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Hepatitis C is a prevalent disease in the world. Around 3 to 4 million new cases of Hepatitis C are reported every year across the
globe. Effective, timely prediction of the disease can help people know about their Stage of Hepatitis C. To identify the Stage of
disease, various noninvasive serum biochemical markers and clinical information of the patients have been used. Machine
learning techniques have been an effective alternative tool for determining the Stage of this chronic disease of the liver to prevent
biopsy side effects. In this study, an Intelligent Hepatitis C Stage Diagnosis System (IHSDS) empowered with machine learning is
presented to predict the Stage of Hepatitis C in a human using Artificial Neural Network (ANN). The dataset obtained from the
UCI machine learning repository contains 29 features, out of which the 19 most reverent are selected to conduct the study; 70% of
the dataset is used for training and 30% for validation purposes. The precision value is compared with the proposed IHSDS with
previously presented models. The proposed IHSDS has achieved 98.89% precision during training and 94.44% precision
during validation.

1. Introduction

Hepatitis C is a type of liver disease which is instigated due to
the “Hepatitis C Virus (HCV)” [1]. It is considered to be the
root of liver cancer. This virus can produce or instigate
chronic Hepatitis and acute Hepatitis, ranging from mild
illness of a few weeks to serious illness lasting until death
[1,2]. HCV is a sort of bloodborne virus. The common forms
of infection are applied to small quantities of blood [3]. It can
spread due to used drug injection, unsafe healthcare,
transfusion of the blood or blood plasma, unsafe practices of
injections, and sexual practices.

The HCV infection can be cured in 95% of cases by using
antiviral infections, resulting in reduced death risk due to

liver cancer and cirrhosis. Still, very few have access to
treatment and diagnosis [2]. Most of the people having
Hepatitis C do not show any symptoms immediately. Still,
after the period of two weeks to six months when the HCV
enters the bloodstream, the following symptoms can be
noticed, which are mentioned in Table 1 [2, 3].

The first six months of the HCV infections are known as
acute Hepatitis or short-term phase Hepatitis, and, after six
months, it goes into the chronic phase resulting in long-term
illness. The HVC attacks the liver. As a result, the immune
system of the body discharges inflammatory substances.
These inflammatory substances invigorate the liver to pro-
duce fibrous protein, such as collagen, to repair the damage
[2, 3]. The bolster of the scar tissues in the liver is known as
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TaBLE 1: Symptoms of chronic Hepatitis C.
Symptoms
Fever Vomiting
Fatigue Headache
Jaundice Bone ache

Weight loss Epigastric pain

fibrosis. This fibrosis can prevent the flow of blood to liver
cells which will change the function of the liver. Over time, the
liver cells die, and the liver stops functioning normally [4].

The “METAVIR score” is the method that is used to
measure fibrosis in people with HVC. Scoring is divided into
five stages which are shown in Table 2 [5, 6].

AT applications in healthcare are rapidly growing with
each passing day. In recent years, Al and medicine projects
attracted more attention than many other projects from the
world economy [7]. Al applies in medicine to the use of
automated diagnostic processes and the monitoring of in-
dividuals who need healthcare [8]. Increased use of Al in
prescribing medication would allow it to automate a signif-
icant amount of the process and free up time for medical
experts to carry out other duties that cannot be automated [7].

Classification is an important activity in data mining and
machine learning to predict potential data object classes.
Data mining uses data analysis techniques to find infor-
mation and relationships within data to predict validity.
Machine learning algorithms capture the data and use it to
create models to take intelligence-based actions. Many au-
thors have investigated machine learning algorithms in
several areas over the last few decades to construct pre-
diction models based on clinical records, such as deter-
mining the presence of Hepatitis C in a patient based on
clinical and biochemical data.

For diagnosing the Stage of Hepatitis C that will help
doctors to treat the disease at an early stage and save the
patient’s life, different techniques like Neurofuzzy, Gaussian
Naive Bayes, Decision Trees, and Support Vector Machine
(SVM) were used to diagnose Hepatitis C and its Stages. In
this study, the Intelligent Hepatitis C Stage Diagnoses
System (IHSDS) has been presented using an Artificial
Neural Network with all the advantages such as high ac-
curacy rates of recognition, easy structure, small-sample
problem-solving capability, and strong generalization. The
structure of the paper is as follows: related work is presented
in the second section, which is followed by the proposed
system in the third section. The fourth section shows the
results of the proposed THSDS, after which the performance
evaluation is done, and the conclusion is given at the end in
the fifth section.

2. Related Work

The HCV-infected patients can be monitored by analyzing
the staging of liver fibrosis in “chronic Hepatitis C” (CHC).
It can be used to determine the disease’s prognosis, select the
optimal medication time, and predict treatment response.
Although liver biopsy has also been adopted as a more
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accurate diagnosis approach, it still has some disadvantages,
such as invasiveness, the possibility of sampling error, and
the cost of monitoring. Clinical information such as age,
body mass index (BMI), and gender and noninvasive
methods such as blood serum markers (alanine amino-
transferase (ALT), aspartate aminotransferase (AST), white
blood cell (WBC) count, glucose, hemoglobin (Hb), platelet
count, the quantity of HCV RNA, red blood cell (RBC)
count, etc.) are used to predict the fibrosis stage. As a result,
serum biomarkers and clinical data were combined to design
a classification model for predicting the fibrosis stage.
Various machine learning classification algorithms have
been utilized in prior studies, and their accuracies are dis-
cussed here.

Tsvetkov et al. stated that the purpose of the study was to
design a model based on machine learning for diagnosing
the Stage of liver fibrosis in the patients. The researchers
examined 1240 patient records with chronic viral Hepatitis
C. Machine learning models were developed and tested
using data from 689 patients grouped by Stage of liver fi-
brosis. Essential predictors were chosen from nine usual
prognostic factors. They achieved the highest accuracy of
80.56% [9].

In the research by Akella et al., the goal of the study was
to develop clinical risk models to predict the degree of fi-
brosis in chronic Hepatitis C patients with ML algorithms.
The nine ML algorithms were built based on an Egyptian
cohort dataset and depended on demographic patients and
traditional serum laboratory values. One of their models
(Extreme Gradient Boosting) estimated the fibrosis with 81%
precision. In addition, they concluded that most of their
models outperformed many existing diagnostic alternatives
in this patient population to evaluate fibrosis [10].

Gawrieh aimed to propose an integrated artificial in-
telligence (AI) based automated model to detect and esti-
mate fibrosis and assess the architectural pattern in
nonalcoholic fatty liver disease (NAFLD) liver biopsies. The
research has used digital images of liver biopsies of patients
with nonalcoholic fatty liver disease (NAFLD) with varying
fibrosis levels. To identify fibrosis patterns, they used a
Support Vector Machine (SVM) and achieved an accuracy of
85.6% [11].

The study by Nandipati et al. aimed to develop the
performance-based comparisons between multiclass and
binary class labels of the same dataset, not restricted to tool
comparison, and to understand which selected features play
a vital role in the Hepatitis C Virus (HCV) prediction by
applying a dataset of Egyptian patients. The highest precision
was shown by Random Forest (54.56%, Python) and KNN
(51.06%, R) in binary class and multiclass labels, respectively
[12].

Barakat et al. used Random Forest, APRI, and FIB-4 to
develop a model for prediction and staging of Hepatic Fi-
brosis in Egyptian children having Hepatitis C Virus. They
achieved the highest 90.3% precision with the random forest
algorithm. The other models APRI and FIB-4 obtained 78%
and 74% accuracies, respectively [13].

Li et al.’s retrospective dataset, which includes 920 pa-
tients, was used to establish Random Forest Classifier (RFC),
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TaBLE 2: Stage of Hepatitis C.

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

No Mild fibrosis exclusive of Mild-to-moderate fibrosis Spreading of bridged scarring to various Severe cirrhosis or

fibrosis scarring walls inclusive of scarring walls liver parts but no cirrhosis scarring

Decision Tree Classifier (DTC), Support Vector Classifier
(SVC), and Logistic Regression Classifier (LRC) for as-
sessment of liver fibrosis severity. The highest precision of
83% was achieved with the RFC model [14].

Hashem et al. used a genetic algorithm, decision tree,
multilinear regression models, and particle swarm optimi-
zation to predict advanced fibrosis risk and achieved the
highest precision of 84.4% [15].

2.1. Limitation of Related Work. All the previously presented
approaches have a few of the weaknesses mentioned below:

(i) Low accuracy: Most of the approaches in literature
[9, 11, 14] have achieved low accuracy (not even
above 90% in some cases). It gets difficult for the
doctors and patients to rely on these results only.

(ii) Experiments with fewer parameters: Some of the
previously presented methods [9, 11, 14] have used a
fewer number of parameters. They skip a few of the
important factors in the prediction of fibrosis in a
liver.

(iii) Experiments on fewer samples: It is another issue
with previous approaches [11, 13] that fewer in-
stances are used in experiments, which compro-
mises the overall performance and accuracy of
models.

Keeping the limitation of previous methods in mind, we
have eliminated these deficiencies in our work. This study
was conducted using a big number of parameters that play
an important role in diagnosing the degree of fibrosis in a
patient. Moreover, the experiments will be performed on a
more significant number of instances which will untimely
increase the accuracy of our model and make it more re-
liable. We have presented the following important contri-
butions in this article:

(a) Increased the number of parameters for conducting
this study.

(b) Performed experiments on a big number of samples.

(c) Increased the accuracy of the prediction of the de-
gree of fibrosis.

3. The Proposed System

We have proposed a new model in this article for diagnosing
the Stage of Hepatitis C using an Artificial Back-Propagation
Neural Network. The complete step-by-step approach of the
proposed model is shown in Figure 1.

Various sensors are continuously collecting data from
the environment, and physical quantities are transformed
into measurements. Different sensors are connected with the
sensor board through various topologies. Each sensor node

acquires a subset from collected samples for locally com-
pacting and summing up the random signal.

The data acquisition layer is used to acquire data like
symptoms of Hepatitis C from sensors and the data like age,
gender, and so forth from the user for further use. Pre-
processing will be performed on collected data to transform
raw data into an understandable format. Data from the real
world may contain errors, can be inconsistent, and often can
be incomplete. In this layer, we used missing values and
mean normalization for data coding, and the moving av-
erage method with a five-filter size will be used to mitigate
the noisy data. The raw data is prepared using data pro-
cessing for further processing. Table 3 shows the coding
technique for data transformation.

In this research, the Hepatitis C patient dataset titled
“HCV-Egy-Data” is obtained from the UCI machine
learning repository [16]. It includes 1385 observations,
where each sample has 29 properties, out of which 19
properties are selected. The value of attribute “histological
staging” in this dataset indicates the Stage of the patient.
There are 336 (24.26%) cases in class 1, 332 (23.97%) cases in
class 2, 355 (25.63%) cases in class 3, and 362 (26.14%) cases
in class 4. All properties of the dataset are detailed in Table 3.

The proposed model predicts the Stage of Hepatitis C
using the neural network with the help of a back-propa-
gation algorithm. In the proposed IHSDS, the application
layer is further divided into two sublayers: the prediction
layer and the performance layer. In the prediction layer, the
first 18 attributes are used as inputs to train the proposed
model. The attribute named “histological stage” is the
predicted output variable based on these 18 input attributes.
The prediction layer further contains an input layer, a
hidden layer, and an output layer. The input layer includes
18 neurons, the hidden layer contains 90 neurons, and the
output layer contains one neuron. Stage of Hepatitis C is
predicted using a back-propagation algorithm. The achieved
results are evaluated in precision, miss rate, and mean square
error in the performance layer.

It will be stored in the cloud for validation purposes and
further processing if the required precision is achieved;
otherwise, the weights will be updated if the required pre-
cision is not achieved. The data from the cloud is imported
into the validation layer. The input data acquired from IoMT
sensors and users will be fed into the model after pre-
processing for testing purposes. The proposed IHSDS will
predict the Stage of Hepatitis C. Finally, the patient will be
recommended to the doctor if the Stage of Hepatitis C is
diagnosed; otherwise, the result will be discarded.

This research work predicts the Stage of Hepatitis C by
using the back-propagation algorithm of the Artificial
Neural Network model. This model is used to gain the
maximum precision in the prediction of the Stage of
Hepatitis C with the defined structure. The model comprises
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FIGURE 1: Proposed Intelligent Hepatitis C Stage Diagnosis System (IHSDS) empowered with machine learning.

an input layer, hidden layer, and output layer. The design of
the neural network is composed using feedforward and
back-propagation of error. In feedforward, the information
from the input layer to the hidden layer is processed and
transferred towards the output layer. The back-propagation
error of the process is used to reduce the error if the output

layer cannot accept it. The values of weights are adjusted and
transferred back to feedforward.

In this study, ANN architecture is built using the back-
propagation algorithm. Different stages involved in the
back-propagation algorithm include reading the training
data, building and connecting the ANN layers (this includes
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TaBLE 3: Detailed description of dataset.

Sr. no Attribute Value range Interpretation Type

1 Age 32-61 Age of patient Predictive
2 Gender 1-2 Female=2, male=1 Predictive
3 BMI 22-3 Weight of patient Predictive
4 Fever 1-2 Yes=2,no=1 Predictive
5 Nausea 1-2 Yes=2,no=1 Predictive
6 Headache 1-2 Yes=2,no=1 Predictive
7 Fatigue 1-2 Yes=2,no=1 Predictive
8 Jaundice 1-2 Yes=2, no=1 Predictive
9 Epigastric pain 1-2 Yes=2, no=1 Predictive
10 WBC 2991-12101 WBC count Predictive
11 RBC 3816422-5018451 RBC count Predictive
12 HGB 10-15 HGB level Predictive
13 Plat. 9303-226464 Plat. count Predictive
14 AST 39-128 AST level (1°" week) Predictive
15 ALT 1 39-128 ALT level (1°* week) Predictive
16 ALT 4 39-128 ALT level (4" week) Predictive
17 RNA 1 11-1201086 RNA count (1°' week) Predictive
18 RNA 4 5-1201715 RNA count (4™ week) Predictive
19 Histological staging 1-4 Stage Class

preparing weights, biases, and activation function of each
layer), predicting error, updating parameters, and prediction
precision. Every neuron in the hidden layer uses the acti-
vation function. We used a sigmoid activation function in
this network. (1) shows the sigmoid function for input,
whereas the sigmoid function for the hidden layer of pro-
posed IHSDS is written in (2):

ltlj = bl + Z(h’] X Zi)’ (1)
i=1
1 .
pj= —— wherej=123...n (2)
1+e %

Equation (3) shows that input is taken from the output
layer.

n

we=by+ Y (x p;) (3)

Jj=1

Equation (4) shows the activation function for the output
layer.
1
Pr= ——— where k=1,23...z (4)
1+ e ™

Equation (5) shows the sum of all squared error func-
tions to calculate the error for output neurons, where y,
represents the desired output and p, represents the predicted
output.

1 2
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k
and the rate of change in output layers weights is shown
as
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TaBLE 4: Confusion matrix for the proposed IHSDS during training.

Proposed THSDS model (70% of the dataset in training)

N=968 (no. of samples)

Actual output (Y0, y'1, y2, ¥3) ‘PO (Stage I)

Predicted output (PO, P1, P2, P3)

P1 (Stage II) ‘P2 (Stage III) P3 (Stage IV)

Input

y0 =235 (Stage I) 159
y'1=232 (Stage II) 29
y2 =248 (Stage III) 19
y3 =253 (Stage IV) 17

28 15 16
182 17 21
13 200 16
18 25 193

and weights and bias update between output and hidden
layers are shown as

tj,k (t+1) = t],k(t)+QFAt],k (11)
Input and hidden layer updates are shown as
hi;j(t+1) = h;;(t) + op Ah; ;. (12)

The learning rate of artificial back-propagation neural
network is g5 and the convergence of ABPNN depends on
the good careful selection of gp.

4. Results and Discussion

Simulations of the results are performed using the MATLAB
R2019a tool. The dataset used to perform simulations is
taken from the UCI repository [16]. It contains 1385
samples, out of which 969 samples (70% of the dataset) are
used for training the model, and the remaining 416 samples
(30% of the dataset) are used for validation purposes. The
969 samples for training include samples from all classes
(70% of each class).

A confusion matrix represents the information about
actual and predicted results obtained by the classification
model. The performance of the system can be evaluated with
the help of this matrix. The confusion matrices for training
and validation are shown in Tables 4 and 5, respectively.

Table 4 shows the proposed IHSDS prediction of the
Hepatitis C Stage during the training phase. A total of 968
samples are used for training which are further divided into
235,232,248, and 253 samples of class Stage I, Stage I1, Stage
III, and Stage IV, respectively.

213 samples of Stage I class are correctly predicted, which
indicates true positive; on the other hand 11, 5, and 6
samples are incorrectly predicted in Stage II, Stage III, and
Stage IV, respectively, which indicates false positive.

223 samples of Stage II class are correctly predicted,
which indicates true positive; on the other hand, 3, 2, and 4
samples are incorrectly predicted in Stage I, Stage III, and
Stage IV, respectively, which indicates false positive.

Percision =

232 samples of Stage III class are correctly predicted,
which indicates true positive; on the other hand, 5, 7, and 4
samples are incorrectly predicted in Stage I, Stage II, and
Stage IV, respectively, which indicates false positive.

228 samples of Stage IV class are correctly predicted,
which indicates true positive; on the other hand, 9, 9, and 7
samples are incorrectly predicted in Stage I, Stage II, and
Stage III, respectively, which indicates false positive.

Table 5 shows the proposed IHSDS prediction of the
Hepatitis C Stage during the validation phase. A total of 417
samples are used for validation, which are further divided
into 87, 102, 113, and 115 samples of class Stage I, Stage II,
Stage III, and Stage-IV, respectively.

30 samples of Stage I class are correctly predicted, which
indicates true positive; on the other hand, 25, 16, and 16
samples are incorrectly predicted in Stage II, Stage III, and
Stage IV, respectively, which indicates false positive.

23 samples of Stage I class are correctly predicted, which
indicates true positive; on the other hand, 15, 34, and 30
samples are incorrectly predicted in Stage I, Stage III, and
Stage IV, respectively, which indicates false positive.

35 samples of Stage III class are correctly predicted,
which indicates true positive; on the other hand, 26, 16, and
36 samples are incorrectly predicted in Stage I, Stage II, and
Stage IV, respectively, which indicates false positive.

34 samples of Stage IV class are correctly predicted,
which indicates true positive; on the other hand, 24, 21, and
36 samples are incorrectly predicted in Stage I, Stage II, and
Stage III, respectively, which indicates false positive.

Now to evaluate the performance of the proposed model,
precision, miss rate, and mean square error (MSE) are
calculated. The formulas to calculate these above metrics are
given in (13), (14), and (15), respectively. Table 6 shows the
precision, miss rate, and mean square error (MSE) calculated
during the training and validation phases. The proposed
THSDS gives 98.89% precision and 1.11% miss rate, re-
spectively, during the training phase and 94.44% precision
and 5.56% miss rate during the validation phase,
respectively.

Pil Vi + Pl Vi

Pilyi +(Z§:1(Pj’ jﬁ) /)’j) + Pl v+ (X, (s i#K) 1)

where i/j/k/1=1, 2, 3, 4, ..., z

(13)
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TaBLE 5: Confusion matrix for the proposed IHSDS during validation.

Proposed THSDS model (30% of the dataset in validation)

N=417 (no. of samples)

Actual output (Y0, y'1, y2, y3) ‘PO (Stage I)

P1 (Stage II)

Predicted output (PO, P1, P2, P3)

‘P2 (Stage III) P3 (Stage IV)

Input

y0 =287 (Stage I) 30
y'1=102 (Stage II) 15
y2 =113 (Stage III) 26
y3 =115 (Stage IV) 24

25 16 16
23 34 30
16 35 36
21 36 34

TaBLE 6: Performance evaluation of the proposed IHSDS during training and validation.

Samples [#] Precision (%) Miss rate (%) MSE (%)
Training 969 98.89 111 3.63917 x 10~
Proposed THSDS Validation 416 94.44 5.56 3.22580 x 102

TaBLE 7: Comparison of the proposed model with previously presented models using validation precision.

Literature

Dataset description

Precision (%) Miss rate (%)

Extreme Gradient Boosting [10]
Random Forest [14]

Support Vector Machine (SVM)
with linear kernel [11]

Random Forest [13]
Proposed THSDS

HCV Egyptian cohort dataset (1385 samples of 6 features are used)
HCV dataset by Clinical Research Committee of Second Xiangya
Hospital, Central South University (920 samples of 9 features are used)

18 liver biopsy images of the trichrome (TC) stained slides

Dataset of children attending hospital outpatient clinic (166 samples of
14 features are used)
HCV Egyptian cohort dataset (1385 samples of 18 features are used)

81.00 19.00
83.00 17.00
85.60 14.40
90.30 9.70
94.44 5.56

Y (po i#k) yi

Miss Rate = - , (14)
Yii(pi it k) ye+ pily;
where i/k/1=1, 2, 3,4, ..., z
1 ¢ 2
MSE = —3 (yi-7)" (15)
=

The proposed IHSDS model and the methods proposed
by Akella and Akella [10], Gawrieh et al. [11], Li et al. [14],
and also Hashem et al. [15] are compared with a measure of
evaluation, precision.

The proposed IHSDS is empowered with machine
learning results with 98.89% precision value during training
and 94.44% precision value during validation. The validation
precision value of previous methods is compared with the
proposed model in Table 7. It is justified to state that the
results provided by the proposed IHSDS empowered with
machine learning are better than the results provided by
previously proposed methods with regard to precision.

5. Conclusion

Before the evolution of machine learning in the medical do-
main, doctors needed to do various tests to diagnose the Stage
of Hepatitis C in a particular patient. The patient has to un-
dergo unnecessary tests and check-ups to identify the disease
stage during the whole diagnosis process. Its cost for the patient
is too high and takes a lot of his time. There should be a
preliminary test to reduce unnecessary check-ups and save the
time of both (doctors and patients) by notifying them about the

Stage of Hepatitis C disease in a patient so that the treatment
can be started as per need. Machine learning techniques and
their various algorithms are helpful for the prediction of dis-
eases and classification based on medical data. The Artificial
Neural Network (ANN) machine learning algorithm is used to
conduct this study. The proposed IHSDS was trained and
validated using the dataset and shows 98.89% and 94.44%
precision during training and validation phases, respectively. A
comparative analysis of the proposed model with previous
models is also presented based on precision and miss rate,
which justifies that the proposed model is better than the
previously available methods.

Data Availability

The simulation data used in this study to support the
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