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Abstract

UAVs have numerous emerging applications in various domains of life. However, it is extremely challenging to gain
the required level of public acceptance of UAVs without proving safety and security for human life. Conventional UAVs
mostly depend upon the centralised server to perform data processing with complex machine learning algorithms. In fact,
all the conventional cyber attacks are applicable on the transmission and storage of data in UAVs. While their impact
is extremely serious because UAVs are highly dependent on smart systems that extensively utilise machine learning
techniques in order to take decisions in human absence. In this regard, we propose to enhance the performance of UAVs
with a decentralised machine learning framework based on blockchain. The proposed framework has the potential to
significantly enhance the integrity and storage of data for intelligent decision making among multiple UAVs. We present
the use of blockchain to achieve decentralized predictive analytics and present a framework that can successfully apply
and share machine learning models in a decentralised manner. We evaluate our system using collaborative intrusion
detection as a case-study in order to highlight the feasibility and effectiveness of using blockchain based decentralised
machine learning approach in UAVs and other similar applications.

Keywords: Unmanned Aerial Vehicles, UAV, Blockchain, Machine Learning, Decentralized Machine Learning,
Collaborative Intrusion Detection

1. Introduction

Unmanned Aerial Vehicle (UAV) or drones is a type
of aircraft which is operated by an autonomous
computer-based pilot instead of a human on board.
Initially, UAVs were primarily used by military for
training soldiers or attacking the enemies while
safeguarding the life of human pilots [1]. Over the time
there have been immense innovations in the development
and capabilities of UAVs that has created numerous
interesting applications of drones other than military.
Latest UAVs are either remotely controlled by human or
by an intelligent computer based autopilot system which
has induced many of their interesting applications in a
variety of domains. These applications include disaster
relief [2], road safety [3], transport and delivery of
medicines [4], agriculture [5], recreation [6], archaeology
[7] etc. These applications have attracted a lot of new
requirements with many innovative ideas of utilising
UAVs. Amazon Prime Air is the latest example delivery
drones in selected areas of United States [8]. Similarly,
the Federal Aviation Administration (FAA) of United
States has authorised several drone delivery companies to
operate in remote areas for delivering life saving
medicines and blood especially during the COVID-19
pandemic [9].

Majority of the UAVs applications can threaten
public safety, airspace security and national defence
systems. Consequently, UAVs require better control,
management, communication, data storage, and
intelligent decision making without any delays [10].
These requirements become more critical when a
coordinated operation of large number of UAVs is
desirable with collaborative and intelligent decision
making in a decentralised and distributed manner [11].
UAV systems mostly depend upon the centralised server
or a cloud based platform to perform processing of data
with complex Machine Learning (ML) algorithms. In
fact, all the conventional cyber attacks are also applicable
for the UAVs while their impact would be more serious
because UAVs are highly dependent on smart systems
that extensively utilise artificial intelligence and machine
learning techniques in order to take decisions in human
absence. Machine learning holds great promise as a
solution to a variety of challenges caused by vast amount
of data generated by UAVs and other cutting-edge
technological systems [12], real-time astronomical data
[13], Internet of Things (IoT) [14] and Cyber-Physical
Systems (CPS)[15]. ML techniques enable intelligent
processing of large volumes of complex datasets to
identify patterns with minimal human intervention which
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is extremely important for the operation of UAVs and
other autonomous systems where complex decision
making and coordination is required. Such techniques are
indeed well-established and have been used extensively to
address variety of other problems including customer
churn analysis [16], self-driving vehicles [17], intrusion
detection [18], speech recognition [19], data loss
prevention [20], healthcare [21] and consumer behaviour
prediction [22]. Due to extremely complex nature of
many such problems where an algorithmic solution
becomes infeasible, it is important to explore machine
learning-based decision making solutions achieved
through intelligent analysis of large datasets.

However, the effectiveness of machine learning
techniques to achieve high accuracy of predictive
analytics typically requires large volume of training
dataset [23]. In addition, with the emerging
advancements in UAVs with new application domains
requiring huge datasets are often spatially-distributed
while being supplied by numerous parties that can be
mutually untrustworthy [24]. For instance, UAVs having
IoT devices continuously sense the environment and may
contribute their data so that a unified global model can
be constructed. However, such UAVs with IoT devices
can typically be large in number with concerns such as
privacy associated with sharing of data in its original
form. In such scenarios, sharing of knowledge (through
machine learning models) has been promoted to achieve
high accuracy without compromising privacy of data.

Contemporary ML is usually centralized i.e. data
from different devices scattered across the network is
uploaded to a central server for model training and
development. Once the model is trained, it is shared with
all the devices to be used independently. This approach
has its problems with data scalability owing to rising
process impediment created by the learning process.A
centralized solution also raises security and privacy
challenges [25] such as trustworthiness between the
contributing parties and central endpoint so that the
resulting model from the learning process can also be
trusted. There are applications such as real-time weather
or astronomical data [13] and other mission critical
applications in which huge data volumes are scattered
across a large distributed system. In such scenarios, it is
not cost-effective and reliable to gather data in a central
location. Therefore, the choice of machine learning
algorithm becomes extremely important to ensure data
distribution, resilience to failures and parallel
computation. Ideally, such a decentralized context
requires a decentralised and distributed system to
facilitate the learning process [26].

Current research and practice within machine
learning is progressing towards performing ML by
transferring model parameters rather than data to a
central coordinator to construct a refined/reinforced
model. In this respect, one approach is to use centralized
blockchain-based collaborative mechanism for defending

against cyber-attacks. Although such approach uses
collaboration among participating nodes, it does not
benefit from blockchain’s inherent properties i.e.
decentralization and is therefore susceptible to single
point of failure. For instance, a centralized system in this
scenario would have a different approach to consensus
whereby machine learning models learned by the
individual nodes could be ranked by an arbitrary central
authority. An alternate methodology is the federated
learning system in which more than one parties jointly
learn the ML system such as, the deep neural network,
with localised private and confidential data. Shokri and
Shmatikov [27] and McMahan et al. [28] presented the
proof of concept of such a system by applying differential
privacy. However, it was later shown by Hitaj et al. [29]
that employing such a record-level differential privacy
becomes unsuccessful in a federated learning systems as
addition of noise may distort results in differential
privacy scheme.

To address the aforementioned challenges, we explore
the use of blockchain technology to facilitate a method of
achieving decentralized, distributed analytics whilst
protecting the privacy of data and ensuring the
trustworthiness of the process. Blockchain has received
significant attention in recent years primarily due to its
benefits such as immutability of data, decentralisation,
distributed design, transparency, and trustless consensus
[30]. Consequently, blockchain has been adopted by range
of applications including UAVs [31][32], supply chain [33],
digital asset management [34], e-government[35],
intrusion detection [36] and many more. The immutable
nature of blockchain lends itself to diverse application
domains requiring robustness and better audit trails [37].

Our research is inspired by the concept of federated
machine learning [38] where data sharing takes place by
ensuring user privacy as part of the process. Privacy in
data sharing can be factored in a technique that can
ensure anonymity in the data by changing it all together
without affecting the overall learning process [39]. We
developed a blockchain-based decentralized machine
learning scheme for collaborative intrusion detection,
where we create a blockchain network of multiple nodes
that perform independent intelligent analytics using
custom choice of machine learning algorithm. We assume
a distributed scenario where data is generated and
collected in the form of distributed data streams such as
UAVs. In such scenarios, collating data at a centralized
server can incur performance overhead as well as posing
risks to data privacy. Therefore, instead of sharing data
across participating nodes, machine learning models are
shared across them so as to use this knowledge to
improve accuracy of intelligent analytics across
participating nodes.

In order to assess the effectiveness of our proposed
scheme, we use the challenge of intrusion detection in a
system like UAVs a use-case. In particular, we used
KDD99 attack dataset, splitting 10,000 rows across
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participating nodes of the blockchain network providing
coverage of different attack types. We measure accuracy,
false positive rate, true positive rate, recall, precision,
and F1 score at each node both before and after sharing
the models.

The major contributions of this paper are summarised
as follows:

1. Design and development of a generic blockchain
system to aid decentralized, peer-to-peer machine
learning-based analytics. The proof of concept
presented in the paper enables sharing of machine
learning models without the need to share data
used to develop this model thereby achieving
collaboration among nodes without compromising
privacy of the participating nodes.

2. Evaluation of the proposed system within a
collaborative intrusion detection scenario.
Experimentation with the proof of concept has
been conducted with the KDD99 attack dataset to
evaluate its ability to support collaboration among
distributed nodes to achieve effective intrusion
detection. In this regard, collaborative knowledge
sharing is achieved across participating nodes by
using stacking to reinforce machine learning models
developed at individual nodes.

Rest of this paper is organised as follows. Section 2
presents the fundamental background knowledge about
blockchain technology highlight its primary concepts
followed by Section 3 which presents an account of the
existing work in this domain. Section 4 presents the
design and implementation of our proposed system to
achieve decentralized machine learning. Evaluation of the
proposed system within intrusion detection use-case is
presented in Section 5 which highlights the performance
of the proposed system with respect to its effectiveness
for intrusion detection. Section 6 concludes this paper.

2. Blockchain Technology

Blockchain technology has attracted significant
attention primarily due to its success as the technology
underpinning Bitcoin. The fundamental concept at the
core of blockchain is that of a distributed, decentralized
ledger whereby a blockchain network is run by the peers
or participating nodes without any centralized authority
[40]. Further, the participation of nodes (number and
type) is driven by the type of application. After the
remarkable success of blockchain as the driving
technology of famous cryptocurrencies including the
Bitcoin and Ethereum a large number of other
applications of blockchain have been realised in the past
few years. These non-cryptocurrency applications of
blockchain include several interesting UAV applications
such as blockchain-based smart vehicular networks [37],
secure UAV data sharing [30], privacy preservation in 5G

Figure 1: Tamper resistant blockchain

enabled UAVs [41], secure routing of swarm UAV
networking [42] and UAV path planning for healthcare
[43].

With respect to the ledger, a transaction represents
the most important concept within blockchain. A
transaction in blockchain is a piece of information which
moves something of value (a digital token which may
represent a unit of currency, a vote etc.) from one public
address (belonging to the sender) to the receiver’s
address. Therefore, a transaction saves and tracks the
state of the blockchain over the period of time. These
transactions become the part of blockchain forever
through blocks which move them into chain. A block is
primarily a collection of transactions which are
integrated and organized in such a way that each block
computes and keeps its own blockhash (using the
individual hashes of all the transactions as its source) in
the block along with the blockhash of its preceding block.
In this way, a chain of blocks is generated which increases
with time. Since these blocks are connected through their
hashes (computed through the transactions within that
particular block), this data structure makes the records
of blockchain immutable where a slight change in a single
transaction would produce an entirely new hash resulting
in a mismatch of this hash with the neighbouring block.
This prevents any suspicious block to be accepted by the
blockchain network and therefore mitigates against
illegitimate tampering of blockchain state. Figure 1
demonstrates this linkage between different blocks to
achieve a tamper-resistant ledger.

All the nodes of a typical blockchain network store an
identical copy of blockchain locally which is frequently
synchronized with the main blockchain (also known as
consensus blockchain). Each new block of a blockchain is
accepted and added by its peers through a process known
as mining. The process of mining is essential in
developing consensus among participating nodes and can
take up different forms depending upon the type of
application.

2.1. Consensus in Blockchain

Due to the decentralized nature of the blockchain
network, the mechanism to achieve consensus is critical
in achieving a trustworthy, tamper-proof ledger. Due to
the variety of applications using blockchain, there are
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various approaches in use for maintaining consensus in
blockchain which can be broadly divided into two
categories i.e. consensus achieved through an evidence,
and voting based consensus (Byzantine Fault Tolerance
and Crash Fault Tolerance based consensus). The
evidence based consensus is one of the most popular
approaches due to the use of Proof of Work (PoW) by
Bitcoin however other variants such as Proof of Stake
have also emerged.

Proof of work is the most common consensus based
algorithm in the blockchain applications [44]. This
scheme relies heavily on the computational capabilities of
the mining hardware to solve a non-trivial mathematical
problem. Although all participating nodes can attempt
to solve this mathematical challenge, the hashing power
of the miner acts as a decisive factor to solve the
challenge in a timely manner. The mathematical problem
to be solved usually involves searching for a number
(known as nonce value) which when hashed (after
appended to the given data) should produce a value less
than a specific value that is the current target of the
blockchain network. In recent years, PoW in particular
and proof based consensus algorithms in general have
been extended to address their constraints with respect
to security (such as the likeliness of carrying out double
spend attack [45]) and performance efficiency [46].

2.2. Cryptography in Blockchain

Blockchain makes use of asymmetric cryptography to
ensure the privacy in the exchange of messages between a
sender and a receiver [47]. This public-key cryptography
technique also allows every participant to verify the
transaction. Since the public key is available to everyone,
the sender uses this key to send a message (for asset
transference) to the intended receiver which can only be
decrypted through the receiver’s private key. Consider 3
blocks as shown in Figure 2 such that Block 1 has the
information of P1 with the hash value of Q1, Block 2 has
the information of P2 with the hash value of Q2 while
Block 3 has the information of P3 with the hash value of
Q3. Q3 is created from the combination of Q2 and P3
and so on while P1 comes from the default value P0.
Now if someone changes the hash values like P2 to P21
and Q2 to Q21 and other blocks are kept same as earlier,
in this case it represents an unstable blockchain.
Therefore to make the blockchain stable, the values of Q3
will have to be changed to Q31 along with P2 to P21.

2.3. Public vs. private blockchain

From the perspective of participation of nodes, a
blockchain can be divided into two broad categories;
public and private blockchains. Public blockchain [48],
as the name suggests, adopt a public model for
participation and therefore may be joined by any node
without any restriction. Such networks of blockchain do
not require any permission for a user to join or

participate in the network. As mentioned earlier, it is a
permissionless open-ended blockchain and that is why
the network size is usually bigger than the permissioned
blockchain. Private blockchain also called
permissioned blockchain, on the other hand, is a more
controlled form of blockchain which is not publicly
accessible. In a private blockchain [49], nodes must seek
permission to join the network. Such networks usually
require an authenticated node to perform according to a
predefined role in the system.

3. Related Works

The widespread use of machine learning techniques
and algorithms in diversified applications has highlighted
many challenges in terms of limited processing and
storage capacity against large training datasets. For
example, in the case of artificial neural networks, the
storage and processing requirement may significantly
increase when there are larger sets of input parameters to
train the model. UAVs are an ideal use-case of such
problem domains where individual devices are
constrained with respect to resources available and
therefore unable to host traditional, resource-hungry
machine learning mechanisms.

With respect to federated learning, Bonawitz et al.
[50] describe the federation concept in machine learning
through a practical use case. They generate machine
learning models on mobile devices where the data
actually resides and the individual data from the model
is combined in the cloud for the global model where a
deep neural network is trained by using TensorFlow [51].
the authors have identified and addressed specific
implementation concerns such as localization (time-zone),
training of machine learning models based on device
availability and constrained compute resources of the
devices. The devices are in communication with the
server that is responsible for storing the updated model.
The latest model is pushed down to the device that
updates it after performing model training and sends it
back to the server. The communication frequency, device
participation and device selection for a Federated
learning task is based on a protocol that is planned for
robustness in non-reliable conditions. It uses an analytics
process to gain insights into bottlenecks and other other
constraints occuring at the device end and proves to be
helpful as the server doesnt need to have access to the
device’s data.

Konečný et al. [52] performed machine learning
optimization using various algorithms. Interestingly, the
optimization was carried out on different mobile devices
having a portion of the data representing the users’ own
patterns. Their work primarily focuses on optimization
and uses federation learning to improve the machine
learning model. Specifically, authors focus on the
challenges in achieving optimal performance with existing
algorithms within a distributed learning environment.
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Figure 2: An in-depth view of a conventional blockchain

The two distributed machine learning algorithms that are
discussed here include the Stochastic Variance Reduced
Gradient (SVRG) [53] and the Distributed Approximate
Newton (DANE) [54] which are used for the purpose of
achieving optimization in a distributed environment.The
authors have demonstrated that in this setting,
traditional machine leanring models dont perform well
due to their inherently sequential nature. The traditional
algorithms incorporate fast iteration rounds whereas
here, a communication round has been inserted in the
learning process as the nodes exchange the learned
parameters with the server responsible for updating the
model. They further show with data achieved through
experimentation that given the constraints of network
bandwidth and challenges like slow convergence , it is
possible to design an algorithm that works well in this
setting.

M. Li et al. [55] presented one of the major
contributions towards the distributed machine learning.
The main issues addressed in their contribution are the
technique of distributing training data and the workload
over numerous worker nodes. Furthermore, the proposed
framework is able to enable the server nodes for
maintaining the globally shared model parameters in
terms of sparse vectors.The data scale in consideration
here is of the order of trillions of samples and possibly
very high feature lengths. Servers that maintain a copy
of the latest updated parameters are termed as
parameter servers and worker nodes have a portion of the
whole data on which they train. The machine learning
models used by the authors are Sparse Logistic
Regression and Latent Dirichlet Allocation. The system
performed well due to decrease in communication cost
due to bulk communication server and message

compression on the transmission of parameter key,value.
T. Kraska et al. [56] presented an effort focused on

collecting dataset from distributed nodes with each node
performing its individual training algorithm. The focus
in this system is to facilitate data pre-processing tasks
including feature selection, engineering and optimization
based on factors such as which model to use, what
features to select and what time is expected to be taken
by the given configuration. The proposed framework in
this paper is also inspired with this model. However, in
our proposed framework, we provide this functionality for
the purpose of emulating the human behaviour of
pre-processing the data, model training and creating a
deployment-ready machine learning model. Furthermore,
we use blockchains to enable trusted sharing of models
and their performance indicators to enable privacy-aware
federated learning in a trust-less environment.

Recently, there have been several interesting
contributions which exploit the power of blockchain to
achieve maximum benefit from machine learning
algorithms. Kurtulmus et al. [57] demonstrate the use of
smart contracts to evaluate and validate machine
learning models which is performed by the smart
contract. Once a user submits a dataset to the
blockchain, they can then set a reward amount on that in
ethereum tokens since the blockchain employed is
ethereum-based. The various blockchain nodes
participate in performing machine learning and once the
machine learning task is completely by a human driven
agent, the machine learning model is submitted to the
smart contract that validates the solution. Once all the
participants have successfully submitted their solutions,
the best model wins the amount. In our scenario, we
have emulated this behavior on the nodes through

5



automating the machine learning steps of pre-proicessing
and model-fitting. The authors have created a prototype
or a basis for a future market place where companies can
get the best available machine learning expertise by
submitting the dataset on the blockchain and rewarding
the best model submission based on results. The authors
have also implemented trust and fairness controls
through smart-contracts in addition to model validation
and reward. Furthermore, the authors have identified the
risks related to cheating by the model submitters and the
organizer and have controlled them by enforcing policies
through smart contracts. Also, the machine learning
process in this work has also been implemented in the
solidity programming language. The language has many
constraints and hence the authors performed several
performance and memory-saving techniques. C. Xu et al.
[58] present the intelligent datacenter’s energy and
resource management through blockchain. Specifically,
smart contract performs machine learning to achieve the
goal of further minimizing the energy cost of the
datacenter. The output of the machine learning model is
then used by the smart contract that performs tasks to
control datacenter resources.

With respect to use of blockchains and machine
learning within cyber security, a number of efforts have
been made. For instance, Outchakoucht et al. [59], focus
on the challenge of access control within Internet of
Things (IoT) and leverage blockchains and machine
learning to achieve a trustworthy, self-adjusting solution
which can be continuously updated through the use of
reinforcement learning. Dey et al. [60] proposed a
methodology where machine learning is employed in a
blockchain network to detect anomalies such as collusion
that may lead to majority attack. Supervised machine
learning and algorithmic game theory is used to take
early action to counter the attack. X. Chen et al. [61]
utilize Ethereum smart contracts to share locally learned
gradients. In order to achieve privacy-aware data
processing, authors use differential privacy whilst
segregating data storage from data processing nodes.

With the increase in use of autonomous vehicles and
UAVs, use of machine learning and blockchains to aid
novel solutions within this domain is attracting
significant attention. However, significant efforts within
this domain relate to the use of machine learning to aid
efficient and effective detection of UAVs. In this respect,
[62], [63], [64] and [65] represent recent efforts to employ
machine learning for effective UAV detection and
classification. With respect to the use of blockchains
within UAVs, [66], [67], [68] and [69] represent recent
efforts which utilize blockchains to facilitate trustworthy
applications within UAVs.

This paper is focused at exploring the use of
blockchains to facilitate trustworthy distributed machine
learning solutions within UAVs. In particular, the
proposed framework adopts a federated machine learning
strategy to leverage the distributed architecture of a

typical UAV-based system whilst reducing the
performance overheads incurred due to traditional
centralised machine learning approaches. Further, the
proposed framework uses blockchain technology to enable
trustworthy sharing of machine learning models and
associated metrics to enable an ensemble learning
approach. We assess the effectiveness of the proposed
system by implementing an intrusion detection scenario
to identify potential advantages of the proposed approach
as well as open challenges which require further work.

4. A Blockchain-based Decentralized Machine
Learning Framework for UAVs

In this section, we present the architectural details of
the proposed system followed by its implementation with
blockchain technology.

4.1. System architecture:

The proposed system is designed to simulate a
scenario where multiple distributed nodes are engaged in
intelligent processing of data independently before
collaborating to enhance accuracy of predictive analytics.
For instance, intrusion detection within a CPS/IoT
system is inherently distributed as the task of detecting
misuse patterns is devolved to individual sensor nodes
followed by collation of knowledge shared by individual
nodes to achieve effective detection. A generic blockchain
system was designed and implemented designed and
implemented to provide a testbed for rapid deployment
of scenarios involving blockchain and machine learning.
As explained in Section 4.1 (system architecture), the
blockchain and machine learning processes were loosely
coupled and the machine learning component was
embedded in the blockchain daemon by use of APIs
whose design was inspired by the Python scikit machine
learning library. Due to this API flexibility, stacking and
non-stacking scenarios could be deployed quickly. The
use of smart contracts to execute functionality was very
important in our design. Smart contracts were written in
such a way so as to aid the diverse use of machine
learning API as well as data distribution. They also serve
an additional purpose of data logistics, such as metadata
input handling and node to node data transfer.

A high-level architectural diagram of the system is
presented in Figure 3. Overall, the system architecture
consists of a monitor node, multiple miner nodes, global
address space, and the machine learning engine (further
details of these are presented below). Both the monitor
and miner nodes take part in the mining and machine
learning process and are connected to each other to
achieve inter-node communication.

4.2. Monitor node:

As with any other collaborative environment, the
monitor node acts as the coordinator which is tasked
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Figure 3: A blockchain-based decentralized machine learning system

with communicating with other nodes to facilitate
achieving the desired outcome. It has its own global
memory space and exposes this data through
micro-services calls.These micro-service calls refer to the
different functions of the blockchain daemon broken up
into RESTful style lightweight services. the input to
these services requires very little overhead and their main
purpose is for internal communication, protocol and
polling between the nodes. e.g. the command to initiate
the machine learning process on all the nodes is one such
micro-service call.. The IP of this system is static and is
used by all other nodes to connect to the network much
like Bitcoin miners that connect to the Bitcoin network
through getinfo [70]call service. Within the context of a
blockchain setting, monitor node performs the role of a
seed node. Being the coordinator, there are number of
tasks which a seed node performs in a blockchain
network. These include admitting new miners to the
network and Domain Name Service (DNS) for the mining
nodes. Within our system, the monitor node performs
these functions to adopt the working of Bitcoin network
[71]. The monitor node is responsible for these functions
within the proposed system

In order to aid experimentation with decentralized
machine learning, an important phase is distributing
data to be processed across all participating nodes. In a
real-life scenario, we expect participating nodes to gather
data using independent streams however in our
proof-of-concept, the monitor node performs this
function. Therefore, the monitor nodes distributes
chunks of data to each mining node along with
accompanying metadata which is envisaged to help the

machine learning engine. However, the monitor node is
not only the coordinator and also participates in the
machine learning and blockchain mining processes similar
to other (miner) nodes of the network. This is
highlighted in Figure 3 by assigning both monitor and
miner node roles to the coordinating/seed node.

4.3. Miner nodes:

Miner nodes use machine learning algorithms to
generate independent analytical models by intelligent
processing of dataset available to them. As highlighted in
Figure 3, the analytics.py performs operations required
for specific ML algorithms. These miners in a traditional
blockchain network choose transactions, mine them into a
block and add them to the blockchain using proof of
work or other consensus algorithms. In our scenario, the
miners are utilizing their computing resources to achieve
accuracy in their machine learning model against a
dataset.

4.4. Global address space:

Similar to a Distributed Hash Table (DHT), our
prototype features a list of nodes that are actively
connected to the network. This global addresses memory
space stores the network and node addresses in the
following format.

<IP> : <port>

The nodes list is persisted in a global memory space
that is easily accessible by other nodes simply through
micro services calls. Miners can carry out their mutual
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coordination through this global address space. They can
also choose to have a copy of this global address space that
is updated every time a new node is added to the network.
In our implementation, we have decided to allocate each
node a copy of this address space that gets updated on
each node as the network grows. The same is done in
Multichain [72], except here, each node pings the monitor
node and gets the others added. In Multichain, the first
node returns an IP and port and this network address is
provided to new nodes as they subscribe to the blockchain
network.

4.5. Machine learning engine:

In order to achieve decentralized machine learning
setup, each miner node has an embedded ML engine
which interfaces with the blockchain component of the
node. These components exchange information
throughout the life-cycle of machine learning analytics
process using the available dataset. The current design
envisages that each node has the liberty to choose its
own machine learning model. Therefore, each node is
expected to receive the dataset, pre-process it and submit
the score as well the deployment-ready model to the
blockchain interface.

The different ML techniques employed by various
nodes allow for modelling diverse use-cases such as :

1. Each UAV should have the flexibility to deploy an
ML technique that is best suited for its purposes.
Some UAVs would require an algorithm that would
converge faster in a high probability cyber-attack
environment. The UAV can also switch to a
different algorithm as and when needed.

2. Different ML algorithms also allow for performing
analytics and comparison within the ML techniques
to gain insights on how well does the algorithm
perform on certain data. The reason for deploying
analytics.py node in the network is to generate the
tables shown in Figure 9-14 .

4.6. Process flow:

The process starts with blockchain network
initialization similar to Ethereum where a network ID is
used however we use the network address of the monitor
node as the network ID. We start the monitor node
through a command line utility batch file similar to a
Linux shell script. The monitor node looks for the
address.json file where its address is maintained. This
address is used by the rest of the blockchain network
nodes to subscribe to the blockchain. In order to
facilitate inter-node communication and off-chain sharing
of machine learning models, we have used HTTP relying
on the public internet for connectivity. Consequently, the
participating nodes are implemented as web servers.
Since our implementation is based on JSON-RPC micro
services architecture, each miner has the endpoints that

can be requested for data and data can also be posted to
them as well through GET and POST calls. To start the
miner node, we run a command line utility batch file
similar to the monitor node that searches for the
address.json file that’s present in the same directory as
the miner node’s code. This address.json file has two
addresses; the address for the miner and the monitor
node. Upon initialization, the miner node first sets own
IP and port and then subscribes to the blockchain by
performing the relevant JSON-RPC calls to the monitor
node. After this step the miner runs its initialization
procedures. It first submits its own address to the
monitor node for it to be added in the network directory
or global address space. Then it downloads the current
up-to-date list of nodes that are part of the blockchain
which ensures uniformity.

The verification of global address update can be done
by fetching the address directory endpoint of any miner
node. The same process is conducted for each node
added to the network. The machine learning process is
performed by first submitting the dataset to the
blockchain network by uploading it to the monitor node
which distributes the dataset to the participating nodes.
After successful distribution of the dataset and its
metadata to the nodes, the nodes commence the machine
learning process. The conceptual model for the machine
learning process is shown in Figure 4.

The machine learning process consists of the following
3 steps:

a. Data pre-processing: Each node submits the
data and its associated metadata to the ML engine which
performs the pre-processing on the data. In our
implementation, this step comprises of reading the
dataset and converting the dataset to
machine-learning-ready format. The categorical columns
are converted to numerical one-hot encoded columns and
the numerical columns are normalized. Then training
test split is applied to the data and model fitting is
carried out. Specific steps to achieve pre-processing are
highlighted below.

1. Columns are processed as per their types such as
categorical or numerical. This is taken input on the
blockchain node where the dataset is uploaded.
The input form comprises of radio buttons on the
target blockchain node’s webpage that can be
accessed by its IP. Once each column type is
known, the next step is initiated which is one-hot
encoding and normalization.

2. One-hot encoding is done for categorical columns
which is the process of converting one column
having more than two unique values into multiple
columns having values of only 1 or 0.
Normalization is done for numerical columns i.e.
converting the values of different columns to a
uniform range of values (0 to 1).
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Figure 4: The conceptual model for the machine learning process

b. Model fitting and transaction formation:
The model fitting is performed by using a suitable
classifier algorithm. In our case, we have designated a set
of classifiers that can be chosen at random by the ML
engine and it is envisaged that different nodes running
the machine learning engine will select a different
algorithm thereby obtaining a different score. The
different scores reported by each node will simulate a
human-like crowd sourced machine learning process that
will aid in prototyping a ranking/bench-marking policy
enforced by the consensus algorithm governing the
blockchain. When the machine learning classifier has
completed its processing, the blockchain daemon converts
this data to transaction and stores the transaction
locally. It also broadcasts the same data to other miners
to initiate the consensus process.

c. Consensus-based model sharing and block
mining: After the individual nodes have completed the
model fitting, each node has a copy of the ML model
parameters of all the other nodes. In order to add the
individual node data to blockchain a consensus algorithm
is required such as Proof of Work adopted by Bitcoin.
However, due to the nature of the application, we have
adopted the ranking algorithm to achieve consensus for
our setup. Therefore, a node is picked at random to add
the block to the blockchain that contains reward for the
winning nodes. This node first unifies the results from all
nodes to ensure a fair selection of rewarded nodes and
after a final consolidated ranking procedure is run, the
block is mined by this node. The transaction contains
the nodes and the rewards in case of multiple nodes
achieving high scores.

4.7. System implementation:

In order to simulate successful transaction
malleability attack, we have used scikit-learn Python
libraries [73] following the major mathematical processes
necessary for simulating basic characteristics of a typical
blockchain network. These characteristics include

Figure 5: The webpage for the miner node

creation of genesis transaction, genesis block hash, honest
and mutated transaction and their cryptographic
schemes. Our implementation is comprised of a monitor
node and three miner nodes all of which participate in
the machine learning process. Table 1 presents the
hardware specifications of the nodes used in our setup.
The choice of the experimentation setup was motivated
through availability of resources as well as their
suitability for the experiments involved. For instance, as
the nodes are required to store and share ML models on
local storage, the storage capacity of the nodes was
important which has been addressed by allocating 500GB
for each node. Further, the RAM and CPU are
comparable to similar experiments in existing literature
however these machines were used solely for these
experiments and no other software was running on them.
In anticipation of the requirement to share machine
learning models across participating nodes, the
(off-chain) storage of blockchain and the network
communication occurring between the nodes is achieved
through python’s flask web library.

As the miners are added to the blockchain network,
they discover the rest of the nodes through the DNS
mechanism outlined in 4.1. Each node runs a Apache
Flask server and therefore has a webpage which can be
used to view the transactions and the current state of the
blockchain. A sample such output for a miner node is
presented in Figure 5.
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Node CPU model Clock speed Memory Storage ML technique
Node 1 Intel Core i5 3.3 GHz 16 GB 500 GB Onevsrest
Node 2 Intel Core i5 3.0 GHz 16 GB 500 GB Logreg
Node 3 Intel Core i5 3.3 GHz 16 GB 500 GB KNN
Node 4 Intel Core i5 3.3 GHz 16 GB 500 GB Naive Bayes
Node 5 Intel Core i5 3.0 GHz 16 GB 500 GB SGD

Table 1: Hardware specification for monitor and miner nodes

We initiated our blockchain with four nodes all of
which participate in mining and machine learning
process. In real-life scenario, each node is envisaged to
receive data for analytics from an independent stream,
however, for these experiments, we used the
monitor/seed node to distribute data to other
participating nodes. Upon receiving this data, each node
performs initial anlaytics using its default machine
learning algorithm. The outcome of this anlaytics
(accuracy, TPR, FPR) is stored in the blockchain as a
transaction whereas the resulting machine learning model
is stored in the local storage of the node to facilitate
off-chain storage and sharing. A sample transaction is
presented in Figure6 whereas Figure 7 presents a sample
block from our blockchain.

transaction 
-------------------------------------
{'datasetid': 'kd99_with_cols_shortened.csv', 'params': "KNeighbors Classifier(al 
gorithm=’auto’, leaf_size=30, metric='minkowski',\n                      metric_p
arams =None, n_jobs =None, n_neighbors =5, p=2,\n                   weights='unif
orm')", 'node': '1dc32874e3bc4b46bf624ad6553ee2b6', 'node_ip': ‘127.0.0.1:5004’,

‘pickle model':  '127.0.0.1-5004-kd99_with cols shortened.csv.sav','score':9.9 
983818770226537, 'transaction_id': '6f9e4ecdb6e74d9a7163750b1c9b499c9931d6918e7e 
c249 a 4815fabaf664850', 'other transaction_ids': [{'node': '127.0.0.1:5003', 'tra
nsaction_id': '9670e66a92427b04a413eb62c813ee4e2bf844f9867646b2f34f7d2e4440133b' 
> {'node': '127.0.0.1:5005', 'transaction_id': '075d4c9eab163ac5d65b4eac2a95793
f16d05b53dbab0996c68ea3e160657d66'}, {'node': '127.0.0.1:5010', 'transaction_id' : : 
:   ‘94034f010c7aab9c9b1b9b954baaa7fe15fb7763b5aaf54c63c467358f89aecc'}], 'sensiti
vity': 99.83818770226537, 'time': '0.46802687644958496', 'accuracy': 99.78308026
030369, 'precision': 99.83818770226537, 'fl': 99.83818770226537, 'ML_algo': 'knn
‘ ,  ‘stacking’: None}
127.0.0.1 - - [15/Apr/2020 22:01:12] "<-[37mPOST /get_model HTTP/1.1 <-[0m" 200 -
mine block request called

Figure 6: Sample blockchain transaction

After a block is successfully added to the blockchain,
each node node shares its machine learning with the
other participants of the network so that this knowledge
can be used to enhance their respective analytics. This is
achieved by sharing models through off-chain storage and
collaborative reinforcement is achieved by using these
models via stacking technique. Similar to the first phase,
the outcomes of this machine learning phase (accuracy,
TPR, FPR) are added to the blockchain as a separate
transaction.

5. Intrusion Detection Through Blockchain-based
Decentralized ML

In order to evaluate the performance of the proposed
blockchain-based decentralized machine learning system,

mine block request called block

----------------------------------------

{'index': 2, 'timestamp': '2020-04-15_22:01:18.211597', 'previous_hash': 'af1791

f0244e9b5d634ffe4eb74c5f82ecclebf8bf55c09a26dbea76a4d4d189', 'transactions': {'f

ilename': 'kd99_with_cols_shortened.csv', 'node_scores': [ 'score': 0.9983818770

226537, 'node': 127.0.0.1:5004', 'reward': 10), ('score': 0.9870550161812298,

node': '127.0.0.1:5010', 'reward': 9), {'score': 9.9838187702265372, 'node': '12

7.0.0.1:5003', 'reward': 8}, {'score': 0.9627831715210357, 'node': '127.0.0.1:50

05', 'reward' 7], 'other_transaction_ids': [{'node': '127.0.0.1:5003', 'transa

ction_id': 
'9670e66a92427b04a413eb62c813ee4e2bf844f9867646b2f34f7d2e4440133b'},

{'node': '127.0.0.1:5005', 'transaction_id': '075d4c9eab163ac5d65b4eac2a95793f16 
d05b53dbab0996c68ea3e160657d66'}, {'node': '127.0.0.1:5010', 'transaction_id':'

94034f010c7aab9c9b1b9b954baaa7fe15fb7763b5aaf54c63c467358f89aecc'}]}}

127.0.0.1 - - [15/Apr/2020 22:01:18] "<-[37mGET mine_block HTTP/1.1 <-[0m" 200 -

mine block request returned!

Figure 7: Sample block from the blockchain

we conducted experimentation using intrusion detection
as a problem scenario. The motivation to choose intrusion
detection is due to the significance of machine learning
and artificial intelligence within this domain as highlighted
by[74].

Our experimentation setup is based on four nodes all
of which participate in machine learning and mining
processes. Using KDD99 network-based attack dataset
[75], we conduct analytics in two phases; first round is
conducted independently at each node using data
available at the node followed by the second round in
which stacking is used to learn from the ML model
created by other nodes of the blockchain network. A
graphical representation of this process is presented in
Figure 8.

5.1. KDD99 dataset

KDD99 is one of the most commonly used attack
datasets to evaluate performance of intrusion detection
systems [75]. The dataset consists of numerical and
categorical features that describe the observations and
states of a network connection. They are labelled from a
set of 24 attack types which can be organized into four
main categories of attacks. Furthermore, the dataset
consists of 40 features which relate to basic attributes of
TCP connection, traffic features and connection-oriented
features. In table 2, we tabulate the details of some of
the main features of the dataset belonging to each class.

• DOS: denial-of-service, e.g. sending a flood of SYN
packets to the server so as to slow down the server’s
response to valid requests.
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Figure 8: Overall framework for stacked ML

• R2L: unauthorized access from a remote machine,
e.g. guessing password

• U2R: unauthorized access to local superuser (root)
privileges, e.g., various ”buffer overflow” attacks;

• probing: surveillance and other probing, e.g., port
scanning.

5.2. Experimentation and Analysis

For our experimentation, a subset of the KDD99
dataset was used where each node was assigned 10,000
rows of data which was used for training and testing
phases. The subset of data used contained 5 (most
frequently occurring: ipsweep, neptune, normal,
portsweep, and smurf ) of the overall target classes in the
main dataset. The class imbalance was chosen such that
there is sufficient training data against each target class.
The five target classes were:

As presented in Figure 8, the experiments were
conducted in two phases. The first phase involved using
machine learning independently at each node followed by
refining the ML model by stacking models shared by
other participating nodes of the blockchain network. The
results of first phase (without stacking) are presented in
table 3 whereas the outcome from the second phase of
experiments (with stacking) are presented in table 4.

Overall, the experiments involved evaluating the
system for the following metrics:

5.2.1. Accuracy

is defined as the percentage of correct predictions
compared with total samples number of predictions is
termed as accuracy in machine learning. Therefore,
accuracy can be obtained by dividing the true positives
by the total number of predictions that the classifier ran.
Mathematically,

Accuracy =
TP + TN

TP + TN + FP + FN

In our experiment, the classifier was tasked with
predicting the correct attack type by labelling the test
data with one of the 5 possible attack types used in our

setup explained above. We then analyzed accuracy
against each machine learning algorithm running on the
nodes. Figure 9.A shows the scenario without stacking
and Figure 9.B shows the scenario with stacking.
Furthermore, Figure 9.C. presents a comparative analysis
of performance of individual nodes (with respect to
accuracy) with and without stacking to highlight the
impact collaborative ML model sharing can achieve in
such setting.

From the analysis of these graphics, we can observe a
positive impact of ML stacking on the accuracy of
classifiers i.e. the accuracy for most of the classifiers has
increased by a range of 2 to 3 percent. The highest
positive impact is observed for Naive Bayes algorithm
when stacking is used whereas the smallest change is seen
with KNN algorithm. An interesting observation here, is
that the impact of stacked ML on accuracy can be
limited because the base classifiers already reported a
high prediction accuracy which, therefore, limits the
potential for improvement. When we compare accuracy
for other classifiers as shown in Figure 9.C, it is evident
that nearly all classifiers saturate to a 99% accuracy after
stacking is performed and all classifiers appear to be
equal. The only factor that stands out differently when
stacking is considered is the time to train with Näıve
Bayes registering the least time to train in both
non-stacking and stacking training runs.

5.2.2. Precision

Precision is a measure of finding out the extent of
correctness of true positives. Precision is calculated by :

Precision =
True Positives

True Positives + False Positives

We plotted precision against each machine learning
algorithm running on the nodes. Figure 11.A shows the
scenario without stacking and Figure 11.B shows the
scenario with stacking.

We also compared the two numbers for precision in
both scenarios in a bar chart shown in Figure 11.C.

We can see that precision has experienced a 1 to 2
percent increase for most of the classifiers. The greatest
improvement is again seen with Naive Bayes algorithm.

11



No. Feature class Feature name Feature Description Feature type
1 TCP connection attribute duration length (number of seconds) of

the connection
continuous

2 TCP connection attribute protocol type type of the protocol, e.g. tcp,
udp, etc.

discrete

3 TCP connection attribute service network service on the
destination, e.g., http, telnet,
etc.

discrete

4 Connection domain
specific attribute

num failed logins number of failed login attempts continuous

5 Connection domain
specific attribute

num root number of ”root” accesses continuous

6 Connection domain
specific attribute

is guest login 1 if the login is a ”guest” login;
0 otherwise

discrete

7 Traffic specific attribute count no. of connections to the same
host as the current connection
in the past two seconds

continuous

8 Traffic specific attribute serror rate % of connections that have
”SYN” errors

continuous

9 Traffic specific attribute same srv rate % of connections to the same
service

continuous

Table 2: Sample features of the KDD99 dataset

(a) Accuracy vs. Models (b) Accuracy vs. Nodes (c) Comparison of accuracy with and

without stacking

Figure 9: Accuracy of predictive analysis in different scenarios

The smallest change is seen with KNN algorithm same as
accuracy. This is following the same pattern as that of
accuracy. When we compare this metric with results
obtained in the research work [76], the Näıve Bayes
algorithm performs 85% whereas in our case, it shows a
good 96%. This is further improved to 99% as we carry
out stacking. As was seen in accuracy, the before and
after stacking precision score for KNN hasn’t changed
much.

5.2.3. True Positive Rate

True positive rate (TPR) also known as detection
accuracy represents the percentage of successful detection
of malicious instances. TPR is calculated as:

TPR =
True Positives

True Positives + False Negatives

Analyzing the outcomes of experiments with respect
to TPR, interestingly, the results of the first phase
(without stacking) are very similar to those of precision
however a noticeable improvement in the TPR is
identified in the phase (with stacking). The TPR for all
the nodes witnessed improvement with node 4 achieving
the highest detection accuracy of 99.6% demonstrating
the effectiveness of the approach.

5.2.4. Time to Train

Time to train, is a metric we have decided to measure
the performance in terms of speed of training. As the name
implies, it is the time taken by the model to completely
train on the data.

We plotted time to train against each machine
learning algorithm running on the nodes. Figure 12.A
shows the scenario without stacking and Figure 12.B
shows the scenario with stacking. We also compared the
two numbers for time to train in both scenarios in a bar
chart shown in Figure 12.C.

Stacking requires machine learning done by several
algorithms hence it is more time-consuming as is evident
from Figure 12.C showing around 20 times increase for
most of the classifiers. The shortest time to train is seen
in Näıve Bayes algorithm. The longest time to train is
seen with KNN algorithm. It is interesting to note that
Näıve Bayes saturates to the same performance as KNN
algorithm in case of stacking but with a quicker time to
train.

5.2.5. Recall

is a measure that shows to what extent in the test set
were the target classes accurately identified. If there are
100 positive classes in the test set and the classifier
identifies 80 correctly and the rest 20 incorrectly than the
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(a) Precision vs. Models (b) Precision vs. Nodes (c) Comparison of precision with and

without stacking

Figure 10: Precision of predictive analysis in different scenarios

(a) TPR for different models (b) TPR vs. nodes (c) Comparison of TPR with and

without stacking

Figure 11: TPR of predictive analysis in different scenarios

classifier accurately could recognize 80% of the true
samples in the data correctly. Mathematically,

Recall =
True Negative

True Negative + False Positive

We plotted recall against each machine learning
algorithm running on the nodes. Figure 13.A shows the
scenario without stacking and Figure 13.B shows the
scenario with stacking.

We also compared the two numbers for recall in both
scenarios in a bar chart shown in Figure 13.C.

Similar to precision, we can see that recall has
experienced a 1 to 2 percent increase for most of the
classifiers. Both Precision and Recall have been found to
follow the same pattern for our case as is shown in Figure
13.C.

5.2.6. F1 score

is used to measure the balance between precision and
recall for a machine learning classifier. It is calculated as,

F1 score = 2 ∗ Precision ∗Recall

Precision + Recall

We plotted F1 score against each machine learning
algorithm running on the nodes. Figure 14.A shows the
scenario without stacking and Figure 14.B shows the
scenario with stacking.

We also compared the two numbers for accuracy in
both scenarios in a bar chart shown in Figure 14.C.

F1 score has also experienced an average 1 to 2 %
increase for most of the classifiers. The greatest
improvement is seen with Naive Bayes algorithm. The
smallest change is seen with KNN algorithm. Much like
the other metrics, F1 score has been found to be
saturated around 99% when stacking is done.

It is seen that all algorithms saturate to 99% score
whether in accuracy or precision and that is important to
note because, in the case of stacking, one node is able to
stack together all models from the other nodes as the
models are actively exchanged among the nodes.
However it can depend upon the criticality of the
application where this is deployed because while giving
an overall score boost, stacking decreases the time to
train as well. These constraints should be taken into
design time consideration taking their overall impact in
question.

6. Conclusions and Future Outlook

UAVs or drones are being increasingly used in diverse
application domains to facilitate improved operational
efficiency and real-time decision making which require
capability for intelligent processing of monitored data.
Due to performance overheads, resource requirements of
centralised machine learning techniques as well as the
need for high quality predictive analytics in an efficient
manner, decentralized machine learning methods are
being explored. UAVs can especially benefit from these
due to their inherent distributed architecture and
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(a) Time to train vs. Models (b) Time to train vs. Nodes (c) Comparison of time to train with and

without stacking

Figure 12: Time to train for predictive analysis in different scenarios

(a) Recall vs. Models (b) Recall vs. Nodes (c) Comparison of recall with and

without stacking

Figure 13: Recall for predictive analysis in different scenarios

No. Algorithm Accuracy True Positive
Rate

Precision Recall Sensitivity Time to Train

1 Onevsrest 96.815 97.40 97.399 97.399 97.399 1.221
2 Logreg 97.057 97.60 97.600 97.600 97.600 1.154
3 KNN 98.928 99.133 99.133 99.133 99.133 3.928
4 NB 95.148 96 96 96 96 0.547
5 SGD 97.382 97.866 97.866 97.866 97.866 0.886

Table 3: Algorithms and measured machine learning metrics without stacking

Node Base
Algorithm

Accuracy True Positive
Rate

Precision Recall Sensitivity Time to Train

1 Onevsrest 99.215 99.366 99.366 99.366 99.366 21.943
2 Logreg 99.215 99.366 99.366 99.366 99.366 21.049
3 KNN 99.503 99.60 99.600 99.600 99.600 26.191
4 NB 99.421 99.533 99.533 99.533 99.533 14.090
5 SGD 99.462 99.566 99.566 99.566 99.566 15.868

Table 4: Algorithms and measured machine learning metrics with stacking

constrained resource profile. Blockchain is a promising
solution to shift traditional centralized approaches
towards decentralisation with its immutable data
structure, traceability and transparency of records, and
fairness of use. Our proposed framework facilitate
decentralized processing of machine learning based
predictive analytics within a typical multi-UAV
environment. Our proof of concept utilized stacking to
achieve collaborative reinforcement of individual machine
learning models to investigate its impact on efficiency of
predictive analytics. We used intrusion detection as a
case-study to evaluate the proposed system and have
witnessed positive outcomes in terms of detection
accuracy, TPR, FPR, F1 score and precision. The
proposed framework has less performance overhead as

compared to the centralised approach because instead of
sharing data across participating nodes, machine learning
models are shared across them so as to use this
knowledge to improve accuracy of intelligent analytics
across participating nodes. In addition, we achieve better
privacy and security of data by removing the requirement
of data sharing among the nodes.

In future we aim to explore the scalability of the
proposed framework in the event of larger and disparate
datasets, and greater number of participating nodes.
Furthermore, it would be interesting to explore the
robustness of the proposed framework in real world
application specific scenarios of UAVs against variety of
known attacks such as jamming or spoofing the
navigational data, malicious code injection, Sybil attack
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(a) F1 score vs. Models (b) F1 score vs. Nodes (c) Comparison of F1 score with and

without stacking

Figure 14: F1 score of predictive analysis in different scenarios

and distributed denial of service attack.
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