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Abstract: Due to the wide availability and usage of connected devices in Internet of Things (IoT)
networks, the number of attacks on these networks is continually increasing. A particularly serious
and dangerous type of attack in the IoT environment is the botnet attack, where the attackers can
control the IoT systems to generate enormous networks of “bot” devices for generating malicious
activities. To detect this type of attack, several Intrusion Detection Systems (IDSs) have been
proposed for IoT networks based on machine learning and deep learning methods. As the main
characteristics of IoT systems include their limited battery power and processor capacity,
maximizing the efficiency of intrusion detection systems for IoT networks is still a research
challenge. It is important to provide efficient and effective methods that use lower computational
time and have high detection rates. This paper proposes an aggregated mutual information-based
feature selection approach with machine learning methods to enhance detection of IoT botnet
attacks. In this study, the N-BaloT benchmark dataset was used to detect botnet attack types using
real traffic data gathered from nine commercial IoT devices. The dataset includes binary and multi-
class classifications. The feature selection method incorporates Mutual Information (MI) technique,
Principal Component Analysis (PCA) and ANOVA f-test at finely-granulated detection level to
select the relevant features for improving the performance of IoT Botnet classifiers. In the
classification step, several ensemble and individual classifiers were used, including Random Forest
(RF), XGBoost (XGB), Gaussian Naive Bayes (GNB), k-Nearest Neighbor (k-NN), Logistic
Regression (LR) and Support Vector Machine (SVM). The experimental results showed the
efficiency and effectiveness of the proposed approach, which outperformed other techniques using
various evaluation metrics.

Keywords: intrusion detection systems; Internet of Things; botnet attack detection; feature selection;
machine learning; ensemble methods

1. Introduction

Internet of Things (IoT) networks are becoming essential components for different
advanced applications such as smart cities and smart homes. They provide wide
connectivity between the connected devices, with the number of networks growing
exponentially every day [1]. The IoT improves the quality of life by providing different
types of smart services and applications in several domains, including health care,
automation, industrial processes and smart environments [2]. According to Greengard
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[3], it is predicted that 21.5 billion IoT devices will be used by 2025. This huge number of
devices will be vulnerable to different types of attacks that raise several security and
privacy issues.

With this rapid development in the internet and its smart connected devices, the
number of attacks that affect individuals and businesses has already increased [4]. One of
the main applications to improve information security is the use of what are called
Intrusion Detection Systems (IDSs), which help to provide a secure environment by
identifying and classifying security threats within the internet. Because of the special
characteristics of IoT systems, including the dynamics of their networks, and limited
battery power and processor capacity, intrusion detection for IoT networks is considered
a major challenge, as it needs to consider the trade-off between accuracy of detection and
performance overheads [5]. Thus, according to Arshad et al. [5], the main features of IDSs
should be: (1) efficient computational and communication overhead, and (2) high
detection accuracy.

One of the dangerous threats in IoT networks is what are known as botnets, which
can be described as a collection of different bots that are controlled by the Botmaster
(behind-the-scenes attacker) using the Command and Control (C&C) channel [6]. The IoT
botnet attack works to recruit vulnerable IoT devices in order to generate enormous
networks of “bot” devices to generate large numbers of malicious activities that can be
controlled remotely by the Botmaster [7]. The attackers can use botnets for stealing data,
granting access to devices and performing Distributed Denial-of-Service attacks (DDoS).
This attack uses a series of connected devices in order to take down a website or networks
for the purpose of disrupting operations in these environments or stopping the main
services of the target application [7]. Therefore, detecting and preventing the botnets is
very important in computer security and has attracted several researchers to improve the
IoT botnet attack detection rate.

Recently, different methods have been proposed and applied to detect IoT botnet
attacks. For instance, Popoola et al. [8] proposed a deep learning-based botnet attack
detection method to deal with imbalanced traffic data in networks. They utilized a
recurrent neural network method for learning hierarchical feature representations of the
balanced data to carry out the classification. The authors found that this imbalanced data
affected the detection performance, using evaluation measures such as precision, recall
and F1 score. The proposed method obtained 99.50%, 99.75% and 99.62% for precision,
recall and F1 scores, respectively. In addition, Soe et al. [9] proposed a botnet attack
detection method based on Machine Learning (ML) and Sequential Architecture. In this
work, the authors adopted a Feature Selection (FS) method to produce a high-performance
and lightweight detection system. This system obtained an accuracy of 99% for detecting
the botnet attacks using an artificial neural network, J48 decision tree and naive Bayes. To
compare the many machine learning methods that have been applied for botnet attack
detection, Tuan et al. [10] conducted experiments for performance evaluation of several
machine learning methods for botnet DDoS attack detection using two datasets. The
experiments included the use of Support Vector Machine (SVM), Artificial Neural
Network (ANN), Naive Bayes (NB), Decision Tree (DT) and Unsupervised Learning (UL).
The outcomes of this research showed that the unsupervised learning methods obtained
better detection rates compared to the other machine learning methods.

As the main features of IDSs for IoT networks are the efficiency of the computational
and communication overhead and the high detection accuracy [5], the high
dimensionality of IoT traffic data affects the efficiency of the detection systems. This paper
proposed an aggregated mutual information-based feature selection approach with
machine learning methods to enhance the efficiency and performance of IoT botnet attack
detection. A freely available benchmark dataset was used to show the benefit of the
proposed aggregated feature selection method. Based on an intensively review of the
existing available datasets, the N-BaloT dataset (http://archive.ics.uci.edu/ml/datasets/de
tection_of_loT_botnet_attacks_N_BaloT (last accessed on: 6 December 2021; 23:00 GMT))
was chosen to be used in this research.
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The main contributions of this research paper can be summarized as follows:

e  The IoT Botnet attack detection is explored as a multiclass
classification problem using a dataset with more than 6.2 M
instances. The description of the dataset is presented in
Section 3.1.

e A feature selection-based method is proposed that
incorporates Mutual Information (MI) technique, Principal
Component Analysis (PCA) and an ANOVA f-test at finely
granulated detection level.

e A fine-granulated aggregated mutual information is
proposed and tested on the benchmark dataset. The
proposed technique effectively selects the relevant features
for increasing the performance of IoT Botnet classifiers.

e A comprehensive and practical approach is proposed that
investigates the performance of the proposed technique
using two ensemble-based machine learning methods,
namely Random Forest (RF) and XGBoost (XGB), and four
standalone classifiers, namely, Gaussian Naive Bayes (GNB),
k-Nearest Neighbor (k-NN), Logistic Regression (LR) and
Support Vector Machine (SVM).

e Finally, the proposed approach outperforms other
techniques using various evaluation metrics.

The rest of the paper is organized as follows: Section 2 reviews the recent studies on
IoT botnet attack detection. Section 3 presents the materials and methods used in the
present study, while Section 4 highlights and discusses the main results of the proposed
approach. Finally, Section 5 concludes the whole paper.

2. Related Works

Although the increased usage and growth of information and computer technology
makes life easier, it also leads to many security issues as the number of attackers has
increased rapidly. One of the important security mechanisms proposed to support
information security and protect businesses from dangerous network attacks is known as
the intrusion detection system [11]. Several intrusion detection systems based on machine
learning and deep learning methods have been proposed for IoT Environments. For
instance, Kiran et al. [12] applied NB, SVM, DT and Adaboost methods to detect the
attacks (sniffing and poisoning) on IoT networks. They used loT-based normal and attack
data in order to build the model. The applied methods obtained high accuracy rates
(0.9895, 0.9895 and 1.00 for SVM, Adaboost and DT respectively). However, these authors
indicate that challenges still exist in generating high quality datasets using diverse IoT
devices in order to enhance the robustness of the used machine learning models.

Pacheco et al. [13] proposed an artificial neural network-based method for
implementing an adaptive IDS to detect attacks on fog nodes in IoT applications and
ensure the availability of communication, allowing the nodes to continuously deliver the
important information to the end users. The proposed method was able to detect the
normal behavior of fog nodes and was able to detect anomalies due to different sources,
such as misuses, cyber-attacks, with a high detection rate and low false alarms. In
addition, Ferrag et al. [14] proposed an IDS for IoT networks called RDTIDS, which
combines REP Tree, JRip algorithm and Random Forest methods. The proposed system
used a BoT-IoT dataset and obtained high accuracy in the detection rate compared to the
previous studies.

In another study, Amouri et al. [15] proposed an IDS for mobile IoT networks, which
involved two stages: (1) Collecting data from dedicated sniffers and generating correctly
classified instances that are sent to super node, (2) linear regression performed by the
super node to detect the benign and malicious nodes. The proposed system was able to
detect the malicious activities (blackhole and DDoS) attacks with detection rates of more
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than 98% for the high power/node velocity case and 90% for the low power/node velocity
case. Similarly, Verma and Ranga [16] used different machine learning methods to detect
Denial-of-Service (DoS) attacks on IoT networks. They used different popular datasets
and applied statistical methods to evaluate the significant differences between the
methods used. They discussed how to select the best classification method based on the
application requirements and recommended using ensemble methods to develop IDSs. In
addition, Hindy et al. [17] investigated six machine learning methods for an IoT intrusion
detection system to detect one type of loT attack, known as a Message Queuing Telemetry
Transport (MQTT) attack. The results showed the effectiveness of the machine learning
methods used and emphasized the importance of using flow-based features to detect
MQTT-based attacks.

Lv et al. [18] proposed a misuse IDS that depends on specific attack signatures to
detect normal and malicious activities, based on an extreme learning machine with a
hybrid kernel function. They used the Kernel Principal Component Analysis (KPCA)
method for feature selection and feature extraction of the intrusion detection data. The
experimental results showed high detection rates and time-saving when using the
proposed method. For IoT networks, Gad, Nashat and Barkat [19] used a chi-square
feature selection method with different machine learning methods (using binary and
multi-class data) on a dataset from a large-scale and diverse IoT network. The experiment
showed that the XGBoost classifier outperformed other methods.

Feature selection methods were also used to enhance the detection of IoT botnet
attacks. For instance, Alqahtani, Mathkour and Ben Ismail [20] concluded that it is still a
challenge to develop an efficient IDS for IoT devices. To address this, they proposed a feature
selection method (using a Fisher-score) with a genetic-based XGBoost classifier to obtain
a subset of features for detecting IoT botnet attacks. They conducted experiments on a
public botnet dataset and it was found that high detection rates were obtained by using
only three features. Similarly, Bahsi, Nomm and La Torre [21] investigated the importance
of improved feature selection for reducing the number of features to detect the IoT bots.
They showed that a small number of features can obtain high detection rates using a multi-
class classifier such as a decision tree. In addition, Panda, Abd Allah and Hassanien [22]
developed an efficient feature engineering model with machine learning and deep
learning methods for detecting IoT-botnet attacks. To provide efficient detection, two
feature engineering methods, K-Medoid sampling and scatter search-based, were applied
to obtain optimal feature subsets for the representative dataset. The experimental results
showed that the proposed method combined a high detection rate with low
computational cost (4.7 s for training and 0.61 s for testing).

Feature selection methods were used in different research disciplines to enhance the
proposed machine learning models, for instance IDS for vehicular ad hoc networks [23],
drone intrusion detection [24], clickbait detection on social media [25], detection of
diseases in health informatics [26] and virtual screening for molecular similarity searching
[27]. In addition to machine learning methods for IDS in IoT, several deep learning
methods were applied for intrusion detection systems in IoT, which are discussed in [28].
Although there are several studies in the literature addressing the IoT intrusion detection,
more research efforts are needed to consider the special characteristics and challenges of
IoT systems, which including the limited battery power and processor capacity.
According to [5], it is needed to consider the trade-off between accuracy of detection and
performance overheads to provide efficient computational and communication overhead,
and high detection accuracy. Therefore, this paper proposes a feature selection-based
method with several machine learning methods to enhance the performance of IoT Botnet
classifiers. The feature selection methods include Mutual Information (MI), Principal
Component Analysis (PCA) and ANOVA f-test at fine-granulated detection level.
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3. Materials and Methods

In this section, the N-BaloT benchmark dataset is presented and discussed briefly.
The data preprocessing and label encoding processes are then explained. Then, the well-
known One-versus-the-Rest (OvR) classification technique was used for dealing with
multiclass classification problems. Finally, this section describes the methodology used,
including details of the choice of classifiers, feature selection methods and the evaluation
criteria.

The methodology followed in this research is presented in Figure 1, that includes:
data collection, data preparation, feature selection and classifier selection, which is trained
and tested on the benchmark dataset with hyper-parameter tuning of the ML models. To
evaluate these models, the classifiers were trained and tested without applying any
feature selection method. This step helped to measure the efficiency of the used feature
selection techniques and investigate their influence on the performance of the ML model.
In addition, two data preprocessing techniques were applied: standardization and
minimum-maximum normalization (which is known as min-max normalization). Each
attack type was then fed into the feature selection methods to obtain a set of reduced
features. Subsequently, the set with reduced features was used for training the ML
classifiers, using the OvR strategy. The hyper-parameter of the winner ML classifier was
then tuned using k-fold cross. In the last phase, the performance of ML classifiers was
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Figure 1. The framework of the proposed approach.
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3.1. Used Dataset

The N-BaloT data set that is used in this paper is designed to detect botnet attack
types, using nine IoT devices that provided the real traffic data [29]. The IoT devices were
attacked by two botnet attack families, namely Bashlite and Mirai. In total, there are about
five million items of data, grouped in separate files. Each file contains 115 features and a
class label. The dataset has also been constructed to server binary classification as well as
multi-class classification, where the target class labels take values of “benign” or “TCP
attack” for binary classification and “Bashlite” or “Miria” attack types for multi-class
classification.

Table 1 below and Table Al (see Appendix A) show the detailed statistics of the N-
BaloT dataset and the complete list of extracted features. The data records are encoded as
L0.01, LO.1, L1, L3 and L5 with respect to the network stream time windows. In addition,
the socket and channel category are enriched with additional information about the packet
size. For each category, the packet count, mean, packet size and variance are calculated
From Table 1. it is obvious that the dataset is organized in a way that allows both binary
classification and multi-class classification to be addressed. In this study, as mentioned
earlier, the multi-class classification will be investigated, where the number of instances
for benign and different attack subclass types is presented in Table 2.

Table 1. Statistics of N-BaloT dataset.

Feature Name Number of Instances, %

Security cameras 1
Webcam 1
IoT device types Smart baby monitor 1
Thermostat 1
Smart door-bell devices 2
Total number of Instances 6,273,053
General Features # of features in dataset 115
Time windows 100 ms, 500 ms, 1.5s, 10 s and 1 min
o # of “Benign” records 555,932 (7.23%
Distribution of data (2 classes) # of ”attafl?” records 7,134,943 ((92,77030)
# of “Bengin” records 555,932 (7.23%)
Distribution of data (3 classes) # of “Bashlite” records 2,838,272 (36,90%)

# of “Mirai” records

4,296,671 (55,87%)

Table 2. The sampling of normal and attack classes in multi-class dataset.
Statistical Feature Reference Number of Records
“Benign” ct 555,932 (7.23%)
C? COMBO: 515,156 (6.698 %)

R c? Junk: 261,789 (3.403 %)

Bashlite” attack type, c* Scan: 255,111 (3.317%)

% out of all i S

% out of all instances cs TCP: 859,850 (11.180%)
co UDP: 946,366 (12.305%)
7 Ack: 865,646 (11.255%)

N c® Scan: 650,414 (8.457%)

O/M“talfaﬁf‘c ttype’ co Syn: 790,227 (10.275%)

(o] n n

out ottt istances c10 UDP: 1,285,683 (16.717%)

€' UDPplain: 704,701 (9.163%)

As the distribution of data records is obviously not balanced, the pseudocode
presented in Algorithm 1 was used to sample the instances of “Bashlite” attack types and
“Mirai” attack types.
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Algorithm 1 Pseudocode of Dataset Sampling
Input: A list of N-BaloT files F
Output: Balanced dataset
DF « an empty list
s « size of data frame
for each file f € F do:
Import the file f as data frame df
Count the size s¥ of the df
Append data frame to df € DF
End for
threshold 6 « the smallest data frame size s(df)
For all df € DF AND s(df) > 6 do:
p < percent of data %
Sample dataset as df; « (;;f) * 100%
End For

Return df; as csv format
End

3.2. Data Preprocessing

Although data preprocessing is tedious and time consuming [30,31], its necessity is
proven not only for simplifying the machine learning training process but also for
improving the effectiveness of the overall processes. Consequently, this study proposes
the following pre-preprocessing steps: label encoding, min—-max normalization and
standardization.

3.2.1. Label Encoding

As the class label contains 11 different categorical values (including one “Benign”
class and 10 attack type subclasses), it is not acceptable to feed these values directly to the
ML classifiers. Therefore, these features are encoded into numerical values before using
the models. In the literature, there are several approaches for encoding the categorical
values: one-hot encoding [32], ordinal encoding [33], similarity encoding [34], entity
embedding [35] and multi-hot encoding [36]. Among of these, the most used approaches
are one-hot and ordinal encoding [37]. For encoding the categorical values found in the
class label, this study applies the one-hot encoding approach and transforms each
categorical value into a vector of binary variables. It should be noted that applying a one-
hot encoding approach leads to increasing the dimensionality by up to 10 more
dimensions.

3.2.2. Normalization and Standardization

The performance of regression, as well as the classification models, is seriously
affected if the dataset columns contain values with different ranges. Mahfouz et al. [37]
discussed how this problem leads to the performance of ML models deteriorating when
various imbalanced scales of features have occurred in the dataset. Therefore, to deal with
such problems, it is necessary to obtain the acceptable range for the negligible and
dominant values. The two most popular techniques are min-max normalization and z-
score standardization:

¢  Min-max normalization is used for transforming values of
the dataset features into the range of [0, 1] according to the
following equation:

X _ X = Xin _value
normalized — X —X (1)
max _value min _value
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where X, prmaiizea represents the normalized value, X, pame and Xpax vawe are
the border range of the desired interval, which is in this study [0, 1], and X is the
original value that would be transformed within these ranges.

e  Z-score standardization is used for rescaling dataset features
so that they will have the properties of a standard normal
distribution with mean u = 0 and standard deviation o =
1.

X—u
Xnormalized = (2)
o
Algorithm 2 shows the pseudocode of the one-hot encoding approach, minimum-
maximum normalization and standardization techniques used in this study.

Algorithm 2 Pseudocode of One-hot encoding, Min-Max Normalization and Z-score
Standardization

Input: dataset features F, class label C

Output: Pre-processed dataset

MinMaxScaler (D, F, i):
Xnormalized =0
max < maximum value among all values of column i € F in D
min « minimum value among all values of column i € F in D

X—Xmin value .
Xnormalized « X X // Equatlon (1)
max _value min _value

Retum Xnormalized
Standardize (D, F, i):
Xnormalized = 0
1 < mean value of column i € F in D
o « standard deviation value of column i € F in D

Xnormalized < % // Equation (2)
Return Xnormalized
Begin:
D" « []// Normalized/ Standardized dataset
F < Hot-encoding dataset D
For each itemi € F in (D) do:
D' « MinMaxScaler (D, F, i) // both min-max and z-score method is
D' « Standardize (D, F, i) // executed separately
End For
End

3.3. Feature Selection Techniques

As mentioned earlier, the N-BaloT dataset consists of 115 features and 10 class labels,
plus the “Benign” class that was added after encoding the target class. Passing this high
dimensional vector into the ML model might cause a delay in the training and testing time
of ML models. Consequently, any proposed attack detection system built with this issue
usually consumes the processing resource very rapidly, which is not appropriate for the
real-time systems. Therefore, the proposed approach first investigates how various filter-
based feature selection techniques can be helpful for overcoming this issue. The impact of
PCA, MI and the ANOVA f-test on the performance of ML models is explored. As
presented in Section 4.1, the experimental results show that the MI filter-based technique
yields the highest accuracy score when the binary dataset is used. An aggregated MI with
different rank aggregation function is proposed and tested on the multi-class dataset (see
Section 4.2). The idea behind the aggregated MI is described as follows:
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Compute the mutual information score for each feature, f;, in dataset D with
respect to class type c € C. The features are then ranked based on the aggregator
functions listed in Table 3. Only p% of features are retained and fed later to the classifiers
listed in Table 3 and the overall performance is measured.

Table 3. Rank aggregation methods.

Aggregators Formula Description
Selects the minimum of the relevance scores
Min () min {R¢, (fi.n), Re,(fi .n)---Re,,(fi.n)} produced when class type ¢; is used as a
target class
Selects the maximum of the relevance scores
Max () max {R¢, (fi .n), Re,(fi.n),---Re,,(fi.n)} produced when class type ¢; is used as a
target class
m 1 Selects the mean of the relevance scores
Mean () mean ((Z R, (fl...n)) X E) produced when class type c; is used as a
i=1

target class

3.4. Classification Algorithms

In this work, two types of ML classifiers are used: (i) two ensemble-based classifiers:
Random Forest (RF), XGBoost (XGB) and (ii) four standalone classifiers, namely: Gaussian
Naive Bayes (GNB), k-Nearest Neighbor (k-NN), Logistic Regression (LR) and Support
Vector Machine (SVM). For tuning the hyper-parameters of these classifiers, the optimal
values are estimated by using cross validation [38]. Typically, there are several hyper-
parameter optimization techniques, among which the grid search, random search,
Bayesian optimization and evolutionary-based optimization are commonly used
techniques. In this work, the grid search was applied, and the results of the optimized
process are shown in Table 4.

Table 4. Classification Algorithms.

Classification Algorithms

Adjusted Parameters

Best Tuned Hyper-Parameter

Criterion: [‘entropy’, ‘gini’]
max_depth: [10-1200] + [None]
max_features: [‘auto’, ‘sqrt’,'log2’, None]

Criterion: “gini’, max_depth: 150,
max_features: ‘auto’.

RE min_samples_leaf: [4-12] min_samples_leaf: 4, min_samples_split: 7,
min_samples_split: [5-10] n_estimators”: 150
n_estimators”: [150-1200]
n_estimators: [100-1200]
max_depth: [1-11], n_estimators: 150, max_depth: 4,

XGB learning_rate: [1 x 103, 1x102,0.1,0.5,1.] learning rate: 1 x 102 subsample: 0.25.
subsample: [0.05-1.01] min_child_weight: 5
min_child_weight: [1-21]
leaf_size = [3-15],
distance = [‘'minkowski’, “Euclidian’, leaf_size = 7, distance = ‘Manhattar?,

kNN Manhattan'] #neighbors = 23, p = 2, weights = “uniform’
#neighbors = [3-45], p=2, erghbors » P =& Welghts = untio
weights = ‘uniform’

C= [—4.1.0—4.0], intercept_scaling =1, C=1.0, intercept_scaling =1,
max_iter = [100-500], . 1
) s max_iter = 100, penalty =12/,
LR penalty = [‘11', “127], , ,
e as ., , solver = ‘Ibfgs’, tol = 0.0001,
solver = [‘liblinear’, ‘Ibfgs’], verbose = 0
tol =0.0001, verbose =0
C=][0.1, 1, 10, 100, 1000] C=10
SVM gamma = [1, 0.1, 0.01, 0.001, 0.0001] gamma = 0.001

kernel = [‘rbf’, ‘kernel’]

kernel = ‘rbf’
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3.5. Model Evaluation Metrics

The most commonly used evaluation metrics were used to evaluate the performance
of the ML classifiers, which are: Accuracy (Acc.), Precision (P), Recall (R) and F1 score. In
addition to these metrics, the training time, prediction time and execution time of each
classifier were computed. The full description of these metrics and how they are
computed is presented in Table 5.

Table 5. Evaluation metrics.

Measure Metric Formula Explanation
TP+TN
Accuracy (Acc.) TP+ TN+ FP+FN TP—Correctly classified instances as the right type of attack.
. TN —Correctly classified instances as benign.
Precision (P) T g . .
TP+ FP FN—Wrongly classified attack instances as benign.
Recall (R) _ TP FP—Wrongly classified benign instances as an attack
5 TP + FP
X Pre X R
F1 score (1174_12) F1 score is the harmonic mean of precision and recall
re
Execution time ¢, te =1t +1, t; —Training time; ¢, —Prediction time

4. Results and Discussion
4.1. Preliminary Exploration Setup: Binary Dataset

To conduct the experiment, the script was written in Python 3.7 using the Google
Colab environment on the 64-bit Windows 10 operating system. The N-BaloT dataset was
organized in a way such that both “Bashlite” and “Mirai” classes were grouped together
and formed one class, “attacked”. As shown in Figure 2, the number of the instances
classified as “attacked” is much larger than the number of “benign” instances. Therefore,
an under-sampling algorithm was applied on the class “attacked” to obtain a more
balanced dataset. A balanced sample of the dataset was then used. Later, the obtained
dataset was split into a training set and a testing set, using the train_test_split function
found in the sklearn package, where 80% of data was used as the training dataset and the
remaining data (20%) as the testing dataset. Table 6 presents the statistical outline of the
balanced binary dataset used.

A U1 OO0 N

Millions
N w

=

0 |

Benign attacked
Figure 2. The distribution of attack and benign classes’ instances.

Table 6. Number of samples for normal and attack classes in the training and testing dataset.

Class Training Set Testing Set
Benign 190,313 22,824
Attacked 191,927 72,736
Total Number of Records 382,240 95,560

4.1.1. Performance Exploration of Machine Learning Algorithm
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Accuracy

100.00%
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80.00%
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60.00%
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10.00%

0.00%

Table 7 presents the performance of the used ML classifiers. The idea here is to
investigate how the feature selection technique performs on the proposed binary dataset.
Firstly, the ML-model is applied without using any FS technique. Then, different FS
techniques are used. Table 7 shows the summarized performance of the ML classifiers in
terms of accuracy.

Table 7. Exploration Investigation: Accuracy of ML models.

FS Technique RF XGB k-NN LR GNB SVM
Without 94.031%  99.382%  99.861% 82.631% 74.785%  89.189%
PCA 93.058%  99.290%  99.819% 82.053% 68.869%  89.928%
MI 94.391%  99.462%  99.903% 77.253% 84.819%  89.526%

ANOVA F-test 94.287%  99.294%  99.811% 80.157%  60.260% 88.645%

4.1.2. Discussion

Based on the results presented in Table 7, the following findings are observed and
can be summarized as follows:

e  k-NN and XGB classifiers yield the highest scores in terms of
accuracy, which confirms the results reported in [20,21]. The
k-NN exceeds all classifiers when all features are used.

e  The performance of the classifiers is degraded when the PCA
technique is used. The only exception is noted when SVM is
used, when the number of components of PCA is 21, as
shown in Figure 3 and Table A2.

e Most ML models benefit more when the MI feature selection
technique is applied. The performance of ML classifiers in
terms of accuracy exceeds the baseline, except LR, in which
the performance decreased. As a result, the following section
presents how MI can be beneficial for detecting attack types
where the multi-class dataset is used. The proposed
aggregated MI feature selection approach is highlighted.

11 21 31 41 51 61 71 81 91 101 111
B Random Forest M eXtreme Gredient Boosting M k- Nearest Nighbour
Logisic Regression B Gaussian Naive Bayes m Support Vector Machine

Figure 3. Accuracy of the ML model with respect to different PCA components.

4.2. N-BaloT Dataset as a Multi-Class Dataset

To conduct the experiment fairly, the OvR strategy was applied. The reason behind
this selection is its computational efficiency and interpretability. The OvR strategy
represents each class by only one classifier, which allows knowledge to be gained about
the class by inspecting its corresponding classifier.



To obtain the MI score of the features in the multi-class dataset, as mentioned earlier,

each feature in the dataset is computed with respect to each class type, ¢ € C, which
means the target class is fixed using multiclass classification strategy (OvR) and the MI of

the feature is computed with respect to this class type. As a result, each feature obtained
10 different MI scores. The features are then ranked based on the aggregator functions
listed in Table 3. Figures 4-6 show the mutual information scores of all features with

respect to the MAX, MIN and AVERAGE aggregation functions.
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Figure 4. Mutual information of features with MAX aggregation function.
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Figure 5. Mutual information of features with MIN aggregation function.
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Figure 6. Sorted mutual information of Features with AVERAGE aggregation function.

As shown in the Figures 4-6 above, each ranker search method ranks the attributes
differently. The main issue with such methods, as with all filter-based FS methods, is that
specifying the number of attributes that have to be retained is a subjective choice. In this
work, only the top 10% of features were used that have the highest MI scores. Table 8
shows the names of the top 10% of features with respect to the aggregation functions.

Table 8. Top 10% of Selected Features: The features are sorted in descending order with respect to

MI score.

Aggregation Function

Feature Name

MAX

MI_dir_L0.01_mean
H_L0.01_mean
H_L0.1_mean
MI_dir_L0.1_mean
H_L0.01_variance
MI_dir_L0.01_variance
H_L1_mean
MI_dir_L1_mean
MI_dir_L3_mean
H_L3 mean
MI_dir_L5_mean
H_L5 mean
H_L0.1_variance
MI_dir_LO0.1_variance
H_L0.01_weight

MIN

HH_jit_L0.1_mean
H_L0.01_mean
H_L0.1_mean
H_L0.1_variance
MI_dir_L0.01_mean
MI_dir_L0.01_variance
H_L0.01_variance
MI_dir_LO0.1_variance
MI_dir_L0.1_mean
HH_jit_L0.01_mean
H_L1_weight
MI_dir_L1_weight
MI_dir_L1_mean
H_L1_mean
MI_dir_L3_mean

AVERAGE

MI_dir_L0.01_mean
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H_L0.01_mean
MI_dir_L0.01_variance
H_L0.01_variance
H_L0.1_mean
MI_dir_L0.1_mean
MI_dir_LO0.1_variance
H_L0.1_variance
H_L0.1_weight
MI_dir_L0.1_weight
H_L1_mean
MI_dir_L1_mean
HH_jit_L0.01_mean
HH_jit_L0.1_mean
HH_L0.01_magnitude

Comparison of MI Feature Selection using Different Aggregation Functions

Based on these selected features, the performance of ML classifiers was now
measured per each class type in terms of accuracy, precision, recall and Flscore. In
addition, the training time, prediction time and execution time were computed. Table 9
presents the accuracy of ML classifiers when features were selected based on different
aggregation functions. Tables 10-15 present the precision, recall and F1 score of these
classifiers.

Table 9. Accuracy of classifiers with MI feature selection on the test dataset.

Aggregation Function

Classifier MAX MIN AVERAGE
RF 0.9427 0.9414 0.9417
XGB 0.9386 0.9897 0.9919
K-NN 0.9305 0.9784 0.9827
LR 0.5896 0.6071 0.7513
GNB 0.7585 0.8464 0.8496
SVM 0.7612 0.8673 0.8201

Table 10. Performance analysis for N-BaloT with RF and MI feature selection on the test dataset.

Precision Recall Flscore
Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.
ct 0.9994 0.9994 0.9978 1.0000 0.9998 0.9998 0.9997 0.9996 0.9988
c? 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000
c3 1.0000 1.0000 1.0000 0.9997 0.9992 0.9989 0.9999 0.9996 0.9995
c* 1.0000 1.0000 0.9997 0.9997 1.0000 0.9994 0.9998 1.0000 0.9995
c’ 1.0000 0.8000 1.0000 0.0015 0.0014 0.0003 0.0029 0.0029 0.0007
ce 0.5397  0.5390 0.5390 0.9997 0.9991 0.9985 0.7010 0.7002 0.7001
c’ 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000
c® 1.0000 1.0000 1.0000 1.0000 0.9997 1.0000 1.0000 0.9998 1.0000
c® 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
cto 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ctt 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000 1.0000 0.9998 1.0000
Table 11. Performance analysis for N-BaloT with XGB and MI feature selection on the test dataset.
Precision Recall Flscore
Class Name MAX MIN AVE. MAX MIN AVE. MAX MIN AVE.
ct 0.9891 0.9727 0.9910 1.0000 0.9996 1.0000 0.9945 0.9859 0.9955
c? 0.9988 0.9985 0.9995 0.9712 0.9689 0.9728 0.9848 0.9835 0.9859



Sensors 2022, 22, x FOR PEER REVIEW

c3 09650  0.9724 0.9657 0.9934 0.9835 0.9971 0.9790 0.9779 0.9811
c* 1.0000  1.0000 1.0000 0.9997 1.0000  0.9994 0.9998 1.0000 0.9997
(o 1.0000 0.9234 0.9309 0.0015 1.0000  1.0000 0.0029 0.9602 0.9642
ce 0.5397  0.9993 1.0000 0.9994 0.9281  0.9351 0.7009 0.9624 0.9665
c’ 1.0000  0.9998 1.0000 1.0000 0.9998  1.0000 1.0000 0.9998 1.0000
cs 1.0000  1.0000 1.0000 1.0000 0.9997  1.0000 1.0000 0.9998 1.0000
c° 1.0000  1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000
co 1.0000  1.0000 1.0000 1.0000 1.0000  1.0000 1.0000 1.0000 1.0000
ctt 1.0000  1.0000 1.0000 1.0000 0.9995  1.0000 1.0000 0.9998 1.0000

Table 12. Performance analysis for N-BaloT with k-NN and MI feature selection on the test dataset.

Precision Recall Flscore
Class Name MAX MIN AVE MAX MIN AVE. MAX MIN AVE.
ct 0.9988  0.9982 0.9986 0.9998 0.9990  0.9998 0.9993 0.9986 0.9992
c? 0.9963  0.9353 0.9431 0.9862 0.8959  0.9199 0.9912 0.9152 0.9313
c3 0.9793  0.8471 0.8773 0.9940 0.9018 0.9114 0.9866 0.8736 0.8940
c* 0.9988  0.9972  1.0000 0.9991 0.9988  0.9994 0.9989 0.9980 0.9997
c’ 0.4604  0.9993 0.9996 0.9985 0.9996  1.0000 0.6302 0.9995 0.9998
ce 0.5000 0.9994 0.9997 0.0003 0.9991  0.9985 0.0006 0.9992 0.9991
c’ 1.0000  1.0000 1.0000 1.0000 0.9996  0.9996 1.0000 0.9998 0.9998
c® 1.0000  1.0000 0.9997 0.9997 0.9994  1.0000 0.9998 0.9997 0.9998
c® 1.0000  0.9997 1.0000 1.0000 0.9997  1.0000 1.0000 0.9997 1.0000
cto 1.0000  1.0000 0.9998 1.0000 1.0000  1.0000 1.0000 1.0000 0.9999
ctt 0.9993  0.9998 1.0000 1.0000 0.9995  1.0000 0.9997 0.9997 1.0000

Table 13. Performance analysis for N-BaloT with LR and MI feature selection on the test dataset.

Precision Recall Flscore
Class Name MAX MIN AVE MAX MIN AVE. MAX MIN AVE.
c?t 0.2392  0.2747 0.3811 1.0000 0.9990  0.9998 0.3861 0.43091 0.5518
c? 0.0000 0.4962 0.7715 0.0000 0.4478  0.5823 0.0000 0.47075 0.6637
c3 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.00000 0.0000
c* 0.0000  0.9964 1.0000 0.0000 0.4268  0.4633 0.0000 0.59762 0.6332
c’ 0.0000  0.0000 1.0000 0.0000 0.0000  0.0004 0.0000 0.00000 0.0007
ce 0.5397  0.5389 0.5390 0.9994 0.9991  0.9985 0.7009 0.70012 0.7000
c’ 1.0000  0.9992 1.0000 1.0000 0.9996  0.9994 1.0000 0.99939 0.9997
c® 1.0000  0.9871 1.0000 0.7999 0.5693  0.9928 0.8889 0.72215 0.9964
c® 0.8204  0.9990 1.0000 0.6615 0.1691  0.9015 0.7324 0.28920 0.9480
cto 1.0000  1.0000 1.0000 0.7714 0.9079 09117 0.8710 0.95172 0.9538
ctt 1.0000  0.9998 1.0000 1.0000 0.9988  1.0000 1.0000 0.99931 1.0000

Table 14. Performance analysis for N-BaloT with GNB and MI feature selection on the test dataset.

Precision Recall Flscore
Class Name MAX MIN AVE MAX MIN AVE. MAX MIN AVE.
ct 0.9722 09644 0.9687 1.0000 0.9996  0.9998 0.9859 0.9817 0.9840
c? 0.5980 0.6103 0.6152 0.9934 0.9955  0.9973 0.7466 0.7567 0.7610
c3 0.2727  0.4516 0.5833 0.0039 0.0036  0.0018 0.0078 0.0072 0.0037
c* 0.9967  0.9920 1.0000 0.9243 0.9895  0.9911 0.9591 0.9907 0.9955
c’ 0.4603  0.4608 0.4609 0.9985 0.9986  0.9996 0.6301 0.6306 0.6309
ce 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
c’ 0.5519  1.0000 0.9943 1.0000 0.9996  0.9998 0.7112 0.9998 0.9971

cs 1.0000  1.0000 1.0000 0.9972 0.9981  0.9991 0.9986 0.9991 0.9995
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c° 1.0000  1.0000 1.0000 0.9885 0.9857  0.9865 0.9942 0.9928 0.9932
co 1.0000  1.0000 1.0000 0.1190 0.9961  0.9927 0.2126 0.9981 0.9963
ctt 1.0000  1.0000 1.0000 1.0000 0.9958  0.9993 1.0000 0.9979 0.9997

Table 15. Performance analysis for N-BaloT with SVM and MI feature selection on the test dataset.

Precision Recall Flscore
Class Name MAX MIN AVE MAX MIN AVE. MAX MIN AVE.
c?t 0.3892  0.9038 0.5414 1.0000 0.9970  0.9996 0.5603 0.9481 0.7023
C? 0.8252  0.6629 0.7140 0.6243 0.9608  0.6679 0.7108 0.7845 0.6902
c3 0.2500  0.9718 1.0000 0.0003 0.1780  0.0005 0.0005 0.3009 0.0011
c* 1.0000  0.9925 0.9994 0.9277 0.9781  0.9862 0.9625 0.9852 0.9928
c’ 1.0000  0.7500 0.5000 0.0011 0.0011  0.0004 0.0022 0.0022 0.0007
ce 0.5396  0.5387 0.5390 0.9994 0.9991  0.9985 0.7008 0.7000 0.7000
c’ 0.9998  1.0000 1.0000 1.0000 0.9996  0.9998 0.9999 0.9998 0.9999
c® 1.0000  0.9985 1.0000 0.9997 0.9988  0.9991 0.9998 0.9986 0.9995
c® 1.0000  0.9993 0.9995 0.6181 0.9970  1.0000 0.7640 0.9982 0.9998
cto 1.0000  0.9992  1.0000 1.0000 1.0000  1.0000 1.0000 0.9996 1.0000
ctt 1.0000  1.0000 1.0000 1.0000 0.9995  1.0000 1.0000 0.9998 1.0000

4.3. Discussion

This section meticulously analyzes the results listed in Tables 9-15. It also measures
the performance of the employed classifiers in terms of time consumption. As shown in
Table 9, the classifiers benefited differently when different aggregation operators were
applied. The findings are summarized as follows:

e  When the “MIN” and “AVERAGE” functions were used, the
most of classifiers performed well and XGB, k-NN, GNB, LR
and SVM achieved notable results compared to their results
when the “MAX” operator was used. Among these methods,
XGB obtained the best accuracy (99.19%).

e In most cases of the experiments, all classifiers showed good
results when the “AVERAGE” operator was used as
aggregation function, except RF and SVM.

e It is notable that RF benefited more only when the “MAX”
operator was used as an aggregation function. The
performance of RF was degraded a little.

. In terms of accuracy, XGB and k-NN classifiers achieved
99.19% and 98.28% respectively, which means that they are
quite close. However, when their performances were
measured in terms of time consumption, the preference tends
to favor k-NN, since it consumes less time, as shown in Table
16.

e The prediction time is also a very important factor for
employing an ML classifier for real-time applications. Thus,
in the case that the ML classifier is used for preventing attacks
on IoT devices in real-time and sensitive intrusion detection
systems, the favor tends toward XGB.

Table 16. Classifiers’ Time Consumption with respect to Aggregation Functions.

Classifier Training Time (s) Prediction Time (s) Execution Time (s)
MAX MIN AVERAGE MAX MIN AVERAGE MAX MIN AVERAGE
RF 181.343 192.288 178.371 2.998 3.059 3.06 184.495 195.497  181.578
XGB 239.309 229.42 227.967 0.670 0.758 0.722 240.138 230.357  228.852

K-nn 20.928 10.732 20.622 68.744  30.085 24.474 89.820 40.977 45.242
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LR 18.285 24.574 23.204 0.034 0.04 0.037 18.516 24.815 23.445
GNB 0.874 0.95 0.916 0.210 0.223 0.202 1.232  1.333 1.267
SVM 3144.112 4235.9 3308.709 266.762 229.278 218.782  3411.02 4465.33 3527.637

Tables 11 and 12 show the performance of the classifiers according to class types. The
findings are summarized as follows:

e Among all attack types, the XGB and k-NN classifiers were
capable of detecting the “Mirai” attack type perfectly.

e Among the “Bashlite” attack types that XGB was able to
detect, the “TCP” and “UDP” attack types were poorly
detected, whilst the k-NN classifier performed poorly with
“TCP” and “UDP” attack types, and also with “COMBO” and
“Junk” attack types.

e Interestingly, RF records the best performance with Flscore
of 100% for the “COMBO” attack type when the “AVERAGE”
aggregation function was used. In addition, it achieved F1
score of 99.95% with the “Junk” type.

5. Conclusions

This paper has proposed an aggregated mutual information-based feature selection
with machine learning methods for enhancing IoT botnet attack detection. The main
phases of this method include data collection, data preparation, feature selection and
classification using the N-BaloT benchmark dataset. Each attack type was fed into the
feature selection methods to obtain a set of reduced features. The set with reduced features
was then used for training the ML classifiers using the OvR strategy. Finally, the ML
model was evaluated and the overall performance was reported. The proposed method
was applied for the binary (attack and benign) and multi-class (10 different attacks and
benign) classification problems. The effect of PCA, MI and ANOVA f-test feature selection
methods on the performance of ML models was investigated. Two ensemble-based
classifiers: RF and XGB, and four individual classifiers: GNB, k-NN, LR and SVM methods
with applying hyper-parameter methods were used in the conducted experiments. The
evaluation of ML classifiers was performed by computing the accuracy, precision, recall
and Flscore. In addition to these metrics, the training time, prediction time and execution
time of each classifier were computed. The experimental results showed that the MI filter-
based technique yielded the highest accuracy score when the dataset of binary dataset was
used. For the multi-class dataset, an aggregated MI with different rank aggregation
functions was proposed and tested. The findings showed that, in terms of accuracy, XGB
and k-NN classifiers achieved 99.19% and 98.28% respectively, while k-NN performed
better for time consumption measure. Future works can apply the proposed method on
different IoT botnet datasets. In addition, deep learning-based methods can be proposed
and investigated to enhance IoT botnet attack detection.
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Appendix A

Table A1. The full names of features in the N-BaloT dataset.

F.No Feature Name F.No Feature Name F.No Feature Name F.No Feature Name
M MIL_dir_L5_weight fe' H_L1_mean i HH_L1_weight S HH_jit_L5_mean
fur MI_dir_L5_mean & H_L1_variance HH HH_L1_mean HH HH _jit L5_variance
fm MI_dir_L5_variance Ji! H_L0.1_weight HH HH_L1_std HH HH_jit_L3_weight
a1 MI_dir_L3_weight i H_L0.1_mean HH HH_L1_magnitude e HH _jit L3_mean
M MI_dir_L3_mean )i H_L0.1_variance HH HH_L1_radius A HH_jit_L3_variance
i MI_dir_L3_variance i3 H_L0.01_weight HH HH_L1_covariance B HH_jit_L1_weight
fur MI dir_L1_weight i H_L0.01_mean HH HH_L1_pcc B HH jit L1_mean
fr MI_dir_ L1_mean fis H_L1.0.01_variance HH HH_L0.1_weight HH HH_jit_L1_variance
fr MI_dir_L1_variance HH HH_L5_weight HH HH_L0.1_mean -HH HH_jit_L0.1_weight
M MI_dir_L0.1_weight fAH HH_L5_mean HH HH_L10.1_std 1 HH_jit_L0.1_mean
M1 MI_dir_L0.1_mean fiH HH_L5_std 2¢7 HH_LO.1_magnitude AH HH_jit_L0.1_variance
M MI_dir_LO0.1_variance  f/  HH_L5_magnitude HH HH_L0.1_radius A HH_jit_L0.01_weight
M MI_dir_L0.01_weight fHH HH_L5_radius JAH  HH_L0.1_covariance e HH_jit 10.01_mean
M MI_dir_L0.01_mean A HH_L5_covariance HH HH_L0.1_pcc JH HH_jit_L0.01_variance
M MI_dir_L0.01_variance  ffi# HH_L5_pcc HH HH_L0.01_weight P HpHp_L5_weight
H H_L5_weight HH HH_L3_weight HH HH_L0.01_mean e HpHp_L5_mean
H H_L5 _mean fHH HH_L3_mean HH HH_L0.01_std 3H” HpHp_L5_std
A H_L5_variance HH HH_L3_std FH HH_L0.01_magnitude P HpHp_L5_magnitude
A H_L3_weight fH HH_L3_magnitude HH HH_L0.01_radius SH” HpHp_L5_radius
H H_L3 _mean HH HH_L3_radius AH HH_L0.01_covariance 6H” HpHp_L5_covariance
H H_L3 variance ‘HAH HH_L3_covariance HH HH_10.01_pcc 7Hp HpHp_L5_pcc
H H_L1_weight HH HH_L3_pcc HH HH_jit L5_weight 8H 4 HpHp_L3_weight
9H” HpHp_L3_magnitude f{)” HpHp_L3_radius ﬁ” HpHp_L3_covariance 11;” HpHp_L3_pcc
lg” HpHp_L1_weight IZ” HpHp_L1_mean fé” HpHp_L1_std fé” HpHp_L1_magnitude
f;p HpHp_L1_radius fé” HpHp_L1_covariance 1{;” HpHp_L1_pcc 2%” HpHp_L0.1_weight
v HpHp_L0.1_mean v HpHp_L0.1_std P HpHp_L0.1_magnitude £,  HpHp_L0.1_radius
ZP;” HpHp_L0.1_covariance ;é” HpHp_L0.1_pcc ZP;” HpHp_L0.01_weight ZZ” HpHp_L0.01_mean
v HpHp_L0.01_std 0 HpHpL0.01_magnitude f£7?  HpHp_L0.01_radius P HpHp_L0.01_covariance
Hp Hp Hp

HpHp_L0.01_pcc

34

HpHp_L3_mean

35

HpHp_L3_std

Table A2. Accuracies of Machine learning model with respect to different PCA components.

No. of Components RF XGB k-NN LR GNB SVM

1 65.605% 63.072% 70.231% 16.720% 24.553% 61.430%
11 93.011% 97.711% 99.765% 78.314% 68.009% 88.621%
21 93.058% 98.657% 99.802% 82.053% 68.871% 89.350%
31 92.066% 98.871% 99.819% 82.822% 68.179% 89.928%
41 91.145% 98.897% 99.817% 82.831% 67.753% 89.506%
51 92.055% 98.920% 99.817% 82.833% 66.803% 89.521%
61 92.043% 98.869% 99.817% 82.904% 62.286% 89.521%
71 92.051% 99.290% 99.817% 82.890% 56.603% 89.521%
81 92.049% 99.327% 99.817% 82.843% 50.457% 89.521%
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91 92.043% 99.306% 99.817% 82.818% 44.553% 89.521%

101 92.055% 99.292% 99.817% 82.776% 44.333% 89.521%

111 92.051% 99.187% 99.817% 82.759% 44.333% 89.521%
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