
Systematic Scalability Analysis for Microservices Granularity Adaptation
Design Decisions

Sara Hassana,∗, Rami Bahsoona, Rajkumar Buyyab

aSchool of Computer Science, University of Birmingham, Edgbaston B152TT, Birmingham, UK
bCloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems,

University of Melbourne, Parkville VIC 3010, Australia

Abstract

Microservices have gained wide recognition and acceptance in software industries as an emerging architectural

style for autonomous, scalable, and more reliable computing. A critical problem related to microservices is

reasoning about the suitable granularity level of a microservice (i.e. when and how to merge or decompose

microservices). Although scalability is pronounced as one of the major factors for adoption of microservices,

there is a general gap of approaches that systematically analyse the dimensions and metrics which are

important for scalability-aware granularity adaptation decisions. To the best of our knowledge, the state-

of-art in reasoning about microservice granularity adaptation is neither: 1) driven by microservice-specific

scalability dimensions and metrics nor, 2) follow systematic scalability analysis to make scalability-aware

adaptation decisions. In this paper, we address the aforementioned problems using a two-fold contribution.

Firstly, we contribute to a working catalogue of microservice-specific scalability dimensions and metrics.

Secondly, we describe a novel application of scalability goal-obstacle analysis for the context of reasoning

about microservice granularity adaptation. We analyse both contributions by comparing their usage on a

hypothetical microservice architecture against ad-hoc scalability assessment for the same architecture. This

analysis shows how both contributions can aid making scalability-aware granularity adaptation decisions.

Keywords: microservices, scalability, systematic analysis, guidance, goal-oriented analysis

1. Introduction

Microservices have recently made their way to various important industries such as transport [1], enter-

tainment [2, 3, 4], and retail [5, 6, 7]. At a very high level, microservices can be regarded as autonomous,

replaceable, and deployable artefacts that encapsulate distinct functionalities [8]. Microservices typically

interact through API gateways which usually hide internal implementation logic.

In [8] we term the transition to microservices as microservitization. In [9], we define microservitization

as a paradigm shift where services/components are transformed into microservices — a more fine-grained

and autonomous form of services to introduce added value to the architecture. The added value can take

several forms such as added replaceability of the service(s), better service traceability, and better quality-of-

service (QoS) provision under different workloads. This shift involves dramatically changing how a plethora

∗Corresponding author, Present affiliation: School of Computing and Digital Technology, Birmingham City University,
Curzon St B4 7XG, Birmingham, UK

Email addresses: Sara.Hassan@bcu.ac.uk (Sara Hassan), r.bahsoon@cs.bham.ac.uk (Rami Bahsoon),
rbuyya@unimelb.edu.au (Rajkumar Buyya)

December 26, 2021



of technical activities (including but not limited to architectural design, development, and deployment) are

carried out [9].

Microservitization takes into consideration the alignment of technical decisions in these activities with a

microservice adopter’s business objectives. For example, microservitization involves designing microservices

so that they isolate distinct functionalities. This isolation can introduce added value along a number of

dimension such as better replaceability or better traceability. This value would be a result of the flexibility

of the microservice architecture and thereby its ability to cope with operation, maintenance, and evolution

uncertainties. Ultimately, this can also relate to reduced maintenance costs and cost-effective QoS provision.

Among the critical microservitization design decisions is reasoning about the suitable granularity level

of a microservice. A granularity level determines “the service size and the scope of functionality a service

exposes [10, p.426].” Granularity adaptation entails merging or decomposing microservices at any stage of

the microservice lifecycle be it in the design or runtime phases. Granularity adaptation involves changing

the encapsulation of functionalities across microservices thereby moving to a finer or more coarse grained

granularity level. We do not restrict the mode of this change in our assumed definition of granularity

adaptation. In other words, merging/decomposing can happen at the source code, deployment, and/or

physical levels.

Granularity adaptation is critical because “splitting (microservices) too soon can make (other design

and operational decisions) very difficult to reason about [5].” For example, microservice granularity can

affect designing the communication links between microservices. Granularity can also affect the choice of

containers to host these microservices. Different container choices carry different operational costs.

It will likely happen that you (the software architect) will learn in the process of designing the microservice

hence calling for adapting its granularity both during the design time and runtime phases.

Among the main adopters of microservices are highly competitive industries (e.g., Netflix [3], Amazon

[7], and BBC [2]) which are characterised by scale. Therefore, scalability of a microservice architecture is

among the architecturally important requirements that is sought after by microservice adopters. Analysis

of microservice-specific literature in [9] concurs with this statement. One of the research objectives of the

microservice-specific systematic mapping study reported on in [9] is the following: ”which quality attributes

are considered when reasoning about microservice granularity and how are they captured?” Scalability was

reported in [9] as the most commonly considered quality attribute in the field of microservices when reasoning

about microservice granularity. Henceforth, it is essential that microservice granularity adaptation decisions

shall be aware of the dimensions and metrics that are important for the scalability of a microservices design. In

other words, it is essential that microservice adopters make scalability-aware granularity adaptation decisions.

Examples of dimensions that are important for the scalability of a microservice architecture include: workload,

the number of logical and physical dependencies across microservices, domain-specific factors (e.g., copyright

costs for media content streaming), and the volume of data accessed and/or shared across microservices.

This paper aims to address the following gap in analysing the scalability of a microservice design: Inad-

equacy of guidance regarding the dimensions and metrics which are important for making scalability-aware

granularity adaptation decisions: The current state-of-art shows inadequacies of knowledge and awareness

among microservice adopters, regarding the scalability dimensions and metrics that should drive the microser-

vice design in general and micorservice granularity adaptation in particular.“The problem is that scalability

is so dependent on the application domain and the system’s goals that accommodating all dimensions in pre-

defined categories is very challenging, if not impossible [11, p.18].” This challenge is critical in microservice

architectures; a large number of simultaneous inevitable scalability dimensions and metrics can affect the

2



scalability of a microservice architecture.

Consider a fictional running microservice-based application with a functionality and scale similar to Netflix

— called NetWatch. The dimensions affecting NetWatch’s scalability include logical interdependencies across

microservices and the volume of data shared across them. If granularity adaptation decisions for Netwatch

microservices consider scalability with respect to logical interdependencies, then the decisions suggested can

be less scalability-aware and might lead to less added value for NetWatch. A relatively more scalability-aware

decision would consider scalability with respect to both the logical dependencies and shared data volumes.

To address the above gap, the novel contribution of this paper is two-fold:

• A working catalogue of microservice-specific scalability dimensions and metrics. The catalogue builds

on a previous systematic mapping study by the authors for the state-of-the-art in reasoning about

microservice granularity adaptation [9]. This catalogue assists in identifying the microservice-specific

dimensions and metrics which are important for the scalability of a given microservice architecture and

thereby essential for making scalability-aware granularity adaptation decisions. Given this catalogue, it

is up to microservice adopters to tailor monitoring tools they utilise in order to track the dimensions and

measure metrics they consider relevant from this catalogue. The scope of our catalogue is to provide

guidance on which dimensions and metrics are relevant rather than how to track and measure them.

• An application of scalability goal-obstacle analysis [12, 11] in a new context that relates to reasoning

about scalability-aware microservice granularity adaptation. The objective is to assist software archi-

tects in systematically identifying and analysing the goals that are important to the scalability of a

microsevice architectures and the obstacles to these goals. Obstacles are indications of risks that can

obstruct satisfiability of scalability goals. Henceforth, the systematic analysis can justify the impor-

tance of considering a given scalability dimension when making a granularity adaptation decision. The

goal-obstacle analysis for microservice scalability is informed by dimensions from the catalogue.

Scalability goal-obstacle analysis was first attempted in [11, 13]; it is inspired by Keep-All-Objectives-

Satisfied (KAOS) goal-oriented modelling [14]. The input to this analysis is a refined KAOS goal-

oriented model of a system. Consequently, scalability goal-obstacle analysis aims to systematically

identify, assess, and resolve potential obstacles which can obstruct the system from satisfying its goals

if it was scaled along relevant dimensions. Scalability goal-obstacle analysis “attempts to establish a

uniform notion of scalability that can be applied in a wide variety of application domains and can

support analysis of scalability with respect to a wide variety of system qualities [13, p.383].” The

generality of scalability goal-obstacle analysis makes it more applicable to our context than other

domain-specific approaches that assess scalability (e.g., [15], [16], and [17]). Systems in those domains

are fundamentally different from those targeted in our context so scalability assessment approaches

developed for these domains are not transferable to our context. Furthermore, scalability goal-obstacle

analysis by definition has distinct steps to identify, assess, and resolve scalability-obstacles of a system.

Our catalogue acts as a pre-requisite for scalability goal-obstacle analysis. The catalogue can guide the

microservice architects to identify the important scalability dimensions and metrics thereby scoping down

the goal-obstacle analysis of a microservice architecture by providing more principled input to the analysis.

Consequently, scalability goal-obstacle analysis identifies and analyses obstacles along the dimensions from

our catalogue. Figure 1 illustrates input, processing and output for each of our contributions and shows

the link between them. The rest of the paper is organised as follows: In Section 2 we use a hypothetical

microservice architecture — Filmflix — as a motivating example. In Section 3 we reflect on our analysis

3



Figure 1: Outline of the two-fold contribution of this paper

of the state-of-the-art and how it was refined into our catalogue. In Section 4 we provide an overview of

KOAS goal-oriented modelling and scalability goal obstacle analysis. In Section 5, we analyse and discuss

our contributions by comparing their application to the Filmflix architecture from Section 2 against its ad-

hoc scalability assessment. In Section 6 we discuss the threats to validity related to our contributions. In

Section 7 we compare and contrast our work against relevant existing literature. In Section 8 we conclude

by reflecting on the significance of our contributions then we propose some short-term and long-term future

research directions that can build upon our contributions.

2. Motivating Scenario

We use a hypothetical online microservice application — Filmflix — as a case study to motivate the prob-

lem and highlight its significance. In Filmflix, microservices are used to build both the internal application

logic and the user-facing frontend. The drivers for transitioning to microservices, the utilities to be enhanced,

and the architects’ rationale in Filmflix are inspired by the Netflix’s experience in adopting microservices

[3, 18, 19].

Filmflix allows users to upload written movie reviews after they pass a regulation system. The regula-

tion involves looking for a set of a predefined blacklist of ”foul” terms in this review. The architecture of

Filmflix contains three microservices: ReviewRegulation — implementing the regulation of movie reviews,

ReviewUpload — managing the user input requirements when submitting a review, and MovieReview —

4



capturing input from the user through an interface and uploading a review that passes the regulation. Figure

2 illustrates the Filmflix architecture including the interaction between its three microservices.

Figure 2: Filmflix architecture

We consider Filmflix to be operating on a similar scale of Netflix. The scale at which Filmflix operates

in reality means it is inevitable that multiple scalability dimensions need to be considered when suggesting

a granularity adaptation strategy that can result in better QoS provision to the Filmflix architecture. For

example, the volume of data shared across Filmflix microservices and the number of geographical locations

served by Filmflix are among the dimensions which can affect the scalability of Filmflix. Consequently, both

dimensions need to be considering when making scalability-aware granularity adaptation decisions.

If the volume of shared data would be the only provided input and thereby would be considered when

reasoning about granularity, the decision might converge to merge the source code of these microservices or

even just host them in the same cloud cluster without source-code merging. If the geographical distribution

of the end users would be only considered, the decision might then converge to decompose microservices

so that functionalities related to each geographical area are encapsulated within the same microservice.

Therefore, reasoning about granularity adaptation decisions needs to consider both dimensions simultaneously

to suggest a scalability-aware granularity adaptation strategy. Guidance is therefore essential to identify the

important scalability dimensions and metrics for Filmflix then analyse potential obstacles for the satisfiability

of Filmflix’s goals if it is scaled along these dimensions.

Given the above scenario, we call for: 1) identifying the microservice-specific dimensions and metrics which

are important for the scalability of a microservice architecture and thereby essential for making scalability-

aware granularity adaptation decisions and, 2) systematically analysing the obstacles along each identified

dimension. These obstacles are indications of risks that can obstruct satisfying goals of interest to a mi-

croservice architecture. Henceforth, this systematic analysis justifies the importance of considering a given

scalability dimension to make a scalability-aware granularity adaptation decision.

We argue that a catalogue of microservice-specific scalability dimensions and metrics would be needed to

inform microservices adoption with scalability in mind. We derive this catalogue from microservice-specific

literature which we compiled in [9] to make specialised guidance fit for addressing the problem in Section

1. The generality of scalability goal-obstacle analysis [13] makes it flexible enough to be applicable in our

context as opposed to other domain-specific scalability assessment approaches. For example, state space size

is a scalability indicator of techniques used to tackle state explosion in model checking [15]. Effectiveness

calculated as a function of throughput and QoS is an indicator of scalability in parallel computing [16].

Cost-effectiveness of scalability calculated as a function of the system’s power and cost of this power is a

5



scalability indicator in distributed systems [17]. Despite their power in the domains they target, these domains

are fundamentally different from microservice architectures.Moreover, scalability goal-obstacle analysis by

definition has distinct steps (explained in Section 4) making it fitting for addressing the target problem of

this paper. Both contributions are complementary and aimed at analysing the ability to make scalability-

aware granularity adaptation decisions.

3. Working Catalogue of Microservice-specific Scalability Dimensions and Metrics

In this section we report on our microservice-specific catalogue of scalability dimensions and metrics

(Section 3.2) that compiles its input from a systematic mapping study conducted by the authors of this

paper [9]. According to this study, scalability is the most common quality considered when reasoning about

microservice granularity. This is reasonable given the dynamic, large-scale environment in which microser-

vices operate. This highlights the significance of our contributions; it is essential to make scalability-aware

granularity adaptation decisions.

3.1. State-of-the-art Scalability Dimensions for Microservices

In [9] we study microservice literature which presents processes that help in reasoning about microservice

granularity adaptation. In this section, we use this study as a basis for deriving the dimensions and metrics

of our catalogue.

Table 1 summarises whether and how scalability is considered when making granularity adaptation de-

cisions. The publications summarised in Table 1 are representative examples from our systematic mapping

study [9]. In essence, these processes help reason about microservice granularity adaptation so it is fitting to

use them as a basis for deriving the dimensions and metrics of our catalogue.

A scalability dimension can be regarded as any characteristic of the system design and/or its running

environment which can exhibit a wide variation in values during the system’s lifetime [11]. Scalability metrics

can be regarded as any measurable or computable variables that can measure the ability of a system to meet

its goals even when it is stressed along one or more scalability dimensions [16]. In essence, a scalability

dimension is an independent variable that an architect intentionally changes to scale up/down the system. A

scalability metric is a dependent variable which is observed in response to changes in scalability dimensions.

Therefore, both scalability dimensions and metrics are measurable variables, but they controlled differently.

For example, when testing a system a software architect may want to manually vary the number of concurrent

requests given to the system and observe the response time of the system with each change in the number of

requests. In that scenario, the scalability dimension is the number of concurrent requests while the scalability

metric is the response time of the system.

6



Granularity Reasoning Approach Scalability

Analysie?

Scalability

Assessment

Approach

Pattern Affecting Granularity

Adaptation

Scalability Dimensions Scalability

Metrics

Based on industrial surveys and

interviews, a brief catalogue of

microservice-specific bad smells ”which

negatively affect software quality

attributes such as understandability,

testability, extensibility, reusability, and

maintainability of the system under

development [20, p.59].” The solutions

adopted to fix these bad smells are in

essence drivers for microservice

granularity adaptation.

Discussion

Semantic versioning of

APIs

number of codebase ver-

sions

API gateways number of cyclical depen-

dencies across microser-

vices, number of interde-

pendent microservices

Lightweight communica-

tion mechanism adoption

volume of enterprise service

buses connecting microser-

vices

Microservice discovery

adoption

number of available IP ad-

dresses

Merging microservices ac-

cessing same databases

volume of data shared

across microservices

Polyglot persistence volume of data shared

across microservices

Shared library extraction number of libraries shared

across microservices

Systematically limiting the

number of used develop-

ment tools

number of development

technologies used

”Clear analysis of business

processes and the need for

resources [20, p.60]”

number of cross-cutting

business capabilities

Microservice architecture design

patterns some of which affect the

granularity of microservices (e.g.,

bulkheads); the process of adopting

each pattern and the considerations

related to it are discussed [21]

Discussion

Service registry/Self-

registration/Third-party

registration

Number of interdependent

microservices

API Keys and two-factor

authentication

security costs

Centralised and decen-

tralised logging

logging costs

Command Query Re-

sponsibility Segregation

(CQRS)

volume of data shared

across microservices

Multiple instances per

host/single server instance

per host/single server per

virtual machine/single

instance per container

containerisation/ virtuali-

sation costs

Message broker caching costs

A guide book of the best practices for

architecting microservice-based systems,

including how to modernise legacy

applications into microservice

architectures; this transition drives

granularity adaptation decisions [22]

Discussion

Message routing Network latency across mi-

croservices

time of

convergence

to an

adaptation

decision, ease

of

independent

development

after

pursuing

adaptation,

system

through-

put/response

time

DevOps and NoOps operational and infrastruc-

ture costs

Immutable

server/installation scripts

deployment pipeline costs,

number of interdependent

deployment configuration

setting

Sidecar number of development

technologies used, number

of interdependent teams

working on the architec-

ture, number of codebase

versions

Reference environments/

stubs/ consumer-driven

contract tests

number of integration test

cases spanning multiple

microservices, number of

consumer-driven contracts

to be met

Internal and external inter-

faces

number of user-facing in-

terfaces

Containerisation of service

registries

number of microservice

registries

7



Granularity Reasoning Approach Scalability

Analysie?

Scalability

Assessment

Approach

Pattern Affecting Granularity

Adaptation

Scalability Dimensions Scalability

Metrics

Transferring/Extracting

shared functionalities

number of shared libraries

across microservices

Client-based load balanc-

ing/service discovery/Load

balancer per microservice

number of load balancers

per microservice

Team-based documen-

tation/ Microservice-

based documenta-

tion/Documentation

versioning/Microservice

templates

volume of documentation

Edge-side Includes/Server-

side Includes

number of front-end servers

Content enricher number of light-weight

communication mecha-

nisms used

Event sourcing number of event buses

Circuit breakers monitoring costs

Database replication number of independent

databases, volume of

queries received by the

data store

A guide book for how to design

applications for maximum uptime,

performance, and return on investment;

these are common drivers of

microservitization. Therefore this book

can be regarded as a process supporting

granularity adaptation decisions [23].

Discussion

In-process method

calls/Interprocess com-

munication/Remote pro-

cedure calls/message-

oriented middleware/tuple

spaces

Number of interdependent

middleware

Bulkheads volume of multi-threading

Database clustering number of available virtual

IP addresses

A presentation of the current solutions

for modelling, integrating, testing, de-

ploying, and monitoring microservices;

all these dimensions affect or are af-

fected by granularity adaptation deci-

sions hence the presentation in this book

can act as procedural guidance for gran-

ularity adaptation decision-making [24]

A series of microservice decomposition

strategies mostly based on isolating

independent bounded contexts [25]

Discussion

Sagas for managing data

transactions

Volume of data transac-

tions

Request/Asynchronous

One-way (i.e. notifica-

tions)

volume of inter-

microservice communi-

cations

Publish/Subscribe and

Publish/Asynchronous

responses

volume of published events

Decomposition by domain,

sub-domain or scenarios

number of bounded con-

texts

Request/response mes-

sages

volume of requests

A presentation of best practices that can

ensure QoS provision through the mi-

croservitization process; some patterns

can drive granularity adaptation deci-

sions (e.g., clustering services according

to the client zone they serve) [26]

Discussion Service routing into zones geographical spread of end

user base

A case study describing an industrial ex-

perience for extracting microservices (i.e.

making granularity adaptation decisions)

[27]

8



Granularity Reasoning Approach Scalability

Analysie?

Scalability

Assessment

Approach

Pattern Affecting Granularity

Adaptation

Scalability Dimensions Scalability

Metrics

An industrial experience reporting on

data-driven granularity adaptation deci-

sions [28]

An industrial experience reporting on a

monolithic subsystem migration to mi-

croservices [29]

Case study

application

End user base size, number

of countries the application

is serving, audit compli-

ance considerations, data

transport and synchronisa-

tion costs

downtime

rate after

pursuing

adaptation

An industrial experience advocating for

microservitization through ”Everything-

as-a-Service” [30]

Discussion technology migration costs,

number of interdependent

teams

A case study describing procedural ex-

traction of microservices from a mono-

lithic architecture [31]

Discussion Number of interdependent

database tables,number of

RESTful APIs

Describing a pattern for extracting mi-

croservices from monoliths based on in-

crementally building new functionalities

surrounding existing ones [32]

Describing a pattern for extracting mi-

croservices driven by the event flow

throughout the architecture [33]

Proposal of a technique which identi-

fies candidates for microservice decom-

position depending on whether they are

client-, server- or data-related [34]

Case study

application

Code base size (measured

in lines of code), number

of shared database tables,

number of cross-cutting

functionalities, number of

microservices per cross-

cutting functionality

Issues related to componentisation, or-

ganisation, endpoints and messaging

mechanisms in the microservice archi-

tecture are discussed; these issues affect

granularity adaptation hence this dis-

cussion can support the decision-making

process [35]

An experience report on a migration to

decompose an existing application into

microservices and on how to decompose

an ongoing legacy modernization project

[36]

Case study

application

Technology migration

costs, number of bounded

contexts, number of ac-

cess points to back-end

microservices, number of

non-user related func-

tionalities, volume of

read/write database op-

erations, infrastructure

platform migration costs

transactional

consistency

after pursu-

ing adapta-

tion

A microservice decomposition approach

based on extending the usage of web min-

ing techniques and clustering algorithms

to characterise the workloads received by

a microservice application [37]

Case study

application

Volume of requests received

by the application

An experience reporting on a migration

process to decompose an existing appli-

cation into microservices and hte lessons

learnt from this transition [38]

Discussion end user base size, com-

plexity of end user require-

ments

Table 1: Summarising whether and how scalability is considered by the ”processes” (i.e. decision support systems) in [9]; a check
mark in the second column means scalability is considered when the respective system suggests granularity adaptation decisions;
the third column shows dimensions which the respective system deems important to consider for making scalability-aware
decisions

9



Reflecting on Table 1, we can make two observations: 1) scalability has not been considered for several

examined publications and, 2) where scalability has been considered, there is little consensus regarding the

dimensions and/or metrics across the examined publications. These observations motivate our first contri-

bution — a working catalogue of microservice-specific scalability dimensions and metrics for microservice

adopters. Consequently, these dimensions are essential to consider when making a scalability-aware granu-

larity adaptation decision regarding a microservice architecture.

3.2. Contribution 1: Working Catalogue of Microservice-Specific Scalability Dimensions and Metrics

Based on Table 1, we present our catalogue of scalability dimensions and metrics in Tables 2 and 3

respectively; dimensions and metrics are categorised according to their nature (e.g., organisational, data-

related and developmental). Some dimensions and metrics fit under more than one category so they are

mentioned more than once in Tables 2 and 3.
It is worth noting that our usage of the term ”microservice-specific” is not an indication that the dimen-

sions and metrics below are exclusive to analysing the scalability of microservice architectures. Our usage of
this term is an indication that the catalogue below includes the dimensions and metrics which are particularly
relevant to the microservice architecture based on the systematically studying microservice-specific literature
in [9]. Table 1 summarises a portion of this study’s results which is relevant to our contribution. This table
acts a means to cross-reference our catalogue presented below against the examined literature.

Nature Scalability Dimensions

Architectural Number of interdependent microservices, number of user-facing interfaces, number of mi-

croservice registries, number of load balancers per microservice, number of event buses,

number of interdependent middleware, number of RESTful API gateways, number of

bounded contexts

Deployment containerisation/virtualisation costs, deployment pipeline costs, number of front-end

servers, number of interdependent deployment configuration settings, number of configu-

ration files, computation resource costs

Security security costs, number of access points to back-end microservices

Data volume of shared data across microservices, number of independent databases, volume

of queries received by the data store, data transport and synchronisation costs, volume

of data transactions, volume of read/write database operations, data translation costs,

database maintenance costs

Testing Number of integration test cases spanning multiple microservices

Logging logging costs, caching costs

Communication Network latency across microservices, number of light-weight communication mechanisms

used, number of available virtual IP addresses, volume of published events in publish-

subscribe communication mechanisms, volume of synchronous requests

Operational Operational and infrastructure costs, monitoring costs

Developmental Number of development technologies used, number of codebase versions, number of shared

libraries across microservices, volume of documentation, volume of multi-threading, tech-

nology migration costs

Organisational Number of interdependent teams working on the architecture, volume of shared knowledge

across teams

Monitoring monitoring costs

QoS provision number of consumer-driven contracts to be met, end user base size, complexity of end

user requirements

Geographical number of countries the application is serving

Legal audit compliance considerations

Table 2: Working catalogue of microservice-specific scalability dimensions compiled from [9]; it is potentially essential to consider
these dimensions to make scalability-aware granularity adaptation decisions

10



Nature Scalability Metrics

Developmental ease of feature introduction after adaptation, ease of independent development after pur-

suing adaptation

Architectural Standardisation across interfaces after adaptation, stability of the architecture after adap-

tation

Data Data consistency after adaptation, transactional consistency after pursuing adaptation

QoS provision system performance (in throughput/response time), failure rate of adapted architecture

Table 3: Working catalogue of microservice-specific scalability metrics compiled from [9]; relevant scalability metrics can measure
the ability of a microservice architecture to scale along the relevant dimensions from Table 2

Given these catalogues, microservice adopters can manually elicit the relevant scalability dimensions and

metrics. The exact tools used to track the dimensions and measure the metrics elicited from this catalogue

depends on the specific microservice application being analysed. Therefore, the exact tools used to track

the dimensions and measure the metrics elicited from the catalogue is outside the scope of this paper. It

is worth noting that not all scalability dimensions are relevant for every given microservice application. In

practice, the relevance will vary depending on the microservitization utilities of concern. Moreover, not all

the scalability dimensions and metrics relevant to a microservice application will be critical to address within

that application. In some cases, the variance in the values of these dimensions and metrics will be small,

imposing very little impact on scalability. Nevertheless, this catalogue can be useful when the relevant

dimensions and metrics from the catalogue are systematically linked (through our second contribution —

scalability goal-obstacle analysis) to the system’s goals, and consequently to the likelihood and criticality of

scalability obstacles. In other words, the dimensions from our catalogue can scope the scalability-goal obstacle

analysis. The analysis justifies the criticality of dimensions picked from the catalogue given a microservice

architecture.

4. Contribution 2: Applying Scalability Goal-Obstacle Analysis to Microservice Granularity

4.1. KAOS Goal-Oriented Modelling

The Keep All Objectives Satisfied (KAOS) framework allows modelling a software system as a collection

of top-level goals operationalised through a hierarchy of AND/OR refinements to relate top-level goals to

lower level sub-goals which ensure them [39]. An AND-refinement relates a goal to a set of sub-goals; this

means that satisfying all the sub-goals in is necessary for achieving the parent goal. OR-refinement links

relate a goal to a set of alternative sub-goals (which may include further refinements); achieving one of the

alternative sub-goals is sufficient for achieving the parent goal. Each goal has is a prescriptive statement

including its pattern (e.g., Achieve, Maintain, Avoid), name and natural language definition [12]. Each goal

is assessable by satisfaction criteria and/or metrics.

Each goal is connected to an agent(s) through a responsibility link. Agents are active system components,

such as humans, hardware devices and software components, that are capable of goals they are responsible

for. Goals range from high-level objectives whose satisfaction involves multiple agents (e.g., providing efficient

decision-making support), to fine-grained technical properties involving fewer agents (e.g., monitoring runtime

evidence variables related QoSs of concern) [12].

Unlike goals that are prescriptive, domain hypotheses and assumptions are descriptive statements about

the system or its usage context which are subject to change but their validity is necessary for goal achievement

[12].

Compared to other goal-oriented modelling approaches, KOAS is particularly useful to scalability analysis

for the following reasons (among others) [11]:

11



1. Explicitly capturing the assumptions made about the system’s environment. ”The scalability of a

system is highly dependent not only on the assumptions made about the current system environment,

but also on the estimation of this environment in the future [11, p. 79].”

2. Providing traceability across the hierarchy of goals. This is instrumental to updates in assumptions

made about the system’s environment which can affect its scalability.

3. Assigning the responsibility of achieving a system goal to an agent. This is particularly helpful in

assigning the responsibility of achieving a scalability goal to a particular agent in the system.

4. Objectively capturing quality system goals.

5. Allowing for variations in assumptions made about the system environment. This is particularly relevant

to environments that are highly dynamic which is the case for microservice architectures.

4.2. Scalability Goal-Obstacle Analysis

Given a refined KAOS goal-oriented model of a system, scalability goal-obstacle analysis aims“to take a

pessimistic view of the model elaborated so far by systematically considering how the actual system might

deviate from the model [12, p.4]”. This entails the following steps [12]:

1. Identifying as many scalability obstacles as possible by systematically considering all leaf goals and

assumptions in the goal graph;

2. Assessing the relative importance of the identified obstacles in terms of their likelihood and criticality

to top-level goals;

3. Resolving the highly risky obstacles (which are both highly critical and highly likely) using obstacle

resolving tactics. These include modifying existing goals, requirements and assumptions, or by intro-

ducing new ones so as to prevent, reduce or tolerate the obstacles.

A scalability obstacle is a condition that obstructs the goal from being satisfied when the load imposed by

the goal on agents involved in its satisfaction exceeds the capacity of the agents. Each goal is connected to

the obstacles obstructing it using an obstruction link. A scalability obstacle uses the concept of goal load and

agent capacity to denote measures that characterize the amount of work needed and the amount of resources

available to the agent to satisfy the goal, respectively [12]. Therefore, a scalability obstacle takes the form

Goal Load Exceeds Agent Capacity. A goal load is another term for a scalability dimension.

Assessing the relative importance of a scalability obstacle is a product of its likelihood and criticality

inspired by the risk analysis matrix technique [40]. In this matrix, the likelihood of an obstacle is estimated

qualitatively on a scale from low to high and a similar scale is used to estimate criticality. This technique has

been used in the context of scalability goal-obstacle analysis in [41, 12] so we utilise the same technique for

consistency. We envision however that objective techniques such as those used in [42, 43] can also be applied

to assess scalability obstacles.

Resolving scalability obstacles can be done using a range of tactics that satisfy the following strategies

[44, 11]: goal substitution, agent substitution, obstacle prevention, goal weakening, obstacle reduction, goal

restoration, obstacle mitigation, and do-nothing. The obstacle prevention strategy for example can be satisfied

using tactics such as introducing either a domain assumption to be satisfied by some agent or a scalability

goal. A scalability goal is a quality goal constrained by expected variations on the scaling dimensions [12].

12



Scalability goal-obstacle analysis is a systematic rather than ad-hoc approach to assessing scalability.

Looking at the third column of Table 1, the state-of-the-art in assessing scalability when reasoning about

granularity adaptation is ad-hoc case study application or discussions. Hence, our application of scalability

goal-obstacle analysis in the field of microservices is a novel introduction of systematic solution to an ad-hocly

solved existing problem.

5. Analysis and Discussion of Contributions

In this section we use our Filmflix architecture (presented in Section 2) as a case study for showing how

our contributions address the inadequacy of microservice-specific scalability guidance.

In this section, we first ad-hocly discuss the dimensions and metrics which can affect the scalability of

Filmflix. Then we apply scalability goal-obstacle analysis to Filmflix; the analysis is scoped to dimensions

from our catalogue which we deemed relevant to Filmflix’s scalability. As mentioned in Section 3.2, not all

the dimensions and metrics would be relevant to a particular case study. Therefore, not all the dimensions

and metrics in Tables 2 and 3 are relevant to Filmflix. Also, the relevance of a particular dimension and/or

metric from the catalogue to Filmflix is a subjective matter depending on the microservitization utility of

concern. As far as the motivating scenario in Section 2 is concerned, the microservitization utility of concern

is improved QoS provision of the architecture. We do acknowledge that under different studies of Filmflix

with different microservitization utilities, different dimensions and metrics might be relevant. One of the

aims of the discussion in this section is to show the potential comprehensiveness of our catalogue. Therefore,

we are not concerned in this discussion about the underlying tools used to track the dimensions and measure

the metrics deemed relevant for Filmflix. We do appreciate applicability concerns of this matter in Section

8.

Reflecting on utilising our catalogue for Filmflix, we discuss the potential comprehensiveness of Tables

2 and 3. Nevertheless, we acknowledge that further investigation is needed to extend and/or refine our

catalogue. Comparing both scalability assessment approaches of Filmflix, we show how scalability goal-

obstacle analysis leads to much more informed results than ad-hoc scalability assessment (Section 5.3).

5.1. Filmflix Ad-hoc Scalability Assessment

Our scalability assessment in this section is inspired by our observations of FilmFlix’s architecture from

Section 2.

We regard the size of ”foul” terms blacklist, the number of user input fields when uploading a review,

and the number of reviews submitted simultaneously to Filmflix as the dimensions that can potentially affect

Filmflix’s scalability. This is grounded on the intuition that only the inputs are directly relevant to the func-

tionality of microservice in Filmflix can affect its scalability. ReviewRegulation compares each submitted

review against each term in the blacklist, so its size affects the ability of Filmflix to perform acceptably.

Depending on the number of input fields required by Filmflix architects, the performance of ReviewUpload

can be affected. MovieReview is the user-facing interface through which movie reviws are submitted; the

number of submitted reviews impacts Filmflix’s ability to perform acceptably. Furthermore, we regard the

response time of Filmflix as the only critical scalability metric. Thereafter, our ad-hoc assessment identifies

three potential scalability obstacles:

• As the number of foul terms in the blacklist increases, the response time of the Filmflix architecture

can deteriorate to an unacceptable extent.

13



• As the number of input fields required by Filmflix architects increases, the response time of the Filmflix

architecture can deteriorate to an unacceptable extent.

• As the number of simultaneous reviews submitted to Filmflix increases, the response time of the Filmflix

architecture can deteriorate to an unacceptable extent.

5.2. Filmflix Systematic Scalability Analysis

In this section, we apply scalability goal-obstacle analysis to the Filmflix architecture. We then discuss

how the analysis results can inform suggesting scalability-aware granularity adaptation decisions in Filmflix.

This section presents a usage scenario of our contributions and serves the following purposes:

• Illustrating how goal-obstacle analysis can aid in systematically highlighting and justifying dimensions

which need to be considered when suggesting scalability-aware granularity adaptation decisions (one

dimension of our contributions’ benefits presented in Section 1).

• Serving as an example of how microservice architects can get more informed granularity adaptation de-

cisions if they provide more well-rounded dimensions to reason about before suggesting those decisions.

• Serving as an example for microservice architects to replicate our guidance on other microservice ar-

chitectures.

5.2.1. KOAS Goal-Oriented Modelling of Filmflix

Filmflix has seven goals assigned to five agents; the goal model is presented and refined in Figure 3 using

the notation explained in Figure 4. In this subsection, we describe the role of each agent to justify their

responsibilities for different goals.

Figure 3: Refinement of the Achieve[Regulate written movie reviews from Filmflix end users] goal in Filmflix’s architecture

MovieReview: This agent is user-facing interface of Filmflix; it is responsible for receiving input and

displaying output related to the high-level goal (G1 in Figure 3). Receiving input is represented by G3 —

14



Figure 4: Legend for the KAOS modelling notation

Achieve[Receive written movie reviews and user information (split into fields)] ; displaying output is repre-

sented by G2 — Achieve[Upload written movie reviews from end users after they pass regulation].

Filmflix end users: This agent refers to any active Filmflix end user which submits input to MovieRe-

view. Therefore, active Filmflix end users share with the responsibility of achieving G3 in Figure 3 with

MovieReview.

ReviewUpload: This agent is a Filmflix microservice which is not facing end users but implements Filmflix

architects’ requirements regarding the required end user input fields (e.g., name, age, ethnicity, email etc.).

Therefore, ReviewUpload contributes to the design of MovieReview by achieving G4 — Achieve[Implement

user input fields].

ReviewRegulation: this agent is a Filmflix microservice which is core to regulating the output displayed

by MovieReview. Given each review submitted by a Filmflix end user, this microservice: (a) compares it

to a pre-defined blacklist (G7 in Figure 3) and, (b) allows MovieReview to upload reviews which do not

contain any term on the blacklist (contributing to G2). In parallel, ReviewRegulation has to maintain

this blacklist (G6 in Figure 3) given any compliance requirements dictated by Filmflix architects.

Filmflix architects: This agent refers generically to any source which the architects utilise to determine

input information required by Filmflix end users and foul terms that need to be included in the blacklist used

by ReviewRegulation. These sources include but are not limited to data privacy laws, historical data, and

compliance regulations. Therefore, Filmflix architects provide the input to achieve G4 and G6 in Figure 3.

5.2.2. Scalability Goal-Obstacle Analysis of Filmflix

Conducting scalability obstacle analysis on the goal model revealed five potential scalability obstacles
related to four scaling dimensions. In this subsection we present the process of identifying, assessing and
resolving these obstacles. Based on this systematic analysis, we discuss how goal obstacle resolution tactics
can inform reasoning about scalability-aware granularity adaptation decisions. Tables 4 and 5 summarise the
obstacle identification and assessment results.

Goal Scalability metric Scalability dimension Influenced by

Achieve[Regulate written movie

reviews from Filmflix end users]

MovieReview performance volume of received re-

views,number of ”foul” terms

in blacklist, number of Filmflix

end users, number of Filmflix

architects, number of user input

fields

volume of received reviews

<depends on> [number of

Filmflix end users], number

of ”foul” terms in blacklist

<depends on> [number of

Filmflix architects], number of

user input fields <depends on>

[number of Filmflix architects]

Achieve[Upload written movie

reviews from end users after

they pass regulation]

MovieReview performance volume of reviews that passed

the regulation

15



Goal Scalability metric Scalability dimension Influenced by

Achieve[Receive written movie

reviews and user information

(split into fields)]

MovieReview performance volume of received reviews,

number of user input fields

Achieve[Implement user input

fields]

ReviewUpload performance number of Filmflix architects,

number of user input fields

number of user input fields

<depends on> [number of Film-

flix architects]

Achieve[Regulate submitted

movie reviews]

ReviewRegulation perfor-

mance

number of ”foul” terms in black-

list, number of Filmflix archi-

tects, volume of received re-

views, number of Filmflix end

users

number of ”foul” terms in black-

list <depends on> [number of

Filmflix architects], volume of

received reviews <depends on>

[number of Filmflix end users]

Maintain[Up to date blacklist

of ”foul” terms (regulation sys-

tem)]

ReviewUpload performance number of ”foul” terms in black-

list, number of Filmflix archi-

tects

number of ”foul” terms in black-

list <depends on> [number of

Filmflix architects]

Achieve[Compare the submitted

review against a blacklist of

”foul” terms]

ReviewRegulation perfor-

mance

number of ”foul” terms in black-

list

Table 4: Identifying relevant scalability dimensions and metrics (guided by Tables 2 and 3) for the modelled goals of the Filmflix
architecture; this table is used to identify the scalability obstacles in Table 5

Scalability Obstacle Criticality Likelihood Rationale

Number of Filmflix end users

exceeds MovieReview’s ability

to achieve acceptable perfor-

mance

High High Based on the assumption from Section 2 that Filmflix on a scale similar

to Netflix, there is a high likelihood of having a large number of active

end users submitting reviews. This will affect MovieReviews ability to

achieve G3 in Figure 3. Since MovieReview is the user-facing interface,

it is critical for its performance to remain acceptable to avoid losing

the interest of a large number of end users.

Volume of reviews which passed

the regulation exceed MovieRe-

view’s ability to achieve accept-

able performance

High Low Even for the scale at which Filmflix operates, only a fraction of the

received reviews will be uploaded by MovieReview, so they likelihood

of this obstacle is low. Nevertheless, if this obstacle where to occur

it would be critical since it affects achieving a user-facing goal (G2 in

Figure 3).

Number of user input fields ex-

ceeds MovieReview’s ability to

achieve acceptable performance

Low Low Since received user information is not subject to regulation and it is not

uploaded to MovieReview along with an accepted review, the number

of fields has little impact on MovieReview’s performance.

Number of Filmflix architects

exceeds ReviewUpload’s capac-

ity to achieve acceptable perfor-

mance

Low High The likelihood of this obstacle depends on possibility of conflicts across

international data privacy and compliance rules (both of which are

sources for Filmflix architects to determine the input to ReviewU-

pload). Possibility of such conflicts is high given the potential geo-

graphical distribution of Filmflix end users. Even if this obstacle were

to occur, its criticality to the overall goal G1 in Figure 3 is low since

ReviewUpload does not utilise or regulate the submitted reviews.

Number of Filmflix end users

exceeds ReviewRegulation’s

ability to achieve acceptable

performance

High High The number of active end users determines the volume of reviews which

have to regulated. For the scale of Filmflix, it is highly likely to have a

large number of active end users leading to a large volume of reviews

to be regulated and high likelihood of this obstacle. If ReviewRegu-

lation does not achieve acceptable performance, then the user-facing

G2 is potentially obstructed leading to the risk of losing end users’

interest.

16



Scalability Obstacle Criticality Likelihood Rationale

Number of Filmflix architects

exceed ReviewRegulation’s

ability to achieve acceptable

performance

High High Given the potential geographical spread of Filmflix end users, it is

highly likely a large number of sources is used by Filmflix architects to

determine the ”foul” terms which ReviewRegulation has to main-

tain. There are two highly likely implications of this: 1) a large number

of terms against which each review needs to be compared and 2) fre-

quent updates to the blacklist during which no regulation can be done.

Both implications are critical since they are obstruct achieving G2, G6

and G7 with acceptable performance.

Table 5: Assessing scalability obstacles of the Filmflix architecture

Reflecting on Table 5, there are three high risk obstacles that need to be resolved to ensure Filmflix’s

architecture achieves its goals with acceptable performance. In other words, these obstacles need to be

considered when reasoning about adapting the granularity of Filmflix’s architecture.

Figure 5: Resolving the Number of Filmflix end users exceeds MovieReview’s ability to achieve acceptable performance obsta-
cle by introducing and refining the Avoid [Number of Filmflix end users exceeds MovieReview’s ability to achieve acceptable
performance] scalability obstacle prevention goal

Using resolution tactics from [12, 11], we propose preventing the Number of Filmflix end users exceeds

MovieReview’s ability to achieve acceptable performance obstacle from occurring by introducing and refining

a scalability obstacle prevention goal:Avoid [Number of Filmflix end users exceeds MovieReview’s ability to

achieve acceptable performance]. This goal can be achieved via two routes, illustrated as an OR-refinement

of G8 in Figure 5. On one hand, it can be achieved by ensuring the MovieReview’s granularity level enables

it to perform acceptably given observed numbers of Filmflix end users (G9 and G10 in Figure 5). If Film-

flix architects were to achieve G9 and G10, architects can reason about granularity while considering the

relationship between number of Filmflix end users and MovieReview performance.

Alternatively, G8 in Figure 5 can be achieved if Filmflix architects can ensure that the number of Filmflix

end users never stresses MovieReview beyond its performance ability (G12 in Figure 5). This ability is derived

from monitoring MovieReview’s performance (G11 in Figure 5). This route of achieving G8 does not involve

adapting MovieReview’s granularity.

To resolve the Number of Filmflix architects exceed ReviewRegulation’s ability to achieve acceptable per-

formance obstacle, we propose introducing and refining a scalability obstacle prevention goal:Avoid [Number

17



Figure 6: Resolving the Number of Filmflix architects exceed ReviewRegulation’s ability to achieve acceptable performance
obstacle by introducing and refining the Avoid [Number of Filmflix architects exceed ReviewRegulation’s ability to achieve
acceptable performance] scalability obstacle prevention goal

Figure 7: Resolving the Number of Filmflix end users exceed ReviewRegulation’s ability to achieve acceptable performance
obstacle by introducing and refining the Avoid [Number of Filmflix end users exceed ReviewRegulation’s ability to achieve
acceptable performance] scalability obstacle prevention goal

of Filmflix architects exceed ReviewRegulation’s ability to achieve acceptable performance]. This goal can

be achieved via two routes, illustrated as an OR-refinement of G13 in Figure 6. Although G13 is presented

as a refinement of G6 in Figure 6, we appreciate that G13 is also relevant to achieving G2 and G7 from

Figure 3. G13 can be achieved by ensuring the ReviewRegulation’s granularity level enables it to perform

acceptably given observed numbers of Filmflix architects (G14 and G15 in Figure 6). The number of Filmflix

architects is a generic term referring to the number of sources which are consulted to build the blacklist used

by ReviewRegulation.

If Filmflix architects were to achieve G14 and G15, architects can justify reasoning about granularity adap-

tation decisions while considering the relationship between number of Filmflix architects and ReviewReg-

18



ulation performance.

G13 in Figure 6 can also be achieved if Filmflix architects can ensure that the number of sources used to

compile the blacklist in ReviewRegulation never stresses that microservice beyond its performance ability

(G17 in Figure 6). This ability is estimated from monitoring ReviewRegulation’s performance (G16 in

Figure 6). This route of achieving G13 does not involve adapting ReviewRegulation’s granularity.

To resolve the Number of Filmflix end users exceeds ReviewRegulation’s ability to achieve acceptable

performance obstacle, we propose introducing and refining a scalability obstacle prevention goal:Avoid [Num-

ber of Filmflix end users exceed ReviewRegulation’s ability to achieve acceptable performance]. This goal

can be achieved via two routes, illustrated as an OR-refinement of G18 in Figure 7.

G18 can be achieved by ensuring the ReviewRegulation’s granularity level enables it to perform ac-

ceptably given observed numbers of Filmflix end users (G19 and G20 in Figure 7). If Filmflix architects were

to achieve G19 and G20, architects can use them to consider the relationship between number of Filmflix

end users and ReviewRegaulation performance when reasoning about granularity adaptation.

G18 in Figure 7 can alternatively be achieved if Filmflix architects can ensure that the number of sources

used to compile the blacklist in ReviewRegulation never stresses that microservice beyond its performance

ability (G22 in Figure 7). This ability is derived from monitoring ReviewRegulation’s performance (G21

in Figure 7). This route of achieving G18 does not involve adapting ReviewRegulation’s granularity.

5.3. Discussion

5.3.1. Catalogue Comprehensiveness

Reflecting on the scalability dimensions in Table 5, we observe that the most critical scalability dimensions

for Filmflix (i.e. number of Filmflix end users and number of Filmflix architects) are present in Table 2. The

number of end users is in essence the end user base size in Table 2. According to Section 5.2, Filmflix

architects is a generic term referring sources which include but are not limited to data privacy laws, historical

data, and compliance regulations. Therefore, the number of Filmflix architects in Table 5 potentially maps

to the number of countries the application is serving and audit compliance considerations in Table 2. One

of the scalability dimensions which have not been deemed critical — volume of received reviews — can be

mapped to the end user base size in Table 2. The mapping is based on the relationship between volume of

received reviews and number of Filmflix end users captured in Table 5. The same can be said about number

of ”foul” terms in blacklist and number of user input fields since they both depend on number of Filmflix

architects which is a dimension implicitly present in Table 5. All the scalability metrics considered 4 are

related to performance; it is present under the QoS provision in Table 3.

It is worth noting however that while the application to Filmflix can act as evidence for the comprehen-

siveness of our catalogues, they can only be as good as the model of the analysed case study. Moreover, the

comprehensiveness of our catalogue relies heavily on the completeness we strived for in [9]. In particular, we

used all the relevant publications from [9] to compile the catalogues due to our confidence in this paper’s

coverage of the relevant literature.

It is also worth noting that although some of dimensions and metrics in our catalogue have not been

deemed to be potential obstacles in Section 5, this does not mean those metrics/dimensions need not be con-

sidered for other microservice architectures. The aim of our catalogue is to provide comprehensive guidance

for microservice architects about the possible scalability dimensions and metrics. Therefore, it is through sys-

tematic scalability goal-obstacle analysis of a particular microservice architecture that the dimension/metric

significance to it can be justified.

19



Another point is worth noting regarding the catalogue of metrics in particular. Not every category of

dimensions in Table 2 has a corresponding category of metrics in Table 3. The categories in Table 3 are a

direct representation of the metrics we came across in the examined microservice literature in [9]. Therefore,

our catalogue unveils a research gap in the microservice state-of-the-art and -practice regarding the existence

of adequate scalability metrics.

We subjectively assigned the dimensions and metrics to their respective categories based on their usage

in the examined publications. Nevertheless, we acknowledge that objective categorisation of the metrics and

dimensions can be a future refinement of these catalogues.

5.3.2. Scalability Goal-Obstacle Analysis Significance

Comparing Filmflix scalability assessment results in Sections 5.1 and 5.2, we observe that goal-obstacle

analysis delved to the actual dimensions which impact the ones identified by ad-hoc scalability assessment.

Moreover, ad-hoc scalability assessment failed to systematically identify how obstacle resolution tactics can

inform microservice granularity adaptation; this is possible through goal-obstacle analysis. Although we

apply scalability goal-obstacle analysis to one microservice architecture, the same experience can be copied

to other microservice architectures with different scalability metrics and perhaps conflicting system goals.

We acknowledge that the practicality of applying scalability goal-obstacle analysis needs to be investigated

further in cases where there are: (a) conflicting system goals, (b) conflicting obstacle resolution tactics. As

for scalability metrics, we envision that assessing system goals using metrics other than performance would

not impact the practicality of the approach. After all, the exercise of monitoring architectural metrics is

passive rather than active. Therefore, monitoring failure rate for example alongside performance would not

render our approach impractical.

6. Threats to Validity

We reflect on threats to validity regarding our contributions’ maturity. We reflect on internal and external

threats to validity.

Internal: We acknowledge that for some microservice architectures making scalability-aware granularity

adaptation decisions might not be critical for a microservice architecture to satisfy its goals. Our systematic

analysis approach addresses this issue by relating the scalability obstacle resolution tactics (which include

granularity adaptation) to goal satisfaction.

External: we acknowledge that our discussion in Section 5.3 is derived from the Filmflix case study. In

other words, it might not be the case that our discussion generalises to all microservice case studies of different

sizes and/or application domains. In fact, we view this as a positive point for the potential development of

our working catalogue. As mentioned in Section 5.3.1, using our catalogue for more case studies can refine

both the depth and breadth of our catalogue. As for the scalability goal-obstacle analysis, our target in

Section 5 was to show the significance of scalability goal-obstacle analysis compared to ad-hoc assessment

which the state-of-the-art in the microservice field. Exhaustively proving such significance on all possible

scopes, application domains and complexities would be infeasible. Nevertheless, we do acknowledge the need

for objective experimentation with a wider variety of microservice case studies (particularly from industry)

to strengthen the argument for the generality of our work.

20



7. Related Work

In this section, we compare and contrast our work against existing literature that accounts for microservice

scalability requirements when reasoning about granularity adaptation. Table 6 summarises the existing liter-

ature we examined along with the comparison results along three dimensions: acknowledging the significance

of scalability for microservices, providing systematic guidance for scalability-aware design of microservices,

whether or not this guidance is specific to a certain application domain, and whether or not recommendations

for scalability-aware design decisions are provided.

Work Acknowledges Scalability

Significance

Provides Systematic Scala-

bility Guidance

Provides non-domain spe-

cific guidance

Provides scalability-aware

design decision advice

S. Hassan, R. Bahsoon, R.

Kazman (2019) [9]

C. Joseph, K. Chan-

drasekaran (2019) [45]

M. Ahmadvand, A.

Ibrahim (2016) [46]

N. Dragoni et al. (2017)

[47]

N. H. Do et al. (2017) [48]

S. N. Srirama, M. Adhikari,

S. Paul (2020) [49]

M. Abdullah, W. Iqbal, A.

Erradi [50]

A. Avritzer et al. (2020)

[51]

Freire, Augusto Flávio A.

A. et al. (2021) [52]

Chen, F. and Zhang, L. and

Lian, X. (2021) [53]

Joseph, Christina Terese

and Chandrasekaran, K.

(2019) [54]

Balalaie, A. et al (2018)

[55]

Taneja, M et al (2019)[56]

Microservice-specific scala-

bility guidance (this work)

Table 6: Summarising the results of comparing and contrasting our work against existing relevant literature

Our contributions in this paper are inspired by the systematic mapping study conducted and reported

in [9]. However, the objectives of [9] are broader than the target of this paper. In this paper we focus on

compiling guidance for making scalability-aware granularity adaptation decisions. In [9], the objectives entail

more aspects of granularity adaptation (e.g., how microservices are modelled and what quality attributes are

considered when reasoning about granularity adaptation).

Another literature survey that explicitly acknowledges scalability in relation to microservices is [45]. This

surveys broadly studies and categorises microservice literature into a round taxonomy. Among the categories

is microservice load balancing, which is one of the main techniques of achieving microservice scalability. By

including this category, this work overlaps with our objective of acknowledging the significance of designing

for microservice scalability. Nevertheless, our work takes a further step by providing systematic guidance for

achieving scalability-aware granularity adaptation decisions.

In [46], the authors propose a “conceptual methodology using which security and scalability requirements

are incorporated in decomposing system into microservices.” We appreciate that this work provides a sys-

21



tematic methodology for scaling a microservice architecture. We also acknowledge that their work makes

security-aware design decisions. However, our work is unique in studying the resolution tactics given potential

scalability obstacles in a microservice architecture.

Similar to our work, [47] discusses the importance of scalability for microservice architectures. In that

sense, both this paper and ours overlap regarding the significance of scalability when designing microservice

architecture. However, our work is unique in providing guidance that actually manifests this significance in

granularity adaptation decisions.

On a more practical front, [48] proposes a scalable routing mechanism for applications designed according

to the microservice architecture. We appreciate that this is a systematic, efficient approach for addressing

scalability requirements of a microservice architecture. Nevertheless, our scalability goal obstacle analysis

approach is more general hence making it applicable to applications where other approaches to scaling are

taken. Furthermore, our work is focussed on making scalability-aware granularity adaptation decisions. In

[48], the approach is targeted at scaling microservice architectures regardless granularity of the microservices.

Another practical auto-scaling policy is proposed in [49] integrated with a container-aware application

scheduling strategy. The contribution in this paper is aimed at efficiently deploying microservices with mini-

mum processing time and cost, while utilizing the computing resources efficiently on the cloud. We appreciate

that the contribution of this paper can help in designing scalable microservice architectures. Nevertheless,

this work does not explicitly focus on granularity adaptation decisions as we do in our contributions. Similar

focus on auto-scaling has been presented in [50] where a complete automated system to decompose, deploy,

and auto-scaling microservices to maintain the desired response time has been proposed. This work definitely

puts granularity adaptation at its forefront which aligns with our objectives. Nevertheless, we argue that our

work is more general since it does not link scalability only to improved performance.

An objective, systematic approach for assessing scalability of microservice architectures is proposed in

[51]. It uses operational profiles to generate load tests to automatically assess scalability pass/fail criteria

of microservice configuration alternatives. Our work takes this assessment a step further by proposing ways

to resolve scalability obstacles that can be uncovered by such assessment. Therefore, we envision that the

contribution in [51] can complement our scalability goal-obstacle analysis.

Overall, our work overlaps with existing literature in acknowledging the significance of considering scalabil-

ity when designing microservice architecture. However, our work is unique in linking scalability to granularity

adaptation decisions in particular and providing systematic non-domain specific guidance for this link.

8. Conclusions and Future Work

In this paper, we contribute to a working catalogue of microservice-specific scalability dimensions and

metrics. Our catalogue helps identify dimensions and metrics which are important for the scalability of a

given microservice architecture; they need to be considered to make scalability-aware granularity adaptation

decisions for it. We compile our catalogue by reviewing the state-of-the-art in microservice granularity

adaptation from [9]. Secondly, we report on a new application of scalability goal-obstacle analysis [12, 11]

in the context of reasoning about microservice granularity adaptation. Applying scalability goal-obstacle

analysis to a microservice architecture helps identify obstacles along each dimension of importance from our

catalogue.

We analyse and discuss our contributions by comparing their usage to both Filmflix architecture in

Section 2 against ad-hoc scalability assessment. Comparing both assessment approaches, we show how our

22



contributions lead to more informed results than ad-hoc scalability assessment. Finally, we discuss how

scalability goal-obstacle analysis can be applied to other microservice architectures.

Our contributions pave the way to future research directions. In the short-term, we appreciate that fur-

ther investigation is required to assess the comprehensiveness of our catalogue and ensure that no dimensions

and/or metrics in the literature have been wrongly skipped or made redundant. Investigation here can be

via interviewing microservice adopters and/or applying our contributions to an industrial case study. We

also intend to experimentally and quantitatively evaluate the applicability of our contributions in industrial-

scale microservice applications. We intend to experiment with a set of open-source microservice case studies

of different scales larger than Filmflix and with a myriad microservitization concerns. Such experimenta-

tion would involve quantitatively measuring relevant scalability metrics before and after resolving critical

scalability obstacles. Such experimentation will pave the way to evaluate the following criteria: (a) does a

scalability-aware granularity adaptation decision actually result in better scalability metric values compared

to the values measured if the decision does not consider scalability and, (b) what is the scope of applicability

of our guidance and what sizes of case studies can be tackled by the proposed guidance? Regarding the

second criertion in particular, we envision that the hierarchical nature of KAOS can help to iteratively scope

the model of the microservice system of concern. In other words, our approach can be applied initially on

a high-level model of the large-scale system which abstracts away from the lower level goals. Subsequently,

a more fine-grained KAOS model of a sub-system can be the input to the next iteration of applying our

approach.

In the long-term, we envision that scalability goal-obstacle analysis can itself be developed into a semi-

automated tool to assess the impact of scalability on microservice granularity. Another interesting research

direction is to develop guidance for making granularity adaptation decisions that are aware of other dimensions

(e.g., availability-aware, maintainability-aware, and/or reliability-aware).

References

[1] E. Reinhold, Lessons learned on uber’s journey into microservices,

https://www.infoq.com/presentations/uber-darwin (Jul 2016).

[2] S. Godwin, Cloud-based microservices powering bbc iplayer (jun 2016).

URL https://www.infoq.com/presentations/bbc-microservices-aws?utm_campaign=infoq_

content&utm_source=infoq&utm_medium=feed&utm_term=Microservices

[3] K. Probst, J. Becker, Engineering trade-offs and the netflix api re-architecture,

https://medium.com/netflix-techblog/engineering-trade-offs-and-the-netflix-api-re-architecture-

64f122b277dd (aug 2016).

[4] P. Calcado, No free lunch, indeed: Three years of micro-services at soundcloud,

http://www.infoq.com/presentations/soundcloud-microservices (Jan).

[5] Z. Dehghani, Zhamak dehghani real world microservices: Lessons from the frontline,

https://youtu.be/hsoovFbpAoE (feb 2015).

[6] G. Steinacker, On monoliths and microservices, https://dev.otto.de/2015/09/30/on-monoliths-and-

microservices/ (sep 2015).

23

https://www.infoq.com/presentations/bbc-microservices-aws?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=Microservices
https://www.infoq.com/presentations/bbc-microservices-aws?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=Microservices
https://www.infoq.com/presentations/bbc-microservices-aws?utm_campaign=infoq_content&utm_source=infoq&utm_medium=feed&utm_term=Microservices


[7] T. Wagner, Microservices without the servers (Sep 2015).

URL https://aws.amazon.com/blogs/compute/microservices-without-the-servers/

[8] S. Hassan, R. Bahsoon, Microservices and their design trade-offs: A self-adaptive roadmap, in: 13th

IEEE International Conference on Services Computing (SCC), San Francisco, USA, 2016.

[9] S. Hassan, R. Bahsoon, R. Kazman, Microservice transition and its granularity problem: A systematic

mapping study, Software: Practice and Experience 50 (2020).

[10] N. Kulkarni, V. Dwivedi, The role of service granularity in a successful soa realization a case study, in:

2008 IEEE Congress on Services - Part I, 2008, pp. 423–430.

[11] L. D. de Cerqueira, A framework for the characterization and analysis of software systems scalability,

Ph.D. thesis, University College London (University of London) (2010).

[12] L. Duboc, E. Letier, D. S. Rosenblum, Systematic elaboration of scalability requirements through goal-

obstacle analysis, IEEE Transactions on Software Engineering 39 (1) (2013) 119–140.

[13] L. Duboc, D. Rosenblum, T. Wicks, A framework for characterization and analysis of software system

scalability, in: Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-FSE ’07, ACM,

New York, NY, USA, 2007, pp. 375–384.

[14] R. IT, A kaos tutorial (oct 2007).

URL http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

[15] J. Edmund M. C., O. Grumberg, D. Peleg, Model Checking, The MIT Press, 1999.

[16] P. Jogalekar, M. Woodside, Evaluating the scalability of distributed systems, IEEE Transactions on

Parallel and Distributed Systems 11 (6) (2000) 589–603.

[17] P. Jogalekar, C. Woodside, A scalability metric for distributed computing applications in telecommuni-

cations, in: V. Ramaswami, P. Wirth (Eds.), Teletraffic Contributions for the Information Age, Vol. 2

of Teletraffic Science and Engineering, Elsevier, 1997, pp. 101 – 110.

[18] S. Tonse, Scalable microservices at netflix. challenges and tools of the trade,

http://www.infoq.com/presentations/netflix-ipc (mar 2015).

[19] C. Watson, S. Emmons, B. Gregg, A microscope on microservices, https://medium.com/netflix-

techblog/a-microscope-on-microservices-923b906103f4 (feb 2015).

[20] D. Taibi, V. Lenarduzzi, On the definition of microservice bad smells, IEEE Software 35 (3) (2018)

56–62.

[21] L. Krause, Microservices: Patterns and Applications: Designing Fine-Grained Services by Applying

Patterns, Lucas Krause, 2015.

URL https://books.google.co.uk/books?id=dd5-rgEACAAJ

[22] E. Wolff, Microservices: Flexible Software Architecture, Pearson Education, 2016.

URL https://books.google.co.uk/books?id=zucwDQAAQBAJ

24

https://aws.amazon.com/blogs/compute/microservices-without-the-servers/
https://aws.amazon.com/blogs/compute/microservices-without-the-servers/
http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf
http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf
https://books.google.co.uk/books?id=dd5-rgEACAAJ
https://books.google.co.uk/books?id=dd5-rgEACAAJ
https://books.google.co.uk/books?id=dd5-rgEACAAJ
https://books.google.co.uk/books?id=zucwDQAAQBAJ
https://books.google.co.uk/books?id=zucwDQAAQBAJ


[23] M. Nygard, Release It! Design and Deploy Production-Ready Software, Pragmatic Bookshelf, 2007.

[24] S. Newman, Building Microservices, 1st Edition, O’Reilly Media, 2015.

[25] C. Richardson, Microservice Patterns, Manning Publications Company, 2018.

URL https://books.google.co.uk/books?id=UeK1swEACAAJ

[26] C. Posta, The hardest part of microservices: Calling your services,

http://blog.christianposta.com/microservices/the-hardest-part-of-microservices-calling-your-services/

(apr 2017).

[27] S. Penchikala, Susanne kaiser on microservices journey from a startup perspective,

https://www.infoq.com/news/2017/07/kaiser-microservices-journey (jul 2017).

[28] S. Penchikala, Managing data in microservices, https://www.infoq.com/news/2017/06/managing-data-

in-microservices (jun 2017).

[29] S. Vlaovic, R. Pilani, S. Parulekar, S. Handa, Netflix billing migration to aws,

https://medium.com/netflix-techblog/netflix-billing-migration-to-aws-451fba085a4 (Jan 2016).

[30] D. Iffland, Q&a with intuit’s alex balazs, https://www.infoq.com/articles/intuit-alex-balazs-node-

services (Jun 2016).

[31] C. Posta, Low-risk monolith to microservice evolution part i,

http://blog.christianposta.com/microservices/low-risk-monolith-to-microservice-evolution/ (jun 2015).

[32] M. Fowler, Strangler application, https://www.martinfowler.com/bliki/StranglerApplication.html (Jun

2004).

[33] M. Fowler, Event interception, http://www.martinfowler.com/bliki/EventInterception.html (Jun 2004).

[34] A. Levcovitz, R. Terra, M. T. Valente, Towards a technique for extracting microservices from monolithic

enterprise systems.

[35] K. Bakshi, Microservices-based software architecture and approaches, in: 2017 IEEE Aerospace Confer-

ence, 2017, pp. 1–8.

[36] H. Knoche, W. Hasselbring, Using microservices for legacy software modernization, IEEE Software 35 (3)

(2018) 44–49.

[37] O. Mustafa, J. M. Gómez, Sustainable approach for improving microservices based web application, in:

Sustainability Dialogue: International Conference on Sustainability and Environmental Management,

2017.

[38] P. Calçado, Layering microservices, http://philcalcado.com/2018/09/24/services layers.html (Sept

2018).

[39] A. van Lamsweerde, Goal-oriented requirements engineering: a guided tour, in: Proceedings Fifth IEEE

International Symposium on Requirements Engineering, 2001, pp. 249–262.

[40] U. S. D. of Defense, Risk Management Guide for DOD Acquisition, Unitest States Department of

Defence, 6th Edition (aug 2006).

25

https://books.google.co.uk/books?id=UeK1swEACAAJ
https://books.google.co.uk/books?id=UeK1swEACAAJ


[41] F. Al-Rebiesh, Adaptively improving performance stability of cloud based application using the modern

portfolio theory, Ph.D. thesis, School of Computer Science, University of Birmingham, UK (2016).

[42] R. Kazman, M. Klein, P. Clements, Atam: Method for architecture evaluation, Tech. Rep. CMU/SEI-

2000-TR-004, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2000).

[43] R. Saaty, The analytic hierarchy process—what it is and how it is used, Mathematical Modelling 9 (3)

(1987) 161 – 176.

[44] A. van Lamsweerde, E. Letier, Handling obstacles in goal-oriented requirements engineering, IEEE

Transactions on Software Engineering 26 (10) (2000) 978–1005.

[45] C. T. Joseph, K. Chandrasekaran, Straddling the crevasse: A review of microservice software architecture

foundations and recent advancements, Software: Practice and Experience 49 (10) (2019) 1448–1484.

[46] M. Ahmadvand, A. Ibrahim, Requirements reconciliation for scalable and secure microservice

(de)composition, in: 2016 IEEE 24th International Requirements Engineering Conference Workshops

(REW), 2016, pp. 68–73.

[47] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina, Microser-

vices: yesterday, today, and tomorrow, in: Present and ulterior software engineering, Springer, 2017, pp.

195–216.

[48] N. H. Do, T. Van Do, X. Thi Tran, L. Farkas, C. Rotter, A scalable routing mechanism for stateful

microservices, in: 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), 2017,

pp. 72–78.

[49] S. N. Srirama, M. Adhikari, S. Paul, Application deployment using containers with auto-scaling for

microservices in cloud environment, Journal of Network and Computer Applications 160 (2020) 102629.

[50] M. Abdullah, W. Iqbal, A. Erradi, Unsupervised learning approach for web application auto-

decomposition into microservices, Journal of Systems and Software 151 (2019) 243 – 257.

[51] A. Avritzer, V. Ferme, A. Janes, B. Russo, A. van Hoorn, H. Schulz, D. Menasché, V. Rufino, Scalability

assessment of microservice architecture deployment configurations: A domain-based approach leveraging

operational profiles and load tests, Journal of Systems and Software 165 (2020) 110564.

[52] A. F. A. A. Freire, A. F. Sampaio, L. H. L. Carvalho, O. Medeiros, N. C. Mendonça, Migrating pro-

duction monolithic systems to microservices using aspect oriented programming, Software: Practice and

Experience n/a (n/a) (2021).

[53] F. Chen, L. Zhang, X. Lian, A systematic gray literature review: The technologies and concerns of

microservice application programming interfaces, Software: Practice and Experience n/a (n/a) (2021)

1–26.

[54] C. T. Joseph, K. Chandrasekaran, Straddling the crevasse: A review of microservice software architecture

foundations and recent advancements, Software: Practice and Experience 49 (10) (2019) 1448–1484.

[55] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, T. Lynn, Microservices migration patterns,

Software: Practice and Experience 48 (11) (2018) 2019–2042.

26



[56] M. Taneja, N. Jalodia, J. Byabazaire, A. Davy, C. Olariu, Smartherd management: A microservices-

based fog computing–assisted iot platform towards data-driven smart dairy farming, Software: Practice

and Experience 49 (7) (2019) 1055–1078.

27


	Introduction
	Motivating Scenario
	Working Catalogue of Microservice-specific Scalability Dimensions and Metrics
	State-of-the-art Scalability Dimensions for Microservices
	Contribution 1: Working Catalogue of Microservice-Specific Scalability Dimensions and Metrics

	Contribution 2: Applying Scalability Goal-Obstacle Analysis to Microservice Granularity
	KAOS Goal-Oriented Modelling
	Scalability Goal-Obstacle Analysis

	Analysis and Discussion of Contributions
	Filmflix Ad-hoc Scalability Assessment
	Filmflix Systematic Scalability Analysis
	KOAS Goal-Oriented Modelling of Filmflix
	Scalability Goal-Obstacle Analysis of Filmflix

	Discussion
	Catalogue Comprehensiveness
	Scalability Goal-Obstacle Analysis Significance


	Threats to Validity
	Related Work
	Conclusions and Future Work

