
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Trustworthy Blockchain Gateways for
Resource-Constrained Clients and IoT
Devices
MAZIN DEBE1, KHALED SALAH1, RAJA JAYARAMAN2, JUNAID ARSHAD3
1Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, UAE
2Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
3School of Computing and Digital Technology, Birmingham City University, Birmingham, UK

Corresponding author: Mazin Debe (e-mail: mazin.debe@ku.ac.ae).

ABSTRACT
Constrained blockchain clients are unable to process and store the entire blockchain ledger and mine
blocks on the blockchain. Such nodes rely on the view of blockchain provided by full nodes termed as
gateways. However, gateway nodes can provide a distorted view of the blockchain, making lightweight
clients vulnerable to eclipse attack. When under such an attack, a client cannot differentiate between a
forked view of the blockchain and the legitimate blockchain ledger leading to fatal consequences and
huge losses incurred. To mitigate such threats, we propose a data attestation solution which employs full
nodes as validators to attest the responses reported by gateways of lightweight nodes. Leveraging smart
contracts, our approach gives lightweight clients confidence in the data reported as they are unable to
validate it from the blockchain network itself. The system governs the attestation process that comprises of
submitting attestation requests, approving them, recording the response of validators, and manage payments.
Clients can, thereafter, provide their feedback about the validator/gateway performance in the form of
a reputation score. We present the proposed system architecture and describe its implementation on the
Ethereum blockchain network. We evaluated the proposed solution with respect to functionality testing,
cost of execution, and security analysis of smart contracts developed. We have also made our smart contracts
code publicly available on Github. 1.

INDEX TERMS Blockchain, Ethereum, IoT, Gateways, Trust, Lightweight nodes, Full nodes

I. INTRODUCTION
With the increasing adoption of blockchain technology has
resulted in growing use of lightweight clients to support
integration between blockchain and the Internet of Things
(IoT). The integration of these technologies has facilitated
development of novel applications as well as strengthening
existing use-cases. These include applications in Artificial In-
telligence, reputation systems, IoT monetization, asset man-
agement, as well as in the shipping industry [1]–[4].

A primary motivation in using IoT devices is their abil-
ity to provide lightweight, connected solutions to diverse
domains. However, such devices are typically constrained
with respect to their abilities in computation and memory
[5], [6]. These restrictions are particularly problematic when

1https://github.com/MazenDB/Gateways/

utilising the blockchain technology as a backend to serve
such clients. Blockchain consensus protocols typically re-
quire a client (full node) to download the entire blockchain
ledger to achieve synchronization among the participants of
the network. The requirements of a full node are evidently
not attainable by all clients due to the large storage space
and processing power needed. Most clients, such as mobile
wallets and IoT devices, often opt to use Simplified Payment
Verification (SPV) to check the integrity of transactions
and blocks, without the need to download the complete
blockchain [7]. Such clients, or lightweight nodes, rely on
a full node to fetch data from the blockchain.

Lightweight nodes send and receive data and make decisions
based on the copy of the blockchain provided by the reference
full node. This insinuates that the full node is a gateway for
all of the connected light nodes to the actual blockchain.

VOLUME 4, 2016 1

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

FIGURE 1: Typical connection between lightweight blockchain clients and the blockchain network through a gateway, making
clients vulnerable to cyber attacks

Naturally, light nodes need to trust this gateway in order to
connect to it and perform any transactions. This contradicts
the intrinsic trustless characteristics of the blockchain. These
gateways can single-handedly reject a transaction without the
consensus of the rest of the blockchain network. Although
light clients can utilize the SPV method to verify transactions
using block headers, it does not provide enough information
to make an informed decision. Using malicious gateways
could result in adverse consequences in terms of data leaks,
wrongfully addressed cryptocurrency transfers, and biased
business decisions. The phenomenon where a gateway pro-
vides a falsely forked view of the blockchain to its clients is
called an eclipse attack [8].

A typical connection between a lightweight node and the
blockchain network is shown in Fig.1. Mobile DApps, IoT
devices, and other lightweight clients rely completely on the
copy of the blockchain provided by the gateway. Therefore,
these devices have no way of validating the information pro-
vided by the referenced full node. Therefore, a mechanism
for validation of data provided by the gateway is required.
Such mechanism will enable clients to be confident in the
data and make decisions and transactions, respectively. In this
paper, a data attestation approach is presented which utilises
available gateways in the blockchain network as validators
for the information provided by other gateways. Clients can
send data that require attestation to the validators, which then
validate the request and return their response to the light
client. This mechanism includes multiple aspects such as the
validator selection mechanism, recording responses from the
validators, managing payment, and rating gateways. All of
these are governed by Ethereum smart contracts, as these
record all interactions on a permanent distributed ledger.

The major contributions of this paper are:

• We propose a data attestation approach that leverages
Ethereum smart contracts to govern validation of the re-
quests from Ethereum lightweight clients. This solution
accepts attestation requests from light nodes and assigns
respective validators to verify the information reported
by the gateway.

• We present detailed description of the different compo-
nents of the proposed approach, including the selection
mechanism, attestation recording, and reward transfers.

We also propose a way to rate gateways and solve
potential disputes between clients and validators.

• We provide implementation details via Ethereum smart
contracts for the proposed system. In addition, we show
the series of transactions for all the presented function-
alities. Deployment of the smart contracts is simulated
with the aid of the Remix IDE (blockchain-based devel-
opment environment).

• We evaluate the proposed data attestation solution by
validating its different functionalities, assessing perfor-
mance, estimating execution costs, and discussing the
security aspect of the system by showcasing several
possible scenarios. For further analysis, we present a
comparative analysis of the proposed method with rele-
vant existing solutions.

The remainder of this paper is organized as follows: Section
II discusses background information about the blockchain
technology and the eclipse attack. Section III briefly dis-
cusses several efforts in the literature that is in the same
domain of this paper. Section IV presents the design and
details of the proposed approach. Section V highlights the
implementation details. Section VI discusses the evaluation
of our solution, which includes functionality testing and cost
analysis, in addition to some of the challenges faced and
possible future improvements to this work. We present our
conclusions in section VII.

II. BACKGROUND INFORMATION
This section explains some background information about
the blockchain technology and the eclipse attack to provide
important context to the rest of the paper.

A. BLOCKCHAIN TECHNOLOGY
A blockchain network, such as Bitcoin and Ethereum, con-
sists of a series of blocks that are linked together to form a
tamper-proof ledger [7]. Each block holds several transac-
tions representing interactions between different participants
of the network. The contents of a block are hashed and
included in the following block to form the said chain.
Hashing this information, as well as grouping transactions
to form a block, is done by special nodes called miners.
Miners run specific code (consensus algorithm) to be able to
append blocks and evidently transaction to the existing chain.

2 VOLUME 4, 2016

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

Regular blockchain clients are not required to run consensus
algorithms and are only required to submit transactions, and
in some blockchain networks, pay a fee for the transac-
tion. Numerous consensus algorithms are implemented to
determine the rules of appending new blocks to the chain.
Each application of the blockchain implements an approach
that suits its use case. Some popular examples of consensus
algorithms include Proof of Work (PoW), Proof of Stake
(PoS), and Practical byzantine fault tolerance (PBFT).

The entire chain of blocks can be downloaded and stored on
any of the devices participating in the blockchain network.
That is why the blockchain network is viewed as a distributed
ledger and can be considered a decentralized system. In some
cases, the blockchain network is open to the public, such as
in the Bitcoin and Ethereum networks. This is called a public
blockchain, in contrast to private blockchains that provide
access only to a restricted group of people. Both types of
blockchain networks are permanent and tamper-proof. Any
transaction that is added to the network cannot be removed
later as it jeopardizes the integrity of the ledger. Another
difference between various blockchain networks is the ability
to modify the business logic of the blockchain. Ethereum, for
instance, supports customized rules to achieve this through
smart contracts however other blockchain platforms such as
Multichain do not support smart contracts.

B. ECLIPSE ATTACK
Blockchain miners and clients can download the entire data
on the blockchain from other peers to validate previous as
well as new transactions. Members of the network that do so
are referred to as full nodes and are normally either miners or
service providers. In contrast, light nodes that cannot afford
the storage and processing power requirements of a full node
use a copy of the blockchain extracted from a full node. This
is not consistent with the decentralization of the blockchain
network, as an attacker can exploit lightweight clients as it
controls its communication with the blockchain network as
discussed in [9]. This attack is known as an eclipse attack
and is discussed in detail by Heilman et al.as they explore
its devastating effects on the Bitcoin network. In an eclipse
attack, the victim is isolated from the real network activity
and given a distorted view instead. In fact, it is easier for the
attacker to target lightweight clients as they need to hijack
significantly fewer connections between the client and the
blockchain network. This results in financial losses such as
double spending and ill-informed business decisions. Eclipse
attacks are executed to infiltrate the target device or to attack
the blockchain network itself.

III. RELATED WORK
In this section, we will discuss some of the solutions in
the literature aimed to address the threat of eclipse attacks
on lightweight clients connecting to gateways that provides
them access to the blockchain.

Alangot et al.discussed two approaches to detect eclipse at-

tacks on lightweight Bitcoin clients [8]. The first approach
assumes that attackers need significantly more time to create
false blocks. This is due to the fact that one entity does
not have enough resources to form blocks as fast as the
rest of the network. Therefore, an unusual spike in creation
times insinuates an attack. The second proposed solution
is a gossip protocol. In this approach, a client obtains its
blockchain view from a server that provides its strongest view
based on input from all clients. These approaches modify the
blockchain infrastructure and are implemented on top of the
existing protocols. The proposed modifications are tailored to
help prevent specifically eclipse attacks on light blockchain
clients. However, the gossip protocol is computationally ex-
pensive for light clients with minimal processing power.

Kiayias et al.propose an improvement to the current Proof
of Work (PoW) consensus protocol [10]. The novel Non-
Interactive-Proofs-of-Proof-of-Work (NIPoPoWs) enhances
the performance of blockchain networks based on PoW such
as Bitcoin and Ethereum and expands their functionalities.
It does so by further reducing the requirements for light
blockchain clients in terms of resources and processing abil-
ity in contrast to the traditional Simplified Payment Verifi-
cation (SPV). In SPV, light clients are required to down-
load block headers instead of entire blocks due to their
restricted storage space. Although this significantly reduces
the required storage, which is suitable for mobile devices,
for instance, it is still a significant amount of data (several
Gigabytes for SPV client in Ethereum) to be stored in clients
such as IoT devices. With the modified consensus algorithm,
clients are only required to download a polylogarithmic
number of block headers. However, the developers assume
the block difficulty to be constant. This is untrue in the
case of Bitcoin and Ethereum, as the block difficulty is not
persistent and tends to change over time. Further, NIPoPoWs
works under the assumption that the honest chain is not being
altered by an attacker or a malicious entity.

The authors in [11] propose a transaction verification client
called FlyClient which requires lightweight nodes to down-
load only a logarithmic number of block headers. FlyClient
creates shorter proofs as compared to NIPoPoWs using prob-
abilistic sampling for blocks and Merkle Mountain Range
(MMR) [12]. In addition, FlyClient causes minor changes
to the current blockchain networks that it is applied to. The
FlyClient approach requires that at least one honest miner be
available at all times. This assumption is deemed to be too
optimistic as IoT clients are susceptible to eclipse attacks,
MITM, and other types of security attacks and compromises.
Letz presents a novel approach in [13] comprising a super-
light client. This approach helps prevent eclipse attacks by
fetching data from a remote client while further reducing
the demanded requirements by blockchain clients. While this
approach overcomes the disadvantages of previous work, it
is specifically designed for the Bitcoin network and not very
favorable for blockchain networks with fast block confirma-
tion, such as the Ethereum network.

VOLUME 4, 2016 3

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

IV. BLOCKCHAIN-BASED SOLUTION
We propose a data attestation solution leveraging Ethereum
smart contracts which is able to validate the information
provided by blockchain gateways to lightweight nodes as
shown in Fig. 2. Light clients often connect to one gateway
that they copy from their view of the blockchain. Although
this gives devices with limited resources the opportunity to
utilize blockchain technology, it compromises one of the
biggest benefits of using the blockchain i.e. decentraliza-
tion. Reliance on a single element to provide access to the
entire network contradicts the consensus protocols that the
blockchain network is based on. Our solution relies on using
blockchain smart contracts that manage attestation of the data
provided by the gateway. Therefore, the blockchain network
chosen was Ethereum as it supports smart contracts and is
a public blockchain that is accessible by all entities. Privacy
of information is maintained nevertheless through restricted
access to functions and data by users. All stakeholders are
registered by the smart contract and are given an Ethereum
Address as an identifier to track the process of attestation and
solve disputes.

Light Ethereum clients contact full nodes to reference their
copy of the blockchain. These clients request data from the
gateway nodes through API requests. Full nodes are able
to access the Ethereum global state ledger as they store the
entire blockchain locally and append new blocks regularly as
the chain of blocks is expanded. IoT devices, mobile clients,
and other light nodes sometimes need to attest sensitive
information that was reported by the gateway. They send
this information to other full nodes that have full access to
the blockchain. Clients gain more confidence in the data by
consulting a higher number of full nodes. Full clients can
serve as gateways for light clients as well data validators
for clients connected to other gateways. Smart contracts
manage the selection of validators to be fair for all available
validators and maintain the quality of service. Light clients
pay a fee for using this service respective to the number of
attestations requested. On the other hand, validators get paid
for validating this data as well.

Gateways/validators are assigned a reputation score demon-
strate their trustworthiness. Therefore, they are incentivized
to provide honest feedback, whether as gateways or valida-
tors, to avoid lowering their reputation score. Upon registra-
tion, they are assigned an average score which is modified
based on their performance. After each interaction, clients
provide feedback about the validators involved, which is
translated to an increase or decrease in the reputation score of
the validator. Validators are required to maintain a minimum
score to be allowed to provide attestation services. Full nodes
lose credibility by providing false information to clients,
false attestation results, and failing to respond to attestation
requests. In addition, validators are requested to deposit
collateral as extra incentive to provide good service quality.
Returning the deposit to a validator is contingent on them

providing honest information and feedback to clients. Failing
to do so results in deposit deduction and possible elimination
from the list of validators.

Light clients submit a payment linear to the number of val-
idators required along with the attestation request. The smart
contract reviews the request and assigns validators in a round-
robin fashion. The client is informed about the assigned
validators in order to send them the requests securely and
individually. Consequently, the validator informs the client
about the result to be compared to that of the gateway. The
smart contract is also informed of the result as well to main-
tain a record of the interaction. In addition, validators are
paid their due amounts upon successful submission of their
response. Throughout this process, all interactions related to
a request is tracked via a request number generated by the
smart contract at the request initiation level. This number
maps to important information regarding the request includ-
ing the requester address, number of requested validators, and
current state of the attestation process. Records regarding all
steps of the process are permanent as they are recorded on the
immutable blockchain ledger and can be investigated later to
solve disputes and disagreements. Due to the nature of the
blockchain, function calls, events, and any alteration to the
variables on the smart contract need to be stored in a block as
a transaction and appended to the global blockchain.

Missing attestations can be reported as well via the smart
contract through dedicated function calls. Clients typically
would do so after a certain interval of time has passed since
the request initiation. In addition, clients could report that
they believe are misleading or dishonest. For instance, if one
of the validators tries to claim that a request is invalid as
opposed to the rest of the validators that approve it, the client
can flag it as dishonest, which would have consequences on
the validator by losing credibility and partial deduction of its
deposit.

The process of attestation involves several stakeholders that
interact together. The role of each one is explained further
below.

• Light clients: These lightweight nodes include decen-
tralized mobile applications, IoT devices, or any other
resource-constrained device. Limited storage and pro-
cessing power inhibits them from downloading the en-
tire blockchain and making transactions independently.
In order to access blockchain functionality by sending or
receiving cryptocurrency and accessing smart contracts,
they are required to refer to the blockchain view of some
other full node. In our proposed solution, light clients
can also request attestation from other full nodes to
validate the information.

• Validators: Full nodes provide attestation services to
light clients and get rewarded in ethers for that service.
The performance of these validators is monitored by
clients themselves that provide their evaluation. False

4 VOLUME 4, 2016

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

FIGURE 2: Architecture of proposed solution for attesting data by Ethereum blockchain gateways

feedback, missing, and late responses result in losing
credibility and balance deductions. Eventually, such
nodes can lose all their balance as well as being denied
from providing attesting services after continuous loss
of performance.

• Gateways: In addition to validation, full nodes can
serve as a gateway to lightweight nodes. Light clients
typically communicate with only one full node to re-
trieve information about the blockchain but connect
to several validators at once. Similar to the validation
process, gateways are also rated based on their perfor-
mance. If gateways fail to provide honest responses,
they could also suffer from the loss of their deposit. This
could happen if enough validators agree to dispute the
response reported by the gateway.

• Smart contracts: All aforementioned interactions be-
tween light nodes and full nodes are regulated by
Ethereum smart contracts. Smart contracts handle the
registration of each of the participating entities. This is
done to restrict access to specific functions for certain
types of users. Furthermore, some functions can only
be triggered by users that own that data. For instance,
to flag a transaction as attested, the function caller is
required to be a registered validator. The Ethereum
client is not allowed to trigger this function otherwise.
This validator is only allowed to do so for attestation
requests that are assigned to it prior to this transaction.

All of this data is tracked by the Ethereum address of
the caller and the request number that is generated by
the smart contract itself. For separation of concerns,
the functionality of the system is split into two smart
contracts. One of the smart contacts handles registration
and keeping track of different entities, their reputation
scores, and all data regarding the users. The other smart
contract governs the validation process that comprises
requests, responses, assigning validators, disputes, and
ratings.

V. IMPLEMENTATION DETAILS OF THE PROPOSED
SOLUTION
This section presents the implementation details and the algo-
rithms developed for implementing our proposed solution for
attesting information returned by Ethereum gateways. We de-
ploy the aforementioned solution on a test Ethereum network
virtually for functionality validation and performance eval-
uation. Remix IDE was used for this purpose as it provides
a suitable development environment for development using
Solidity language. As previously mentioned, our solution
includes two types of smart contracts: the Registration and
Reputation smart contract, and Validation smart contract.
Following is a brief explanation of the functionality and
deployment details of each of those two contracts.

• Registration and Reputation smart contract: This
contract is deployed once on the Ethereum blockchain

VOLUME 4, 2016 5

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

FIGURE 3: Interactions between different stakeholders showing attestation requests and responses.

and given an Ethereum address that other clients use to
contact it. Remix IDE provides several virtual accounts
or Ethereum addresses for testing purposes, and one of
those accounts was utilized to deploy the smart contract.
As the name suggests, this smart contract registers all
of the entities involved in the system and tracks their
data as they are modified throughout the process. The
addresses of the owner of the smart contract, the gate-
ways/validators, and the light clients are all recorded via
this smart contract. In addition to their addresses, the
smart contract records the deposit, rating, and the num-
ber of clients who rated every registered full node. These
records are valuable and will be used later for deducing
the total number of available validators, applying the se-
lection mechanism for validators, deducting some of the
balance of misbehaving validators, and other services

provided by the system. For instance, when penalizing
a gateway for providing false information, the current
balance is inspected, and the gateway could be blocked
if it does not have enough balance. This smart contract
implements payable functions that Ethereum clients can
access to register in the smart contract by paying an
admission fee that is pre-determined by the contract
owner. The penalization and rewards amounts are also
stated in this contract. Further, confidential information
is protected using private data types and customized
setters and getters are devised to regulate access to such
data.

• Validation smart contract: Similar to the Registration
and Reputation smart contract, this contract is also
deployed once using a virtual Ethereum account. The
address of the Registration contract is embedded in the

6 VOLUME 4, 2016

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

Algorithm 1: Client and Gateway Registration
Input: Client registration fee, Gateway Deposit

1 Modifier: NA
/* Client Registration */

2 The client transfers the registration fee to the smart
contract.

3 if Ethereum address of sender has not been previously
registered by another entity ∧ transferred fee is
sufficient then

4 Accept payment.
5 Append client Ethereum address to the list.
6 else
7 Reject registration.
8 end
/* Gateway Registration */

9 The client deposits collateral in the smart contract
balance.

10 if Ethereum address of the gateway is not registered ∧
the deposit amount is equal to or more than the
minimum deposit value then

11 Accept deposit.
12 Assign an initial reputation score to the gateway.
13 Map the Ethereum address of the gateway to its

metadata.
14 Increment the total number of gateways available.
15 else
16 Reject registration.
17 end

validation contract to refer to the data of registered
users. This is done in the constructor when deploy-
ing the validation contract. Light clients contact this
smart contract to request validation services. The smart
contract generates a request number to link it to the
request details, including the light client address, vali-
dation required, and the validation progress. In addition,
these requests are mapped to the assigned validators’
addresses. After the request generation, all interactions
are restricted to the requester and assigned validators.
For instance, only the assigned validator can provide
feedback on that request. The validation progress is
updated as this feedback arrives from the validators
that get paid the agreed fee once they provide their
attestation. Furthermore, this smart contract governs
disputes and disagreements between clients and valida-
tors. Whenever a validator provides false claims or fails
to provide feedback, the client reports it, which results
in penalizing the former by reducing its credibility score
in the previous contract.

Fig. 3 shows how light clients interact with full nodes and
smart contracts. As illustrated in this figure, a light client
requests specific data from its gateway before requesting
attestation from validators. To validate this information, the

Algorithm 2: Attestation request
Input: number of required validators

1 Modifier: onlyClient
2 Retrieve number of available validators from

Registration contract.
3 if Sufficient number of validators is available ∧

Correct amount of Ethers has been transferred to the
smart contract then

4 Generate a new request number.
5 Initiate validation request recording the client

address, requested validators, and time of
request.

6 Reserve requested number from the pool of
available validators.

7 foreach requested validator do
8 Retrieve the validator’s Ethereum address.
9 Map the validator’s address to the request

number.
10 Send validation assignment to both the light

client and the validator.
11 end
12 Request confirmation.
13 else
14 Reject attestation request.
15 end

light client submits an attestation request to the smart contract
with the number of requested validators. The client does not
contact the validators directly since the selection of nodes to
act as validators is made only by the smart contract itself.
Therefore, a potentially malfunctioning node cannot influ-
ence other validators or select a validator to participate in a
conspiracy with it as they do not know the validators assigned
to the attestation request prior to the request submission by
the client. Subsequently, the smart contract assigns a unique
number for the attestation request and confirms the request
by triggering an event containing the address of the requester
and the confirmation number. In addition, the smart contract
assigns the required number of validators to the request and
informs all participating entities of this. The light client then
proceeds to send the assigned validator its request, to which
the latter provides its response. Along with responding to the
client, the validator also updates the smart contract of the
attestation success. The smart contract provides the payment
that has been agreed upon in the smart contract to the valida-
tor. Upon receiving attestation confirmations from validators,
the smart contract infers the process progress. After the
client’s timeout, it can report any missing attestations that
it did not receive, in addition to dishonest feedback. Finally,
clients provide their own feedback about the performance of
the gateway and validators via the smart contracts.

The Registration and Reputation smart contract tracks all
the entities within the system using their Ethereum Address.
Light clients register in the smart contract to access its

VOLUME 4, 2016 7

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

Algorithm 3: Confirming attestation request
Input: Request number

1 Modifier: onlyValidator
2 if Request number is valid ∧ message sender is

assigned to the attached request then
3 Transfer payment for validation to the validator.
4 Flag the validator as available.
5 Update progress of the attestation process.
6 if number of submitted attestations equals the

number of requested attestations then
7 Announce the completion of the attestation

process.
8 end
9 else

10 Revert transaction.
11 end

services by paying a registration fee. As shown in Algorithm
1, the smart contract validates the payment and the Ethereum
address and registers the clients. Likewise, gateways also are
registered in this smart contract. Gateways deposit an amount
as a guarantee for the quality of service. This deposit is
deducted as the performance of the node deteriorates. When
gateways are first initialized in the smart contract, they are
given an initial reputation score that will change upon their
interaction with clients. In addition to the reputation score,
the number of raters for each specific gateway is recorded
and mapped to its Ethereum Address.

Algorithm 2 presents the details for requesting attestation
via requestAttestation(). This is a payable function, which
means that light clients need to attach payment matching
the number of validators requested. After performing the re-
quired validation, the smart contract generates a new unique
request number to track this submitted request. Creating a
new random number for each request by hashing algorithms
is too expensive. We address this by generating a random
number upon deploying the smart contract and incrementing
it with each new request. This is done through the validation
smart contract, which consults the Registration and Repu-
tation smart contract to get the list of free validators. After
reserving the requested number of validators, all involved
stakeholders are informed about this assignment individually.
Once all stakeholders are notified, the request is confirmed by
the smart contract.

Once the validators receive attestation requests, they can
are able to retrieve the required information as they have
access to the entire blockchain. Algorithm 3 explains how the
validation smart contract tracks this interaction and manages
the payment to the validator for the attestation service. As
Ethereum smart contracts are passive elements, they cannot
actively request a response to an attestation request. Instead,
it updates the progress of the attestation as the attestation re-
sponses arrive from validators. When the responses reach the

Algorithm 4: Rating validators
Input: Gateway Address, reputation score

1 Modifier: onlyClient
2 Retrieve current reputation score from Regitration and

Reputation smart contract using the gateway
Ethereum address.

3 Retrieve number of raters for this gateway.
4 Set new reputation score = (current score * number of

raters + new score) / raters+1
5 Normalize reputation score to a maximum of 100
6 if reputation score < minimum_score then
7 Block validator.
8 end
9 Increment number of raters for this validator.

amount requested by the client, the smart contract announces
the completion of the attestation process. In addition, the val-
idators’ status is set to bus while it is assigned an attestation
assignment. After submitting the response, it is flagged as
available again to receive other requests.

Light clients can give their feedback about the performance
of the gateway/validator it contacted. Algorithm 4 shows
how the reputation is updated based on the feedback by
clients. It would be ideal for saving all ratings provided by
every client that interacted with the gateway or validator.
However, we opt for a more cost-efficient approach to save
the overall reputation sore and the number of clients that
provided that rating. Saving the number of clients has a
couple of benefits. First, it is essential to compute the updated
reputation score after the client feedback as explained in
algorithm 4. Moreover, having recorded feedback by a large
group of clients increases the confidence in this validator by
other light clients.

Finally, algorithm 5 explains the mechanism of reporting for
false information or missing attestations. For instance, if one
single validator reported information that does not match
other validators, it is assumed that it is trying to cheat or
harm honest gateways. Moreover, if the validator fails to
reply to the request altogether, it affects the response time
of the attestation process and should be penalized for that.
This incentivizes gateways and validators to provide honest
and timely feedback to avoid reputation deterioration and
losing their deposit. However, it would be unfair to promptly
block the validator for providing falsified information. This is
because the mismatched information could be due to reasons
other than trying to deceive the client. For example, the
current block number at one of the nodes may not be like the
others nodes because it has not synchronized the last block
yet. Furthermore, inconsistent information between nodes
could be due to each node running a different micro fork
and that the information requested comes from a block that
has not yet been finalized. These situations are accounted
for by penalizing incorrect information. Honest nodes can

8 VOLUME 4, 2016

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

Algorithm 5: Report missing or false attestations
Input: Request number, validator address

1 Modifier: onlyClient
2 Validate input paramters.
3 if Request Number is valid ∧ the request belongs to

the sender address ∧ a minimum time interval has
passed since the attestation request then

4 Announce the completion of the attestation
process.

5 if remaining deposit of validator <= penalty
amount then

6 Deduct the entire validator deposit.
7 Remove validator address from the pool of

available validators.
8 Decrement total number of available

validators.
9 else

10 Deduct penalty amount from the validator’s
balance.

11 end
12 Broadcast the amount deducted from the validator.
13 Transfer a compensation amount to the light

client.
14 else
15 Revert transaction.
16 end

quickly recover from decreasing their reputation score due
to such reasons. Light clients are incentivized to make such
reports as they are compensated for such inconsistencies by
the validators.

VI. VALIDATION AND EVALUATION
In order to assess the proposed data attestation system, we
have used functionality testing, cost analysis and security
analysis. This section provides details for all these different
aspects of evaluation.

A. FUNCTIONALITY TESTING
This section discusses the validation of the expected outcome
for the implemented approach. The code for the solution
was implemented, deployed, and tested on Ethereum using
Remix IDE. Remix provides a test Ethereum network for
deploying and testing smart contracts. Remix also has various
plugins that support the debugging of the deployed code, per-
forming unit testing, and conducting a sufficient performance
analysis on the code. A log is generated and displayed for
each transaction to simulate a real Ethereum network. These
logs can be used to explore transactions as they include the
inputs, outputs, events triggered, as well as the execution and
transaction gas cost of the transaction. In addition, errors and
exceptions are also displayed in these logs. Errors include
exceeding the gas cost limit, run time errors, and restrictions
enforced by the smart contract itself. Such constraints are
required to maintain a level of privacy in the system. As such,

FIGURE 4: Gateway/validator newly registered in the Regis-
tration and Reputation smart contract.

some methods are restricted to only specific members.

FIGURE 5: The request number mapped to details about the
attestation request.

To evaluate the functionality of our smart contracts,
we deployed both the Registration and Reputation
smart contract at the address 0xc5a98F66719ee680272d8
289B8CE227174E2CDDc, and the validation smart con-
tract at the address 0x48ebDb0D8107D12E58266EC9ef
dc82b047f59FFA. The addresses of both of these contracts
are static. In addition, we simulated a complete validation
process by creating several validators and clients. These
entities are identified by an Ethereum address which maps
to their information in the smart contract. For starters, all
participating entities are registered by paying the required
fee to the smart contract. Fig. 4 shows a newly registered
gateway/validator. As as evident from this figure, it has been
given an initial reputation score, but no clients have rated it
yet.

Once enough entities have registered in the Registration and
Reputation smart contract, a client may request attestation

VOLUME 4, 2016 9

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

by submitting said request to the validation smart contract.
Fig. 5 shows the details of the submitted request. It is given
a unique request number that maps, as it can be seen, to the
address of the client, time of the request, and other details.
These parameters are modified along the process accordingly.

FIGURE 6: A submitted attestation request for three valida-
tions.

Following the request submission, the validation smart con-
tract selects the required validators for this request according
to the algorithm explained in the previous section. The smart
contract then informs the involved stakeholders about this by
triggering events. In Fig. 6, 4 events can be seen resulting
from the attestation request. The first three ValidationRe-
quired events are to inform the client and the validator
of assigning the latter to this attestation request. Finally, a
RequestConfirmed event is triggered in order to confirm the
request submission success. These events include parameters
such as the request number, client address, and validator
information.

FIGURE 7: Validator updating the validation smart contract
of attestation completion.

As the validators attest the requests they receive from the
light clients, they send back their responses to the clients.
Additionally, they update the smart contract by calling the
TxAttested function and attaching the request number for
reference. The smart contract triggers an event to announce
the receiving of attestation from the validator, as shown in
Fig. 7. Clients can read these events and can follow up with
disputes in case they did not match their records.

The smart contracts have built-in exception handling features
for catching errors, including exceeding the gas limit, exceed-

FIGURE 8: Error message showing that the validator is not
assigned for the this attestation request.

ing the smart contract balance, and wrong input parameter
formats. In addition, we add extra layers of conditions to
maintain restricted access, data privacy, sufficient transfer
of payment, and other constraints. Fig. 8 shows an example
where a validator triggers the TxAttested function call for a
request that he was not assigned to. The smart contract reverts
the function call and triggers an error regarding that.

B. EVALUATION AND ANALYSIS
This section presents a cost analysis of the developed solution
and discusses the security aspect of the system. In addition,
the generalization of the system is discussed in addition to
a comparative analysis with other solutions as well as the
challenges faced by such an approach.

1) Cost Analysis
The cost of function calls to Ethereum smart contracts is
calculated in gas. The gas that is spent by the function is
proportional to its computational complexity. The number
of operations in addition to the inputs and outputs of the
function sum up to the gas cost of the function. The gas
price, however, is a value measured in Ethers set by the
clients themselves that refers to how much they are willing
to spend for any transaction mined. Naturally, miners choose
transactions with higher gas prices to maximize their profit.
As a result, the transactions with higher gas prices tend to
be mined first. This is a trade-off that Ethereum clients have
to address. In addition to the gas price, Ethereum clients set
a gas limit that miners are not allowed to exceed when exe-
cuting a transaction for them. The transaction and execution
costs of any function in the smart contract can be deduced
directly from the gas cost and gas price. Therefore, smart
contract developers always aim to reduce the complexity of
the code in order to reduce the cost of utilizing their solution.
In this section, we provide cost estimation for each function
call in terms of gas as well as US dollars. Converting to a fiat
currency helps users appreciate the feasibility of our solution.
Ethereum Gas Station helped estimate this by converting the
transaction costs provided by Remix IDE to US dollars [14].

The cost of each function call in the smart contracts is
mentioned in table 1. As mentioned before, the gas price is
set by the Ethereum client, and therefore there is not constant
conversion rate between execution costs in gas and their cost
in Ethers. Therefore, the gas station analyzes the most recent
blocks and proposes a gas price for slow but cheap execution
of functions, average execution, and fast execution. These

10 VOLUME 4, 2016

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

TABLE 1: Gas cost of Ethereum functions in USD

Method name Transaction gas cost Execution gas cost Slow execution (USD) Avg. execution (USD) Fast execution (USD)
registerClient 45518 24246 0.00356 0.00435 0.00632
registerGateway 92335 71063 0.01042 0.01274 0.01853
deductBalance 40350 16070 0.00236 0.00288 0.00419
requestAttestation 240536 219072 0.03213 0.03928 0.05714
TxAttested 35177 26793 0.00393 0.00480 0.00699
rateGateway 64050 41178 0.00604 0.00738 0.01074
reportMissingAttests. 36304 41384 0.00607 0.00742 0.01079

gas prices are 36, 44, 55 Gwei, respectively. However, we do
not present these prices in Weis or Ethers but rather convert
them to USD. The shown prices for the execution cost of
each transaction are based on computed values at the time of
writing this paper and can vary in the future. The conversion
rate to USD as of May 2020 is used, as it is a more reasonable
estimation. We prove that the solution is feasible due to the
presented function costs. The execution cost of each function
is less than $0.04 for cheap and average execution and less
than $0.06 for fast execution.

2) Security Analysis
This part of the analysis evaluates the security of the solution
proposed. Since our solution heavily relies on the blockchain
technology, it inherits many of its security features. This
strengthens the resilience of the proposed system due to
the decentralized nature of the blockchain. Some of these
features are summarized as follows:

• Availability: IoT devices and other lightweight devices
are constantly operating and in need of continuous ac-
cess to the gateways’ services. Likewise, they require
guaranteed responses from the system that supports
their trust in said gateways. This access is endorsed by
the complete availability of the Ethereum smart con-
tracts. The blockchain ensures that the smart contracts
are available at all their mining nodes, which eliminates
the single point of failure. The absence of some of these
nodes does not affect the total availability of the system
as it is compensated by other miners. A transaction is
surely going to be mined and included in a block by one
or more of these miners. Consequently, the data stored
is also replicated at each node and therefore is proven to
be always available for extraction.

• Non-repudiation: Transactions on the blockchain
ledger are singed cryptographically by the Ethereum
client. Any member of the blockchain network is re-
quired to do so before sending the transaction to the net-
work. As a result, requesting attestations and validations
provided by full nodes cannot be denied by any actor.
Every transaction is logged in an immutable ledger. This
ledger is duplicated at each node to preserve its integrity.
Clients and gateways are required to act honestly as the
dispute can be easily resolved by referring back to these
logs. Since these records are permanent, both parties are
held accountable for all their actions.

• Authorization: The ubiquity of IoT devices, mobile
applications, and other light nodes that require gateways
to access the blockchain makes it increasingly difficult
to keep their data private and tamper-proof. Providing
accessibility to only authorized members becomes diffi-
cult with the high number of members in the system, es-
pecially in a public network. Ethereum smart contracts
support function modifiers that restrict access to each
function to a specific group of privileged users. For in-
stance, modifying an attestation request is only possible
for the client that requested it or the validators assigned
by the smart contract. This maintains the integrity of the
system data.

• The re-entrancy attack: Previous versions of the
blockchain were susceptible to an attack that targets a
vulnerability in the blockchain similar to an attack in
2016 on the DAO [15]. Hence, this attack is also known
as the DAO attack. The blockchain was vulnerable
to "call to unknown". Fortunately, a hard fork in the
blockchain was introduced to overcome this vulnerabil-
ity.

• The 51% attack: Blocks are formed by miners in the
blockchain network that aggregate transactions, vali-
dates them, and forms them into a block to append
to the existing chain. These miners get rewarded for
doing so as it is a computationally heavy process due
to the consensus protocols in the Bitcoin and Ethereum
networks. These blockchain networks operate on the
assumption that the hashing power required for the
consensus protocol can never be owned by a single
entity [16], [17]. Nevertheless, if the majority of the
network participants or 51% of them collude together,
they can virtually single-handedly manipulate the entire
network. Thus, this attack is referred to as the majority
attack, which is a breach of the consensus protocol [16].

3) Smart Contract Code Vulnerability Analysis
Several security analysis tools were used to discover vul-
nerabilities in the developed smart contract code for our
trustworthy gateways solution. This is done to append the
previous analysis of the general blockchain security fea-
tures. Although Remix IDE flags errors in the syntax of
the smart code and identifies run-time errors, these security
tools provide a more extensive analysis of the smart code.
The smart contract vulnerability analysis is specific to each
smart contract and gives us more insight into the possible

VOLUME 4, 2016 11

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

exploits to our solution. Oyente tool was first used to detect
vulnerabilities in the smart contracts [18]. Oyente checks
the code coverage as well as scans the code for several
known security weaknesses. For instance, Oyente checks for
possible cases of integer overflow and integer underflow.
In addition, it checks for potential callstack depth and re-
entrancy attacks, any timestamp dependencies, as well as
transaction ordering dependence. For each smart contract
in the solution, Oyente checks for these vulnerabilities and
generates a security report. This contains a summary of all
the aforementioned vulnerabilities and their occurrence in
the smart contract code. Fig. 9 shows the security report by
Oyente generated for the two smart contracts. After several
iterations, we were able to modify the code to be resilient
to all threats reported by the tool. The report proves that the
developed code does not have any of the mentioned security
bugs and that the smart contracts are secure and safe for
deployment.

FIGURE 9: Registration & Reputation and Validation smart
contracts vulnerabilities recorded by Oyente analysis tool.

The smart contract code was also analyzed the smart for code
vulnerabilities by SmartCheck [19]. SmartCheck is an open-
source code analyzer tool for analyzing Ethereum smart con-
tracts. It scans the smart contracts against its knowledge base
to discover faults and detect errors in the code. SmartCheck
can detect about 50 types of errors with different levels of
severity. Fig. 10 shows that the current version of the smart
contract code developed for this solution is reported to be free
of vulnerabilities.

FIGURE 10: Smart contracts vulnerability analysis by
SmartCheck.

4) Generalization
The proposed solution is designed for Ethereum smart con-
tracts to complement the interaction between lightweight
clients and their gateways. Other blockchain networks that
support smart contracts can use the same logic presented in
this paper to implement a system for entrusting the gateways
for light clients that do not have the resources to participate
in the blockchain network. This can be done by modifying
the language of the smart contract to one that is supported
by that blockchain network. Moreover, a blockchain network
that does not support smart contracts can still benefit from
most of the functionalities offered by this solution. The
integration between different blockchain networks may not
be as seamless, but the clients can definitely benefit from such
a system. For instance, Bitcoin does not support smart con-
tracts but can still use Ethereum smart contracts to orchestrate
the interaction between clients and gateways on the Bitcoin
network. Some overhead would be added due to the usage
of two blockchain networks by the clients. Nonetheless, the
clients can enjoy trustworthy and safe interactions with their
gateways due to the proposed approach.

VII. CONCLUSION
In this paper, we have proposed a solution to establish trust
by light clients in the blockchain view provided by the con-
nected gateways. The solution is based on Ethereum smart
contracts and provides a way for these light clients to attest
the blockchain view of their gateways. Light clients submit
an attestation request to the smart contract, which assigns
the required set of validators to it. Subsequently, the smart
contract oversees the progress of the validation process and
paying the validators for their services. The developed smart
contracts are available for public access on the mentioned
Github repository. The development environment of choice
was the Remix IDE as it provides valuable features for devel-
opers to write smart contracts and test them. In addition, the
developed smart contracts were deployed on a test Ethereum
network through Remix IDE to validate their functionality
and were found to match the requirements set for the solution.
Further analysis was made on the smart contract code as
we explored the cost of operation for all the features in
terms of gas and USD. Each function was found to cost
less than $0.04, considering the conversion rate mentioned
previously in the cost analysis section. The security features
of our blockchain-based solution were discussed to prove
its feasibility. As future work, we are looking to comple-
ment the blockchain-based approach with a front-end system.
Decentralized Applications (DApps) are being utilized to
maintain the decentralization of the solution. Subsequently,
the proposed system would be ready to be deployed on the
mainnet.

ACKNOWLEDGEMENT
This publication is based upon work supported by Khalifa
University of Science and Technology under Award No.
CIRA-2019-001.

12 VOLUME 4, 2016

M. Debe et al.: Trustworthy Blockchain Gateways for resource-constrained clients and IoT devices

REFERENCES
[1] S. K. Singh, S. Rathore, and J. H. Park, “Blockiot-

intelligence: A blockchain-enabled intelligent iot architecture
with artificial intelligence,” Future Generation Computer Sys-
tems, vol. 110, pp. 721–743, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X19316474

[2] M. Debe, K. Salah, M. H. U. Rehman, and D. Svetinovic, “Iot public
fog nodes reputation system: A decentralized solution using ethereum
blockchain,” IEEE Access, vol. 7, pp. 178 082–178 093, 2019.

[3] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain and
its integration with iot. challenges and opportunities,” Future Generation
Computer Systems, vol. 88, pp. 173–190, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17329205

[4] M. Debe, K. Salah, M. H. Ur Rehman, and D. Svetinovic, “Monetization
of services provided by public fog nodes using blockchain and smart
contracts,” IEEE Access, vol. 8, pp. 20 118–20 128, 2020.

[5] M. A. Khan and K. Salah, “Iot security: Review, blockchain
solutions, and open challenges,” Future Generation Computer
Systems, vol. 82, pp. 395–411, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17315765

[6] J. Arshad, M. A. Azad, M. M. Abdellatif, M. H. U. Rehman, and K. Salah,
“Colide: a collaborative intrusion detection framework for internet of
things,” IET Networks, vol. 8, no. 1, pp. 3–14, 2018.

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Manubot,
Tech. Rep., 2019.

[8] B. Alangot, D. Reijsbergen, S. Venugopalan, and P. Szalachowski, “De-
centralized lightweight detection of eclipse attacks on bitcoin clients,” in
2020 IEEE International Conference on Blockchain (Blockchain). IEEE,
2020, pp. 337–342.

[9] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium,
2015, pp. 129–144.

[10] A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-of-
work,” in International Conference on Financial Cryptography and Data
Security. Springer, 2020, pp. 505–522.

[11] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light clients
for cryptocurrencies,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 928–946.

[12] K. Todd, “Merkle mountain range,” 2012. [On-
line]. Available: https://github.com/opentimestamps/opentimestamps-
server/blob/master/doc/merkle-mountain-range.md

[13] D. Letz, “Blockquick: Super-light client protocol for blockchain validation
on constrained devices,” IACR Cryptol. ePrint Arch., 2019.

[14] “Eth gas station,” [Accessed: 14 March 2021]. [Online]. Available:
https://ethgasstation.info/

[15] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of security
and trust. Springer, 2017, pp. 164–186.

[16] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and
challenges.” IJ Network Security, vol. 19, no. 5, pp. 653–659, 2017.

[17] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in International conference on financial cryptography and data
security. Springer, 2014, pp. 436–454.

[18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[19] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

VOLUME 4, 2016 13

