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Abstract: V2V messaging systems enable vehicles to exchange safety related information with each other and support 

road safety and traffic efficiency applications. The effectiveness of these applications depends on the 

correctness of the information reported in the V2V messages. Consequently, the possibility that malicious 

agents may send false information is a major concern. The physical features of a transmission are relatively 

difficult to fake, and one of the most effective ways to detect lying is to check for consistency of these features 

with vehicle position information in the message. In this paper, we propose a message consistency checking 

scheme whereby a vehicle acting independently can utilise the strength and variability of received signals to 

estimate the distance from a transmitting vehicle without prior knowledge of the environment (building 

density, traffic conditions, etc.). The distance estimate can then be used to check the correctness of the reported 

position. We show through simulation that our RMCSS method can detect false information with an accuracy 

of about 90% for separation distances less than 100m. We believe this is sufficient for the method to be a 

valuable adjunct to use of digital signatures to establish trust. 

1 INTRODUCTION 

Message-based Vehicle to Vehicle (V2V) 

communications have been proposed as means to 

address issues in Intelligent Transport Systems (ITS) 

such as accident avoidance, traffic monitoring and 

transport efficiency (Boban, Kousaridas, Manolakis, 

& Xu, 2018). In V2V, vehicles broadcast safety 

messages to exchange information about themselves 

and perceived road conditions. These messages form 

the basis of several road safety and traffic efficiency 

applications that are designed to improve safety on 

the roads. Because safety critical decisions are made 

based on the content of these messages, it is important 

to verify as far as possible that they can be trusted. 

Clearly, it is important for the receiving vehicle to 

check that a message has been signed using valid 

credentials that correspond to the sender identity 

used. However, given the large number of vehicles on 

the road, it is unwise to discount the possibility that a 
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malicious agent can acquire legitimate credentials by 

some means and use them to broadcast false 

information. It seems prudent, therefore, for the 

receiving vehicle to check whether the message 

contents make sense in the light of other knowledge 

available to it. The threat scenario addressed in this 

paper involves the malicious agent representing the 

existence of a vehicle in a dangerous location in order 

to cause accidents or widespread disruption to traffic. 

Typically, this will involve the malicious agent 

pretending to be closer to the target vehicles than it 

really is. The solution approach we explore here is for 

the receiving vehicle to check that the position 

claimed in the message is consistent with the strength 

and variability of the received radio signal. 

The remainder of the paper is structured as 

follows. First we present our method, which we call 

RMCCS; RSSI-based Message Consistency 

Checking Scheme for V2V Communications. It is 

based on the well-established log-distance path loss 



model with Gaussian noise, but with the additional 

assumption of a relationship linking the path loss 

exponent (which governs the rate of signal 

attenuation with distance) to the standard deviation of 

the Gaussian variable. This method is then compared 

with approaches taken previously by others. Next we 

validate the assumption and evaluate the method 

using simulation software that embodies a faithful 

representation of signal propagation in representative 

conditions. A discussion of the relative effectiveness 

of the method and how it may be combined with other 

techniques to provide an effective defence against 

misinformation in a V2V context then follows. 

2 THE RMCCS METHOD 

The received signal strength indicator (RSSI) is a 

commonly used measure of the power of a received 

radio signal. It is the ratio of the power measured at 

two different points, e.g.at the transmitter and the 

receiver, expressed in dB, i.e. RSSI = 10 log10(P/P0) 

In the case of a non-directional signal broadcast 

through a uniform medium, the so-called log-distance 

path loss model (LDPLM) is widely used to estimate 

the RSSI at a receiver (see for example (Fernández, 

Rubio, Rodrigo-Peñarrocha, & Reig, 2014) and 

(Giordani, et al., 2019)): 

RSSI ≈ A - 10B log10(d/d0)   (1) 

where d is the distance from the transmitter, d0 is a 

reference distance that is usually taken to be 1 metre, 

and A and B are positive constants. A depends on the 

transmitter and receiver characteristics, and B, the 

path loss exponent, depends on the transmission 

medium. This is a monotonically-decreasing function 

of d and can readily be inverted to obtain an estimate 

of d given a measurement of RSSI provided A and B 

are known. Taking d0 to be the usual value of 1m: 

d = 10^((A-RSSI)/10B)    (2) 

This estimate can be compared with the distance 

between the known position of the receiver and the 

claimed position of the sender as a consistency check. 

However, there are complications that make this 

approach difficult to use in practice. Firstly, the 

LDPLM only really applies to propagation in free 

space. For example, one correction that is frequently 

applied is to allow for interference between the radio 

waves travelling directly from sender to receiver and 

those reaching the receiver after reflection from the 

road surface. Even if the LDPLM is a good 

approximation at long distances, the presence of static 

and moving obstacles such as buildings and vehicles 

not only tends to attenuate the signal, but also 

introduces considerable variation of RSSI due to 

absorption, reflection, refraction, and multi-path 

interference. Indeed, a more general form of LDPLM 

adds a Gaussian random variable with a mean value 

of 0 to the right-hand side of (1) to take such effects 

into account. This may be interpreted as a margin of 

error on the expected RSSI value at a given distance 

of ±σ, the standard deviation of the random term. This 

can be translated to an uncertainty on the estimated 

distance between sender and receiver, the magnitude 

of which is proportional to the estimated distance, i.e. 

the ratio of the uncertainty to the distance is constant 

for a given σ and B. 

So, obstacles on or near the line of sight (LOS) 

between sender and receiver modify (usually reduce) 

the effective value of B and introduce variability into 

the RSSI that has the appearance of random noise. 

The idea that we explore in this paper is that if these 

two phenomena are correlated, we could use 

measurements of RSSI variability alongside its mean 

value to obtain estimates of distance and the 

associated uncertainty that could be used to assess the 

likely truth of a reported position and give a measure 

of confidence on this assessment. Suppose that B and 

σ are functions of a common hidden variable, γ, that 

characterises the nature of the obstacles on or near the 

path between them, for example,  

B = γB0 and σ = k(γ – γ0)    (3) 

where γ = 1 corresponds to LOS conditions, k is a 

constant of proportionality, and γ0 ≤ 1 allows for the 

possibility of variation in RSSI even in LOS 

conditions. Given measurements of RSSI and σ, the 

distance between sender and receiver, can be 

estimated as: 

d̄ = 10^((A-RSSI)/(10(σ/k + γ0)B0))   (4) 

and the uncertainty on this value as: 

σ̄d = d̄.(10^Γ - 10^-Γ)/2,where Γ = σ/10B0(σ/k + γ0)(5) 

If dr is the distance based on the position of the sender 

as reported in the message, then |d̄ - dr|/σd̄ provides a 

measure of the inconsistency of the reported position 

and the measured signal strength and variation. Note 

that, due to the logarithmic dependence of RSSI on 

distance in (1), if σ is independent of distance, then σ̄d 

increases linearly with distance. Thus, a given 

discrepancy Δd = |d̄ - dr| may be regarded as 

inconsistent for small d̄ and consistent for large d̄. 

The receiving vehicle will need to extract 

estimates of the mean RSSI and the corresponding 

standard deviation from the noisy RSSI signal, but we 

propose this can be done using standard signal 

processing techniques such as Kalman and Savistzky-

Golay filtering algorithms. 



Below, we assess the validity and effectiveness of 

this approach using data obtained from a simulation, 

but first we review other work that has used RSSI 

measurements in the context of V2V. 

3 RELATED WORK 

Several existing research studies have used RSSI-

based techniques to provide solutions to issues in 

V2V. Such techniques are popular as they have low 

computational cost and require no extra hardware. 

The main applications are Sybil node detection and 

localisation of vehicles: 

3.1 Sybil Node Detection  

RSSI-comparison techniques have been proposed as 

a means of detecting non-existent vehicles fabricated 

by malicious agents (so-called Sybil nodes). The core 

idea behind this approach is that as the messages 

apparently sent from multiple Sybil nodes are actually 

sent by the same physical node, they share similar 

signal characteristics with each other and with 

genuine messages from that node. For example, (Yao 

Y. , et al., 2018) record successive RSSI values to 

obtain time sequences apparently corresponding to 

different vehicles. If identical (or at least very similar) 

sequences are observed, this is taken as a sign of Sybil 

activity. In case malicious nodes perform power 

control to avoid their Sybil nodes being detected by 

such means, (Yao Y. , et al., 2019) proposes a 

complementary method that finds Sybil nodes by 

detecting abnormal variations in the RSSI time series. 

3.2 Localisation of Vehicles  

Several schemes that use RSSI to estimate the 

location of vehicles have been proposed previously. 

For example, (Garip, Kim, Reiher, & Gerla., 2017) 

describes an approach whereby neighbouring 

vehicles collaborate to determine the location of a 

target vehicle. Each vehicle estimates its distance to 

the target vehicle using the LDPLM formula and then 

sends the estimated distance and its current location 

to a chosen vehicle called the observer. The observer 

processes the aggregated information and advertises 

the target vehicle’s actual location. Also, (Ahmad, et 

al., 2019) describes an RSSI-based localization 

mechanism that uses nearby stationary roadside units 

(RSUs) to estimate the location of a target vehicle. 

Each RSU measures the RSSI values of transmissions 

from the target and uses them to estimate its distance. 

Schemes like these are cooperative in nature, 

meaning that they rely on information received from 

nearby nodes to function, and are vulnerable to 

collusion attack. Moreover, there is no means to 

guarantee the credibility of nodes’ measurement 

reports. Besides, transmission of the distance 

estimates adds more traffic to the network, increasing 

bandwidth consumption. A latency penalty is also 

incurred as the observer must wait to receive distance 

estimates from other nodes. In our RMCCS method, 

a receiving vehicle acting alone can determine 

whether another vehicle is lying about its position.  

4 SIMULATION AND 

EVALUATION 

To obtain RSSI measurements, we use the GEMV2 

simulation software of (Boban, Barros, & Tonguz, 

2014), which incorporates a range of propagation 

effects including transmission through materials, 

diffraction and reflection. In particular, it models the 

impact of the presence of vehicles, buildings and 

foliage. The developers of GEMV2 have validated it 

against measurements performed in urban, suburban, 

highway and open space conditions. 

To generate data for the evaluation we used 

models of real locations taken from Open Street Map 

(OSM) that include representations of building 

geometry and road networks. In particular, we 

selected locations in Newcastle, UK, that represent 

distinct types of environment. The locations are (a) a 

city center area (b) an inter-city highway, and (c) a 

suburban area. We then used SUMO, which is a 

widely used road traffic simulation tool, to generate 

mobility traces of vehicles trajectories in these 

locations. The mobility traces are then converted into 

floating car data (FCD) format and used as input to 

the GEMV2 to calculate the RSSI. The number of 

vehicles used in these locations and other parameters 

used in the simulation are shown in Table 1. 

Table 1: Simulation Settings 

Parameters Value 

Number of vehicles  2 – 200  

Communication range 300m 

Message frequency  10Hz 

A -39dBm 

Operating frequency  5.9GHz 

SUMO simulation time 3600s 



 
Figure 1: RSSI vs Distance 

The RSSI data generated from each of these 

scenarios was plotted against the distance between 

sending and receiving vehicles. Fig. 1 is an example 

of such a plot generated for a city center scenario in 

high traffic density conditions. It is apparent that the 

plot can be divided into distinct segments, which were 

found to correspond to line of Sight (LOS) conditions 

(characterized by absence of noise-like variability), 

obstruction by traffic, obstruction by buildings, etc. 

Each RSSI trace was divided into segments by eye. 

Curves of the form (1) were fitted independently to 

each segment to obtain values for B, with A being 

held fixed at a value (given in Table 1) determined 

from typical vehicle characteristics, and d0 =1. The 

root mean square deviation of RSSI points from the 

fitted curves was then calculated to obtain σ values 

for each segment. It may be seen from Fig. 2 that the 

segments appear to be distributed about a straight line 

in (B, σ) space. We therefore assumed the 

parameterisation of (3) with B0 being the least value 

of B for any segment, and k and γ0 being determined 

from a least-squares fit through the points of Fig 2. 

From (5) we see that the ratio of the uncertainty 

on the distance estimate (σd̄) to the distance estimate 

itself (d̄) is dependent on σ. For B0=1.4 and using 

k=3.89 and γ0=1.00 from the least squares fit, the ratio 

is about 0.14 for σ=1dBm, 0.38 for σ=5dBm and 0.49 

for σ=10dBm. If we use a 3 sigma criterion for 

consistency, then for σ=1dBm, the discrepancy 

between claimed distance and true distance would 

need to be greater than 42% of the true distance to be 

judged to be lying. For σ=3.75dBm, the required 

discrepancy is about the same size as the distance 

itself. As the main threat comes from vehicles 

claiming to be closer than they really are, then the 

proposed technique is only useful for σ<3dBm. 

Reducing the inconsistency criterion extends the 

applicable σ range, however, albeit at the cost of 

increased false positives. 

 
Figure 2: Least Square fitting of (B, σ) 

 
Figure 3: Mean RSSI and standard deviation data 

generated from the filtering algorithm 

To use (4) to estimate its distance from a moving 

transmitter, and (5) to estimate the uncertainty on this 

value, a receiving vehicle must extract mean RSSI 

values and the corresponding standard deviations 

from a ‘noisy’ sequence of RSSI measurements. 

Furthermore, these values must be updated 

continuously. Two alternative algorithms were tried 

for this purpose, a Kalman filter and a Savistzky-

Golay filter. The filtering algorithms were reset at the 

boundaries between segments, which were detected 

as a rapid alteration in the rate of change of the mean 

RSSI. Fig. 3 shows a sample trace overlaid with the 

values extracted using the Savistzky-Golay filter. As 

may be seen, the algorithms are reasonably effective 

at tracking the mean RSSI value and the 

corresponding standard deviation.  

The distance between the sender and receiver was 

estimated using (5) and then compared with the true 

distance calculated based on the reported position in 

the received message. Fig. 4 plots the estimated 

distance against the true distance for the sample trace. 

It can be seen that on average, the estimated distance 

and true distance are equal, but the margin of error 

increases with distance. The estimation error, defined 



as |d̄ -dr|/dr, was found to be less than 25% everywhere 

and is below about 12% for separation distance less 

than 50m. Also, the overall average estimation error 

was found to be 7.5% for distances up to 250m.  

Figure 4: Estimated distance vs True distance 

To assess the probability of true negatives, TN, 

(and false positives, FP) for different inconsistency 

criteria, we calculated the proportion of data points in 

the sample trace for which the absolute difference 

between the true and estimated distance exceeds 

various multiples of σd̄. To assess the probability of 

true positives, TP, (and false negatives, FN), we used 

threat scenario in which a static malicious vehicle 

simulates a Sybil vehicle following the target vehicle 

at various fixed distances. TP is calculated as the 

proportion of data points in the sample trace for which 

the difference between the reported distance and the 

estimated distance exceeds various multiples of σd̄. 

The results are shown for various following distances 

and inconsistency criteria in Fig. 5.  

 
Figure 5: True Positives for the evaluation scenario 

To get an overall assessment of TP for a given 

inconsistency criterion, we took the average over the 

various following distances up to 250m. Because it is 

reasonable to suppose that detecting fictitious 

vehicles that are faraway is less important than 

detecting ones that are nearby, we also calculated the 

averages over following distances up to 100m. 

Having obtained TN and TP values for a range of 

inconsistency criteria we calculated accuracy values: 

Accuracy = (TP+TN)/(TP+TN+FP+FN)   

= (TP+TN)/2    (6) 

The results are shown in Table 2. As can be seen, 

an inconsistency criterion of |d̄ - dr|/σd̄ > 1 appears to 

give the best accuracy of approximately 90% for 

distances up to 100m and about 83% for longer 

distance up to 250m. 

Table 2. Evaluation parameters of RMCCS for 

three inconsistency criteria: |d̄ - dr|/ σ̄d > N  
Metric  Distance(m) N = 1 N = 2 N = 3 

TN up to 250m 0.9551 0.9708 0.9809 

TP up to 250 0.7195 0.4344 0.2051 

up to 100 0.8441 0.4834 0.1119 

Accuracy up to 250 0.8373 0.7026 0.59303 

up to 100 0.8996 0.7271 0.54641 

5 CONCLUSIONS 

In this paper, we describe RMCCS – a mechanism 

that utilizes RSSI measurements to detect when 

vehicles are lying about their position. Like many 

other methods, RMCCS makes use of the LDPLM 

RSSI formula. However, by proposing a linear 

relationship between the path loss exponent and the 

standard deviation of the noise component in this 

formula, the RMCCS method enables a receiving 

vehicle to estimate distance independently without 

prior knowledge of environmental conditions such as 

the current traffic conditions and building density in 

the vicinity. The assumption of a linear relationship is 

justified by empirical evidence obtained from a 

realistic simulation. The estimated distance and 

associated uncertainty provide a means to judge 

whether the sender is lying about its claimed position. 

As a measure of inconsistency, we use the ratio of the 

magnitude of the difference between reported and 

estimated distances to the uncertainty on the estimate. 

The sender is judged to be lying if the inconsistency 

is greater than a threshold value. Lowering the 

threshold tends to increase true positives, but reduce 

true negatives. The threshold can be varied to obtain 

an optimal value that maximises accuracy (which is 

proportional to the sum of true positives and true 

negatives). This provides a way for vehicles to detect 

misinformation without the need for support from 

their neighbors or any nearby infrastructure. 

Contrasting the previous works described in 3.2 

with the RMCCS method, (Garip, Kim, Reiher, & 

Gerla., 2017) require collaboration among 

neighboring vehicles to estimate the distance of a 

target vehicle whereas in RMCCS the estimation 

algorithm is purely local. The accuracy of this 

approach depends on number of vehicles reporting 



their individual estimated distances to the target and 

the correctness of the reported information. When a 

large proportion of neighbours report incorrect 

distance estimates, the estimated target position will 

deviate from its true location. Such approaches are 

unreliable when vehicles fail to collaborate or their 

messages are lost. Furthermore, the same fixed path 

loss exponent is used by all collaborating vehicles, 

whereas, as we have seen, its value depends on the 

obstacles on or near the transmission path. In contrast, 

RMCCS is able to extract a dynamic value for the 

exponent from the RSSI data using the linear 

relationship. In (Ahmad, et al., 2019), cooperation is 

also required, this time among RSUs. Again a fixed 

path loss exponent is used to estimate the distance to 

the target vehicle. A further disadvantage is that it is 

unrealistic to assume that RSUs will be available in 

all locations.  

In terms of evaluation, the previous works 

assessed their methods using simulators such as NS-

2, employing simple statistical propagation models. 

In contrast, our RMCCS method was evaluated using 

GEMV2, which accounts for RSSI variation caused 

by obstruction by surrounding objects. Studies in 

(Mir, 2018) show a significant difference in received 

power when comparing the performance of GEMV2 

and the propagation models built into NS-2. This 

indicates that performance estimates obtained using 

NS-2 are questionable, and that when the previous 

work is evaluated with a more realistic simulation 

environment, performance will reduce.  

Another work that also checks consistency of 

messages in V2V by using physical signals is (Lin & 

Hwang., 2020). This work exploits angle of arrival 

measured using a multi-antenna configuration, which 

requires vehicles to have special hardware. This 

increases the complexity and cost of the vehicle’s 

onboard units. RMCCS, however, is compatible with 

existing in-vehicle units. 

We have shown through simulation and 

evaluation that RMCCS performs well in terms of 

distance estimation and ability to detect false position 

reports with an accuracy level of about 90% with 

separation distances under 100m. We believe this is 

sufficient for the method to be a valuable adjunct to 

use of digital signatures to establish trust between 

vehicles, which will not only enable effective defense 

against malicious vehicles but also improves traffic 

safety significantly.  

As a future work, we aim to investigate the 

application of RMCCS method in combination with a 

symmetric cryptography based security scheme 

similar to TESLA in order to provide low-latency 

message verification in V2V.  
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