
Classification of Influenza Hemagglutinin Protein Sequences using
Convolutional Neural Networks

Charalambos Chrysostomou1∗, Floris Alexandrou1, Mihalis A. Nicolaou1 and Huseyin Seker2

Abstract— The Influenza virus can be considered as one of
the most severe viruses that can infect multiple species with
often fatal consequences to the hosts. The Hemagglutinin (HA)
gene of the virus can be a target for antiviral drug development
realised through accurate identification of its sub-types and
possible the targeted hosts. This paper focuses on accurately
predicting if an Influenza type A virus can infect specific hosts,
and more specifically, Human, Avian and Swine hosts, using
only the protein sequence of the HA gene. In more detail, we
propose encoding the protein sequences into numerical signals
using the Hydrophobicity Index and subsequently utilising a
Convolutional Neural Network-based predictive model. The
Influenza HA protein sequences used in the proposed work
are obtained from the Influenza Research Database (IRD).
Specifically, complete and unique HA protein sequences were
used for avian, human and swine hosts. The data obtained
for this work was 17999 human-host proteins, 17667 avian-
host proteins and 9278 swine-host proteins. Given this set of
collected proteins, the proposed method yields excellent results,
outperforming previously proposed methods. As the results
show, the proposed model can distinguish HA protein sequences
with high accuracy whenever the virus under investigation can
infect Human, Avian or Swine hosts.

I. INTRODUCTION

Pathogens, including viruses, can cause infectious diseases
to spread within populations. These pathogens can be trans-
mitted in multiple ways, with high transmission rates in
most circumstances. Identification and diagnosis of infectious
diseases are vital, especially in novel pathogens to prevent
and control global pandemics, such as the current COVID-19
pandemic [1].

Influenza viruses are part of the Orthomyxoviridae family
of viruses that have negative-sense, single-stranded, seg-
mented RNA genomes, with the majority of the virus burden
being associated with influenza viruses type A and B [2]. In-
fluenza viruses capable of infecting humans were introduced
from birds, and swine [3]. Their introduction to humans has
begun global pandemics with the 1918 ”Spanish flu” and
2009 ”Swine flu” pandemics. Influenza viruses are respon-
sible for more than 500,000 deaths worldwide and affect
around 5–15% of the population each year [4]. The evolution
of influenza viruses enables them to infect individuals who
have previously gained immunity through vaccination or
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previous infections. Furthermore, Influenza viruses can be ef-
fectively transmitted within populations from direct contact,
respiratory droplets, objects, or materials in the environment,
such as clothes, utensils, and furniture. Currently, vaccines
are the most efficient and practical method in limiting the
influenza virus’s spread and stop Influenza epidemics. These
vaccines must be renewed periodically to maintain their
effectiveness against Influenza viruses.

The Influenza virus genome contains eight gene seg-
ments that include: PB2 (polymerase subunit) responsible
for encoding RNA; PB1 (polymerase subunit) responsible
for encoding RNA and includes the PB1-F2 protein, which
causes cell death; PA (polymerase subunit) responsible for
encoding RNA and includes the PA-X protein, responsible
for host transcription shutoff function; NP (nucleoprotein);
M1 and M2 (matrix proteins); NS1 and NEP (non-structural
proteins); NA (neuraminidase) which facilitates the release of
new viruses from the infected host cell; HA (hemagglutinin)
responsible for binding and entry of the virus to the host
cell. As this study’s primary aim is to classify the capability
of an Influenza virus to infect different hosts, we will focus
primarily on the HA gene. Influenza viruses are classified
into subtypes based on the organisation of HA and NA
glycoproteins on their surfaces. Currently, 18 HA subtypes
and 11 NA subtypes exist in the wild [5] with the majority
affecting Avian species. Only three subtypes are known to
adapt and circulate in Humans H1N1, H2N2 and H3N2.
Seasonal epidemics are caused by two of these Influenza
subtypes H1N1 and H3N2.

In the literature, various methods were developed and
used for analysing and characterising protein sequences.
More specifically, for the classification and characterisation
of Influenza subtypes, [6], [7], [8], [9], [10], [11], methods
such as Complex resonant recognition model in analysing
influenza subtype protein sequences [7], CISAPS: Complex
informational spectrum for the analysis of protein sequences
[10], and Structural Classification of protein sequences based
on signal processing and support vector machines [11], have
been proposed and developed.

In this paper, a new method is proposed based on deep
learning methodologies and, more specifically, Convolutional
Neural Networks (CNN) to classify the Influenza protein
sequences based on their capability to infect the specific
host by utilising only the amino acid sequence of the protein
sequence to accomplish unprecedented accuracy. The paper
is organised as follows: Section II presents the methods and
materials developed and used, while Section III presents the
results obtained. Finally, concluding remarks are outlined in



TABLE I
NUMBER OF HA PROTEIN SEQUENCES

HA Subtype Human Avian Swine
H1* 8426 594 6626
H2* 81 416 2
H3* 9134 1316 2429
H4* 0 1001 5
H5* 220 3653 24
H6* 0 1485 2
H7* 100 1310 3
H8* 0 149 0
H9* 14 5009 20

H10* 2 621 1
H11* 0 654 1
H12* 0 290 0
H13* 0 276 0
H14* 0 19 0
H15* 0 10 0
H16* 0 140 0
mixed 22 724 165
Total 17999 17667 9278

Section IV.

II. METHODS AND MATERIALS

A. Protein Sequences

The Influenza HA protein sequences used in the proposed
work are obtained from The Influenza Research Database
(IRD) [12]. Specifically, complete and unique Hemagglutinin
(HA) protein sequences were used for avian, human and
swine hosts, which are the primary hosts affected with the
virus. The data obtained for this work was 17999 human-
host proteins, 17667 avian-host proteins and 9278 swine-
host proteins. The complete list of proteins, including HA
subclasses, used in this study can be found in Table I, and
Figure 1 illustrates the percentage of HA proteins per class
and species.

The proposed analysis was performed directly to the pro-
tein sequence using a Hydrophobicity index [13] to encode
the protein sequences from alphabetical to numerical char-
acters for analysis. Before encoding the protein sequences,
the amino acid index values were re-normalised to 0-1. Any
character beyond the standard 20 amino acid was encoded
using the value 0. The complete list of the Hydrophobicity
amino acid index can be found in Table II.

The collected protein sequences have variable sizes, with
576 being the maximum number of amino acids. To encode
the sequences and use the proposed model, proteins with a
lower number of amino acids were padded with 0’s at the
end of the sequence to reach the mentioned number. The data
was further encoded with one-hot encoding for the multi-
class classification problem.

TABLE II
HYDROPHOBICITY AMINO ACID INDEX USED TO ENCODE PROTEIN

SEQUENCES FROM ALPHABETICAL TO NUMERICAL CHARACTERS FOR

ANALYSIS

Amino acid
Hydrophobicity Values
Original Normalised

Alanine (A) 0.61 0.23
Arginine (R) 0.60 0.23
Asparagine (N) 0.06 0.02
Aspartic acid (D) 0.46 0.17
Cysteine (C) 1.07 0.40
Glutamine (Q) 0.00 0.00
Glutamic acid (E) 0.47 0.18
Glycine (G) 0.07 0.03
Histidine (H) 0.61 0.23
Isoleucine (I) 2.22 0.84
Leucine (L) 1.53 0.58
Lysine (K) 1.15 0.43
Methionine (M) 1.18 0.45
Phenylalanine (F) 2.02 0.76
Proline (P) 1.95 0.74
Serine (S) 0.05 0.02
Threonine (T) 0.05 0.02
Tryptophan (W) 2.65 1.00
Tyrosine (Y) 1.88 0.71
Valine (V) 1.32 0.50
Other 0.00 0.00

B. Proposed Model

The proposed work is based on a Convolutional Neural
Network (CNN). CNN’s are a subtype of deep feed-forward
artificial neural networks that have been applied and used to
analyse visual representations but recently have been used in
other domains, including classification and characterisation
of protein sequences [14], [15], [16]. CNN’s utilise a varia-
tion of multi-layer perceptrons created to minimise the pre-
processing required [17], thus in comparison, CNN’s require
relatively minimal pre-processing of data in relation to other
classification methodologies and translates to a substantial
advantage where prior knowledge and expertise of any given
problem is not available or unknown.

As shown in Figure 2, the proposed model structure
consists of three convolutional layers of 32, 3x3 kernels,
followed by a max-pooling layer and a rectified nonlinear
activation function (Leaky ReLU) [18] transforming the
feature space from 32x576 to 32x72. The fourth block
consists of a Flatten layer that transforms the feature space
from 32x72 to 2304x1. The fifth and sixth layers are fully
connected layers of 128 and 64 neurons, respectively, with
Leaky ReLU as the activation function. The output layer



Fig. 1. Percentage of HA proteins per class and species

Fig. 2. Structure of the Proposed Model based on Convolutional Neural Networks

consists of 3 neurons that correspond to each of the available
species and utilises the softmax activation function [17].
The model is trained using the “Adam” optimiser [19]
and the “categorical cross-entropy” loss function [17]. The
proposed model and hyperparameters were selected based
on a trial and error process to maximise the training and
validation accuracy. The proposed methodology source code
is available at https://gitlab.com/charalambos.
chrysostomou/embc21_influenza.git

III. RESULTS AND DISCUSSION

In this paper, a classification model is presented, based on
Deep Learning and Convolutional Neural Networks (CNN),
for the characterisations and classification Influenza type
A based upon the ability to infect a specific host, more
specifically human, avian and swine hosts, by solely using
the HA protein sequence.

To ensure that the proposed model is accurate and the
results can be generalised, the model was trained 100 times
for 1000 epochs, with different random subsets chosen

uniformly and assigned to training, validation and testing
sets. For each training cycle, the best weights were saved
based on the validation error. To evaluate the proposed
method’s efficacy, the average of the test set, for the total
accuracy, Matthews correlation coefficient (MCC) [20] and
F-score (F1) [21] scores, were considered. The predictive
model’s average accuracy is 99.36% ± 0.11%, 98.84% ±
0.20% and 98.78% ± 0.22% for the training, validation and
test sets, respectively. For the MCC score, the results are
0.990 ± 0.002, 0.982 ± 0.003 and 0.981 ± 0.003 for the
training, validation and test sets, respectively. Finally, for
the F1 score, the results are 0.994 ± 0.001, 0.988 ± 0.002
and 0.988 ± 0.002 for the training, validation and test sets,
respectively. Detailed results can be found in Table IV. The
results based on the test sets per species were also calculated
with 98.74% ± 0.32%, 99.52% ± 0.25% and 97.19% ±
0.75% for Human, Avian and Swine species respectively.
As the results show, the proposed model can distinguish
HA protein sequences with higher accuracy from previously

https://gitlab.com/charalambos.chrysostomou/embc21_influenza.git
https://gitlab.com/charalambos.chrysostomou/embc21_influenza.git


TABLE III
RESULTS

Set Accuracy MCC Score F1 Score

Training 99.36% ± 0.11% 0.990 ± 0.002 0.994 ± 0.001

Validation 98.84% ± 0.20% 0.982 ± 0.003 0.988 ± 0.002

Test 98.78% ± 0.22% 0.981 ± 0.003 0.988 ± 0.002

TABLE IV
RESULTS BASED ON THE TEST SETS PER SPECIES

Set Accuracy

Human 98.74% ± 0.32%

Avian 99.52% ± 0.25%

Swine 97.19% ± 0.75%

proposed methods [22] that achieved 96.6%, as the highest
accuracy in host classification using random forest method.

IV. CONCLUSIONS

The paper presents a highly successful predictive model
to classify Influenza viruses based on their capability to
infect different hosts, including Human, Avian and Swine
Hosts, as the results show compared to existing methods.
For this study, the protein sequence of the HA gene was
used, which is responsible for attaching to the host’s cell and
can be considered a promising antiviral drug candidate. The
collected protein sequences were encoded using a normalised
hydrophobicity amino acid index.

As published in the literature, more than 600 unique amino
acid indices exist that describes a physicochemical feature
of the protein [10]. Future studies are needed to identify
potential alternative amino acid index or set of indices capa-
ble of better representing HA proteins and delivering even
more reliable results. As the recent events of the COVID-
19 pandemic have shown, a computational tool capable of
identifying novel and potentially dangerous viruses in the
wild that have acquired the capability to infect Human hosts
will be crucial and needed to predict and control future
outbreaks.

REFERENCES

[1] M. Nicola, Z. Alsafi, C. Sohrabi, A. Kerwan, A. Al-Jabir, C. Iosifidis,
M. Agha, and R. Agha, “The socio-economic implications of the
coronavirus and covid-19 pandemic: a review,” International journal
of surgery, 2020.

[2] M. C. Zambon, “Epidemiology and pathogenesis of influenza,” Journal
of Antimicrobial Chemotherapy, vol. 44, no. suppl 2, pp. 3–9, 1999.

[3] C. A. Russell, P. M. Kasson, R. O. Donis, S. Riley, J. Dunbar,
A. Rambaut, J. Asher, S. Burke, C. T. Davis, R. J. Garten, et al.,
“Science forum: improving pandemic influenza risk assessment,” Elife,
vol. 3, p. e03883, 2014.

[4] K. Stöhr, “Influenza—who cares,” The Lancet infectious diseases,
vol. 2, no. 9, p. 517, 2002.

[5] S. Tong, X. Zhu, Y. Li, M. Shi, J. Zhang, M. Bourgeois, H. Yang,
X. Chen, S. Recuenco, J. Gomez, et al., “New world bats harbor
diverse influenza a viruses,” PLoS pathog, vol. 9, no. 10, p. e1003657,
2013.

[6] C. Chrysostomou, H. Partaourides, and H. Seker, “Prediction of in-
fluenza a virus infections in humans using an artificial neural network
learning approach,” in 2017 39th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE, 2017, pp. 1186–1189.

[7] C. Chrysostomou, H. Seker, N. Aydin, and P. I. Haris, “Complex
resonant recognition model in analysing influenza a virus subtype
protein sequences,” in Information Technology and Applications in
Biomedicine (ITAB), 2010 10th IEEE International Conference on.
IEEE, 2010, pp. 1–4.

[8] C. J. Carmona, C. Chrysostomou, H. Seker, and M. del Jesus, “Fuzzy
rules for describing subgroups from influenza a virus using a multi-
objective evolutionary algorithm,” Applied Soft Computing, vol. 13,
no. 8, pp. 3439–3448, 2013.

[9] C. Chrysostomou, H. Seker, and N. Aydin, “Effects of windowing
and zero-padding on complex resonant recognition model for protein
sequence analysis,” in Engineering in Medicine and Biology Society,
EMBC, 2011 Annual International Conference of the IEEE. IEEE,
2011, pp. 4955–4958.

[10] ——, “Cisaps: complex informational spectrum for the analysis of
protein sequences,” Advances in bioinformatics, vol. 2015, 2015.

[11] C. Chrysostomou and H. Seker, “Structural classification of protein
sequences based on signal processing and support vector machines,”
in Engineering in Medicine and Biology Society (EMBC), 2016 IEEE
38th Annual International Conference of the. IEEE, 2016, pp. 3088–
3091.

[12] Y. Zhang, B. D. Aevermann, T. K. Anderson, D. F. Burke, G. Dauphin,
Z. Gu, S. He, S. Kumar, C. N. Larsen, A. J. Lee, et al., “Influenza
research database: An integrated bioinformatics resource for influenza
virus research,” Nucleic acids research, vol. 45, no. D1, pp. D466–
D474, 2017.

[13] P. Argos, J. M. Rao, and P. A. Hargrave, “Structural prediction of
membrane-bound proteins,” European Journal of Biochemistry, vol.
128, no. 2-3, pp. 565–575, 1982.

[14] H. Zeng, M. D. Edwards, G. Liu, and D. K. Gifford, “Convolutional
neural network architectures for predicting dna–protein binding,”
Bioinformatics, vol. 32, no. 12, pp. i121–i127, 2016.

[15] S. Wang, J. Peng, J. Ma, and J. Xu, “Protein secondary structure
prediction using deep convolutional neural fields,” Scientific reports,
vol. 6, no. 1, pp. 1–11, 2016.

[16] Y. Zhao, N. He, Z. Chen, and L. Li, “Identification of protein lysine
crotonylation sites by a deep learning framework with convolutional
neural networks,” Ieee Access, vol. 8, pp. 14 244–14 252, 2020.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

[18] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[20] B. W. Matthews, “Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme,” Biochimica et Biophysica
Acta (BBA)-Protein Structure, vol. 405, no. 2, pp. 442–451, 1975.

[21] Y. Sasaki et al., “The truth of the f-measure. 2007,” 2007.
[22] F. F. Sherif, N. Zayed, and M. Fakhr, “Classification of host origin

in influenza a virus by transferring protein sequences into numerical
feature vectors,” Int J Biol Biomed Eng, vol. 11, 2017.


	INTRODUCTION
	Methods and Materials
	Protein Sequences
	Proposed Model

	Results and Discussion
	CONCLUSIONS
	References

