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Abstract—A resilient and healthy forest requires accurate and
timely monitoring, observing key forest health indicators (FHI).
Forest managers and rangers usually perform tedious manual
data collection using citizen science for biodiversity conservation
and ecological research. With the advent of faster radio network
technologies such as 4G, it is advantageous to leverage these
networks’ high speed and low latency for real-time monitoring.
We present a novel approach to stream high definition videos
over cellular networks to provide real-time (< 0.5 seconds) data
transmission to the YOLOv5 machine learning algorithm, hosted
in the cloud. The system provides non-intrusive precise tree class
detection, matching existing models such as Fast R-CNN and
SSD. Our investigation also reveals that the same accuracy can
be achieved with 99% fewer iterations, minimizing computational
time and cost.

Index Terms—YOLOv5, 4G/5G, WebRTC, tree species detec-
tion, low-latency

I. INTRODUCTION

A healthy forest provides a variety of services and products
ranging from energy, building materials, and hosting biodi-
versity to regulate climate. The forest health (FH) around
the world is declining due to air pollution, climate change,
and increased human activities. However, the resilience and
efficiency of the forest health (FH) is directly linked to the
richness of tree species [1]. To support forest health monitoring
and biodiversity conservation, forest ecological research and
forest management observe many key forest health indicators
(FHI) such as tree species identification, tree girth and height
measurement, deadwood, wildlife signs, soil moisture, precip-
itation, temperature and fire risk [2]. FHI monitoring is often
performed by forest managers, forest administrators and other
public entities at local and national scales. Numerous on-site
monitoring programs at local and regional levels utilize citizen
science to record standard FHI. These programs perform on-
site assessments, where a collection of FHIs are directly ob-
served following a user guide [3]. For domain experts, manual
monitoring may be a resource-intensive task, and for non-
experts, it is error-prone and time-consuming [4]. Moreover,
the results from manual observations are less accurate due
to the unavailability of expert knowledge in many cases.
Accelerating the monitoring tasks and making it accessible
to non-experts reduces cost and effort [5]. A possible solution
to speed up forest monitoring is to leverage computer vision
and machine learning techniques such as image classification,
object detection and image segmentation. Various machine

learning algorithms have been explored in the research studies.
Most recently, deep learning has been utilized in processing
high spatial resolution imagery [6]. The most effective and
popularly used methods are convolutional neural networks
(CNN). Object detection is an important research direction
for complex computer vision tasks such as target detection,
target tracking, and event detection [7].

Capturing information from a distance is an excellent tech-
nique for non-intrusive forest monitoring to prevent tree bark
damage and preserve wildlife. Remarkable progress in remote
sensing applications is facilitated through the advancement
of mobile phones, Unmanned Aerial Vehicles (UAVs), sens-
ing devices, Geographical Information Systems (GIS), Global
Navigation Systems (GNS), and evolving fifth-generation (5G)
networks [8]. According to GSMA, 5G connections are ex-
pected to grow to 1.8 billion by 2025 [9]. Contemporary
cellular networks are aimed at providing high bandwidth up
to 1 GHz for faster communication at the speed of up to
10 GB/s with low latency of 1 ms [10]. HTTP adaptive
streaming introduces high latency, and are not suitable for real-
time monitoring applications. Web Real-Time Communication
(WebRTC) [11] is an open-source project started by Google in
2011 that provides real-time communication for browser-based
applications [12]. Considering the lack of 5G deployments
in forests 4G can be used with WebRTC to provide video
communication with relatively ultra-low latency. In our previ-
ous work [13], we performed an offline real-time handheld
device-based tree species identification for the rural areas
where internet infrastructure is sparse. We used CNN based
MobileNetV3 model, trained on 184 tree species and used this
model in android based application for real-time offline tree
species identification. MobileNet models are lightweight and
mostly aimed at solving classification problems. For multi-
objects detecting MobileNet models are augmented with SSD
or Fast R-CNN as a backbone [14], [15], requiring high
computational costs, not available on mobile devices. A more
native architecture used for object detection is YOLOv5, which
can also be used to detect smaller objects with consistent speed
and accuracy.

We use wireless networking technologies with WebRTC,
a protocol suite intended for use with real-time applications,
to stream video to the cloud where YOLOv5 is hosted. The
outrput of the machine learning model is then displayed
on web-based application, accessible for end-users (forest



Fig. 1. System Architecture

managers/ranger). We envisage to use UAVs equipped with
sensing devices above the canopy, however, for this paper
we used mobile devices to capture tree images from the
ground. This approach speeds up and automate the process
of forest monitoring and help forest managers to observe live
FHI remotely. To the best of our knowledge, the combination
of YOLOv5, WebRTC, and 4G/WiFi networks has not been
investigated for live FHI detection. Our main contributions are
(1) design of novel approach to stream high definition videos
to the YOLOv5 machine learning algorithm to perform live
monitoring of health of the forest (2) a non-intrusive precise
tree class detection, comparable to the precision of state-of-
the-art models while significantly requiring less number of
iterations, making it more suitable for remote sensing (3)
training YOLOv5 model on custom data for accurate tree
species detection.

II. LITERATURE REVIEW

A wide range of object detection algorithms have been
studied in the field of computer vision and some of the most
popular algorithms are convolutional neural networks (CNN)
and GPU-accelerated deep learning frameworks. CNN-based
object detectors have the flexibility of being trained with
classes that can range up to a few thousands. Some of the
popular CNN object detection algorithms are Regions Based
CNN (R-CNN) [16], Fast R-CNN [17], Faster R-CNN [18],
Region Based Fully CNN (R-FCN) [19], Single Shot Detector
(SSD) [20] and the You Only Look Once (YOLO) series [21].
Depending on the application and the evaluation metric to be
prioritized, different models can be deployed.

Deep CNNs object detection frameworks can be categorized
into two kinds: the two-stage and single-stage. A few examples
of two-stage object detection algorithms are R-CNN, Spatial
Pyramid Pooling (SPP-Net) [22], Fast R-CNN, Faster R-
CNN. R-CNN is the first real target detection model based
on CNN that achieves a mean average precision (mAP) of
66% [16]. Although the accuracy as compared to traditional
methods of detection is improved, the calculation efficiency
is observed to be too low [7]. Moreover, directly scaling the
region proposal to a fixed-length feature vector can cause
object distortion. Unlike R-CNN, SPP-Net performs feature
extraction on the entire image only once, avoiding repeated

calculations. However, both algorithms share the same short-
comings, including the complexities of multi-step training
and the requirement of training separate SVM classifiers and
additional regressors [22]. Although Fast R-CNN and Faster-
RCNN provide improvement in detection accuracy, they still
can not achieve real-time detection [7].

One-stage detection algorithm examples include YOLOv1,
YOLOv2, YOLOv3, SSD, YOLOv4, and YOLOv5. Unlike
the two-stage detection models, YOLOv1 has a simple CNN
network structure without the extraction process of region
proposal. It is based on the idea of using the entire graph
as input of the network that outputs the location and category
of the bounding box. Though the detection speed of YOLOv1
can reach up to 45 frames per seconds (or fps), it produces
background errors and poor recognition performances for
objects in the form of groups [7]. YOLOv2 uses Darknet-
19 for fully convolutional feature extraction and anchor box
mechanism, k-means clustering, multi-scale training, which
improves the recall and accuracy although, detecting targets
with high overlap or small size is still challenging. YOLOv3
adopts Darknet-53 for a deeper feature extraction network,
multiple scales for prediction, up sampling fusion method,
and finally merging of three scales, which largely improves
the effect of small objects and detection speed [21]. However,
the detection accuracy is still not improved, especially when
the intersection over union (IoU) > 0.5. SSD combines the
concept of regression in the YOLO algorithm and anchor
box in Faster R-CNN. SSD face poor classification for small
objects, and a single object is simultaneously detected by
boxes of different sizes [20]. YOLOv4 uses CSPDarknet53 as
the backbone network and adds Cross Stage Partial Connec-
tion, Weighted Residual Connection, Self adversarial training,
Cross mini Batch Normalization, Mosaic data augmentation,
DropBlock, Mish activation, and CIoU to the first YOLO
framework. These modifications help in increasing the speed
and accuracy by 20% and 10%, respectively [7]. YOLOv5
is the first YOLO algorithm where the backbone network
does not consist of Darknet but PyTorch. It is a lightweight
algorithm that is easier to use, train and it infers more quickly
and performs better than previous versions. Therefore, for
time-critical applications, YOLOv5 has the potential to be
most effective for object detection operations.



Various versions of YOLO have been used for different
applications in forest settings to measure numerous FHI. For
example, [23] uses YOLOv2 to detect trees for tree girth and
height evaluation. Binary classification of the tree and non-
tree objects was performed with accuracy between 87% to
93% on the test dataset. The authors of [24] used YOLOv3
for fire detection with 98% accuracy. It was not clear how
many iterations and minutes took to achieve this that accuracy.
Similarly, for forest fire detection, a comparison of Fast R-
CNN, different YOLO versions (tiny-yolo-voc, tiny-yolo-voc1,
yolo-vo.2.0, YOLOv3), and SSD was performed by [25].
They trained each model in 120,000 iterations to get the best
accuracy of 92.29% with YOLOv3, 99.7% with Fast R-CNN,
and 99.88% with SSD. However, the time to train these models
is not recorded. We compare our research findings with these
results in terms of the number of iterations, time to train the
model and the accuracy achieved given in Table I in Section
IV.

III. METHODS AND MATERIALS

A. YOLOv5

YOLOv5’s network structure contains the same set of
components as any other YOLO series which includes Input,
Backbone and Neck. In addition, YOLOv5 input uses adaptive
anchor frame calculation that adaptively gives the optimal an-
chor frame in different training sets. The YOLOv5 Backbone
includes the Focus structure to realize the slicing operation
and the Neck uses a new FPN structure, that enhances the
propagation of low-level features [26]. As a result, YOLOv5
achieves a reduction in computation complexity at least by
a factor of four [27]. YOLOv5 is pre-trained on Common
Objects in Context (COCO) [28] dataset, an immense repos-
itory of images used for object detection, segmentation and
captioning. The dataset contains a total of 330K images, out
of which over 200K are labelled images with 80 different
object classes and 1.5 million object instances. In contract to
these methods, we trained the YOLOv5 model on our custom
dataset. The system architecture is shown in Fig. 1.

B. WebRTC

Streaming protocols define how videos and audios can be
transmitted across the Internet from one device or system to
another [29]. An encoder generally starts the transmission,
which is then ingested by a media server. Real-Time Streaming
Protocol (RTSP) [30] and Real-Time Messaging Protocol
(RTMP) [31] are frequently used on the encoder side. For
browser-based applications, WebRTC is more prominent than
RTMP or RTSP and provides higher Quality of Service (QoS)
and Quality of Experience (QoE) to the end user [32]. As such,
in our system we adopt WebRTC for delivering images/video
to the cloud.

C. Dataset and Training

For the plant detection use case, we created our own dataset
using a 4K quality RGB camera of a mobile phone. The
images were resized to 640x640 pixels and labelled using

Makesense.ai [33]. The images were annotated using bounding
boxes for three classes: oak, wood, and grass. The Yolov5s
model was trained using Google colab [34] on our custom
dataset using pre-trained COCO weights. The hardware to train
the model included a Lenovo laptop equipped with an 8265U
CPU at 1.80 GHz of Intel Core i5, 8 GB of RAM running
on a Windows 10 64-bit system. The dataset was divided in
a ratio of 75:25 to get a training set and a validation set,
respectively. We trained the model in 1000 epochs which took
approximately 24 minutes.

IV. RESULTS AND DISCUSSION

A. Accurate Object Detection in Forest

TABLE I
COMPARISON OF OUR MODEL WITH OTHER MODELS IN TERMS OF

NUMBER OF ITERATIONS AND ACCURACY

Model Iterations Accuracy (%)
Fast R-CNN [21] 120,000 99.7
YOLOv3 [21] 120,000 92.29
SSD [21] 120,000 99.88
YOLOv5 [Ours] 1000 99.8

The results of training and validation sets in Fig. 2 shows
three types of loss: objectness loss, box loss and classification
loss. Objectness loss measures the probability that an object
exists in a proposed region of interest. If the objectness is
high, this means that the image window is likely to contain an
object. The box loss points to how well the model can locate
the centre of an object and how well the predicted bounding
box covers an object. Classification loss indicates how well
the algorithm can predict the correct class of an object. The
model improved significantly in terms of precision, recall and
mAP after 250 epochs and becomes stable after 500 epochs,
which means stopping model early would give almost same
results in 50% less time.

After the model was trained, for the model inference, we fed
unseen pictures and a video into the model with confidence
threshold of 0.25. Fig. 4 shows that the algorithm can detect
oak, wood and grass with prediction value of more than 90%
in almost all instances. The mAP results for each class at IoU
0.5 and from 0.5 to 0.95 are shown in Table II.

TABLE II
ACCURACY OF YOLOV5 MODEL FOR THE CLASSES OAK, WOOD, GRASS

AND OVERALL

Classes mAP@0.5 mAP@0.5:0.95 Precision Recall
oak 0.996 0.87 0.997 1
wood 0.995 0.661 1 1
grass 0.995 0.914 0.996 1
all 0.995 0.815 0.998 1

B. Low Latency

For live object detection, we created a web application
consists of HTML, Javascript and CSS files running on the



Fig. 2. The graphs of box loss, objectness loss, classification loss, precision, recall and mean average precision (mAP) over the training epochs over the
training and validation sets

cloud. The application utilized Yolov5 models with trained
weights to perform object detection on live stream from
multiple cameras. WebRTC is used for live streaming from
these cameras e.g. mobile device and webcam.

Fig. 3. Network Latency using WiFi and 4G

We observed the latency via both WiFi (IEEE 802.11ac
or WiFi6) and 4G networks with and without WebRTC. Our
results show in Fig. 3, that it took upto 2 seconds when video
was streamed using 5G without WebRTC. On the other hand,
it took on average upto 0.5 seconds when streamed using 4G
with WebRTC. Similarly using WiFi it took 3 seconds without
WebRTC and upto 0.5 seconds with WebRTC. We also noted
object detection time in each frame of the video. Each frame

took 40ms to be processed, i.e. 25 FPS to detect objects of
3 classes with average accuracy of 0.99, near real-time object
detection.

V. CONCLUSIONS

Real-time forest monitoring using the latest technologies
is essential to observe forest health remotely for forest man-
agers and ecologists. For this reason, this paper analysed
the YOLOv5 algorithm for object detection and compared
it with its previous versions and other machine learning
algorithms such as Fast R-CNN, SSD and found that YOLOv5
is lightweight, easy to use and fast to train and detect objects.
We trained YOLOv5 on custom imagery data taken from a
forest to detect different objects, mainly: tree species, wood
and grass. For non-intrusive monitoring, we used cameras
of mobile devices in this paper and in the future, we are
planning to use cameras mounted on the drone. For real-
time imagery data transmission, we used 4G networks with
integrated WebRTC for ultra-low latency. Our experiments
showed that compared to other algorithms with YOLOv5,
accuracy of 99.9% could be achieved within significantly
fewer iterations and much less time.

VI. FUTURE WORK

In this preliminary investigation, we detected only one tree
species, i.e. oak and distinguished it with grass and wood. We
can extend the training of the algorithm with multiple tree
species detection in single video frame or different frames.
For this, we need to expand our dataset with capturing images
of different tree species. We can detect other FHI including



Fig. 4. The percentage of Accuracy of object detection for classes: oak, wood, and grass

deadwood, wildlife signs (presence of squirrels, rabbits, and
birds). We are working towards attaching mobile phone and
other sensing devices with UAV and capture 4K imagery
above the canopy to train the algorithm and process data. The
outcome of this work can be used for time-critical applications
such as forest fire detection and search/rescue.
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