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Abstract 

Damage detection is of great importance in reducing maintenance cost and preventing collapse 

of structures. Despite existing damage detection methods, the current literature lacks a 

comprehensive method, which: (i) is applicable to complex structures with large degrees of 

freedom, (ii) captures even low-level damages, and (iii) gives reasonable accuracy in the 

presence of uncertainty conditions such as noise and temperature. Hence, this study proposes 

a damage detection algorithm based on discrete wavelet transform and an ensemble of pattern 

recognition models, in which: (1) vibration data is decomposed through discrete wavelet 

transforms, (2) the decomposed data is compressed using principal component analysis, (3) 

individual damage models of the structure are trained through pattern recognition models of 

deep neural network and couple sparse coding, where the compressed decomposed vibration 

data as well as damage data are inputted, and (4) ultimately, the individual damage models are 

merged into one by majority voting to predict damage location and severity of the structure. 

The proposed algorithm is tested on a numerical model of a one-bay three-story steel frame, 

and experimental data of a large-scale bridge structure. It is found that the algorithm can 

precisely detect low-level damages at multiple locations, even in beam-column connections 
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and complex structures, in the presence of uncertainty conditions such as noise and 

temperature.  

Keywords: Structural Damage Detection; Discrete Wavelet Transform; Principal 

Component Analysis; Deep Neural Networks; Couple Sparse Coding; Ensemble Classifiers  

1. Introduction 

1.1 Background 
Structural health monitoring (SHM) has received much attention as a rigorous tool in damage 

detection of engineering structures, particularly bridges and buildings. Structural damages such 

as cracks, corrosion, fatigue, and excessive stresses cause a change in modal parameters of the 

structure, that consequently, may affect their serviceability or dynamic performance [1], [2]. 

Vibration-based damage detection methods are extensively used in SHM, due to their 

efficiency in instrument deployment. Acoustic, ultrasonic, and radiography inspection methods 

are not applicable to unreachable parts of structures, and visual methods significantly depend 

on technical experience and engineering judgement. However, vibration-based methods are not 

error-proof. This is because extracted modal parameters of the structure is affected by 

uncertainties emanated from limited number of installed sensors, uncontrolled excitations, 

environmental conditions, and noisy measured vibration data.  

Vibration-based methods [3] track variations in dynamic properties of structures within time 

or frequency domain. However, natural frequency and modal damping are not reliable for 

damage detection of complex structures and simple structures with low-level damage [4–7]. 

Modal-based damage detection methods such as mode-shape, modal curvatures, modal 

damping, and strain energy are not able to capture desirable low-level damages. Modal 

characteristics are extracted indirectly from the measured frequency response functions (FRFs) 

data at the excitation frequencies around resonances. In modal characteristics-based model 

updating, measured data are less than unknown parameters. In contrast, FRF-based model 
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updating reduces loss of information as it includes vibration data over a broad range of 

frequency [8, 9]. Hence, FRFs give more reliable damage detection results. This is because 

FRF estimation reduces modal analysis errors during modal extraction and curve fitting 

processes [10–13]. Signal processing is an essential part of the vibration-based methods. In this 

regard, the complete ensemble empirical mode decomposition with adaptive noise technique 

and multiple signal classification was used to identify the presence, location, and severity of 

damages in a steel truss bridge model [14, 15]. 

1.2 Fourier transform-based methods 

Fourier transform (FT) analysis method describes a vibration data over its frequency content. 

However, it does not account for discontinuities, local changes, and transitory properties of 

time-varying data [16]. Thus, extracted data from FT may not completely reflect characteristics 

of a vibration data. To overcome non-stationary and local discontinuity properties of FT, short 

time Fourier transform (STFT) is used in a time-frequency domain analysis [17]. However, for 

a short time interval, a stationary signal is needed, and an extended time interval requires an 

increase in frequency resolution. Consequently, spectral components of a large interval are 

smeared, and result in a decreased resolution within the time domain [18]. To address this 

shortcoming, an autoregressive (AR) model was developed [19]. For the AR model, there are 

two main shortcomings: (1) length of the stationary interval controls time and frequency 

resolution of the time-frequency representation, and (2) reduction of the time interval gives 

lower-order models, and reduces assessment accuracy [19]. Further, fractal dimension analysis 

was developed to detect cracks in structural elements. In fractal dimension analysis, damage 

index is extracted by a constant moving window across the fundamental mode shape of the 

structure. However, inclusion of higher modes may lead to a false damage localization [20]. 

Instead of using traditional modal-based  techniques such as FT, Mosavi et al. (2021) used 
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several time-domain statistical features including root mean square (RMS), shape factor, 

kurtosis, and entropy to study damage detections of bridges [21]. 

1.3 Wavelet transform-based methods 

Unlike FTs, wavelet transforms (WTs) represent a vibration data in time-frequency domain 

with localization [22–28]. The advantages of utilizing wavelets are to improve the frequency 

resolution limitations of data associated with the previous techniques, and efficiently separate 

the components of a signal. The WT is a decomposition algorithm that has an ability in 

analyzing non-linear and non-stationary signals. WTs are categorized into discrete wavelet 

transform (DWT) and continuous wavelet transform (CWT). Using CWT and stationary 

wavelet transform (SWT), Cao and Qiao (2008) developed a two-step progressive wavelet 

analysis, and improved abnormality analysis of mode shapes in damage detection [29]. In a 

different work, Wu and Wang (2011) conducted experimental studies adopting SWT, and 

identified crack location and depth in a beam subject to a static displacement [30]. Okafor and 

Dutta (2000) used a small set of wavelet coefficients with uniformly-spread white noise to 

represent a spatially-localized abnormality in mode shape [31]. Montanari et al. (2015) reported 

an optimal number of sampling intervals based on spatial CWT damage detection methods in 

beam structures [32]. It was found that the optimal number of sampling intervals is correlated 

with deflection shape and damage location [32]. Solis et al. (2013) used a CWT to study 

variations in mode shapes for damage localization [23]. It was reported that damage location 

may be found using a small number of sensors and mode shapes [23]. Pnevmatikos and 

Hatzigeorgiou (2016) proposed a damage detection method using DWTs for a frame structure 

subject to ground motion excitations [27]. In this work, high accuracy of damage detection was 

achieved by increasing level and order of the DWTs, even in the presence of noisy signals [27]. 
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1.4 Artificial intelligence-based methods 

Although several studies on WT-based damage detection methods showed their efficiency in 

capturing even small damages, these methods may suffer from poor accuracy if used in 

complex structures or in the presence of multiple damages and uncertainties such as noise, 

temperature, and limited number of sensors. Pattern recognition is an artificial intelligence 

(AI)-based method, and has become popular in structural damage detection due to its excellent 

self-organization, self-learning, auto-association, and non-linear modeling capability [33–35]. 

Artificial neural network (ANN) methods are often used on finite element (FE) models of 

structures or on real measured vibration data to identify damages of tested structures [33-35]. 

Padil et al. (2017) demonstrated that ANNs give inaccurate damage detection results if used 

with highly noisy data [37]. Application of ANNs for damage detection is limited to structures 

with a small number of degrees of freedom (DOFs) as ANNs require extensive computational 

efforts for structures with high DOFs [8, 38, 39]. Bakhary et al. developed a progressive method 

for noise-free and low-level damaged structures using ANNs [40]. Substructure technique with 

a two-stage ANN was implemented to identify damage location and severity in simple 

structures [40]. Mehrjoo et al. (2008) proposed a method for damage severity assessment of 

joints in truss bridge structures using an ANN classifier. However, their method was not able 

to capture very small damages in the presence of low-level noises [8].  

Deep neural networks (DNNs) were shown to be more effective compared to conventional 

ANNs [41]. DNNs represent deep learned features of original vibration data much better, and 

hence, make them more desirable for classification. In addition to DNNs, couple sparse coding 

(CSC) was also adopted as a second classification method and spectral tool to represent and 

compress high-dimensional signals [42]. The idea of collating several classifier systems or an 

ensemble of classifiers to overcome limitations of a single classifier was first proposed by 

Wolpert (2002) [43]. Fallahian et al. (2017) proposed a new damage detection method in the 
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presence of uncertainties such as high-level noise and temperature effects using DNNs and 

CSCs [44].   

In recent years, convolutional neural networks (CNNs)-based models have been significantly 

utilized to extract spatial features of images, which are usually 2D data. This has led to 

promising results in image classification [45], image segmentation, and object detection. Due 

to two fundamental properties, including spatially shared weights and spatial pooling, CNNs-

based models can extract features with high precision. Additionally, recurrent neural network 

(RNNs)-based methods can generate and address memories of arbitrary-length sequences of 

input patterns [46]. The most application of RNNs-based models is in supervised learning tasks 

with sequential input data, such as sentiment classification and target outputs [47]. Yang et al. 

(2020), proposed a novel hierarchical deep CNN to identify damage in structures [48]. 

1.5 Contribution 

As the above survey demonstrates, although each damage detection method has its own 

advantage, a general method, able to cover all aspects of structural damage detection, is yet to 

remain a research topic of interest. Hence, in this work, we overcome the shortcomings of 

previously-developed damage detection methods, mainly (1) identification of low-level 

damages in presence of uncertainties like noise and temperature for structures with large DOFs, 

and (2) reduction of false detections. To achieve this aim, we combine several methods and use 

capabilities of each method to develop a more general and comprehensive damage detection 

algorithm. The proposed algorithm is composed of four primary steps: (1) vibration data is 

decomposed by DWT, (2) the decomposed data is then reduced by principal component 

analysis (PCA), (3) DNN and CSC are used to train individual damage models of the structure 

using the compressed decomposed vibration data and damage data (including damage locations 

and severity) as input parameters, and (4) the individual damage models are combined by 

majority voting to predict damage of the structure. This proposed four-step algorithm considers 
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vibration data such as FRF and structural response signals as input parameters for training two 

DNN and two CSC damage models. To account for uncertainty effects, a white Gaussian noise 

pollution with up to 20% noise-to-data ratio is added to the vibration data, and a uniformly 

distributed temperature gradient is introduced to the numerical model of the structure. To 

demonstrate efficiency and accuracy of the proposed algorithm in detection of low-level 

damages, simulated vibration data of a one-bay three-story frame is considered and assessed. 

Additionally, measured vibration data of a large-scale bridge structure with many DOFs is used 

for validation of the proposed algorithm and comparison of the proposed method with the 

methods previously developed. 

 

2. Damage Detection Algorithm 

In this section, the proposed damage detection algorithm is described in detail. The proposed 

algorithm is schematically illustrated in Figure 1. The vibration data set is taken from a tested 

structure or a numerical model of the structure, respectively (Figure 1a), and is composed of 

two different subsets: (1) training vibration subset, which is used to train damage models of the 

structure (Figure 1b), and (2) test vibration subset, which is used to test the robustness of the 

algorithm (Figure 1g). The input vibration data set could be a set of displacement response 

signals, acceleration response signals, or frequency response functions (FRFs). Both vibration 

subsets are decomposed by DWT (Figure 1c), and subsequently, are reduced and compressed 

by PCA [49] (Figure 1d). The decomposed and compressed training vibration subset along 

with the corresponding training damage subset (Figure 1e) are then used to train four individual 

damage models for the structure: (1) two CSC-based damage models for FRFs and 

displacement signals, and (2) two DNN-based damage models for FRFs and displacement 

signals  (Figure 1f). Afterwards, a final damage model is created by collating the four trained 

individual damage models (Figure 1h). To evaluate the performance of the algorithm, the test 
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vibration subset is inputted to the final damage model of the structure (Figure 1g), and the 

output is compared with the test damage subset to assess accuracy of the algorithm (Figure 1i). 

The detailed information on each step of the proposed algorithm is given in the following 

sections. Now, for damage detection, any new vibration data (Figure 1g) can be inputted to the 

trained damaged model (Figure 1h) to predict the location and severity of any possible damage 

(Figure 1i), as collectively shown by a red dashed rectangle in Figure 1.  

 

 
Figure 1. The proposed damage detection algorithm. 

 

2.1 Vibration data decomposition by DWT 

As shown in Figure 1, the first primary step of the proposed algorithm is to decompose the 

training vibration subset by wavelet analysis, as a powerful tool in characterization of local 

features (Figure 1c). Let consider a training vibration subset, X, composed of P vibration 

vectors of size N, which forms a matrix of size N P : 
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 1 2X X ... X .... Xj P   X   (1) 

where Xj is the jth training vibration vector: 

 
T

1 2X ... ....j j j ij NPx x x x      (2) 

in which, T is the transpose of the vector, and xij is the ith element of the jth vibration vector. 

The CWT of the jth vibration vector, Xj(t), is given by: 

    1
X , X 0 ,j j

t b
a b t a R b R

aa






     
    (3) 

where a and b are scale and transition parameters;  t  is the complex conjugate form of the 

mother wavelet function,  t ; R is the set of real numbers; and  is the absolute value 

operator. Herein, the Haar wavelet is used in damage detection process. To perform discrete 

wavelet analysis of the jth vibration vector, Xj(t), the parameters a and b need to be discretized. 

A common choice for discretizing parameters a and b are 2n and 2nm, respectively, where n 

and m are sets of positive integers [50]. So, the discretized wavelets, ,n m , are given by: 

  ,

1

22
n m nn

t
t m     

 
  (4) 

where ,n m creates an orthonormal subspace. The DWT decomposes a vibration vector to its 

approximate and detail components, as shown in Figure 2. The vibration vector  is passed 

through a series of low-pass filters to analyze low-frequency contents (approximate 

components), and a series of high-pass filters is used to analyze high-frequency contents of the 

data (detail components) [27]. The detail component at level n is given by: 

 , ,n n m n mm
D a    (5a) 

where, 
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    , ,Xn m j n ma t t dt



    (5b) 

and, the approximate component at level n is given by:  

 n J
J n

A D


   (6) 

and finally, the jth vibration vector, Xj(t), at level n is reconstructed by: 

  X j n J
J n

t A D


    (7) 

It should be noted that the term, J
J n

D

  (i.e. the detail components), provides useful 

information on detecting low-level damages, which contain high frequencies of 

vibration.  

 

Figure 2. A four-level discrete wavelet decomposition. 

 



11 
 

2.2 Vibration data compression by PCA 

The training vibration subset, decomposed by DWT in section 2.1, is compressed in this section 

by PCA [49, 51–53] (Figure 1d) to avoid high computational efforts, particularly in structures 

with large number of DOFs. Throughout PCA, the decomposed training vibration subset, X , 

composed of P vibration vectors of size N,  X j t  (see equation (7)) is transformed into a new 

subset of P vibration vectors of size Q (Q < N). This is an eigenvalue problem, and eigenvalue 

decomposition of the covariance matrix is used in the transformation process. Hence, mean 

vector, X , and covariance matrix, CX, of the decomposed vibration data set are first 

determined as:  

 X
1

1
X

P

j
jP 

     (8) 

 
T

X
1

1
X X

P

j j
jP 

 C   (9a) 

where, 

      XX X μj ji i i    (9b) 

Then, the eigenvalue problem is defined as: 

 X  C   (10) 

Solving this eigenvalue problem, eigenvalues, i , and their corresponding eigenvectors, i , 

are determined, and the eigenvalues are sorted in descending order:  

 
 
 

1 2

1 2 1 2

... ...

... ... ... ...
i N

i N i N       
    

     


  (11) 

Hereafter, the decomposed N P subset is transformed to a reduced Q P subset according to 

proportion of total variance: 
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1

1

Q
k

Q N
k

i
i









  (12) 

Thus, the proportion of total variance shows the quality of the reduced Q P subset. Finally, 

the vibration vectors of the reduced Q P subset is determined: 

 X Xj j    (13a) 

in which, β is the transformation matrix: 

 
T

1 2 ... ...i Q         (13b) 

2.3 Training damage models 

In this section, the decomposed and compressed training vibration subset (Figure 1d) as well 

as the corresponding training damage subset (Figure 1e) are used to train four individual 

damage models of the structure using deep learning methods of DNN and CSC (Figure 1f).  

As shown in Figure 3, DNN creates a hierarchy structure including an input layer, an output 

layer, and a number of hidden layers. The method generally learns features of higher layers of 

the hierarchy structure from features of lower layers [54–56]. For developing a damage model, 

the input layers are the training vibration and corresponding damage subsets. For the trained 

damage model, the input layer is the test vibration subset, and the output layer is the predicted 

damage subset. This training generates a robust pattern recognition model of the structural 

damage, generalizes normal conditions of the vibration and damage subsets, and characterizes 

environmental and operational variations such as temperature and noise through its low-level 

features [44]. Thus, in this work, DNN is trained on the vibration subset, X , and corresponding 

damage subset, Y  to learn correlations between vibration data and structural damage, and 

develop a damage model of the structure. Afterwards, the test vibration subset, X , is inputted 
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to the DNN-trained damage model, and then, the residual matrix, r , as a training quality index, 

is determined: 

  r Y Y   (14) 

where Y  is the matrix of the predicted damage, and is the output of the DNN-trained damage 

model.  

 
Figure 3. An example of DNN layout used for training structural damage model. 

 

In the proposed algorithm, to capture any damage information and features ignored by DNN, 

CSC-trained damage models are also developed [49]. Hence, the training vibration and damage 

subsets are fed into CSC. Let consider a training damage subset, Y, composed of P vectors of 

size M, which forms a matrix of size M P : 

 1 2Y Y ... Y .... Yj P   Y   (15) 

where Yj is the jth training damage vector: 

 
T

1 2Y ... ....j j j ij MPy y y y      (16) 

CSC represents the training vibration vector, X j
 , and the training damage vector, Yj , as sparse 

linear combinations: 
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 

X

T

1 2

X

... ....

j

i K   

 

 

D
  (17) 

in which, the vector, α, is the sparse code of the vibration vector, X j
 , and has K elements; XD

is a transformation matrix of size N K , and is called dictionary of the vibration vector. 

Similarly, the damage vector is represented by: 

 YYj  D   (18) 

where YD is a transformation matrix of size M K , and is called dictionary of the damage 

vector. Generally, CSC uses X j
  and Yj  as inputs, and solves the following optimization 

problem to train a damage model for the structure : 

 
2 2

X 1 2 Y1 22
min : X YK j jR

 


      D D   (19) 

where κ1 and κ2 are the regularization parameters; 
1
 and 

2
 are the first and second norm 

operators, respectively. From the optimization problem in equation (19), all variables are 

determined. The sparse vector, α, reconstructs the input vibration vector, X j
 , from both the 

dictionary, XD , with minimum error, 
2

X 2
X j  D , and the dictionary, yD , with minimum 

distance from Yj , 
2

Y 2
Yj  D .  

The test vibration vector, X j , is then used in the CSC-trained model (see equation (19)), to 

predict the damage, Yj
 , by solving this minimization problem:  

 
2 2

X 1 2 Y1Y 22
min : X YM P

j
j jR

 
       D D   (20) 

To solve the optimization problems in equations (19) and (20), the feature-sign search 

algorithm is used [57]. It should be noted that in the proposed algorithm, both FRFs and 
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displacement signals are separately used in DNN and CSC as input vibration data, and thus, 

four individual damage models, including two DNN-trained and two CSC-trained damage 

models, are created. Collating these four damage models, a more general and thorough trained 

damage model of the structure, which considers various features of the structure, is developed. 

2.4 Final damage model of structure 

The four individual damage models, two DNN- and two CSC-trained damage models, 

developed in section 2.3, are combined together in this section to reach a final damage model 

(Figure 1h). This is because the ensemble learning increases  damage detection accuracy, and 

reduces selection probability of a poor single classifier [58]. Each of the damage models is 

trained on a re-weighted version of the original output to generate a sequence of new models 

[59]. The weights are then modified to address any pattern misclassification. Afterwards, an 

ensemble classifier is created by forward iteration. In each iteration, the first decision stump, 

is trained with a random subset of the weighted output. For the second decision stump, half of 

the weighted output, classified correctly by first decision stump, is selected as the training 

subset. The third decision stump, is then trained with a higher weight of misclassified 

observations on the first and second decision stumps. Finally, the three decision stumps are 

combined through a majority voting, where the final decision is the one that correctly classifies 

more than half of the output [60]. 

3. Validation of Damage Detection Algorithm 

In this section, the accuracy of the damage detection algorithm proposed in section 2, is 

evaluated using two case studies: (1) numerical model of a one-bay three-story frame, which 

is modelled in SAP2000 program, and (2) experimental data of a large-scale bridge, which is 

modelled in MATLAB. For both case studies, during the training phase of the algorithm, 70% 

of the input data is used to train DNN and CSC damage models. For the test phase of the 

algorithm, the remaining 30% of the input data is used to evaluate the accuracy of the algorithm. 
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In this study, for DNN, the number of layers is taken 5, where the number of neurons is 100, 

350, 150, and 50, respectively for the 1st to 4th layers. The neurons number for the last layer 

is based on the number of the elements of the structure. 

3.1 Numerical model case 

Supports and connections play an important role in stability of structures, particularly during 

seismic events. Hence, in this section, the performance of the proposed algorithm in capturing 

low-level damages, localized near a support or a point of geometric discontinuity such as a 

corner connection, is evaluated in a frame structure. The numerical model is a 2D one-bay 

three-story frame shown in Figure 4. The story height and the bay length are 3 m and 2.5 m, 

respectively. Table 1 summarizes material properties of the frame elements. The 2D FE model 

of the frame are composed of 32 nodes. Each node has three DOFs including two translational 

and one rotational DOFs. Given fixed supports at nodes 31 and 32, the numerical model has 

90 DOFs. The beam-column connections (elements 28 to 33) are considered semi-rigid, and 

thus, are modeled with very short beam elements of very high relative rigidity. The frame is 

excited by a dynamic half-sine impulse load or a concentrated static load at vertical DOFs of 

nodes 21, 25, 28 and horizontal DOFs of nodes 2, 14, 8 and 5. The acceleration and 

displacement responses are measured at vertical DOFs of nodes 20, 24, 29, and horizontal 

DOFs of nodes 1, 4, 7, 13, 16. To consider measurement errors and uncertainties, a white 

Gaussian noise pollution with up to 20% noise-to-signal ratio is added to the response signals. 
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Figure 4. Numerical case study: a 2D one-bay three-story frame structure: (a) geometry of the frame and 

element numbers, and (b) node numbers. 
 
 
 
 
 
 

Table 1. Geometry and material properties of the three-story frame structure 
Parameter Value 
Modules of elasticity (E) 200 GPa 
Mass density 7850 kg/m3 
Poisson’s ratio 0.3 
Cross-section area of I shape section 23.28 cm2 
Moment of Inertia of I-shape section 1461 cm4 

 
 

For this numerical case study, stiffness reduction of an element or elements of the frame is 

taken as the damage indicator, and accordingly, five damage cases are introduced, as shown in 

Figure 5. Case 1 (Figure 5a) considers a single damage case, where the middle element of the 

left column (element no. 2) is the only damaged member with 30% stiffness reduction. In this 

damage case, since the excitation location (node 2), and the response measurement location 

(node 1) are very close, high levels of noise may pollute the measured response signal, and 

hence, the test data is polluted with up to 20% noise; Case 2 (Figure 5b) also includes a single 

2.5 m  
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damage, in which the damage is adjacent to the beam-column connection element no. 28. This 

damage case investigates the efficiency of the proposed algorithm in damage detection of 

connections with low-level damages. The damage considered is 6% for this scenario; Case 3 

(Figure 5c) is a double-damage scenario. Elements no. 8 and 23 suffer from 15% and 40% 

stiffness reduction, respectively. This damage case verifies the proposed algorithm for 

simultaneous damage detection in beams and columns; Case 4 (Figure 5d) comprises two 

beam-column connections, no. 29 and 30, which experience 10% and 15% stiffness reduction, 

respectively; Case 5 (Figure 5e) is a multi-damage case to validate the proposed algorithm for 

simultaneous damage detection in connections, beams, and columns. Connection no. 28 and 

elements no. 8 and 24 are damaged by 10%, 20%, and 15%, respectively. 
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Figure 5. Damage cases (rectangular hatches) for the frame structure: (a) case 1, (b) case 2, (c) case 3, (d) case 

4, (e) case 5. 
 

Vibration data and damage data are inputted to the algorithm (see Figure 1). In this study, the 

FRF data and displacement response of the frame are used as input vibration data in the 

algorithm. For each damage case, the vibration data comprises: (1) FRFs between the excitation 

DOFs and the measurement DOFs, and (2) the displacement response signals at the DOFs. The 

input damage data is composed of both the damage location (element number), and damage 

severity (stiffness reduction of the corresponding element).  

As shown in Figures 6 and 7, DWT (see section 2.1) decomposes the FRF data (excitation at 

node 4 and response measurement at node 25) into its approximation and detail components at 
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level 5 for the undamaged structure. In Figure 6, the FRF data includes no noise, while in 

Figure 7, 10% noise is added to the data. One level of approximate component (A5) and four 

levels of detail component (D2 to D5) are used to train the data for the damage detection process. 

As seen in Figure 7, the noise affects the level 1 detail component (D1), particularly at very 

high frequencies, compared to the other components. Thus, D1 can be ignored in the damage 

detection process. The same decision is made about the displacement response signals. 
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Figure 6. The approximation component, A5, and the detail components D1–D5 of the FRF of the undamaged 
frame with 0% noise. 
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Figure 7. The approximation component, A5, and the detail components D1–D5 of the FRF of the undamaged 

frame with 10% noise. 
 

Table 2 compares the actual damage and the predicted damage by the algorithm for the five 

damage cases. For case 1, the predicted damage (32%) is very close to the actual damage 

(30%). For case 2, the algorithm detects the low-level damage (8%) with a slight error. For 
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multiple damage cases (damage cases 3, 4, and 5), the severity of the predicted damages are 

close to the actual damages.  

Table 2. Actual and predicted damages for the frame structure and different damage cases. 
Damage Case Damaged Elements Actual Damage Predicted Damage 

1 2 30% 32% 
2 28 6% 8% 
3 8 15% 18% 

4 
23 40% 38% 
29 5% 8% 
30 10% 17% 

5 
8 20% 19% 
24 15% 18% 
28 10% 7% 

 

The coefficient of determination (R2) is also determined to evaluate the performance of the 

algorithm: 

 
  

       
2

2 22 2

.y y y y
R

y y y y

     
    

  
   

  (21) 

where y is the actual value, y   is the predicted value, and r is the number of damage scenarios. 

The mean R2 for the frame structure is 0.96 for 100 damage scenarios. 

A robust damage detection method not only minimizes damage detection errors for safety 

reasons, but also reduces number of false damage predictions for economic considerations. 

Figure 8 shows the distribution of the damages between all elements of the frame structure for 

damage cases of 3 and 5. As seen in Figure 8, the proposed method minimizes false detections 

for damage cases 3 and 5 as the value of the predicted damage for most of the undamaged 

elements is close to zero. Figure 9 shows the distribution of the damages between all elements 

of the frame structure for damage cases of 3 and 5 using the DNN model only. Unlike the 

proposed method, which ensembles DNN and CSC models, the DNN model only gives a poor 

prediction at false detections. It should be mentioned that a similar pattern is seen for other 

damage cases 1, 2, and 4 not shown here. 
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Figure 8. Actual and predicted damage values for elements of the frame structure for: (a) damage case 3, and (b) 

damage case 5. 

 
Figure 9. Actual and predicted damage values for elements of the frame structure using DNN model only for: (a) 
damage case 3, and (b) damage case 5. 
 



24 
 

3.2 Experimental test case 

The previously-published experimental data for I-40 bridge over the Rio Grande in New 

Mexico is used to validate the efficiency of the proposed algorithm in detection of low-level 

damages in complex structures. Detailed information on I-40 bridge, such as geometric 

properties, experimental data, and damage detections can be found in [61–63]. The elevation 

view and cross-section of the bridge is shown in Figures 10 and 11, respectively [61]. Forced 

vibration and ambient vibration tests were performed on I-40 bridge. The forced vibration 

excitations were applied by a hydraulic shaker using a uniform random signal between 2 Hz 

and 12 Hz. The response of the bridge was measured using 26 equally spaced accelerometers 

installed on both sides of the bridge deck (see Figure 12). Four levels of damage were 

introduced in the vicinity of N7 using torch cuts in the web and flange of the bridge girder. 

These cuts were resulted in approximate stiffness reductions of 5% (damage case 1), 10% 

(damage case 2), 32% (damage case 3) and 92% (damage case 4) [63]. 

 
Figure 10. Elevation view of I-40 bridge   [61]. 

 
Figure 11. Cross section of  I-40 bridge  [61]. 
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Figure 12. Sensor arrangement for the experimental test on I-40 bridge [61]. 

 

The 3D FE model of the bridge consists of 144 elements for the concrete deck and 12 elements 

for each plate of the web. The numerical model was updated using experimental data from the 

undamaged structure. Table 3 summarizes the correlation between the numerical and 

experimental undamaged modes; ωe and ωn are the experimental and numerical natural circular 

frequencies. The modal assurance correlation (MAC) values demonstrate the accurate 

correlation between the dynamic behavior of the undamaged real bridge with the updated 

numerical model. 

Table 3. Correlation between numerical and experimental modes of the undamaged bridge 

Mode No. MAC (Hz) eω (Hz) nω Δω (%) 
1 0.997 2.48 2.48  0.00 
2 0.992 2.96 3.02 2.03 
3 0.994 3.50 3.58 2.29 
4 0.979 4.08 4.18 2.45 
5 0.982 4.17 4.14 0.72 
6 0.981 4.63 4.70 1.51 

 

Details on numerical modeling and modal analysis of the bridge can be found in [44]. To 

account for uncertainty effects of temperature, a uniformly distributed temperature gradient is 

introduced to all elements of the FE model. The four DNN- and CSC-trained damage models 

are developed using FRFs and displacement signals data generated by the FE model. After the 

training phase, experimental FRFs of the bridge are fed to the trained damage model, and the 
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damage in each element of the bridge is determined. The results are given for two different 

cases: (1) when the FRFs and displacement signals are decomposed by DWT (DWT DNN-

CSC, DDC), and (2) when the original FRFs and displacement signals are used without no 

decomposition (DNN-CSC, DC). 

Table 4 summarizes damage detection results of the bridge for the four damage cases. For the 

case of the extremely large damage (damage case 4, 92%), slight errors are seen for both 

approaches. The accuracy of the DDC approach increases compared to the DC, as the damage 

severity reduces. In particular, for 5% and 10% damages, DDC gives 4.5% and 14% damages 

for element 24, respectively. Figure 13 shows the damage detection results for the low-level 

damage case (5%) using both DDC and DC approaches. Using DC, the number of false 

detections are high, particularly in elements 2, 10, 26, 48 (Figure 13a). These false detections 

are due to the temperature variation introduced in the FE model. In contrast, DDC precisely 

detects the location of the damage in element 24, and reduces the number of false detections 

(Figure 13b). Thus, the proposed algorithm detects damage location and severity, even for low-

level damages, in the presence of temperature gradient introduced in the FE model. 

The false damage detections, particularly at the supports, could be due to the uniformity of the 

temperature used here, while there may be non-uniform gradients of temperature in reality. 

Thus, having temperature sensors placed along the bridge structure, the results are improved. 

Moreover, temperature variations can lead the supports to move or boundary conditions to 

change, both not considered in the numerical model of the bridge.  

Table 4. Actual and predicted damages for the elements of the bridge structure.  

Case Actual Damage Predicted Damage (DDC) Predicted Damage (DC) 

1 5% 4% 13% 

2 10% 14% 17% 
3 32% 30% 38% 
4 92% 89% 89% 
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Figure 13. Actual and predicted damage values for elements of the bridge structure and low-level damage case 

(5%): (a) DC, and (b) DDC. 

4. Conclusions 

In this work, a new damage detection algorithm is developed based on an ensemble system of 

deep neural network and couple spare coding. The vibration data of the structure is decomposed 

by discrete wavelet analysis before training the ensemble system. Majority voting is used to 

combine the output of the deep neural network and couple spare coding classifiers.  

The numerical study of the frame structure, subject to single- and multi- damage cases, 

demonstrates that the algorithm detects low-level damages with a very high level of accuracy, 

particularly in beam-column connections in the presence of noise. From the study of the large-

scale bridge structure, it was found that the algorithm: (i) locates low-level damages and 

predicts their severity with high precision in the presence of temperature, and (ii) gives lower 

false damage detections. This study generally shows that the combination of ensemble pattern 

recognition models and wavelet analysis techniques is promising, and gives better prediction 

of damage location and severity. 



28 
 

References 

1.  Khoshnoudian F, Esfandiari A (2011) Structural damage diagnosis using modal data. Sci Iran 18:853–
860. https://doi.org/10.1016/j.scient.2011.07.012 

2.  Hou R, Beck JL, Zhou X, Xia Y (2021) Structural damage detection of space frame structures with semi-
rigid connections. Eng Struct 235:112029. https://doi.org/10.1016/J.ENGSTRUCT.2021.112029 

3.  Pereira S, Magalhães F, Gomes JP, et al (2021) Vibration-based damage detection of a concrete arch dam. 
Eng Struct 235:112032. https://doi.org/10.1016/J.ENGSTRUCT.2021.112032 

4.  Farrar CR, Jauregui DA (1998) Comparative study of damage identification algorithms applied to a 
bridge:II.Numerical study. Smart Mater Struct 7:720–731. https://doi.org/10.1088/0964-1726/7/5/013 

5.  Zhang D, Bao Y, Li H, Ou J (2012) Investigation of Temperature Effects on Modal Parameters of the 
China National Aquatics Center. Adv Struct Eng 15:1139–1153. https://doi.org/10.1260/1369-
4332.15.7.1139 

6.  Li H, Li S, Ou J, Li H (2009) Modal identification of bridges under varying environmental conditions: 
Temperature and wind effects. Struct Control Heal Monit 17:n/a-n/a. https://doi.org/10.1002/stc.319 

7.  Salawu OS (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 
19:718–723. https://doi.org/10.1016/S0141-0296(96)00149-6 

8.  Mehrjoo M, Khaji N, Moharrami H, Bahreininejad A (2008) Damage detection of truss bridge joints using 
Artificial Neural Networks. Expert Syst Appl 35:1122–1131. https://doi.org/10.1016/j.eswa.2007.08.008 

9.  Pandey AK, Biswas M, Samman MM (1991) Damage detection from changes in curvature mode shapes. 
J Sound Vib 145:321–332. https://doi.org/10.1016/0022-460X(91)90595-B 

10.  Shadan F, Khoshnoudian F, Inman DJ, Esfandiari A (2016) Experimental validation of a FRF-based 
model updating method. J Vib Control. https://doi.org/10.1177/1077546316664675 

11.  Khoshnoudian F, Talaei S, Fallahian M (2017) Structural Damage Detection Using FRF Data, 2D-PCA, 
Artificial Neural Networks and Imperialist Competitive Algorithm Simultaneously. Int J Struct Stab Dyn 
17:. https://doi.org/10.1142/S0219455417500730 

12.  Zang C, Imregun M (2001) Structural Damage Detection Using Artificial Neural Networks and Measured 
Frf Data Reduced Via Principal Component Projection. J Sound Vib 242:813–827. 
https://doi.org/10.1006/jsvi.2000.3390 

13.  Shadan F, Khoshnoudian F, Esfandiari A (2016) A frequency response-based structural damage 
identification using model updating method. Struct Control Heal Monit 23:286–302. 
https://doi.org/10.1002/stc.1768 

14.  Mousavi AA, Zhang C, Masri SF, Gholipour G (2021) Structural damage detection method based on the 
complete ensemble empirical mode decomposition with adaptive noise: a model steel truss bridge case 
study. Struct Heal Monit. https://doi.org/10.1177/14759217211013535 

15.  Mousavi AA, Zhang C, Masri SF, Gholipour G (2021) Damage detection and characterization of a scaled 
model steel truss bridge using combined complete ensemble empirical mode decomposition with adaptive 
noise and multiple signal classification approach. Struct Heal Monit. 
https://doi.org/10.1177/14759217211045901 

16.  Bayissa WL, Haritos N, Thelandersson S (2008) Vibration-based structural damage identification using 
wavelet transform. Mech Syst Signal Process 22:1194–1215. 



29 
 

https://doi.org/10.1016/J.YMSSP.2007.11.001 

17.  Cocconcelli M, Zimroz R, Rubini R, Bartelmus W (2012) STFT Based Approach for Ball Bearing Fault 
Detection in a Varying Speed Motor. In: Condition Monitoring of Machinery in Non-Stationary 
Operations. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 41–50 

18.  Zhang Y, Guo Z, Wang W, et al (2003) A comparison of the wavelet and short-time fourier transforms 
for Doppler spectral analysis. Med Eng Phys 25:547–557. https://doi.org/10.1016/S1350-4533(03)00052-
3 

19.  Guo Z, Durand L-G, Allard L, et al (1993) Cardiac Doppler blood-flow signal analysis. Med Biol Eng 
Comput 31:242–248. https://doi.org/10.1007/BF02458043 

20.  Hadjileontiadis LJ, Douka E, Trochidis A (2005) Fractal dimension analysis for crack identification in 
beam structures. Mech Syst Signal Process 19:659–674. https://doi.org/10.1016/J.YMSSP.2004.03.005 

21.  Mousavi AA, Zhang C, Masri SF, Gholipour G (2021) Damage detection and localization of a steel truss 
bridge model subjected to impact and white noise excitations using empirical wavelet transform neural 
network approach. Measurement 185:110060. https://doi.org/10.1016/J.MEASUREMENT.2021.110060 

22.  Rakowski WJ (2017) Wavelet Approach to Damage Detection of Mechanical Systems and Structures. 
Procedia Eng 182:594–601. https://doi.org/10.1016/J.PROENG.2017.03.162 

23.  Solís M, Algaba M, Galvín P (2013) Continuous wavelet analysis of mode shapes differences for damage 
detection. Mech Syst Signal Process 40:645–666. https://doi.org/10.1016/J.YMSSP.2013.06.006 

24.  Ghanbari Mardasi A, Wu N, Wu C (2018) Experimental study on the crack detection with optimized 
spatial wavelet analysis and windowing. Mech Syst Signal Process 104:619–630. 
https://doi.org/10.1016/j.ymssp.2017.11.039 

25.  Chiariotti P, Martarelli M, Revel GM (2017) Delamination detection by Multi-Level Wavelet Processing 
of Continuous Scanning Laser Doppler Vibrometry data. Opt Lasers Eng 99:66–79. 
https://doi.org/10.1016/J.OPTLASENG.2017.01.002 

26.  Janeliukstis R, Rucevskis S, Akishin P, Chate A (2016) Wavelet Transform Based Damage Detection in 
a Plate Structure. Procedia Eng 161:127–132. https://doi.org/10.1016/J.PROENG.2016.08.509 

27.  Pnevmatikos NG, Hatzigeorgiou GD (2017) Damage detection of framed structures subjected to 
earthquake excitation using discrete wavelet analysis. Bull Earthq Eng 15:227–248. 
https://doi.org/10.1007/s10518-016-9962-z 

28.  Shahsavari V, Chouinard L, Bastien J (2017) Wavelet-based analysis of mode shapes for statistical 
detection and localization of damage in beams using likelihood ratio test. Eng Struct 132:494–507. 
https://doi.org/10.1016/J.ENGSTRUCT.2016.11.056 

29.  Cao M, Qiao P (2008) Integrated wavelet transform and its application to vibration mode shapes for the 
damage detection of beam-type structures. Smart Mater Struct 17:055014. https://doi.org/10.1088/0964-
1726/17/5/055014 

30.  Wu N, Wang Q (2011) Experimental studies on damage detection of beam structures with wavelet 
transform. Int J Eng Sci 49:253–261. https://doi.org/10.1016/J.IJENGSCI.2010.12.004 

31.  Okafor AC, Dutta A (2000) Structural damage detection in beams by wavelet transforms. Smart Mater 
Struct 9:906–917. https://doi.org/10.1088/0964-1726/9/6/323 

32.  Montanari L, Spagnoli A, Basu B, Broderick B (2015) On the effect of spatial sampling in damage 
detection of cracked beams by continuous wavelet transform. J Sound Vib 345:233–249. 



30 
 

https://doi.org/10.1016/J.JSV.2015.01.048 

33.  Yeung WT, Smith JW (2005) Damage detection in bridges using neural networks for pattern recognition 
of vibration signatures. Eng Struct 27:685–698. https://doi.org/10.1016/J.ENGSTRUCT.2004.12.006 

34.  Park J-H, Kim J-T, Hong D-S, et al (2009) Sequential damage detection approaches for beams using time-
modal features and artificial neural networks. J Sound Vib 323:451–474. 
https://doi.org/10.1016/J.JSV.2008.12.023 

35.  Jiang S-F, Zhang C-M, Zhang S (2011) Two-stage structural damage detection using fuzzy neural 
networks and data fusion techniques. Expert Syst Appl 38:511–519. 
https://doi.org/10.1016/J.ESWA.2010.06.093 

36.  Lam HF, Ng CT (2008) The selection of pattern features for structural damage detection using an extended 
Bayesian ANN algorithm. Eng Struct 30:2762–2770. 
https://doi.org/10.1016/J.ENGSTRUCT.2008.03.012 

37.  Padil KH, Bakhary N, Hao H (2017) The use of a non-probabilistic artificial neural network to consider 
uncertainties in vibration-based-damage detection. Mech Syst Signal Process 83:194–209. 
https://doi.org/10.1016/j.ymssp.2016.06.007 

38.  Dackermann U, Li J, Samali B (2013) Identification of member connectivity and mass changes on a two-
storey framed structure using frequency response functions and artificial neural networks. J Sound Vib 
332:3636–3653. https://doi.org/10.1016/j.jsv.2013.02.018 

39.  Marwala T (2000) Damage identification using committee of neural networks. J Eng Mech 126:43–50. 
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(43) 

40.  Bakhary N, Hao H, Deeks AJ (2007) Neural network based damage detection using substructure 
technique. In: 5th Australasian Congress on Applied Mechanics (ACAM 2007). pp 204–214 

41.  Hinton GE, Salakhutdinov RR (2006) Reducing the Dimensionality of Data with Neural Networks\r. 
Science (80- ) 313:504–507. https://doi.org/10.1126/science.1127647 

42.  Zolfaghari M, Jourabloo A, Gozlou SG, et al (2014) 3D human pose estimation from image using couple 
sparse coding. Mach Vis Appl 25:1489–1499. https://doi.org/10.1007/s00138-014-0613-6 

43.  Wolpert DH (2002) The Supervised Learning No-Free-Lunch Theorems. In: Soft Computing and 
Industry. Springer London, London, pp 25–42 

44.  Fallahian M, Khoshnoudian F, Meruane V (2017) Ensemble classification method for structural damage 
assessment under varying temperature. Struct Heal Monit An Int J 147592171771731. 
https://doi.org/10.1177/1475921717717311 

45.  Shi C, Pun CM (2019) Adaptive multi-scale deep neural networks with perceptual loss for panchromatic 
and multispectral images classification. Inf Sci (Ny) 490:1–17. https://doi.org/10.1016/j.ins.2019.03.055 

46.  Zhang W, Peng G, Li C, et al (2017) A new deep learning model for fault diagnosis with good anti-noise 
and domain adaptation ability on raw vibration signals. Sensors (Switzerland) 17:. 
https://doi.org/10.3390/s17020425 

47.  Chen C, Zhuo R, Ren J (2019) Gated recurrent neural network with sentimental relations for sentiment 
classification. Inf Sci (Ny) 502:268–278. https://doi.org/10.1016/j.ins.2019.06.050 

48.  Yang J, Zhang L, Chen C, et al (2020) A hierarchical deep convolutional neural network and gated 
recurrent unit framework for structural damage detection. Inf Sci (Ny) 540:117–130. 
https://doi.org/10.1016/j.ins.2020.05.090 



31 
 

49.  Pearson K (1901) On lines and planes of closest fit to systems of points in space. London, Edinburgh, 
Dublin Philos Mag J Sci 2:559–572. https://doi.org/10.1080/14786440109462720 

50.  Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow 
forecasting. J Hydrol 399:132–140. https://doi.org/10.1016/J.JHYDROL.2010.12.041 

51.  Hu W-H, Moutinho C, Caetano E, et al (2012) Continuous dynamic monitoring of a lively footbridge for 
serviceability assessment and damage detection. Mech Syst Signal Process 33:38–55. 
https://doi.org/10.1016/J.YMSSP.2012.05.012 

52.  Yan AM, Kerschen G, De Boe P, Golinval JC (2005) Structural damage diagnosis under varying 
environmental conditions - Part I: A linear analysis. Mech Syst Signal Process 19:847–864. 
https://doi.org/10.1016/j.ymssp.2004.12.002 

53.  Yan AM, Kerschen G, De Boe P, Golinval JC (2005) Structural damage diagnosis under varying 
environmental conditions - Part II: Local PCA for non-linear cases. Mech Syst Signal Process 19:865–
880. https://doi.org/10.1016/j.ymssp.2004.12.003 

54.  Guyon I, Elisseeff A (2001) Journal of machine learning research : JMLR. MIT Press 

55.  Bengio Y (2009) Learning Deep Architectures for AI. Found Trends® Mach Learn 2:1–127. 
https://doi.org/10.1561/2200000006 

56.  Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 
313:504–7. https://doi.org/10.1126/science.1127647 

57.  Wright J, Ma Y, Mairal J, et al (2010) Sparse representation for computer vision and pattern recognition. 
Proc IEEE 98:1031–1044. https://doi.org/10.1109/JPROC.2010.2044470 

58.  Erdal HI, Karakurt O, Namli E (2013) High performance concrete compressive strength forecasting using 
ensemble models based on discrete wavelet transform. Eng Appl Artif Intell 26:1246–1254. 
https://doi.org/10.1016/J.ENGAPPAI.2012.10.014 

59.  Ismail R, Mutanga O (2010) A comparison of regression tree ensembles: Predicting Sirex noctilio induced 
water stress in Pinus patula forests of KwaZulu-Natal, South Africa. Int J Appl Earth Obs Geoinf 12:S45–
S51. https://doi.org/10.1016/J.JAG.2009.09.004 

60.  van Wezel M, Potharst R (2007) Improved customer choice predictions using ensemble methods. Eur J 
Oper Res 181:436–452. https://doi.org/10.1016/J.EJOR.2006.05.029 

61.  Farrar CR, Baker WE, Bell TM, et al (1994) Dynamic characterization and damage detection in the I-40 
bridge over the Rio Grande 

62.  Mayes RL (1995) An experimental algorithm for detecting damage applied to the I-40 bridge over the 
{R}io {G}rande. Proc 13th Int Modal Anal Conf 219–225. https://doi.org/10.1117/12.207729 

63.  Meruane V, Heylen W (2012) Structural damage assessment under varying temperature conditions. Struct 
Heal Monit 11:345–357. https://doi.org/10.1177/1475921711419995 

 


