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Abstract—We present a wireless real-time object detection
system utilizing single-board devices, cloud computing platforms
and web-streaming. Currently, most inference applications stat-
ically perform tasks either on local machines or remote cloud
servers. However, devices connected through cellular technolo-
gies face volatile network conditions, compromising detection
performance. Furthermore, while the limited computing power
of single-board computers degrade detection correctness, exces-
sive power consumption of machine learning models used for
inference reduces operation time. In this paper, we propose a
dynamic system that monitors embedded device’s wireless link
quality and battery level to decide on detecting objects locally
or remotely. The experimental results show that our dynamic
offloading approach could reduce devices’ energy usage while
achieving high accuracy, real-time object detection.

Index Terms—Machine learning, WebRTC, object detection.

I. INTRODUCTION

In recent years, video surveillance systems have become
common in many environments. Government agencies, busi-
nesses, and even fire safety agencies have recently turned to
video monitoring to enhance public security and surveillance
solutions [1]. The widespread availability of low-cost cameras
and high-speed wireless networks has enabled economically
and technically to deploy many vision techniques for security
and safety purposes. Raspberry Pi [2] and other low-cost,
small-sized Single-Board Computers (SBCs) are used to build
applications that solve a wide range of real-world problems.
Utilising a camera with an SBC can provide the functionality
of a smart surveillance system.

Due to the lower cost and size, SBCs have CPU, memory,
and power at a reduced capacity. As a result, running computer
vision algorithms that normally require high-end GPUs on
SBCs, would be challenging and would not generate the same
performance. Many research studies have shown a variety of
techniques to solve this challenge, including designing more
efficient deep learning networks such as TensorFlow lite [3],
creating computing add-on modules such as Google coral [4],
and developing dedicated chips and processors like Neu Pro
[5]. These solutions work well when SBCs are near power
supply or the performance requirement is not so demanding.

However, when powered by a battery, it is challenging for an
SBC to run powerful computer vision algorithms.

Offloading tasks to the cloud is another solution for ex-
tending the battery life of mobile devices while maintaining
performance of real-time object detection. The idea of using
cloud infrastructure to assist low-resource devices was first
introduced in [6], and it has since inspired many projects [7]–
[9]. It is also becoming more accessible as more cloud comput-
ing services provide deep learning frameworks at affordable
prices. Furthermore, the networks on these cloud machines
are usually of high bandwidth, making the cloud suitable for
real-time applications. However, most applications running on
both the edge computers and cloud are unable to automatically
change between these platforms without any input from users
[10]. To overcome the challenge of limited battery resources
of SBC and to deploy the cloud infrastructure to its full
potential, this paper proposes a system to allow automatic
switching between the platforms to perform uninterrupted real-
time object detection while operating under various network
conditions.

In addition, latency and high availability services are two
important metrics for many critical industrial and healthcare
applications. To understand the impact of auto switching
between platforms on various networks, we provide detailed
analysis of platforms communicating through common wire-
less networking technologies, such as Wi-Fi and 4G. The
main objectives of the proposed system is to deliver real-
time object detection with ultra-low latency streaming, while
keeping energy consumption low, adding battery life of SBC
by shifting heavy operations to the cloud when the battery of
the SBC is running low.

Our main contributions are the use of WebRTC APIs
to achieve ultra-low latency streaming for real-time object
detection and the integration of WebRTC streaming and ma-
chine learning automatic switching between SBC and cloud
computer based on the SBC’s network link quality and battery
level.



II. BACKGROUND

A. Machine learning

Machine learning is the basic principle that drives object
detection. For example, before objects within an image or
a video can be identified, the data is processed through
computer vision and fed into a model. Using machine learning
algorithms or deep learning algorithms, conclusions are made.
The results are laid out as a form of output image or video.
The processed image or video includes drawing bounding
boxes around the objects detected. This allows us to locate
where the target objects are (or how they move through) in a
given scene. There are two types of object detection algorithms
available. One is two-stage, which divides object recognition
and object location into two separate processes. Common
algorithms include Faster-RCNN [11] and R-CNN [12]. They
have a low recognition error rate and a low rate of false
recognition. Their low speed makes them unsuitable for real-
time detection applications. Another method, known as the
one-stage algorithm, has emerged to tackle this challenge, and
it can recognise and locate objects in a single step. Examples
of this method are SSD [13], Yolo and YoloV4 [14]. Their
recognition speed is faster than the two-stage method, and
this allows them to be used for real-time object detection
applications. Their accuracy rate is also comparable to that
of a faster R-CNN. However, one downside of the one-stage
method is that the CPU processing demand is too high, making
it prohibitive for use in mobile SBCs. A suitable algorithm
for embedded devices is MobileNets [15]. MobileNets is from
the TensorFlow family of mobile-first computer vision models
aimed to enhance accuracy while keeping in mind the limited
resources available for SBC devices. We adopt MobileNets to
perform object detection for the above stated rationale.

B. Streaming protocols

A streaming protocol is a set of rules that define how
data such as video and audio can be transmitted across
the Internet from one device or system to another [16].
An encoder generally starts the transmission, which is then
ingested by a media server before transmission. Real-Time
Streaming Protocol (RTSP) [17] and Real-Time Messaging
Protocol (RTMP) [18] are frequently used on the encoder side.
Dynamic Adaptive Streaming over HTTP (DASH) [19] and
HTTP Live Streaming (HLS) [20] are used on the playback
side. WebRTC is a new protocol that can be used on both sides,
the encoder and playback sides. The proposed system in this
paper uses WebRTC because it is a technology that allows
direct communication between the devices without installing
applications or software. WebRTC is also more effective than
RTMP or RTSP when it comes to Quality of Service (QoS) and
Quality of Experience (QoE) for browser-based applications
[21]. For instance, RTMP is not designed for scalability and
has intolerable latency. On the other hand, RTSP does not
scale as well as WebRTC and does not support HTML5, the
current standard for structuring and presenting web content.

We deploy WebRTC due to its easy scalability and offered
low latency.

C. Computation offloading to cloud servers

Most of the past computation offloading research has pri-
marily focused on static offloading to the cloud [22], [23].
However, the idea of automatically offloading between the
local device and the cloud is still open. This paper tries to
fill the gap by proposing an object detection system that
will automatically switch between SBC and the cloud, while
minimizing the transition time. In this section, we look at
how other researchers use technologies related to achieving
energy-efficient applications for mobile computing systems
as well as other limited resource computing systems such
as the Raspberry Pi. Even though the research discussed in
this section is mostly based on mobile device offloading, the
frameworks used can also be applied to other limited resource
computing systems.

The decision to offload a system or part of a system
is usually made during the system design. For example, if
the system includes a part that requires significantly high
computation power and energy than what the local device can
handle, then that part is typically offloaded. Phone2Cloud [22]
is an example of an application that uses a static approach to
determine whether an application should run locally or on the
cloud. The increasing number of more advanced smartphone
apps and IoT software, such as machine learning and gam-
ing, has prompted the development of this framework. The
project focuses on managing smartphone energy consumption
in relation to the applications that use it. It achieves this by
reducing the device’s computing requirements. For example,
to support smartphones and IoT devices, it uses a remote
execution environment for applications that consume excessive
energy. Phone2Cloud’s system architecture comprises seven
key components that all work together to decide whether to
offload to the cloud or not. Bandwidth, resource monitor,
remote and local execution managers are all used in the
decision-making process. Since Phone2Cloud focuses on low-
ering smartphone energy usage, it is a more energy-efficient
solution than the proposed offloading method in this paper.
The offloading approach presented in this paper focuses on
offloading the system to the cloud in the shortest amount of
time possible. It accomplishes this by shortening the decision-
making process, as opposed to Phone2Cloud, which must
monitor many resources before deciding.

MAUI [23] provides a system for optimising mobile de-
vice energy consumption by dynamically offloading heavy
computation tasks to a remote resource. It does this by only
offloading computation to the cloud when it is effective in
terms of boosting performance and lowering energy usage.
This framework predicts the execution time of methods both
locally and remotely using a history-based approach. If the
prediction shows that offloading tasks are better in reducing
energy consumption, tasks are offloaded to the cloud. When
offloading data and computation, this technology, similar to
Phone2Cloud, primarily considers energy savings only, other



measurements, such as application performance or latency, are
ignored by this framework. As a result, the solution suggested
in this paper is not as energy efficient as MAUI, but it is more
responsive to the user and its distributed nature promotes high
availability and shorter downtime (see Fig. 6).

III. PROPOSED SYSTEM

We implemented a real-time object detection system which
can automatically and dynamically select the best resources.
The location of where the object detection will take place
is determined by the current state of the local device. For
example, if the internet connection is stable, the video stream
is sent to the cloud, and object detection is performed on the
cloud virtual machine (VM). However, if wireless connections
are intermittent and unavailable, it will automatically switch
back to the local device where object detection will be
performed. Furthermore, if the device is running on a low
battery (∼ 20%), the object detection will run on the cloud
Virtual machine (VM) in order to save the remaining battery.
SBC device, such as a Raspberry Pi attached to a Unmanned
Areal Vehicles with a rechargeable battery, is a simple example
of the proposed system. The ideal scenario is to perform all
the tasks and computations on the cloud VM.

A. Streaming

We use WebRTC for streaming, a free, open-source protocol
that allows web browsers and mobile apps to communicate
in real-time (RTC). We integrate WebRTC with machine
learning such as TensorFlow 2 and Tensorflow Lite. We
use the getUserMedia() [24] method to directly access the
user’s camera through the browser. We then capture an image
from the camera using a canvas [25]. We also utilize the
HTMLCanvasElement.toBlob [26] method which enables us to
convert our canvas images into blob. After the conversion, we
use HTTP POST [27] to send data to the Object Detection API
[28]. The Object Detection API is comparable to the official
demo notebook [29]. The main difference is that instead of
displaying the output in GUI-based environments, we wrap
our output into a JSON object [30] and send it through the
web. Once we get JSON response from the Object Detection
API, we create another canvas that will draw boxes using the
Object API outputs that shows the detected objects and their
locations in the frame.

IV. SYSTEM IMPLEMENTATION

A. Requirements

Functional requirements:
• The Raspberry Pi should process high resolution stream-

ing and continuously monitor its battery status.
• When the network is stable, the Raspberry Pi should

send images to the cloud through 4G network for object
detection.

• If the network fails to meet the required quality of service
(e.g., low signal to noise ratio and signal strength), the
SBC should perform object detection locally without
sending frames to the cloud.

Non-Functional Requirements:
• Real-time video analytics: the aim is to minimize the

sum time of capturing a video, detecting the object, and
displaying the results to the end-user on a web browser.

• Offloading: The end-user should not notice when the
system switches between the local and cloud processing
(minimizing the transition time).

• Energy-Efficiency: The system should enable effective
energy management to increase the battery life of em-
bedded devices.

B. System design

This section describes the system design as illustrated in
Fig. 1. There are four layers:

• Use cases layer: This layer is used for collecting im-
ages/video from the observed site and includes high-
resolution camera, which is connected to the edge layer
through a USB cable and a video capture card.

• Edge layer: The servers running on the edge computer
include a machine learning server and a media server.
When the cloud is used, the streaming server is the
only server that runs on the edge, saving battery service
lifetime. The Raspberry Pi connects to the cloud layer
wirelessly through the built-in Wi-Fi card or using a
Sixfab 4G HAT as well as the internet. Please note that
we use Wi-Fi only for benchmarking.

• Cloud layer: The cloud hosts machine learning algo-
rithms which requires considerable processing resources,
a commodity the edge computer can not offer. Given
the availability of resources, object detection is preferred
to be performed on the cloud, except when the network
conditions are highly unstable. The only server that runs
in the cloud is the object detection server. The streaming
server (or media server) can also be hosted on a cloud
computer instead of the edge computer; however, because
the edge is closer to the end-user, the streaming server is
hosted on edge computer to reduce latency and enhance
image quality.

• Application layer: The end-user interacts remotely with
the edge computer through a Web page hosted on a
Node.js server. The server also enables streaming through
creating communication sessions. The Node.js server
also hosts interactive pages which can display real-time
video streams. When required, the user can also send
appropriate commands to the machine learning server.
For example, end-user can set the threshold and enables
or disables object detection.

C. System components

Fig. 2 shows the core components of the proposed system,
the edge subsystem and the cloud subsystem.
Media Server: The media server frontend is made up of
JavaScript, HTML, and CSS, while the backend hosts Node.js
with Express. The primary function of the media server is
to enable WebRTC communication and create a user-friendly
interface.



Fig. 1. System Layers

Fig. 2. Architecture of the system that enables streaming, detection and
switching.

• Streaming multiple camera channels: After the user signs
in as a broadcaster and establishes a session with the
server, the default camera is broadcasted. In addition,
we created a function that allows users to select from
multiple source cameras and stream the feeds.

• Threshold: The default threshold for object detection is
set at 50%. However, we have created a function that
allows users to set a new threshold if they need to increase
or decrease the detection limit. The new input is retrieved
from the HTML and sent to the machine learning server
through HTTP POST as soon as the user clicks the change
button.

Machine learning server: This server uses a Flask server
to get images from the media server, and it uses TensorFlow
object detection API to detect objects in an image. The results
are then sent back to the media server via HTTP Post. The
ML server is hosted on an edge computer as well as in the
cloud. It is the only server running on the cloud VM. The
key difference between the edge and cloud machine learning
servers is that the lite version of TensorFlow is used on the
edge, but on the cloud, the full version is used (TensorFlow
2).

The following two conditions determine if the detection
should happen locally (on an edge computer) or remotely (in
the cloud):

• The first condition checks if the network is good or poor;
if it is good (e.g., RSSI is more than -80 dBm when Wi-
Fi is used), the system will do all the detection on the
cloud VM. However, if the network becomes unreliable,
and edge computer’s battery level is more than 20%, it
will immediately switch back to the edge computer.

• The second condition checks how much battery is left
on the edge computer. For example, if the edge computer
reaches 20% capacity (voltage drop), the object detection
will run on the cloud VM to save the remaining battery
for the streaming. However, if the battery is or more than
20% and the network connection is bad, all the detection
will be performed locally.

Fig. 3. Conditions to determine where object detection should occur.

After checking the conditions listed above, depending on
which condition is met, one of two function will be called.
For example, if the condition of cloud detection is met, the
cloud function will be invoked, and this function will send
the images to the cloud server through HTTP POST using
the cloud server IP address. The output will also be retrieved
from the cloud server using HTTP GET. If the edge computer
detection condition is met, the other function which includes
edge computer IP address will be called and images will be
sent to edge computer.

V. RESULTS AND DISCUSSION

A. Object detection accuracy

As pointed out above, we used Tensorflow Lite on the edge
computer and TensorFlow2 API on the cloud for the object
detection. The API is built on top of TensorFlow to construct,
train and deploy object detection models. We selected an SSD
model with Mobilenet (ssd mobilenet v1 coco 2017 11 17)
for this work. The model is trained on MSCOCO [31] dataset,
which contains 2.5 million labelled instances of 328K images
of 91 object types such as a person, a laptop, cup, etc.
We tested the pre-trained model without fine-tuning for both
TensorFlow and TensorFlow Lite on a fraction of data and
compared object detection accuracy. According to our results
in Fig. 4, TensorFlow Lite is about 83% accurate as compared
to TensorFlow 2, 99% accuracy on the same dataset.

B. Battery consumption

To justify our rationale behind for the proposed bi-
directional switching between cloud and local processing, we
measured the Raspberry Pi’s battery consumption over time



Fig. 4. Comparison of accuracy of TensorFlow and TensorFlow Lite.

for three different cases (a) when the SBC is in an idle state,
(b) when streaming server and object detection run on the
Pi and (c) when object detection tasks are executed on the
cloud servers. Our results in Fig. 5 show that the battery lasts
for about 60 minutes when the detection server runs on the
cloud. However, when the streaming and detection servers are
both running locally on the SBC, the battery lasts for around
40 minutes. If detection is performed on the cloud through a
good wireless connection, the battery lasts for 53 minutes,
providing 32.5% gain. SBC devices consume more energy
when transmitting data under bad wireless connections. It
would be interesting to quantify how long the battery will last
under various wireless network conditions but this is beyond
our objectives in this paper.

Fig. 5. Raspberry Pi’s battery performance under different scenarios.

C. Detection time using 4G and Wi-Fi

To quantitatively evaluate our approach, we measure the
detection time, i.e. the time between imagery data transferred
to the cloud and back to the media server via both Wi-Fi
(802.11ac) and 4G. Our results show (see Fig. 6) that around
99.99% of the processed frames took less than 0.5 seconds
when streamed back to the client after detecting objects on
the Wi-Fi network. On the other hand, 50% of the data took
up to 0.5 seconds using 4G network, while the remaining
data took up to 1 second. This shows that wireless network
connections can play a pivotal role when transferring data to

remote cloud servers for object detection. Technologies that
offer higher speed and low latency, such as 5G, could provide
faster detection times.

Fig. 6. Cloud detection time on 4G and Wi-Fi.

D. Switching time between edge and cloud computing

We recorded the time it took to switch object detection
from the edge computer to the cloud and from the cloud to
the edge computer based on the two conditions given in the
previous section. Fig. 6 shows that about 70% of tests took 2
seconds to switch from the edge to the cloud computer and
vice versa. However, when we look closely at the trial, we can
see that switching from cloud to local is quicker. The latency
in changing from cloud server processing to local is likely due
to the severely limited computing resources available on the
Raspberry Pi [32]. The performance can be enhanced using
more powerful SBC such as Nvidia Jetson Nano.

VI. CONCLUSION

In this paper, we proposed real-time object detection with
autonomous switching between local, on board machines and
cloud computing platforms. The system is implemented and
tested on state-of-the-art embedded devices such as Raspberry
Pi 4. Our evaluation shows that the proposed system can
increase the battery life of embedded devices by 32.5% when
object detection tasks are offloaded to run on cloud instances.
We also show that around 70% of our tests took only 2 seconds
to switch from local to cloud and vice versa, which makes
the process seamless and unnoticeable when switching occurs.
Our findings also show that streaming a video and performing
object detection on cloud instances does not add a significant
latency to the detection time. We tested the time it takes to
detect objects in a video on Wi-Fi network and 4G cellular
network. Our results show that on a Wi-Fi network, with
download speeds of 100 Mbps and upload speeds of 60 Mbps,
more than 99% of the objects were detected in less than 0.5
seconds. However, because of the slower internet speed of 4G
(<20 Mbps), detection took up to 1 second. The Wi-Fi results
indicate that given faster cellular networking technologies such
as 5G we can make the transition time significantly shorter.

This work can be extended in many directions. For example,
we are planning to integrate other types of object detection



models such as YOLOv5 and other streaming protocols such
as the new Secure Reliable Transport (SRT) protocol.

Fig. 7. Switching time between edge and cloud computing on 4G network.
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