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Abstract: This study presents a novel feature-engineered–natural gradient descent ensemble-boosting
(NGBoost) machine-learning framework for detecting fraud in power consumption data. The pro-
posed framework was sequentially executed in three stages: data pre-processing, feature engineering,
and model evaluation. It utilized the random forest algorithm-based imputation technique initially to
impute the missing data entries in the acquired smart meter dataset. In the second phase, the majority
weighted minority oversampling technique (MWMOTE) algorithm was used to avoid an unequal
distribution of data samples among different classes. The time-series feature-extraction library and
whale optimization algorithm were utilized to extract and select the most relevant features from the
kWh reading of consumers. Once the most relevant features were acquired, the model training and
testing process was initiated by using the NGBoost algorithm to classify the consumers into two
distinct categories (“Healthy” and “Theft”). Finally, each input feature’s impact (positive or negative)
in predicting the target variable was recognized with the tree SHAP additive-explanations algorithm.
The proposed framework achieved an accuracy of 93%, recall of 91%, and precision of 95%, which
was greater than all the competing models, and thus validated its efficacy and significance in the
studied field of research.

Keywords: theft detection in power consumption data; NGBoost algorithm; majority weighted
minority oversampling technique algorithm; whale optimization algorithm; tree SHAP algorithm

1. Introduction

The quality of living in modern society is highly associated with the availability
of electricity [1]. An uninterrupted electricity supply requires an efficient transmission
and distribution (T&D) infrastructure. Broadly, there are two types of losses in any T&D
system; i.e., technical and nontechnical losses. The technical losses account for the heating
effect in the resistive nature of T&D lines, transformers, and other equipment [2]. On the
other hand, nontechnical losses (NTLs) occur due to equipment installation errors, billing
irregularities, corruption within company staff, and electric theft. Among all the mentioned
causes of NTLs, the theft of electric power is the most severe issue faced by power utilities
around the globe. As an estimation, electric power theft causes an annual loss of more
than USD fifty billion worldwide [3,4]. Figure 1 illustrates the severity of this problem in
various countries.
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meters to classify the theft and healthy consumers by employing various similarity or dis-
similarity metrics through a clustering approach [8]. On the other hand, the supervised 
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classifier initially, which, at a later stage, assists in identifying the suspicious consumption 
profiles in the provided dataset. 
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ing-based electric-theft-detection frameworks encounter few challenges during each of 
their execution stages; i.e., data preprocessing, feature engineering, and model training 
and testing. For example, the data acquired from the conventional or smart meters gener-
ally contain a lot of missing and inconsistent observations that need to be imputed for 
achieving realistic outcomes at the end of the classification process. Imbalanced data class 
distribution and inappropriate selection of the features may also prevent the effective and 
unbiased evaluation of the theft-detection model. Another important aspect that has been 
ignored in most of the supervised ML theft-detection frameworks is the probability eval-
uation of model outcomes. The greater the model outcome probability, the greater the 
sureness on the produced model prediction, leading to a reduced number of false inspec-
tions. Moreover, the contribution of input features on a particular predicted outcome is 

Figure 1. Nontechnical losses in different countries [3].

Researchers have explored several different methods in the literature to overcome
the stated issue, among which the hardware and data-driven approaches are the most
widely utilized theft-detection strategies [5]. Hardware-based solutions employ numerous
instruments such as balancing or calibration meters, sensors, tamper-evident lock detec-
tors [6], and other devices to detect electric fraud [7]. In these methods, the mentioned
devices assist in aggregating the various network characteristic values at different loca-
tions so that an immediate discrepancy report can be generated during the occurrence of
theft. Even though these methods have reported suitable outcomes, they are not feasible
for underdeveloped countries due to the high initial and maintenance costs. Contrary
to hardware-based approaches, the data-driven theft-detection techniques only require
the accumulated kWh data of consumers to perform the same task. The data-driven ap-
proaches can be broadly categorized into unsupervised and supervised machine-learning
(ML) methods. The former methods utilize the unlabeled dataset acquired from energy
meters to classify the theft and healthy consumers by employing various similarity or
dissimilarity metrics through a clustering approach [8]. On the other hand, the supervised
ML methods utilize a prelabeled dataset of consumers’ consumption profiles to train the
classifier initially, which, at a later stage, assists in identifying the suspicious consumption
profiles in the provided dataset.

It is worth noting that, in comparison to unsupervised machine-learning-based fraud-
detection models, supervised machine-learning approaches are the most widely used,
owing to their flexibility of training a classifier on multiple classes, ease of execution, and
higher interpretability of model outcomes. However, the supervised machine-learning-
based electric-theft-detection frameworks encounter few challenges during each of their
execution stages; i.e., data preprocessing, feature engineering, and model training and
testing. For example, the data acquired from the conventional or smart meters generally
contain a lot of missing and inconsistent observations that need to be imputed for achieving
realistic outcomes at the end of the classification process. Imbalanced data class distribution
and inappropriate selection of the features may also prevent the effective and unbiased
evaluation of the theft-detection model. Another important aspect that has been ignored
in most of the supervised ML theft-detection frameworks is the probability evaluation of
model outcomes. The greater the model outcome probability, the greater the sureness on the
produced model prediction, leading to a reduced number of false inspections. Moreover,
the contribution of input features on a particular predicted outcome is often overlooked,
which consequently impedes the further improvement of the developed model.
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Contributions of the Proposed Theft-Detection System

The broader aim of this research work was the implementation of a novel sequen-
tially executed theft-detection framework to facilitate the power utilities in their campaign
against fraudster consumers. The proposed framework initially utilized an ML-based ran-
dom forest imputer (RFI) to impute the missing entries in the acquired smart meter dataset
(SGCC dataset). The RFI is an effective technique to handle different types of missing values
by comprehending complex interactions present in the data. To avoid the data class unbal-
ancing, the majority weighted minority oversampling technique (MWMOTE) algorithm
was utilized. The MWMOTE algorithm employs the intelligence of the average-linkage,
agglomerative-clustering-based technique to generate the required number of minority
class samples from the original data to effectively balance the overall data class distribu-
tion. In order to precisely portray the underlying characteristics present in consumption
data, the proposed approach utilized the intelligence of the time-series feature-extraction
library (TSFEL) for extracting the statistical, temporal, and spectral domain-based features
from users’ kWh consumption patterns. The whale optimization algorithm (WOA)-based
feature-selection method was adopted to avoid overfitting and high data dimensionality
by selecting the most significant features that positively contributed towards predicting the
target variables, while discarding the less relevant ones. Once the most relevant features
were acquired, the model training and testing process was initiated by using the NGBoost
algorithm to classify the consumers into two distinct categories (“Healthy” and “Theft”).
Finally, unlike most of the ensemble and gradient-boosting-based ML models in which
the predictions are made as a black box; i.e., the reason for any given prediction was not
thoroughly explained, this study utilized the tree Shapley additive explanations (SHAP)
algorithm to evaluate the impact of each input feature in predicting the target variable. The
proposed model achieves an excellent accuracy, with low false-positive and high detection
rates; thus, it saves the cost, labor, effort, and time required for executing onsite inspections.

The remainder of the paper is organized into five main sections. Section 2 provides
the basics and the recent advancements in the studied research area. Section 3 explains
the research methodology. In Section 4, the performance evaluation of the proposed theft-
detection framework is provided. Section 5 illustrates the results and a discussion, while
conclusions of the current research work are laid in Section 6.

2. Literature Review

As this study explores an application of the supervised ML approach in detecting
theft cases from the acquired smart meter dataset, therefore the literature pertaining to
the recent advancements in the mentioned field is discussed in detail in this section. As
mentioned in the previous section, the supervised machine-learning-based electric-theft-
detection frameworks encounter a few major challenges during data preprocessing, feature
engineering, and the model training and testing process. It is important to discuss each
of the challenges and their available solutions in the literature in detail to highlight the
essence of current research work.

To achieve realistic outcomes at the end of any classification process, the missing
observations in the accumulated dataset need to be logically and intelligently imputed.
Since most of the publicly available electric consumption datasets possess a considerable
chunk of missing data entries, it therefore is very hard for a classifier to learn and classify
such deficient and inconsistent datasets. In order to overcome the stated issue, several
data-imputation or data-dropping approaches have been suggested in the literature. These
approaches include the look-back and sandwich-based imputation methods [9], Monte
Carlo technique [10], fuzzy clustering method [11], ensemble of multilayer perceptron [12],
Bayesian missing values estimation [13], hot deck [14], and mean imputation. Even though
the stated solutions are easy to implement and are computationally fast, they cause a
substantial data loss, decreased statistical power, increased standard errors, and reduced
model generalizing ability, thereby yielding misleading conclusions [15].
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The second stage in any supervised ML method is the feature-engineering stage. In
this stage, several distinct features are extracted from the acquired dataset using different
soft computational techniques. The major challenge during this stage is to deal with the
imbalanced data class distribution. In addition, the selection of a suitable technique for
choosing the most relevant features from the provided dataset is highly important. The
former issue occurred due to the higher number of healthy consumers than fraudster
consumers in the acquired dataset, which made the model highly biased towards the
majority-class sample, creating a low representation of the minority-class samples. Since
the under-represented class in any theft detection framework needs to be identified, a
balanced data class distribution is essentially required for the effective and unbiased
evaluation of any theft-detection model. Several researchers have attempted to tackle this
challenge using different soft computational methods. Glauner et al. [16] addressed the
data class imbalance issue by training the various ML classifiers on the different proportions
of NTL cases. The authors chose the area under the receiver operating characteristic curve
(AUC) metric to assess the performance of the studied classifiers in the presence of a data
class imbalance. Hasan et al. [17] and Gunturi et al. [18] employed the over-sampling-based
technique using the synthetic minority oversampling technique (SMOTE) algorithm to
tackle the mentioned issue. In another study, Buzau et al. [19] used the undersampling-
based technique to balance the considered dataset. However, the oversampling-based
class balancing techniques generally cause overfitting, low generalization ability, and
noisy data generation. In contrast, the undersampling-based class balancing techniques
cause a substantial loss of information, consequently lowering the developed model’s
accuracy [20].

Another challenge that emerges during the feature-engineering stage is the choice of
an appropriate method for extracting and selecting the most relevant features from the
acquired dataset. The raw data obtained from the smart meters generally lacked statisti-
cal significance, and contained high data dimensionality with redundant and irrelevant
features. If such a dataset is directly provided to the classifier, its performance in classify-
ing the healthy and theft patterns will be highly affected. Therefore, a number of highly
relevant features are extracted from the acquired raw dataset to enhance the classifier’s
performance. In the literature, several statistical and deep-learning-based techniques have
been explored for extracting the supplementary information from the given data [17,21].
However, these statistical-based feature-extraction techniques can only extract simple fea-
tures such as mean, mode, median, interquartile range, etc. The mentioned features contain
less significant information, and are not enough to provide accurate and precise data to
the classifier. The authors explored several deep-learning-based techniques to obtain some
significant features that provided in-depth data insights to the classifier to overcome this
issue. Nevertheless, the implementation of these techniques was too complicated and
computationally expensive to pursue.

On completion of the feature-engineering procedure, the next challenge in developing
an efficient theft-detection framework was to shortlist the fraudster consumers by using a
suitable ML classifier. Numerous ML classifiers were utilized in the literature for devel-
oping an effective theft-detection framework. Jindal et al. [22] and Marimuthu et al. [23]
presented an energy-theft-detection model using a support vector machine (SVM) for the
smart meter dataset. Salman et al. [24] and Yan et al. [25] utilized ensemble machine-
learning-based techniques employing random forest and Xgboost algorithms to enhance
the classification performance of developed theft-detection frameworks. In [26], the authors
developed a theft-detection framework using the C5.0 boosting algorithm, and indicated
the performance enhancement before and after using feature-engineering techniques.
Pereira et al. [27] utilized a PSO-based hyperparameter tuned MLP network to identify
theft cases in the Brazilian distribution network and achieved an accuracy of 94.58%.
Similarly, Jokar et al. [28] proposed a consumption-pattern-based energy-theft detector
(CPBETD) algorithm to detect fraudster consumers using the Irish smart meter dataset,
and obtained a recall value of 94%. In the mentioned research works above, the developed
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models were designed in such a way so as to yield the single best-guess prediction or point
estimate; e.g., “Healthy” or “Theft”, thus providing a factor of uncertainty in the predicted
outcomes. Furthermore, such classification procedures may cause a substantial number of
false inspections, leading to increased expenses, wastage of time, and lack of confidence in
the developed model. To overcome the stated issues, probabilistic theft-detection models
are often used. The probabilistic models are more reasonable models in terms of gauging
the model’s confidence in the predicted outcome. This is because they assist in generating
a complete probability distribution function over the entire classifier outcome. For most of
the ensemble and gradient-boosting-based ML models, the predictions are treated as black
boxes; i.e., the reason for any given prediction is unknown; thus, the chance for further
improvement is nullified.

Concluding the detailed literature review, the mapping of the identified problems and
their proposed novel solutions are presented in a tabular form in Table 1, to highlight the
essence of the current research work.

Table 1. Problems identified and the proposed solutions.

Problem Identified Proposed Solution

Missing and inconsistent entries in data
[9–11,13–15]

Supervised ML-based random forest imputation
technique [29]

Data class imbalance [16–20] Majority weighted minority oversampling technique
algorithm [30]

Irrelevant and redundant features [31,32] Time series and statistical-technique-based novel
feature extraction using TSFEL algorithm [33]

High data dimensionality [26,34] Feature selection using whale optimization
algorithm [35]

Model selection [34,36,37] Natural gradient boosting trees algorithm [38]

Model’s prediction interpretation Tree SHAP additive explanations algorithm [39]

Reliable evaluation AUC metric, precision, recall, Matthew’s correlation
coefficient, Cohen’s kappa

3. Proposed Methodology

The overall framework was classified into three major stages: data preprocessing,
feature engineering, and model evaluation, as shown in Figure 2. This section discusses all
stages of the designed model in detail.
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3.1. Stage-1: Data Preprocessing

In data preprocessing, the original data is reshaped into an appropriate representation
useful for the effective learning of ML models. In the current research work, the consumers’
kWh consumption data (January 2014 to October 2016), acquired from the State Grid
Corporation of China (SGCC) [40], contained 42,372 labeled consumers (91% healthy and
9% theft). In order to explore the acquired labeled data, the consumption patterns for a few
of the random samples from both fraudster and healthy consumers were plotted, as shown
in Figures 3 and 4, respectively.
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One of the key characteristics of theft consumers that most likely distinguished them
from the healthy ones was their unsymmetrical energy consumption pattern. It can be
observed in the mentioned figures that the considered fraudster samples contained com-
paratively more nonperiodicity and zero consumption values than the healthy consumers,
thus validating the genuineness of the considered dataset. Once the labeled dataset was
explored, the next task for developing an efficient supervised ML classification framework
was to accurately impute the missing entries in the acquired data. Figure 5 shows the
histogram for missing values present in the accumulated dataset.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 26 
 

 

 
Figure 5. Histogram of missing values present in SGCC dataset. 

It can be observed in Figure 5 that each amongst the 60.11% of the total consumers 
contained less than 200 missing data (NaN) entries, while this number ranged between 
300 and 600 and 695 and 705 for 16.89% and 23% of consumers, respectively. Since it was 
quite difficult to accurately impute such a huge number of missing data entries, only those 
consumers whose NaN entries were less than 200 were shortlisted for further processing. 
The current study utilized the random forest imputation (RFI) technique [36] to impute 
the missing entries in kWh consumption data for these selected consumers. The men-
tioned task was accomplished by using the Miss-Forest package present in the R program-
ming language. It created a data matrix, ሾ݊ ∗  is the number of columns in kWh consumption for each consumer. Initially, the missing ݌ ሿ, where n is the number of consumers and݌
values present in the kWh consumption data were replaced by either the mean or median 
value. Afterward, the imputation process was initiated sequentially for each imputed var-
iable in such a way that the variable under imputation was used as the target variable for 
building the RF model on the remaining variables. Subsequently, the variable value esti-
mated by the trained RF model was replaced with the imputed value. This process was 
repeated until all the predefined number of iterations were completed. Figure 6 depicts 
the kWh consumption patterns of four random consumers before and after the proposed 
imputation process. 

Figure 5. Histogram of missing values present in SGCC dataset.

It can be observed in Figure 5 that each amongst the 60.11% of the total consumers
contained less than 200 missing data (NaN) entries, while this number ranged between
300 and 600 and 695 and 705 for 16.89% and 23% of consumers, respectively. Since it was
quite difficult to accurately impute such a huge number of missing data entries, only those
consumers whose NaN entries were less than 200 were shortlisted for further processing.
The current study utilized the random forest imputation (RFI) technique [36] to impute the
missing entries in kWh consumption data for these selected consumers. The mentioned
task was accomplished by using the Miss-Forest package present in the R programming
language. It created a data matrix, [n× p], where n is the number of consumers and p
is the number of columns in kWh consumption for each consumer. Initially, the missing
values present in the kWh consumption data were replaced by either the mean or median
value. Afterward, the imputation process was initiated sequentially for each imputed
variable in such a way that the variable under imputation was used as the target variable
for building the RF model on the remaining variables. Subsequently, the variable value
estimated by the trained RF model was replaced with the imputed value. This process was
repeated until all the predefined number of iterations were completed. Figure 6 depicts
the kWh consumption patterns of four random consumers before and after the proposed
imputation process.
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3.2. Stage-2: Data Class Balance and Feature Engineering

This stage was further divided into two substages; i.e., data class balancing and feature
engineering. This section discusses each stage in detail.

3.2.1. Data Class Balancing

Data class balancing is the process of balancing the minority and majority class
samples with each other to improve the generalization ability of the model and avoid
overfitting issues. In this study, the acquired prelabeled data contained only 6.7% of the
theft consumers, which was comparatively lower than the healthy consumers. To increase
the minority class samples, the oversampling technique based on the MWMOTE algorithm
was utilized. The working mechanism of the MWMOTE algorithm is based on three stages.

In the first stage, the identification process of highly important minority class samples
was carried out. In the second stage, samples were categorized in terms of their Euclidean
distance from the nearest majority class sample. Finally, the average-linkage agglomerative
clustering-based technique was employed to produce new samples from highly important
categories of minority class samples formed in the second stage. The minority class samples;
i.e., synthetic theft cases generated at the end of this process, were merged with the original
dataset to balance the overall data class distribution. The data class distribution before
and after using the MWMOTE algorithm was visualized using the t-distributed stochastic
neighbor embedding (t-SNE) approach, as shown in Figures 7 and 8.
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Figure 7 shows the imbalanced smart meter dataset obtained from SGCC, while
Figure 8 depicts a balanced dataset obtained after the implementation of the MWMOTE
algorithm. As can be seen from the mentioned figures, the MWMOTE algorithm system-
atically imputed the minority class samples to achieve a balanced dataset that could be
effectively utilized for training and testing the proposed classifier.
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3.2.2. Proposed Feature-Engineering Method

In this subsection, the proposed feature engineering procedure is discussed in detail.
Feature engineering is the process of selecting the most relevant features and discarding
the redundant and less significant ones from the acquired dataset. This procedure aims
to boost the learning ability of the ML model while dealing with complex data patterns.
The SGCC dataset utilized in this study lacked statistical characteristics. For achieving an
efficient performance by any theft-detection model, its input features must reflect sufficient
underlying abnormalities in customer consumption data. Therefore, in this study, statistical,
temporal, and several spectral domain-based features (more than 50) were extracted from
each consumer’s consumption data using the TSFEL technique. The TSFEL technique
facilitated rapid data exploration and automatic feature extraction from the given kWh
consumption data. All the extracted features in the current study are depicted in Figure 9,
whereas the source code and detailed description of each computed feature can be found
on the TSFEL GitHub web page [33].
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The newly added supplementary information obtained after employing the TSFEL
technique enhanced the learning ability of the model in classifying the complex data
patterns effectively. Nevertheless, increasing the number of features increased the data
dimensions, training time, and computational resources. To overcome this challenge, a
feature selection approach was adopted at the later stage to select a small subset of the
extracted features. The resulting shortlisted features were generally packed with high-
quality and the most relevant information for data class prediction. These feature selection
techniques have been found to be effective in avoiding overfitting of the model, lowering
the computational and storage requirements, mitigating problems caused due to high data
dimensions, and achieving improved readability and interpretability of the model.

In this study, the most essential features from the available kWh consumption data
were selected by using the WOA-based feature selection (FS) technique. The WOA-FS tech-
nique worked iteratively to select the essential features from the given dataset. The WOA
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is a stochastic population-based metaheuristic optimization algorithm whose working
mechanism is based on mimicking humpback whales’ prey-hunting behavior. It consists of
two stages: exploration (random hunting for prey) and exploitation (encircling and attack-
ing prey). Like other population-based metaheuristic algorithms, it iteratively generates
random solutions within the bounded search space until the optimum solution is achieved.
A simplified working mechanism of the proposed WOA-FS technique is illustrated in
Figure 10.
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The proposed WOA-FS optimally selected those minimum number of highly im-
portant features that attained maximum classification accuracy for any given volume of
consumption data and extracted features (as depicted in the square matrix, where Connfn
represents Conn: consumer number and fn: feature number). Before initiating the feature
selection process through WOA, the number of iterations, number of search agents, con-
vergence criteria, search space boundaries, decision variables, and the learning classifier
had to be decided. During the first iteration, the random subsets of features were selected
from consumers’ consumption data and their extracted features to train and test the learn-
ing classifier. Afterward, the performance of the classifier with each feature subset was
evaluated using the fitness function (FF) provided in Equation (1):

FF = α×CLFe + β
C
N

(1)

where CLFe represents the classification error rate of the classifier (NGBoost in the current
case), C represents the cardinality of the chosen feature subset, and N denotes the total
input features. The α and β (1−α) manage the trade-off between the classification error
rate to the number of selected features subset [41].

A number of solutions [42,43] have been suggested to prevent premature convergence
in optimization-based algorithms, with one particularly significant study being carried out
by Zhang et al. [44], who proposed that in the case of a premature convergence problem,
the best existing solution should be preserved and the mutation process should continue
until an improved solution is found; once an improved solution is found, the current
optimal solution is updated, and the mutation process is stopped. In the current study,
in order to avoid the problem of premature convergence, humpback whales in the WOA
technique, during the prey search phase, searched for prey in a random manner according
to their relative positions to one another. The WOA forced the search agent to move
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away from a reference whale by using random values higher than or lower than 1. As a
consequence, rather than selecting the best search agent found so far, the WOA changed a
search agent’s position in the exploration phase to that of a randomly selected search agent.
This WOA’s capacity to randomly explore the solution space, even when it was close to
the optimal solution, allowed it to retain population diversity and avoid the premature
convergence issue.

It is worth mentioning here that the minimization of the classification error with
the limited number of essential features was taken as the current optimization objective.
The WOA accomplished the mentioned task by evaluating the FF’s magnitude for each
iteration search agent. The search agent with a minimum value of FF was taken as the
best solution candidate. Similarly, for each subsequent iteration, the process was repeated
until the predecided termination criterion was met. Finally, the selection of the feature
subset was made by choosing the fittest solution obtained at the end of the optimization
process. The final feature set obtained at the end of the feature selection process contained
several data points that were spread across a broad spectrum. Such features with higher
magnitude could induce bias during the model training. Therefore, all the computed
features had to be standardized on a common uniform scale. The current study employed
the well-known min–max approach for data standardization to address this challenge,
using the following expression:

f(xi) =
di −min(D)

max(D)−min(D)
(2)

where D is a vector composed of di daily electricity consumption, while the min(D) and
max(D) are the minimum and maximum values of D, respectively.

3.3. Stage-3: Model Training and Evaluation Stage

The theoretical background of the performance metrics and proposed NTL detection
classifier are discussed in detail in the following sections.

3.3.1. Performance Evaluation Metrics

The efficacy of the supervised machine learning models depended on their ability
to predict the unlabeled data. Numerous metrics exist in the literature for evaluating the
performance of an ML model, such as those utilized in [45]. Since it was not feasible to
consider all the performance evaluation metrics provided in the cited reference, only a
small number of the most significant metrics were employed to assess and compare the
efficacy of the proposed theft-detection model. Equations (3)–(11) provide the mathematical
expressions for calculating the stated metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall or Detection rate =
TP

TP + FN
(4)

False positive rate = FPR =
FP

FP + TN
(5)

False negative rate = FNR =
FN

FN + TP
(6)

Precision = PR =
TP

TP + FP
(7)

F1score = 2× Precision×DR
Precision + DR

=
2TP

2TP + FP + FN
(8)

Kappa =
ρo − ρe
1− ρe

(9)
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MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

AUC(for single point) =

(
TP

TP+FN

)
+
(

TN
TN+FP

)
2

(11)

where FP and TP denote the false positive and true positive, while FN and TN represent
the false negative and true negative, respectively; ρo is the observed accuracy; and ρe is the
expected accuracy (random chance).

3.3.2. NGBoost Classification Algorithm: Theoretical Background

NGBoost is a supervised natural gradient descent (NGD)-based boosting algorithm.
It can be utilized for both probabilistic regression and classification tasks. In this study,
the NGBoost-algorithm-based classification approach was explored for model training
and evaluation purposes. A conceptual representation of the NGBoost model is shown in
Figure 11.
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In Figure 11, xin represents the given input features, M is the base learner, T is the
prediction target, and θ represents the parameters of the target distribution. The NGBoost
model generates a conditional probability distribution function Pθ(output(T)|input(xin))
of each predicted outcome in the range of 0 to 1. The higher the value of the mentioned
function, the higher the probability of predicting the data class accurately will be, and
vice versa. The proposed framework used boosting to build a series of decision trees
(DTs) with reduced loss during model training. In other words, each DT learned from
the previous tree and improved the next tree to enhance the model’s performance. The
hyperparameter’s values for the NGBoost algorithm used in the proposed method are
given in Table 2. Detailed information on the NGBoost algorithm, along with source code
implementation, is referenced here: https://stanfordmlgroup.github.io/projects/ngboost
(accessed on 18 October 2021).

Table 2. The hyperparameter’s values for the NGBoost algorithm used in the proposed method.

Parameter Name Description Parameter Value

learning_rate
Helps in setting weighting factors for the
addition of new trees at each iteration to

the classifier.
0.1

n_estimatiors The number of boosting iterations to
be performed. 100

subsample

The number of samples to be used for
fitting the individual base learners.

Optimal selection of this parameter can
assist in setting bias and variance values.

0.5

https://stanfordmlgroup.github.io/projects/ngboost
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Table 2. Cont.

Parameter Name Description Parameter Value

min_samples_split

The minimum number of samples to be
present at a leaf/internal node. This

parameter controls the model
overfitting/underfitting

related problems.

5

min_samples_leaf

The minimum number of samples to be
present at the leaf. Controlling this

parameter helps in
overfitting/underfitting-related issues.

6

max_depth Helps in building the structure of the
regression tree. 8

max_features Number of features to be selected when
searching for split. 15

max_leaf_nodes Optimal selection of this value facilitats
reducing the impurity of trees. 6

Tol This value facilitates early stopping if
there is no change in the loss. 0.20

Base_learner Used to describe the base component of
multiple classifier systems. Regression trees

Probability_distribtuion Normal distribution for continuous
output, and Bernoulli for binary output. Bernoulli

Scoring_rule Maximum likelihood or continuous
ranked probability score. Maximum likelihood estimation

4. Performance Evaluation of Proposed Classifier

In this section, the performance of the proposed classifier against the performance
metrics mentioned in Section 3.3.1 is evaluated and discussed thoroughly. In order to train a
ML model for the current theft-detection problem based on the NGBoost classifier, the data
framed at Stage-2 was fetched. To avoid the overfitting problem in the developed model,
two techniques were adopted: first, by generating enough samples of both data classes
using the MWMOTE algorithm; and second, by setting the values of the hyperparameters
in such way that model did not overfit the training data. A 10-fold cross-validation (CV)
method was employed to assess the performance of the proposed model, the corresponding
outcomes of which are depicted in Table 3.

Table 3. The 10-fold cross-validation results for the proposed model.

Performance
Metric Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6 Fold-7 Fold-8 Fold-9 Fold-10 Mean

Accuracy 0.93 0.94 0.94 0.93 0.94 0.94 0.93 0.93 0.93 0.93 0.93
Recall 0.92 0.91 0.90 0.92 0.93 0.93 0.92 0.90 0.92 0.91 0.91

Precision 0.95 0.96 0.93 0.96 0.95 0.94 0.95 0.93 0.95 0.96 0.95
Kappa 0.86 0.88 0.89 0.95 0.88 0.88 0.86 0.87 0.9 0.9 0.89
Flscore 0.93 0.91 0.90 0.89 0.90 0.91 0.93 0.94 0.93 0.94 0.92
AUC 0.94 0.96 0.97 0.97 0.96 0.97 0.93 0.96 0.97 0.98 0.96
MCC 0.86 0.87 0.87 0.87 0.87 0.88 0.95 0.87 0.86 0.87 0.88

It can be observed in Table 3 and Figure 12 that the proposed model attained a very
high accuracy and recall; i.e., 0.93 and 0.91, respectively. It is worthwhile to mention that
accuracy and recall are two of the most frequently utilized performance evaluation metrics
in most theft-detection frameworks. However, these metrics should not be viewed as a
decisive measure for the final selection of a theft-detection model. For example, a higher
accuracy value can be obtained in the presence of an imbalanced data class distribution.
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This is because the developed model in the mentioned scenario was highly oriented
towards rightly classified majority class samples only. Similarly, the recall value lacked
information regarding the number of false-positive cases, which consequently generated
misleading outcomes and may have caused the commencement of false inspections due to
wrongly classified theft consumers. Therefore, the efficacy of the proposed framework was
further validated by measuring precision, Kappa, F1score, and MCC. The precision metric
estimated the ability of the classifier to accurately classify the theft cases. The proposed
theft-detection model achieved a high average precision value of 0.95. Another important
performance evaluation metric is F1score. It is the harmonic mean between precision and
recall. The F1score for the current case was calculated as 0.92, which was significantly higher
for any supervised ML classifier. Likewise, the MCC metric yielded a high score only if the
prediction had achieved good scores in all four confusion matrix categories. The proposed
classifier attained an average MCC value of 0.88.
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Another important metric for evaluating the theft-detection models is the AUC [16,46].
The AUC facilitates extracting the information contained in a ROC curve. It illustrates the
trade-off between the true positive rate (TPR) and false positive rate (FPR). In other words,
it provides a direct measure of the classifier’s ability to correctly segregate the positive
(theft) and negative (healthy) classes. In the current study, the proposed classifier attained
an average AUC value of 0.96, as shown in Figure 13, which further signified the efficacy
of the developed model.
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In addition, the cumulative gain curve obtained using the proposed model is shown
in Figure 14. The cumulative gain curve was used to visually understand the overall
probabilistic predictions produced for each outcome by the classifier. The proposed model
assigned each model outcome a probability score so that the higher the probabilistic
prediction value, the higher the confidence in data class prediction would be, and vice
versa. For each fraudster consumer predicted by a model, the predictions with the highest
confidence scores should be addressed first for onsite inspection, and those with lower
confidence scores may be discarded for a site inspection. In this way, human resource
allocation for conducting site inspections can be reduced, and the theft detection hit rate
can also be improved; whereas the threshold for setting the confidence value of model
prediction can differ based on the distribution company’s resources.
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The x-axis in the curve represents the percentage-wise proportion of consumers while
the y-axis signifies the gain for all the model responses in a given data class. The class-0
and class-1 represent “Healthy” and “Theft” consumers, respectively. It can be observed
in Figure 14 that the developed model outcome probability was 0.4 for 20% of the total
consumers, while its value was greater than 0.8 for more than 45% of consumers.

Considering the outcomes of all the performance evaluation metrics, we concluded
that the proposed theft-detection model correctly classified the majority of the Theft and
Healthy cases in the provided dataset, and thus proved its essence and significance.

4.1. Confusion Matrix of the Proposed Model

The confusion matrix (CM) is a popular metric for assessing the performance of su-
pervised classification models. It is applicable to both binary and multiclass classifications
issues. It is essentially a square matrix, with the rows representing the actual class of the
instance and the columns representing their predicted class, as illustrated in Figure 15.
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Figure 16 illustrates the confusion matrix attained by the proposed model. Here,
“0” represents the negative class, while “1” represents the positive class. For readability
purposes, CM values were normalized in percentage form. It is evident in the above figure
that the classifier correctly classified most of the Theft and Healthy consumers.
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4.2. Outcomes Interpretability Using Tree SHAP Algorithm

In this section, the proposed theft-detection model’s model outcomes are explained
by employing the tree SHAP algorithm developed by Lundberg et al. [37]. The aim of
employing this algorithm was to assess each input feature’s contribution in predicting
the model outcome. Figure 17 shows the top features that significantly contributed to
the prediction of the target variable by using the tree SHAP algorithm. Furthermore,
sensitivity analyses also were conducted that facilitated providing more insight into how
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input features contributed to the prediction of the model outcome [47]. In this case, the
feature sensitivity of input features was computed by changing one or more features
while keeping the rest constant. If the model’s predicted result varied significantly when a
feature’s value was updated or dropped, then that feature had a major impact on prediction.
The corresponding outcome attained by the sensitivity analysis technique for the proposed
model is depicted in Figure 18.
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It can be observed in Figures 17 and 18 that the entropy feature (a measure of internal
variations lying in given data) attained the highest value (in terms of both the tree SHAP
algorithm and the sensitivity analysis technique) in predicting the target variable. To
illustrate its significance, the kernel density estimation (KDE) plot of computed entropy
values and a sample of a consumer’s consumption pattern relative to different entropy
values are shown in Figures 19 and 20, respectively. The KDE plot in Figure 19 shows
that the fraudster consumers acquired a comparatively higher entropy than the healthy
consumers. On the other hand, Figure 20 provides a Healthy and Theft consumer sample
for two consecutive years (2014 and 2015). Unlike the Theft consumer, for whom the
entropy was higher due to irregular consumption patterns during the similar months of the
considered years, the Healthy consumer’s consumption patterns provided identical kWh
curves and, consequently, lower entropy. Hence, by interpreting such in-depth information
of selected features through the tree SHAP algorithm, numerous deciding factors involved
in predicting the model’s outcomes could be effectively interpreted, which helped to
enhance the performance of the developed model.
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5. Results and Discussion

In this section, the efficacy of the proposed theft detection framework is assessed and
compared with the latest gradient boosting decision trees and the most frequently used
classical ML models under identical datasets. To accomplish the mentioned objective, the
performance assessment of all the studied ML models was made based on five of the most
widely utilized performance metrics (detailed in Section 3) using a 10-fold cross-validation
technique. Since the proposed NGBoost algorithm was essentially a modified variant of
an ensemble gradient descent decision tree, its performance was initially compared with
similar types of models, such as the extra tree classifier, extreme gradient boosting classifier,
CatBoost classifier, light gradient boosting machine, and Ada boost classifier. The outcomes
of this comparative study are illustrated in Figure 21. Later, in order to show its efficacy
against the classic ML methods, another comparative analysis was carried out using an
identical dataset and similar performance evaluation metrics. The corresponding results
are shown in Figure 22.

Sensors 2021, 21, x FOR PEER REVIEW 23 of 26 
 

 

performance assessment of all the studied ML models was made based on five of the most 
widely utilized performance metrics (detailed in Section 3) using a 10-fold cross-valida-
tion technique. Since the proposed NGBoost algorithm was essentially a modified variant 
of an ensemble gradient descent decision tree, its performance was initially compared 
with similar types of models, such as the extra tree classifier, extreme gradient boosting 
classifier, CatBoost classifier, light gradient boosting machine, and Ada boost classifier. 
The outcomes of this comparative study are illustrated in Figure 21. Later, in order to 
show its efficacy against the classic ML methods, another comparative analysis was car-
ried out using an identical dataset and similar performance evaluation metrics. The cor-
responding results are shown in Figure 22. 

 
Figure 21. Performance evaluation of studied tree-based ML models. 

 
Figure 22. Performance evaluation of studied conventional ML models. 

Figure 21. Performance evaluation of studied tree-based ML models.

Sensors 2021, 21, x FOR PEER REVIEW 23 of 26 
 

 

performance assessment of all the studied ML models was made based on five of the most 
widely utilized performance metrics (detailed in Section 3) using a 10-fold cross-valida-
tion technique. Since the proposed NGBoost algorithm was essentially a modified variant 
of an ensemble gradient descent decision tree, its performance was initially compared 
with similar types of models, such as the extra tree classifier, extreme gradient boosting 
classifier, CatBoost classifier, light gradient boosting machine, and Ada boost classifier. 
The outcomes of this comparative study are illustrated in Figure 21. Later, in order to 
show its efficacy against the classic ML methods, another comparative analysis was car-
ried out using an identical dataset and similar performance evaluation metrics. The cor-
responding results are shown in Figure 22. 

 
Figure 21. Performance evaluation of studied tree-based ML models. 

 
Figure 22. Performance evaluation of studied conventional ML models. 

Figure 22. Performance evaluation of studied conventional ML models.



Sensors 2021, 21, 8423 21 of 23

We concluded from the results depicted in Figures 20 and 21 that the proposed
electricity-theft-detection framework outperformed all the competing ML models in terms
of seven of the most widely used performance evaluation metrics. It provides an accuracy
of 93%, precision of 95%, and recall of 91%, which were significantly higher than all other
considered classifiers.

6. Conclusions

In this study, a novel feature-engineered electric-theft-detection framework was de-
veloped using the intelligence of the NGBoost algorithm. For ease of understanding and
presentation, the proposed framework was divided into three major stages: data prepro-
cessing; feature engineering; and model training, testing, and interpretation. To effectively
classify the consumers into healthy and fraudster categories, each stage was executed
sequentially. Initially, the data preprocessing stage was commenced, in which the problem
of missing entries in the acquired smart meter dataset was addressed by the random-
forest-based imputation technique. Afterward, the feature engineering stage was initiated,
in which the unbalancing of the target variable was tackled by the minority class over-
sampling method, called the MWMOTE algorithm. Later, the combination of TSFEL and
the whale optimization algorithm was utilized to extract and select the most important
features from the balanced dataset acquired at the end of the previous stage. In the final
stage, the NGBoost algorithm was used for model training and testing purposes. To assess
and validate the performance of the proposed theft-detection framework, its performance
was compared with that of the latest gradient descent ML machines, ensemble boosting
and bagging classifiers, and the classic ML models. The proposed framework achieved
superior performance compared to the other models based on a few well-known perfor-
mance assessment metrics such as accuracy, precision, recall, Kappa, and MCC values;
thus, it validated its efficacy and essence.

Author Contributions: Conceptualization, K.H.A.A.-S.; Data curation, B.A.S.A.-r.; Formal analysis,
F.S.; Funding acquisition, K.H.A.A.-S. and F.S.; Methodology, S.H. and B.A.S.A.-r.; Project administra-
tion, K.H.A.A.-S. and F.S.; Software, B.A.S.A.-r.; Supervision, M.W.M.; Validation, S.H.; Visualization,
F.S.; Writing—original draft, S.H. and M.W.M.; Writing—review & editing, S.H., K.H.A.A.-S., F.S. and
B.A.S.A.-r. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fundamental Research Grant Scheme under Grant
R.J130000.7851.5F062 through the Ministry of Higher Education, Malaysia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The SGCC smart meter dataset used to support the findings of this
study is cited in Section 3.1 line number 4 (38-reference), and it is publicly available on the following
link https://github.com/henryRDlab/ElectricityTheftDetection, accessed on 19 October 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guerrero-Prado, J.S.; Alfonso-Morales, W.; Caicedo-Bravo, E.F. A data analytics/big data framework for advanced metering

infrastructure data. Sensors 2021, 21, 5650. [CrossRef] [PubMed]
2. Glauner, P.; Meira, J.A.; Valtchev, P.; State, R.; Bettinger, F. The challenge of non-technical loss detection using artificial intelligence:

A survey. arXiv 2016, arXiv:1606.00626. [CrossRef]
3. Northeast Group. Electricity Theft and Non-Technical Losses: Global Markets, Solutions and Vendors. 2017. Available

online: http://www.northeast-group.com/reports/Brochure-Electricity%20Theft%20&%20Non-Technical%20Losses%20-%20
Northeast%20Group.pdf (accessed on 18 October 2021).

4. Fei, K.; Li, Q.; Zhu, C. Non-technical losses detection using missing values’ pattern and neural architecture search. Int. J. Electr.
Power Energy Syst. 2022, 134, 107410. [CrossRef]

5. Viegas, J.; Esteves, P.R.; Melicio, R.; Mendes, V.; Vieira, S.M. Solutions for detection of non-technical losses in the electricity grid:
A review. Renew. Sustain. Energy Rev. 2017, 80, 1256–1268. [CrossRef]

https://github.com/henryRDlab/ElectricityTheftDetection
http://doi.org/10.3390/s21165650
http://www.ncbi.nlm.nih.gov/pubmed/34451092
http://doi.org/10.2991/ijcis.2017.10.1.51
http://www.northeast-group.com/reports/Brochure-Electricity%20Theft%20&%20Non-Technical%20Losses%20-%20Northeast%20Group.pdf
http://www.northeast-group.com/reports/Brochure-Electricity%20Theft%20&%20Non-Technical%20Losses%20-%20Northeast%20Group.pdf
http://doi.org/10.1016/j.ijepes.2021.107410
http://doi.org/10.1016/j.rser.2017.05.193


Sensors 2021, 21, 8423 22 of 23

6. Jaiswal, S.; Ballal, M.S. Fuzzy inference based electricity theft prevention system to restrict direct tapping over distribution line.
J. Electr. Eng. Technol. 2020, 15, 1095–1106. [CrossRef]

7. Liao, C.; Ten, C.-W.; Hu, S. Strategic FRTU deployment considering cybersecurity in secondary distribution network. IEEE Trans.
Smart Grid 2013, 4, 1264–1274. [CrossRef]

8. Hussain, S.; Mustafa, M.W.; Jumani, T.A.; Baloch, S.K.; Saeed, M.S. A novel unsupervised feature-based approach for electricity
theft detection using robust PCA and outlier removal clustering algorithm. Int. Trans. Electr. Energy Syst. 2020, 30, e12572.
[CrossRef]

9. Jeng, R.-S.; Kuo, C.-Y.; Ho, Y.-H.; Lee, M.-F.; Tseng, L.-W.; Fu, C.-L.; Liang, P.-F.; Chen, L.-J. Missing data handling for meter data
management system. In Proceedings of the Fourth International Conference on Future Energy Systems, Berkeley, CA, USA, 21–24
May 2013; pp. 275–276.

10. Roth, P.L.; Switzer, F.S. A Monte Carlo analysis of missing data techniques in a HRM setting. J. Manag. 1995, 21, 1003–1023.
[CrossRef]

11. Rahman, M.G.; Islam, M.Z. Missing value imputation using a fuzzy clustering-based EM approach. Knowl. Inf. Syst. 2016, 46,
389–422. [CrossRef]

12. Jung, S.; Moon, J.; Park, S.; Rho, S.; Baik, S.W.; Hwang, E. Bagging ensemble of multilayer perceptrons for missing electricity
consumption data imputation. Sensors 2020, 20, 1772. [CrossRef]

13. Efron, B. Missing data, imputation, and the bootstrap. J. Am. Stat. Assoc. 1994, 89, 463–475. [CrossRef]
14. Joenssen, D.W.; Bankhofer, U. Hot deck methods for imputing missing data. In Machine Learning and Data Mining in Pattern

Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 63–75.
15. Allison, P.D. Missing Data; Sage Publications: Thousand Oaks, CA, USA, 2001.
16. Glauner, P.; Boechat, A.; Dolberg, L.; State, R.; Bettinger, F.; Rangoni, Y.; Duarte, D. Large-scale detection of non-technical losses in

imbalanced data sets. In Proceedings of the 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference
(ISGT), Minneapolis, MN, USA, 6–9 September 2016; pp. 1–5.

17. Hasan, N.; Toma, R.N.; Nahid, A.-A.; Islam, M.M.M.; Kim, J.-M. Electricity theft detection in smart grid systems: A CNN-LSTM
based approach. Energies 2019, 12, 3310. [CrossRef]

18. Gunturi, S.K.; Sarkar, D. Ensemble machine learning models for the detection of energy theft. Electr. Power Syst. Res. 2021, 192,
106904. [CrossRef]

19. Buzau, M.M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gomez-Exposito, A. Detection of non-technical losses using smart meter data
and supervised learning. IEEE Trans. Smart Grid 2019, 10, 2661–2670. [CrossRef]

20. Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling imbalanced datasets: A review. GESTS Int. Trans. Comput. Sci. Eng. 2006,
30, 25–36.

21. Adil, M.; Javaid, N.; Qasim, U.; Ullah, I.; Shafiq, M.; Choi, J.-G. LSTM and bat-based RUSBoost approach for electricity theft
detection. Appl. Sci. 2020, 10, 4378. [CrossRef]

22. Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision tree and SVM-based data analytics for theft detection in
smart grid. IEEE Trans. Ind. Inform. 2016, 12, 1005–1016. [CrossRef]

23. Marimuthu, K.P.; Durairaj, D.; Srinivasan, S.K. Development and implementation of advanced metering infrastructure for
efficient energy utilization in smart grid environment. Int. Trans. Electr. Energy Syst. 2018, 28, e2504. [CrossRef]

24. Saeed, M.S.; Mustafa, M.W.; Sheikh, U.U.; Jumani, T.A.; Mirjat, N.H. Ensemble bagged tree based classification for reducing
non-technical losses in multan electric power company of Pakistan. Electronics 2019, 8, 860. [CrossRef]

25. Yan, Z.; Wen, H. Electricity theft detection base on extreme gradient boosting in AMI. IEEE Trans. Instrum. Meas. 2021, 70, 2504909.
[CrossRef]

26. Saeed, M.S.; Mustafa, M.W.; Sheikh, U.U.; Jumani, T.A.; Khan, I.; Atawneh, S.; Hamadneh, N.N. An efficient boosted C5.0
decision-tree-based classification approach for detecting non-technical losses in power utilities. Energies 2020, 13, 3242. [CrossRef]

27. Pereira, L.A.M.; Afonso, L.C.S.; Papa, J.P.; Vale, Z.A.; Ramos, C.C.O.; Gastaldello, D.S.; Souza, A.N. Multilayer perceptron neural
networks training through charged system search and its application for non-technical losses detection. In Proceedings of the
2013 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America), Sao Paulo, Brazil, 15–17 April 2013;
pp. 1–6.

28. Jokar, P.; Arianpoo, N.; Leung, V.C.M. Electricity theft detection in AMI using customers’ consumption patterns. IEEE Trans.
Smart Grid 2015, 7, 216–226. [CrossRef]

29. Tang, F.; Ishwaran, H. Random forest missing data algorithms. Stat. Anal. Data Min. ASA Data Sci. J. 2017, 10, 363–377. [CrossRef]
30. Barua, S.; Islam, M.; Yao, X.; Murase, K. MWMOTE—Majority weighted minority oversampling technique for imbalanced data

set learning. IEEE Trans. Knowl. Data Eng. 2014, 26, 405–425. [CrossRef]
31. Nagi, J.; Yap, K.S.; Tiong, S.K.; Ahmed, S.K.; Mohamad, M. Nontechnical loss detection for metered customers in power utility

using support vector machines. IEEE Trans. Power Deliv. 2010, 25, 1162–1171. [CrossRef]
32. Punmiya, R.; Choe, S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing.

IEEE Trans. Smart Grid 2019, 10, 2326–2329. [CrossRef]
33. Barandas, M.; Folgado, D.; Fernandes, L.; Santos, S.; Abreu, M.; Bota, P.; Liu, H.; Schultz, T.; Gamboa, H. TSFEL: Time series

feature extraction library. SoftwareX 2020, 11, 100456. [CrossRef]

http://doi.org/10.1007/s42835-020-00408-7
http://doi.org/10.1109/TSG.2013.2256939
http://doi.org/10.1002/2050-7038.12572
http://doi.org/10.1177/014920639502100511
http://doi.org/10.1007/s10115-015-0822-y
http://doi.org/10.3390/s20061772
http://doi.org/10.1080/01621459.1994.10476768
http://doi.org/10.3390/en12173310
http://doi.org/10.1016/j.epsr.2020.106904
http://doi.org/10.1109/TSG.2018.2807925
http://doi.org/10.3390/app10124378
http://doi.org/10.1109/TII.2016.2543145
http://doi.org/10.1002/etep.2504
http://doi.org/10.3390/electronics8080860
http://doi.org/10.1109/TIM.2020.3048784
http://doi.org/10.3390/en13123242
http://doi.org/10.1109/TSG.2015.2425222
http://doi.org/10.1002/sam.11348
http://doi.org/10.1109/TKDE.2012.232
http://doi.org/10.1109/TPWRD.2009.2030890
http://doi.org/10.1109/TSG.2019.2892595
http://doi.org/10.1016/j.softx.2020.100456


Sensors 2021, 21, 8423 23 of 23

34. Razavi, R.; Gharipour, A.; Fleury, M.; Akpan, I. A practical feature-engineering framework for electricity theft detection in smart
grids. Appl. Energy 2019, 238, 481–494. [CrossRef]

35. Mafarja, M.; Mirjalili, S. Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 2018, 62, 441–453.
[CrossRef]

36. Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012,
28, 112–118. [CrossRef] [PubMed]

37. Hussain, S.; Mustafa, M.W.; Jumani, T.A.; Baloch, S.K.; Alotaibi, H.; Khan, I.; Khan, A. A novel feature engineered-CatBoost-based
supervised machine learning framework for electricity theft detection. Energy Rep. 2021, 7, 4425–4436. [CrossRef]

38. Duan, T.; Avati, A.; Ding, D.Y.; Thai, K.K.; Basu, S.; Ng, A.Y.; Schuler, A. NBGoost: Natural gradient boosting for probabilistic
prediction. arXiv 2020, arXiv:1910.03225.

39. Seldon Technologies. Tree SHAP. 2019. Available online: https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.
html (accessed on 18 October 2021).

40. Zheng, Z.; Yang, Y.; Niu, X.; Dai, H.-N.; Zhou, Y. Wide and deep convolutional neural networks for electricity-theft detection to
secure smart grids. IEEE Trans. Ind. Inform. 2017, 14, 1606–1615. [CrossRef]

41. Sharawi, M.; Zawbaa, H.M.; Emary, E. Feature selection approach based on whale optimization algorithm. In Proceedings of the
Ninth International Conference on Advanced Computational Intelligence (ICACI), Doha, Qatar, 4–6 February2017; pp. 163–168.

42. Leghari, Z.H.; Hassan, M.Y.; Said, D.M.; Memon, Z.A.; Hussain, S. An efficient framework for integrating distributed generation
and capacitor units for simultaneous grid-connected and islanded network operations. Int. J. Energy Res. 2021, 45, 14920–14958.
[CrossRef]

43. Leghari, Z.H.; Hassan, M.Y.; Said, D.M.; Jumani, T.A.; Memon, Z.A. A novel grid-oriented dynamic weight parameter based
improved variant of Jaya algorithm. Adv. Eng. Softw. 2020, 150, 102904. [CrossRef]

44. Zhang, Y.; Li, T.; Na, G.; Li, G.; Li, Y. Optimized extreme learning machine for power system transient stability prediction using
synchrophasors. Math. Probl. Eng. 2015, 2015, 529724. [CrossRef]

45. Messinis, G.; Hatziargyriou, N.D. Review of non-technical loss detection methods. Electr. Power Syst. Res. 2018, 158, 250–266.
[CrossRef]

46. Pereira, J.; Saraiva, F. Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data
handling techniques. Int. J. Electr. Power Energy Syst. 2021, 131, 107085. [CrossRef]

47. Asheghi, R.; Hosseini, S.A.; Saneie, M.; Shahri, A.A. Updating the neural network sediment load models using different sensitivity
analysis methods: A regional application. J. Hydroinform. 2020, 22, 562–577. [CrossRef]

http://doi.org/10.1016/j.apenergy.2019.01.076
http://doi.org/10.1016/j.asoc.2017.11.006
http://doi.org/10.1093/bioinformatics/btr597
http://www.ncbi.nlm.nih.gov/pubmed/22039212
http://doi.org/10.1016/j.egyr.2021.07.008
https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
https://docs.seldon.io/projects/alibi/en/stable/methods/TreeSHAP.html
http://doi.org/10.1109/TII.2017.2785963
http://doi.org/10.1002/er.6768
http://doi.org/10.1016/j.advengsoft.2020.102904
http://doi.org/10.1155/2015/529724
http://doi.org/10.1016/j.epsr.2018.01.005
http://doi.org/10.1016/j.ijepes.2021.107085
http://doi.org/10.2166/hydro.2020.098

	Introduction 
	Literature Review 
	Proposed Methodology 
	Stage-1: Data Preprocessing 
	Stage-2: Data Class Balance and Feature Engineering 
	Data Class Balancing 
	Proposed Feature-Engineering Method 

	Stage-3: Model Training and Evaluation Stage 
	Performance Evaluation Metrics 
	NGBoost Classification Algorithm: Theoretical Background 


	Performance Evaluation of Proposed Classifier 
	Confusion Matrix of the Proposed Model 
	Outcomes Interpretability Using Tree SHAP Algorithm 

	Results and Discussion 
	Conclusions 
	References

