15 (𝑐𝑝 = 0 remains as an assumption). 

Here we only consider the ‘extreme’ values 𝜎 = 0.8 and 𝜎 = 0.9, i.e., the blue and yellow 

curves are the same as in the previous figure. Interestingly, compared to the case 𝜁𝑝 = 0, 

𝜁𝑝 = 0.15 moves the lines 𝜄 𝛾⁄  much closer together. This means that with 𝜁𝑝 = 0.15, 
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differences in 𝜎 matter much less for stability than in the case 𝜁𝑝 = 0. The intuition for 

this result lies in the variable 𝑥. Because profit earners now consume out of their wealth, 

their share of total assets in the economy decreases, i.e., the steady state value for 𝑥 

increases. With a larger base for their autonomous consumption, consumption smoothing 
becomes easier for workers, which makes 𝜄 a less crucial parameter for stability.  

 

3.6. Introducing a rate of return to accumulated savings 

So far, we have assumed that there is no return on the accumulated savings by workers. 

This is, of course, an unrealistic assumption. Ideally, the model that we presented so far 

would be extended to include a financial market, which would offer various instruments 

that could be used to invest savings. Such a financial sector would also have to include 

additional agents, such as a government, a central bank and private banks. While the 

tradition of so-called stock-flow-consistent models (Godley and Lavoie, 2007; Brochier & 

Silva, 2019) offers such models, we leave the extension of our model in this elaborate way 

to future work. Instead, we opt here for a very rudimentary way of incorporating a rate of 

return.  

Our main idea, which we already briefly referenced above, is that accumulated workers’ 

savings can be seen as a claim on the production factors that are accumulated in firms, i.e., 

fixed capital and knowledge capital (R&D). Remember that total assets (aggregated over 

workers and profit earners) in the economy are equal to the sum of the capital stock and 

the R&D stock. Workers’ assets (accumulated savings) are a share of this (which is the 

variable 𝑥), and our equations will specify that workers are entitled to a proportional 

share of current profits.  

Such an allocation of part of profit income to workers means that workers now receive 

more (if 𝑥 > 0) than the share 𝜎 of GDP. If this redistribution would be completely 

proportional, workers would receive a share 𝜎 + 𝑥(1 − 𝜎), and profit earners a share 
(1 − 𝑥)(1 − 𝜎). However, we introduce a new parameter, 0 ≤ 𝑟 ≤ 1, which measures the 

extent to which profits are redistributed. With the inclusion of this new parameter, 

workers will receive a share 𝜎 + 𝑟𝑥(1 − 𝜎) of GDP, and profits earners a share 
(1 − 𝜎)(1 − 𝑟𝑥). It is easily seen that if 𝑟 = 0 (i.e., no returns on accumulated savings), we 

have the model as it has been presented so far, while if 𝑟 = 1, we have the expressions as 
firstly introduced in this paragraph (returns fully proportional to 𝑥). 

The marginal propensities to consume (or save) for workers and profit earners are 

applied to total income, i.e., to the shares of GDP as specified in the previous paragraph. 

This changes some of the equations in the model, and this is documented in full detail in 

Appendix 2. Here, we only summarize the main result of this change, which solely lies in 

the steady state values for the variables 𝑥 and 𝜁𝑤 . The steady state expressions are given 

in the appendix. Generally, for 𝑟 > 0, we find larger steady state values for 𝑥 as compared 

to equation (21), or its more general counterpart found in Appendix 1 (equation A12). For 

the case 𝑟 = 1, we find 𝑥∗ = 1, i.e., workers own the entire capital stock. For all cases 𝑟 <

1, 𝑥∗ < 1 remains, thus as long as profit-earners are left with some of the current-period 

profits, they will always be able to accumulate at least some level of positive assets.  
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However, when 𝑟 = 1, and independently of how much they save, the savings of the profit 

earners become insufficient to compensate for the depreciation on the physical assets 
they hold. 

The positive effect on 𝑥∗ in cases 𝑟 > 0 has implications for stability. This is shown in 

Figure 5, which is similar to the two previous figures. Here all lines are drawn for 𝜎 = 0.8. 

The solid line is the case of the model of the main text, i.e., 𝜁𝑝 = 0, which yields the same 

line as already shown in the previous two figures. The dashed grey line assumes 𝜁𝑝 = 0.15 

but keeps 𝑟 = 0, and hence this is the same line as in the previous figure. The other two 

lines introduce two new cases: 𝑟 = 0.5 (green) and 𝑟 = 1 (red). We can see that a higher 

value of 𝑟 shifts the  𝜄 𝛾⁄  tradeoff line down, i.e., increases stability. This is the same effect 

as observed before: the increase in 𝑥∗ makes consumption smoothing easier to implement 

for given 𝜄. 

 

Figure 5. The role of parameters 𝛾 and 𝜄 in the model with a financial return for 
stability of the steady state 
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3.7. Endogenizing the growth rate of autonomous spending: the government sector 

We conclude our model analysis by considering an alternative mechanism for stabilizing 

the economy. Whereas so far private autonomous consumption spending worked as a 

stability mechanism by workers’ desire to smooth consumption between periods of high 

and low unemployment, we now ask whether the government is able to stabilize the 

economy by fiscal policy. We limit our model extensions to the government mission of 

stabilizing the economy, hence we disregard the type of missions that, e.g., Deleidi and 

Mazzucato (2019) consider. Here, we will discuss the changes that are made to the model 

of the previous sections to analyze this question. Full details of some of the equations of 

the model with government fiscal policy are provided in Appendix 3. 

In order to consider the model with a government, we will make one major simplification 

to the model as considered so far: we will no longer distinguish between workers and 

profit earners in the private sector. This means that the variable 𝑥 is no longer relevant, 

and that we have only a single parameter for the marginal consumption rate (we will 

denote this parameter by 𝑐), and a single variable for autonomous spending by the private 

sector (this variable will be denoted as 𝑍ℎ). As before, 𝑍ℎ will be a fraction (denoted by 

𝜁ℎ) of total private-sector assets (or wealth). Because our focus is on the government 

sector as a stabilization mechanism, we will assume that 𝜁ℎ  is a fixed parameter. 

On the other hand, the introduction of a government sector also means that we have to 

introduce new variables and equations into the model. The first of these variables is 𝑍𝐺 , 

which is autonomous government (consumption) spending. Another variable is the tax 

rate 𝑇, which is specified as a share of GDP, which implies that 𝑇𝑌 is total tax revenue. We 

also specify total outstanding government debt, which we denote by 𝐺.  

In line with the previous section, we assume that the government has to pay interest on 

the bonds that it issues to fund outstanding debt G. For simplicity, we assume that this 

rate of return is equal to the private rate of return on invested capital (R&D capital R and 

fixed capital K). We then consider profit income as the return on invested capital, which 

means that the rate of return is equal to (1 − 𝜎)𝑌 𝑊⁄ , where 𝜎 is, as before, the parameter 

that represents the share of wages in GDP, and hence (1 − 𝜎) is the share of profits. W 

denotes the total invested capital by private agents, which in the model of the previous 

sections was split into 𝑊𝑤 and 𝑊𝑝. Because we have now assumed a fixed 𝜁ℎ , we have   

𝑊 = 𝑊𝑤 + 𝑊𝑝 = 𝑅 + 𝐾, where 𝑊𝑤 and 𝑊𝑝 are variables that are only relevant for the 

comparison with the model of the previous sections. 

Finally, we introduce a new variable 𝐷 ≡ 𝐺 𝑊⁄ , which is government debt as a share of 

𝑊 = 𝑅 + 𝐾. With the interest rate on government bonds equal to (1 − 𝜎)𝑌 𝑊⁄ , total 

interest payments (to the public, which holds the bonds) are equal to 𝐺 (1 − 𝜎)𝑌 𝑊⁄ =
(1 − 𝜎)𝐷𝑌. Then we have  

𝐺̇ = 𝑍𝐺 + (1 − 𝜎)𝐷𝑌 − 𝑇𝑌 = 𝑍𝐺 + 𝑌((1 − 𝜎)𝐷 − 𝑇)    (23) 

and 

𝐷̇ = 𝜁𝐺 +
[(𝜁𝐻+𝜁𝐺)+𝜁𝐻𝐷][𝐷(1−𝜎−ℎ−𝜏)−𝑡]

1−𝑐(1−𝑡+(1−𝜎)𝐷)−(ℎ+𝜏)
+ 𝐷𝛿      (24) 
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Here 𝑍𝐺  is autonomous government spending, and 𝜁𝐺  is the parameter that governs this 

variable. The government model needs a number of behavioral equations for the 

government. First, we assume that government spending is proportional (by 𝜁𝐺) to the 

private wealth variable W: 

𝑍𝐺 = 𝜁𝐺𝑊          (A4d) 

We then also need a behavioral rule for the spending fraction 𝜁𝐺: 

𝜁𝐺̇ = 𝜁𝐺𝜄𝐺(𝐸̅ − 𝐸)         (13a) 

This is similar to the rule that we used for workers’ consumption smoothing in the 

previous sections (equation 13), but here it is the government who takes this task upon 

itself. Equation (13a) reflects the government “mission” to stabilize the economy. The 

main difference with the previous sections is that the government needs to borrow money 

to perform this function, whereas workers could draw on their savings. Hence the 

government raises taxes to fund its debt, and therefore we need a behavioral rule for the 

tax rate. Here, we will assume that the government sets a long-run neutral value for the 

variable D, and adjusts the tax rate to maintain this value (in the long run): 

𝑇̇ = 𝑇𝜂(𝐷 − 𝐷̅)         (25) 

In what follows, we will set 𝐷̅ (the neutral D value) to zero, which means that the 

government aims to have no debt in the long run (the model that we analyze is a balanced 

budget supermultiplier model). This is a strict assumption, which we make for 

mathematical convenience, but assuming 𝐷̅ > 0 does not fundamentally change the 

conclusions. 

This concludes the model with government stabilization. The model consists of seven 

endogenous variables: h, Φ, u, E (all of which were present in the model without a 

government), T, D, and 𝜁𝐺 . The differential equations for h and Φ are unchanged, they are 

(4) and (11), respectively. The differential equations for u and E are slightly changed and 

are specified by substituting the new expression for 𝑔𝑍 (equation A7a in Appendix 3) into 

the generic forms (7) and (8). These two equations are documented as (7a) and (8a) in 

Appendix 3. Finally, equations (25), (24) and (13a) provide the differential equations for 

the new variables T, D, and 𝜁𝐺 . 

 

3.8. Steady state and stability 

The (non-trivial) steady solution of the model can be derived in the same way as was done 

for the model without a government. The expressions for ℎ∗, Φ∗, 𝑢∗ and 𝐸∗ do not change 

from what we had without a government, which leaves only the three new government-

related variables. We leave details of the derivations of the steady state values of these 

variables to the interested reader, and just document these values: 

𝐷 = 𝐷̅ = 0          (26) 

𝜁𝐺
∗ =

𝜇

𝑣(1+Φ∗)
−

(𝛿+𝜌̅+𝜑Φ∗)+𝜁ℎ

(1−𝑐)
        (27) 
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𝑇∗ = 1 −
𝑣(1+Φ∗)

𝜇

(𝛿+𝜌̅+𝜑Φ∗)+𝜁ℎ

(1−𝑐)
         (28) 

We simulate this model with the following parameter values: 𝜏 = 0.075, 𝛿 = 0.05, 𝑣 = 2, 

𝜇 = 0.8, 𝐸̅ = 0.8, 𝑐 = 0.6, 𝜎 = 0.7, 𝜑 = 0.1, 𝜌̅ = 0.01, 𝜄𝐺 = 0.95, 𝛾 = 0.1, 𝜁ℎ = 0.01, and 𝜂 =

0.1. Figure 6 shows how, under these parameter values, the model converges to the steady 

state with dampening oscillations. Along the adjustment path, the variable D also takes 

negative values, i.e., at some times, the government borrows money from the private 

sector. 

 

 

 

Figure 6. Government model simulation showing stability of the steady state 

 

Note that in the set of parameter values that we chose, 𝜄𝐺  is quite a bit larger than 𝜂. It 

makes intuitive sense that this is a condition for government fiscal policy to be an effective 

stabilizer. Obviously, the primary stabilization mechanism is 𝜁𝐺 , which adjusts in response 
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to (un)employment (equation 13a). On the other hand, equation (25), which determines 

the dynamic path of the tax rate, works against such stabilization, because a higher tax 

rate will decrease private consumption. Thus, any positive effects on GDP and 

employment from increasing 𝜁𝐺  will be offset by an increasing tax rate. If the tax effect is 
immediate, fiscal policy will become ineffective in stabilizing the economy.  

The stability of the steady state in the model with a government seems more precarious 

than the model without a government that was presented above, i.e., government 

stabilization using fiscal policy is harder than with the private consumption smoothing 

stabilizer in the previous sections. One of the reasons for this is that whereas before we 

had two adjustment parameters (𝛾 and 𝜄) for which we needed particular values, we now 

have three such adjustment parameters: 𝜂, 𝛾 and 𝜄𝐺  (and we also have 𝐷̅, which we fixed 

at zero for mathematical convenience). Figure 7 presents 2D stability diagrams for each 

combination of two of these parameters. The underlying data for these diagrams is 

calculated in the same way as for the previous model, i.e., using Matlab’s symbolic math 

module. In the next diagram, we fix the following parameters: 𝜏 = 0.05, 𝛿 = 0.05, 𝑣 = 2, 

𝜇 = 0.8, 𝐸̅ = 0.8, 𝑐 = 0.6, 𝜎 = 0.7, 𝜑 = 0.1, 𝜁ℎ = 0.02 and 𝜌̅ = 0.01. 

Focusing on 𝛾 and 𝜄𝐺  first (top part of the figure), we see that for low values of 𝛾, the model 

is always stable, irrespective of the value of 𝜄𝐺 , but note that 𝜂 is fixed at 0.25 (which is a 

fairly low value) in this diagram. Also high values of 𝛾 yield a stable steady state, but 

intermediate 𝛾 values require a high value for 𝜄𝐺  for the steady state to be stable. For the 

combination 𝜂 and 𝛾 (middle part), we need at least one of these two parameters to have 

a low value (but note that 𝜄𝐺  is fixed at 0.95, which is a fairly high value). Finally, for the 

combination of 𝜂 and 𝜄𝐺  we see that either low or high values of 𝜂 yield a stable steady 

state, but for intermediate values of 𝜂, we require high values of 𝜄𝐺  (here 𝛾 is fixed at 0.1, 

which is fairly low).  
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𝜂 is fixed at 0.25 

 

𝜄𝐺  is fixed at 0.95 

 

𝛾 is fixed at 0.1 

Figure 7. The role of parameters 𝜂, 𝜄𝐺  and 𝛾 in stability of the steady state in the government 
model 
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The rate of technological change and in particular the value of the R&D parameter 𝜏 and 

the private propensity to consume out of wealth (𝜁ℎ) also have an impact on the stability 

of the steady state. This is shown in Figure 8, which graphs stability in the 𝜏 vs. 𝜁ℎ  plane, 

and where we fix 𝛿 = 0.05, 𝑣 = 2, 𝜇 = 0.8, 𝐸̅ = 0.8, 𝑐 = 0.6, 𝜎 = 0.7, 𝜑 = 0.1, 𝜂 = 0.1, 𝜄𝐺 =

0.95, 𝛾 = 0.01 and 𝜌̅ = 0.01. 

Here we see a narrow band of stability emerging, which depicts a tradeoff between the 

two parameters. High values of one of these parameters require low values of the other 

for the steady state to be stable, and vice versa. A combination of high 𝜁ℎ  and high 𝜏 also 

yields negative values for the steady state of T and 𝜁𝐺 , as can be seen in equations (27) 

and (28), and which are hard to interpret economically. Thus, the upper-right corner of 

instability in the figure corresponds to this counter-intuitive situation of negative taxes. 

The lower-left corner of instability corresponds to an economy with low growth rates 

(due to low R&D investment) and also low private autonomous spending. 

 

Figure 8. The role of parameters 𝜏 and 𝜁ℎ  in stability of the steady state in the 

government model 
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4. Conclusions 

The models that we developed in this paper confirm that a long-run steady state with 

economic growth in a (super)multiplier-based economy with endogenous autonomous 

consumption spending can be consistent with a stable employment rate. The magnitude 

of the growth rate is determined by supply-side parameters related to R&D and technical 

change. But demand is very important in this economy, because without adjustment of 
demand to the R&D-based growth rate, no stable path exists.  

In order to have a stable long run employment rate, autonomous consumption needs to 

grow at the same rate as labour productivity, something that is not easy to imagine if both 

these rates are exogenous (as in the basic SSM approach). Our model proposes that the 

equality of these two rates is obtained by consumption smoothing by wage earners 

(workers), who adjust their autonomous consumption spending as a fraction of their 

accumulated savings, in response to unemployment, and/or by government fiscal policy, 

where the government runs a temporary deficit (surplus) if the unemployment rate is 

high (low) and raises taxes to keep its long-run debt within bounds. 

The (numeric) analysis of the Jacobian matrix of our models has shown that both these 

stabilization mechanisms (private consumption smoothing and government fiscal policy) 

will keep the growth path stable, provided that certain parameter restrictions are 

satisfied. In the case that stabilization takes place by workers’ consumption smoothing 

alone, the ratio of the responsiveness of workers’ autonomous spending to 

unemployment to the responsiveness of firms’ investment to capital utilization must be 

large enough. What this minimum value is exactly depends on parameters in the model, 

such as the share of wages in GDP, R&D investment as a fraction of GDP, and the rate of 
autonomous consumption spending by profit earners.  

In the model with government fiscal policy as the stabilization mechanism, stability is 

more difficult to obtain. In this model, various parameters, including the adjustment 

parameters that govern fiscal policy, but also the responsiveness of firms’ investment to 

capital utilization, as well as the R&D intensity parameter and the propensity of the 

private sector to consume out of wealth, are crucial parameters that determine stability 
of the steady state. 

Our model variety without a government includes a general consumption function, which 

allows for consumption spending by workers and by profit owners, and both autonomous 

consumption (not related to current income) and non-autonomous. Assuming that no 

consumption (autonomous or otherwise) is done out of profit income simplifies the 

steady state expressions for the variables in our model, but does not change any of the 

basic conclusions about growth or stability of the growth path. Also, while most of the 

time we assume that accumulated workers’ savings earn no return, an alternative (and 

rudimentary) way of modelling such returns suggests that the growth path is unaffected 

by this (although the distribution of wealth between workers and profit earners is 

affected). In the model with government fiscal policy, our simplifying assumption is that 
the government strives for its long-run debt to be zero, and we disregard monetary policy.  

In the resulting model, both productivity growth and the growth of autonomous demand 

indeed appear to be crucial for the emergence of a stable growth path in which we also 
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have stable employment. Technological change (which is modelled by semi-endogenous 

R&D investments) relieves the resource constraint that the size of the labour force 

imposes on the economy, and hence makes it possible to achieve per capita growth. 

Endogenous demand, including endogenous autonomous consumption, keeps the 

economy on a path where the labour resource is used (at a fixed rate), so that the 

opportunities provided by technological change are actually utilized. 

We feel that there are two main directions in which our model should be extended in 

future work. On the one hand, while we fully endogenized consumption demand, 

technological change was only semi-endogenized. Thus, while we considered R&D 

investment as a fraction of GDP as a fixed parameter, there is scope to consider it as an 

endogenous variable. This could be done both by making R&D dependent on other 

macroeconomic variables, such as (expected) profits (as in the endogenous growth 

literature, e.g., Aghion & Howitt, 1992), or by a behavioral approach that considers R&D 

at the firm level as resulting from imitation and behavioral mutation (as in Silverberg and 

Verspagen, 1994). Government spending may also be crucial in the field of technological 

change (as also in, e.g., in Deleidi & Mazzucato, 2019). While in our current model the rate 

of growth is ultimately determined by the R&D parameters, with autonomous demand 

adjusting, fully endogenizing R&D would open the possibility for a model where demand 
and supply mutually adjust to each other. 

On the other hand, the introduction of a more detailed way of modelling the financial 

sector would also enhance the degree of realism of the model. This would not only allow 

the modelling of the (de-)stabilizing effects of finance, but also the inclusion of monetary 
policy by the government.  
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Appendix 0. Notation 

Variables Parameters 
a Labour productivity cw Marginal propensity to consume out 

of wage income 
E Employment rate cp Marginal propensity to consume out 

of profit income 
C Consumption expenditures c Marginal propensity to consume 

irrespective of income source 
D Government debt as a share of 

private accumulated savings 
E̅ Normal employment rate 

g Growth rate of GDP r Profit redistribution on the basic of 
the shares of accumulated savings out 
of profit or wages 

gK Growth rate of the capital stock (and 
of full-capacity GDP) 

s Marginal propensity to save out of 
current income 

gW Growth rate of accumulated savings 
out of wage income 

γ Speed of adjustment of h wrt u 

gZ Growth rate of autonomous 
consumption spending (exogenous 
in the basic SSM model) 

δ Depreciation rate of the capital stock 

G Total outstanding government debt ζG Government spending as a share of 
private accumulated savings 

h Propensity (out of GDP) to invest ζh Propensity to consume out of 
accumulated private savings 

I Investment ζp Propensity to consume out of 
accumulated savings out of profit 

L Employment η Speed of adjustment of tax rate 
K Capital stock ιG Speed of adjustment of share of 

government spending of private 
accumulated savings  

R R&D capital stock (accumulated 
knowledge) 

ι Speed of adjustment of propensity to 
consume out of accumulated savings 
out of wages 

T Tax rate μ Normal long-run capacity utilization 
rate 

x Share of accumulated savings out of 
wage income in total accumulated 
savings 

ρ̅ Exogenous part of the growth rate of 
labour productivity 

YK Full-capacity GDP ν Normal capital output ratio 
Y GDP   

Wp Accumulated savings out of profit 
income 

σ The share of wages in GDP 

Ww Accumulated savings out of wage 
income 

τ Propensity (out of GDP) to invest in 
R&D 

u Rate of capacity utilization φ Technological opportunities 
Zg (Autonomous) government 

spending 
Δ Depreciation rate of the R&D capital 

stock (usually equal to δ) 
Zh Autonomous consumption spending 

by private sector, irrespective of 
income source 

  

Zp Autonomous consumption spending 
by profit earners 

  



31 
 

Variables Parameters 
Zw Autonomous consumption spending 

by wage earners 
  

Z Autonomous consumption spending, 
unspecified income source 

  

ρ Growth rate of labour productivity   
ζw Propensity to consume out of 

accumulated savings out of wages 
  

Θ R&D expenditures   
Φ Ratio of the R&D-capital stock to the 

stock of fixed capital 
  

 

 

 

 

Appendix 1. The model with generalized consumption equation 

Our model with generalized consumption (and savings) behaviour starts from equation 

(1) in the main text, which is the consumption function: 

𝐶 = 𝜎𝑌𝑐𝑤 + (1 − 𝜎)𝑌𝑐𝑝 + 𝑍𝑤 + 𝑍𝑝       (2) 

Next we define savings as any income that is not consumed, and we distinguish between 

savings out of labour income and out of profit income. Savings out of labour income are 

𝑆𝑤 = 𝜎𝑌 − 𝜎𝑌𝑐𝑤 − 𝑍𝑤, while savings out of profit income are 𝑆𝑝 = (1 − 𝜎)𝑌 − (1 −

𝜎)𝑌𝑐𝑝 − 𝑍𝑝. Note that, by the usual identity, total savings are equal to total investment 

(R&D and fixed capital): 

𝑌 = 𝜎𝑌𝑐𝑤 + (1 − 𝜎)𝑌𝑐𝑝 + 𝑍𝑤 + 𝑍𝑝 + ℎ𝑌 + 𝜏𝑌 ⇒ 𝑆𝑤 + 𝑆𝑝 = (ℎ + 𝜏)𝑌  (A1) 

We assume that total current investment (ℎ + 𝜏)𝑌 accumulates into a stock that is held by 

profit-earners. By slightly re-writing equation (A1) to 

𝑆𝑤 = (ℎ + 𝜏)𝑌 − 𝑆𝑝         (A1’) 

we see that savings from labour income are matched by the excess of investment over 

savings from profit income. Although it is possible that total investment is smaller than 

savings from profit income, most of our analysis will focus on the case where savings out 
of labour income are positive, and hence investment exceeds savings out of profit income.  

This implies that workers build up positive assets, and that these assets represent 

holdings on the profit-earning class (firms). Firms, however, also build up assets, which 

are the means of production (R&D capital and fixed capital), hence workers’ assets 

represent holdings on these means of production. But capital also depreciates, which 

diminishes the value of the total assets of labour and profit earners together. We choose 
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to attribute depreciation to both workers and profit earners, in proportion to total (net) 

assets held by each class.11 

As was done in the main text, we assume (for mathematical convenience) that R&D capital 

and fixed capital depreciate at the same rate 𝛿 = Δ. This leads to the following equation 
for the accumulation of assets held by workers, which we denote by 𝑊𝑤: 

𝑊̇𝑤 = (1 − 𝑐𝑤)𝜎𝑌 − 𝑍𝑊 − 𝛿𝑊𝑤       (A2a) 

The corresponding assets held by profit earners are denoted by 𝑊𝑝, and these accumulate 

according to 

𝑊̇𝑝 = (1 − 𝑐𝑝)(1 − 𝜎)𝑌 − 𝑍𝑝 − 𝛿𝑊𝑝      (A2b) 

Now with 𝑌 = (𝑍𝑤 + 𝑍𝑃) (1 − 𝑐𝑤𝜎 − 𝑐𝑃(1 − 𝜎) − 𝜏 − ℎ)⁄ , equations (A2a) and (A2b) 
imply 

𝑊̇ = 𝑊̇𝑤 + 𝑊̇𝑝 = (ℎ + 𝜏)𝑌 −  𝛿(𝑊𝑤 + 𝑊𝑝)      (A3) 

With the initial condition 𝑊(0) = 𝑊𝑤(0) + 𝑊𝑝(0) = 𝑅(0) + 𝐾(0) (the brackets indicate 

time periods), equation (A3) is guaranteed that 𝑊(𝑡) = 𝑅(𝑡) + 𝐾(𝑡) also for all times 𝑡 >

0. In other words, total assets (wealth) available in the economy is equal to the total 

amount of production factors (excluding labour).  

Admittedly, this means that there is essentially no, or a very limited, role for financial 

markets in our model. To the extent that financial markets exist, their only role is to 

channel savings between profit and wage earners, with the ultimate sole aim to fund the 

expansion of productive capacity. While here and in most of the main text we assume that 

there is no rate of return on the (“financial”) assets held by wage earners, in a further 

appendix below, we extend the treatment of financial markets to include a rate of return 

paid to the holders of financial assets  (workers). This changes the steady state value for 

the distribution of wealth (x), but does not affect the growth rate of the economy.  

As explained in the main text, our main assumption on autonomous spending is that it 
depends on wealth, i.e., the variables 𝑊𝑤 and 𝑊𝑝. Allowing for autonomous consumption 

by both wage earners and profit earners, we stipulate 

𝑍𝑤 = 𝜁𝑤𝑊𝑤           (A4a) 

and  

𝑍𝑝 = 𝜁𝑝𝑊𝑝            (A4b) 

Note that (A4a) has also been specified in the main text. The 𝜁 parameters are propensities 

to consume out of wealth for wage earners and profit earners, respectively. With the 

variable x defined as the share of 𝑊𝑤 in total wealth (𝑊𝑤 + 𝑊𝑝), we immediately have  

 
11 Alternative assumptions are possible, but make the mathematics more involved. Generally, making 
different assumptions about how depreciation of wealth is handled only affects the steady state 
distribution of wealth (x), not the growth rate. 
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𝜁 =
𝑍

𝑊
= 𝜁𝑤𝑥 + 𝜁𝑝(1 − 𝑥)        (A5) 

As specified in the main text, we will assume that 𝜁𝑤  is a variable, for which we specify a 

differential equation. On the other hand, 𝜁𝑝 is assumed to be a constant parameter (and 

the main text assumes 𝜁𝑝 = 0).  

With the equations specified so far, we are able to write a few of the key growth rates in 
the model: 

𝑔𝑊 ≡
𝑊̇𝑤+𝑊̇𝑝

𝑊
=

(1−𝑐𝑤)𝜎𝑌−𝑍𝑊−𝛿𝑊𝑤+(1−𝑐𝑝)(1−𝜎)𝑌−𝑍𝑝−𝛿𝑊𝑝

𝑊
= 𝜁 (

𝜏+ℎ

1−𝑐𝑤𝜎−𝑐𝑃(1−𝜎)−𝜏−ℎ
) − 𝛿 (A6) 

𝑔𝑍 =
𝑊̇

𝑊
+

𝜁̇

𝜁
= 𝜁 (

𝜏+ℎ

1−𝑐𝑤𝜎−𝑐𝑃(1−𝜎)−𝜏−ℎ
) − 𝛿 +

𝜁𝑤̇𝑥+𝜁𝑤𝑥̇−𝜁𝑝𝑥̇

𝜁𝑤𝑥+𝜁𝑝(1−𝑥)
    (A7) 

𝑔 = 𝑔𝑍 +
ℎ̇

1−𝑐𝑤𝜎−𝑐𝑃(1−𝜎)−𝜏−ℎ
        (A8) 

Remember that g is the growth rate of GDP.  

Finally, the differential equation for x can be derived as follows: 

𝑥̇ =
𝑊𝑤̇

𝑊𝑤+𝑊𝑝
−

𝑊𝑤(𝑊𝑤̇+𝑊𝑝̇)

(𝑊𝑤+𝑊𝑝)
2 =

(𝜁𝑤𝑥+𝜁𝑝(1−𝑥))((1−𝑐𝑤)𝜎−𝑥(𝜏+ℎ))

1−𝑐𝑤𝜎−𝑐𝑃(1−𝜎)−𝜏−ℎ
− 𝜁𝑤𝑥    (A9) 

We can also summarize the other five (in addition to A9) differential equations that make 

up the model with the generalized consumption function (equation numbers refer to the 
main text, and remember Δ = 𝛿): 

ℎ̇ = ℎ𝛾(𝑢 − 𝜇)         (1) 

Φ̇ = Φ
𝑢

𝜈
(

𝜏

Φ
− ℎ)         (11) 

𝜁𝑤̇ = 𝜄𝜁𝑤(𝐸̅ − 𝐸)         (13) 

𝑢̇ = 𝑢 (
(𝜁𝑤𝑥+𝜁𝑝(1−𝑥))(𝜏+ℎ)+ℎ̇

1−𝑐𝑤𝜎−𝑐𝑃(1−𝜎)−𝜏−ℎ
+

𝜁𝑤̇𝑥+𝜁𝑤𝑥̇−𝜁𝑝𝑥̇

𝜁𝑤𝑥+𝜁𝑝(1−𝑥)
−

ℎ𝑢

𝑣
)     (A10) 

𝐸̇ = 𝐸 (
(𝜁𝑤𝑥+𝜁𝑝(1−𝑥))(𝜏+ℎ)+ℎ̇

1−𝑐𝑤𝜎−𝑐𝑃(1−𝜎)−𝜏−ℎ
+

𝜁𝑤̇𝑥+𝜁𝑤𝑥̇−𝜁𝑝𝑥̇

𝜁𝑤𝑥+𝜁𝑝(1−𝑥)
− 𝛿 − 𝜌̅ − 𝜑Φ)   (A11) 

These equations can be solved for the steady state of the model using the procedure 

outlined in the main text. The steady state expressions presented in the main text are 
specific for the assumptions 𝑐𝑃 = 0 and 𝜁𝑝 = 0. The generalized steady state expressions 

for u, E, Φ and h are identical to the expressions in the main text. The generalized steady 
state expressions for the two remaining variables are  

𝑥∗ =
𝑣(1+Φ∗)(𝜁𝑝+𝛿+𝜌̅+𝜑Φ∗)−𝜇𝑠𝑃(1−𝜎)

𝑣(1+Φ∗)(𝜁𝑝+𝛿+𝜌̅+𝜑Φ∗)
       (A12) 

𝜁𝑤
∗ =

[𝜇(𝜎𝑠𝑤+(1−𝜎)𝑠𝑃)−𝑣(𝛿+𝜌̅+𝜑Φ)(1+Φ∗)](𝜁𝑝+𝛿+𝜌̅+𝜑Φ∗)−𝜁𝑝𝜇𝑠𝑃(1−𝜎)

𝑣(1+Φ∗)(𝜁𝑝+𝛿+𝜌̅+𝜑Φ∗)−𝜇𝑠𝑃(1−𝜎)
    (A13) 

In these expressions, we substituted the definitions 𝑠𝑃 ≡ 1 − 𝑐𝑃 and 𝑠𝑤 ≡ 1 − 𝑐𝑤. 
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Appendix 2. Introducing a rate of return to workers’ assets 

As explained in the main text, we model the rate of return on accumulated workers’ 

savings by the introduction of a parameter 𝑟, which represents the fraction of profits that 

is paid to workers in return for their savings, which are used by firms (profit earners) to 

pay for the investments in fixed capital and R&D. With the inclusion 𝑟 into the model, 

workers will receive a share 𝜎 + 𝑟𝑥(1 − 𝜎) of GDP, and profits earners a share 
(1 − 𝜎)(1 − 𝑟𝑥). This changes the equations (equations A2a and A2b) for accumulation of 

wealth: 

𝑊̇𝑤 = 𝑠𝑤(𝜎 + 𝑟𝑥(1 − 𝜎))𝑌 − 𝜁𝑤𝑊𝑊 − 𝛿𝑊𝑤      (A2a’) 

𝑊̇𝑝 = 𝑠𝑝(1 − 𝜎)(1 − 𝑟𝑥)𝑌 − 𝜁𝑝𝑊𝑝 − 𝛿𝑊𝑝       (A2b’) 

It also changes the multiplier, as can be seen in the equation for output: 

𝑌 = 𝑍𝑤 + 𝑍𝑝 + 𝑐𝑤(𝜎 + 𝑟𝑥(1 − 𝜎))𝑌 + 𝑐𝑝((1 − 𝜎)(1 − 𝑟𝑥))𝑌 + (ℎ + 𝜏)𝑌 ⇒  

𝑌 =
𝑍𝑤+𝑍𝑝

1−𝑐𝑤(𝜎+𝑟𝑥(1−𝜎))−𝑐𝑝((1−𝜎)(1−𝑟𝑥))−(ℎ+𝜏)
       (2a’) 

Note that in this equation, we have assumed that the marginal propensity to consume out 

of current income is unchanged, both for workers and profit earners, even if with 𝑟 > 0, 

workers’ income is partly profits (or returns on savings).  

From these basic changes associated to the introduction of 𝑟, the differential equations of 

the model can be derived in the same way as before. We find that three equations change, 

specifically: 

𝑢̇ = 𝑢 (
(𝜁𝑤𝑥+𝜁𝑝(1−𝑥))(ℎ+𝜏)+ℎ̇−𝑥̇(1−𝜎)(𝑠𝑝−𝑠𝑤)

1−(1−𝑠𝑤)(𝜎+𝑟𝑥(1−𝜎))−(1−𝑠𝑝)(1−𝑟𝑥)(1−𝜎)−(ℎ+𝜏)
+

𝜁𝑤̇𝑥+𝜁𝑤𝑥̇−𝜁𝑝𝑥̇

𝜁𝑤𝑥+𝜁𝑝(1−𝑥)
−

ℎ𝑢

𝑣
)     (A10’) 

𝐸̇ = 𝐸(
(𝜁𝑤𝑥+𝜁𝑝(1−𝑥))(ℎ+𝜏)+ℎ̇−𝑥̇(1−𝜎)(𝑠𝑝−𝑠𝑤)

1−(1−𝑠𝑤)(𝜎+𝑟𝑥(1−𝜎))−(1−𝑠𝑝)(1−𝑟𝑥)(1−𝜎)−(ℎ+𝜏)
+

𝜁𝑤̇𝑥+𝜁𝑤𝑥̇−𝜁𝑝𝑥̇

𝜁𝑤𝑥+𝜁𝑝(1−𝑥)
− 𝛿 − 𝜌̅ − 𝜑Φ) (A11’) 

𝑥̇ =
(𝜁𝑤𝑥+𝜁𝑝(1−𝑥))[𝑠𝑤(𝜎+𝑟𝑥(1−𝜎))−𝑥(ℎ+𝜏)]

1−(1−𝑠𝑤)(𝜎+𝑟𝑥(1−𝜎))−(1−𝑠𝑝)(1−𝑟𝑥)(1−𝜎)−(ℎ+𝜏)
− 𝜁𝑤𝑥        (A9’)  

This model (which also includes equations 4, 11 and 13) can be solved for the steady state 

in essentially the same way as has been done for the case 𝑟 = 0. Related to the fact that in 

equations (A10’)  and (A11’), the parameter 𝑟 only appears in the multiplier (as in A3a’), 

the steady state solutions for h and Φ do not change. With equations (4) and (13) 

unchanged, the steady state solutions for u and E also do not change. Thus, we obtain only 

steady state expressions for 𝑥∗ and 𝜁𝑤
∗  that are different than before, while the other 

steady state expressions do not change: 

𝑥∗ =
𝑢

𝑣
𝑠𝑝(1−𝜎)−(1+Φ∗)(𝜁𝑝+𝛿+𝜌̅+𝜑Φ∗)

𝑢

𝑣
𝑠𝑝(1−𝜎)𝑟−(1+Φ∗)(𝜁𝑝+𝛿+𝜌̅+𝜑Φ∗)

         (A14) 

𝜁𝑤
∗ =

𝜇

𝑣

(𝑠𝑤−𝑠𝑝)𝑟(1−𝜎)

(1+Φ∗)
+

𝜇

𝑣
(𝑠𝑤𝜎+𝑠𝑝(1−𝜎))−(1+Φ∗)(𝛿+𝜌̅+𝜑Φ∗)

(1+Φ∗)

1

𝑥∗ − 𝜁𝑝

𝜇

𝑣
𝑠𝑝(1−𝜎)(1−𝑟)

𝜇

𝑣
𝑠𝑝(1−𝜎)−(1+Φ)(𝜁𝑝+𝛿+𝜌̅+𝜑Φ)

  

           (A15) 
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Especially the expression for 𝜁𝑤
∗  is rather complicated. However, it can easily be seen that 

with 𝑟 = 0 it reduces to equation (A13). Similarly, equation (A14) reduces to (A12) for 
the case 𝑟 = 0. We can also reduce these steady state expressions for the case 𝑟 = 1: 

𝑥∗ = 1            (A16) 

𝜁𝑤
∗ =

𝜇

𝑣(1+Φ∗)
𝑠𝑤 − (𝛿 + 𝜌̅ + 𝜑Φ∗)         (A17) 

 

Appendix 3. Details of the government stabilization model 

There are a number of equations that change slightly in the model with a government 

sector. This appendix presents the details of these equations. First, the introduction of 

taxes implies that consumption is a function of disposable income: 

𝐶 = 𝑍𝐻 + 𝑐(1 − 𝑇 + (1 − 𝜎)𝐷)𝑌       (1a) 

Using also the definitions that are specified in the main text, this leads to the following 

equation for GDP: 

𝑌 = (𝑍𝐻 + 𝑍𝐺)
1

1−𝑐(1−𝑇+(1−𝜎)𝐷)−(ℎ+𝜏)
      (2b) 

Because government bonds are held by private agents (any increase of G will correspond 

to a private surplus), total assets held by private agents are equal to 𝑊 + 𝐺. This modifies 

the equation for private autonomous spending to  

𝑍ℎ = 𝜁ℎ(𝑊 + 𝐺)         (A4c) 

The equation for government autonomous spending is specified in the main text (A4d), 

and together these two equations lead to 

𝑍 = 𝑍𝐺 + 𝑍ℎ = (𝜁𝐺 + 𝜁ℎ)𝑊 + 𝜁ℎ𝐺       (A4e) 

In line with our previous derivations (Appendix 1), we also have 

𝑊̇

𝑊
=

(ℎ+𝜏) [(𝜁𝐻+𝜁𝐺)+𝜁𝐻𝐷]

1−𝑐(1−𝑡+(1−𝜎)𝐷)−(ℎ+𝜏)
− 𝛿        (A3b) 

And from equations (23) and (1a) as well as the definition of D, it follows that 

𝐺̇

𝐺
=

1

𝐷
[𝜁𝐺 +

((1−𝜎)𝐷−𝑡)[(𝜁𝐻+𝜁𝐺)+𝜁𝐻𝐷]

1−𝑐(1−𝑡+(1−𝜎)𝐷)−(ℎ+𝜏)
]        (A18) 

Then it can easily be seen that  

𝑔𝑍 =
𝜁̇𝑔−(𝜁𝐻+𝜁𝐺)𝛿+𝜁𝐻𝜁𝐺

(𝜁𝐻+𝜁𝐺)+𝜁𝐻𝐷
+

(𝜁𝐻+𝜁𝐺)(ℎ+𝜏)+𝜁𝐻((1−𝜎)𝐷−𝑡)

1−𝑐(1−𝑡+(1−𝜎)𝐷)−(ℎ+𝜏)
     (A7a) 

With this new equation for 𝑔𝑍, we also have new equations for 𝑢̇ and 𝐸̇: 

𝑢̇ = 𝑢 (
𝜁̇𝑔−(𝜁𝐻+𝜁𝐺)𝛿+𝜁𝐻𝜁𝐺

(𝜁𝐻+𝜁𝐺)+𝜁𝐻𝐷
+

(𝜁𝐻+𝜁𝐺)(ℎ+𝜏)+𝜁𝐻((1−𝜎)𝐷−𝑡)−𝑐𝑡̇+𝑐(1−𝜎)𝐷̇+ℎ̇

1−𝑐(1−𝑡+(1−𝜎)𝐷)−(ℎ+𝜏)
−

ℎ𝑢

𝑣
+ 𝛿)   (7a)   

𝐸̇ = 𝐸 (
𝜁̇𝑔−(𝜁𝐻+𝜁𝐺)𝛿+𝜁𝐻𝜁𝐺

(𝜁𝐻+𝜁𝐺)+𝜁𝐻𝐷
+

(𝜁𝐻+𝜁𝐺)(ℎ+𝜏)+𝜁𝐻((1−𝜎)𝐷−𝑡)−𝑐𝑡̇+𝑐(1−𝜎)𝐷̇+ℎ̇

1−𝑐(1−𝑡+(1−𝜎)𝐷)−(ℎ+𝜏)
− 𝜌̅ − 𝜑Φ)   (8a) 


