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Abstract: The number of cybersecurity incidents is on the rise despite sig-
nificant investment in security measures. The existing conventional security
approaches have demonstrated limited success against some of the more com-
plex cyber-attacks. This is primarily due to the sophistication of the attacks
and the availability of powerful tools. Interconnected devices such as the Inter-
net of Things (IoT) are also increasing attack exposures due to the increase in
vulnerabilities. Over the last few years, we have seen a trend moving towards
embracing edge technologies to harness the power of IoT devices and 5G net-
works. Edge technology brings processing power closer to the network and
brings many advantages, including reduced latency, while it can also introduce
vulnerabilities that could be exploited. Smart cities are also dependent on
technologies where everything is interconnected. This interconnectivity makes
them highly vulnerable to cyber-attacks, especially by the Advanced Persistent
Threat (APT), as these vulnerabilities are amplified by the need to integrate
new technologies with legacy systems. Cybercriminals behind APT attacks
have recently been targeting the IoT ecosystems, prevalent in many of these
cities. In this paper, we used a publicly available dataset onAdvanced Persistent
Threats (APT) and developed a data-driven approach for detectingAPT stages
using the Cyber Kill Chain. APTs are highly sophisticated and targeted forms
of attacks that can evade intrusion detection systems, resulting in one of the
greatest current challenges facing security professionals. In this experiment,
we used multiple machine learning classifiers, such as Naïve Bayes, Bayes Net,
KNN, Random Forest and Support Vector Machine (SVM). We used Weka
performance metrics to show the numeric results. The best performance result
of 91.1% was obtained with the Naïve Bayes classifier. We hope our proposed
solution will help security professionals to deal with APTs in a timely and
effective manner.
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1 Introduction

1.1 Background and Motivation
In the last few years, we have seen the growth in the scale and complexity of cyber-attacks

targeting organizations. A global report by IBM [1] showed that the average cost of a cyber-breach
was found to be $3.86 million. One of the most sophisticated attacks utilized by cybercriminals
is Advanced Persistent Threat (APT), whose goal is to gain unauthorized access, maintain a
foothold and exfiltrate or modify data. APTs are targeted and persistent forms of attack and
may go unnoticed for an extended timescale [2]. According to FireEye, the global median dwell
time of APT attacks is 56 days [3]. APT attackers often use multiple attack vectors to obtain
or modify the information, which is even made easier by the ever-expanding attack surface in
the digitized world. For example, cybercriminals could exploit devices ranging from the Internet
of Things (IoT), smart cameras, and Bring Your Own Devices (BYOD), which are present in
most organizations.

In recent times we have also observed a remarkable increase in the number of remote users
due to the Covid19 pandemic. Cybercriminals are using every opportunity to take advantage
of this surge in remote working. They employ techniques such as phishing attacks to exploit
unsuspecting users and to compromise previously secure networks. Attackers could also exploit
internet-facing open ports on home routers with default credentials to compromise the remote
users, causing a cascading effect on the infrastructure using the stolen credentials. According to
a recent report by a leading UK Privileged Access Management (PAM) provider [4], 71% of the
surveyed decision-makers believed the arrangement of remote working during the Covid-19 pan-
demic magnified the probability of a cyber-breach. APT attacks are mostly utilized by organized
cyber criminals but there are also large security breaches linked to nation-state actors with the
aims of espionage and attacks on national critical infrastructure.

According to a Verizon Data Breach Investigation Report [5], there was an increase in cyber
espionage involving APTs using a combination of phishing and malware. According to another
report by Malwarebytes [6], organized criminals and nation-state actors linked APT groups have
been using coronavirus-based phishing attacks to compromise and gain a foothold on the victim
machines [7]. The attack vectors used include template injection, malicious macros, and linked
files, while others have used malicious attachments supposedly containing Covid19 prevention
measures [8].

Recent interests have shown an increased focus to deal with APT attacks. A variety of
cybersecurity measures and methodologies have been investigated to detect, monitor, and mitigate
the APTs, and their impacts. Conventional cybersecurity approaches have demonstrated some
limited success at detecting APTs due to their sophistication, and when they are detected, they
tend to adapt very quickly and change course. Most of the APT groups are well resourced and
will try every effort to achieve their goal. These motivate the recent development of machine
learning and computational intelligence techniques to improve the detection of the APTs, which
can then translate into timely intervention measures.

1.2 Our Contributions
While several predecessor works have investigated machine learning for APT detection and

mitigation, there have been various shortcomings in their effectiveness for wider uses. These
include: (i) a lack of reliable publicly-open APT datasets, (ii) a lack of alignment with Industry-
informed practice on the available dataset construction, (iii) limited experimental works to evaluate
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the learning algorithm effectiveness. This work proposes to advance the machine learning applica-
tion for APT detection by addressing the latter two shortcomings from the previous works. Our
main contributions include:

• Building upon a recently proposed APT dataset in [9], we leverage an industry-informed
framework of Cyber Kill Chain to reconstruct a dataset that captures realistic APT stages.
Through this dataset reconstruction, we employ data intelligence via machine learning that
exploits possible patterns within the reconstructed dataset.

• Given the limited number of features in the original APT dataset, we perform feature
extraction via multi-factor analysis (MFA) that creates abstract features to provide options
for training machine learning models in the APT stage detection and classification.

• To improve the classification accuracy, we investigate feature selection techniques to remove
noisy and less relevant features for APT stage detection and classification. A different
number of selected features are assessed to provide optimal tuning to the overall machine
learning models.

• Using baseline machine learning classifiers, we perform in-depth and rigorous analysis of
the experimental results and assess the trade-off of the classifiers’ performance using a
variety of performance metrics.

This work improves the work in [9] by using the industry-informed Cyber Kill Chain approach
for dataset reconstruction for enhancing the resolution on the attack stages and alert types, which
are critical in the APT attack analysis. To prevent a direct linkage between an attack stage and
an alert type as found in [9], we carefully refine the alerts grouping with one alert possibly
corresponding to multiple attack stages as informed by the APT lifecycle within the Cyber Kill
Chain framework. This may inevitably reduce the ability to perform accurate stage classification.
For improving the APT detection accuracy, we conduct feature extraction and selection before
APT stage classification. For the subsequent sections of the paper, we will refer to the work in [9]
as the APT dataset provider.

The rest of this paper is organized as follows. Section 2 discusses closely related works and
how they shape our current work. Section 3 applies the Cyber Kill Chain to cybersecurity data
modeling. Section 4 discusses our machine learning construction to classify the APT attack stages
based on the Cyber Kill Chain informed data model. Section 5 explains the experiments to
validate the effectiveness of the machine learning model covered in Section 4. Section 6 concludes
the paper by highlighting important points in this work and setting up future research direction.

2 Related Work

Most of the information available on APTs is from the industry, although some research was
carried out in the academic circles. The extensive research by industry leaders such as FireEye [10]
and Kaspersky [11] led to the discovery of many APTs, including those used by nation-state actors
that are difficult to detect. For example, FireEye published research on APT41, which is linked
to nation-state actors and used for espionage and financial gains [12]. Several industry leaders
proposed attack Life Cycle frameworks for dealing with cyber threats. These frameworks include
the Lockheed Martin Cyber Kill Chain, the Diamond model, Mandiant Attack Life Cycle, and
MITRE ATT&CK model.

The Lockheed Martin Cyber Kill Chain has seven stages covering the whole attack life cycle
and is the primary focus of our research. The Diamond model is another approach for detecting
intrusion and has four interconnected features that are present in every attack. These features
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are adversary, capability, infrastructure, and victim. The Mandiant attack life cycle consists of
multiple components mapped to the various phases of the attack life cycle. The industry research
has its own limitations, given they are not peer-reviewed and are mostly used as a platform to
market their products. APT attacks have also been gaining interest from academic researchers,
and several authors have published articles on this subject. In [13], the authors surveyed APTs
and proposed a taxonomy for APT defense classification. Similarly, [14] carried a survey on APTs
and reviewed some of the known APT groups’ activities but did not cover defensive or detective
technical measures. This work mostly relied on publicly available data on APTs shared by the
industry, although they described such sources’ limitations.

Another APT attack life cycle methodology was proposed in [15]. The authors proposed four
stages which were, prepare, access, resident, and harvest. In the preparation stage, the attackers
gather information relating to the target. The access and harvest stages broadly encompass the
step involved in compromising the target. According to the authors, the most common attack
vectors for APT include watering hole and spearfishing. In [16], the authors discussed the tools
and techniques available to the attackers and linked them to the various stages of the Cyber Kill
Chain, but the review was more generic. It could have benefited from evaluating certain APT
attacks or groups. Similarly, in [17], the author proposed a taxonomy for banking Trojans based
on the Cyber Kill Chain. In another work [18], the authors leveraged the Cyber Kill Chain to
break-down complex attacks and built a picture of the APT attackers’ tactics, techniques, and
procedures (TTPs). The authors analyzed over 40 APTs to build their proposed taxonomy.

As mentioned in Section 1, the original APT dataset provider proposed a machine learning-
based framework for APT detection and proposed six APT steps; however, they only considered
four of these as detectable APT attack stages. These stages are (i) Point of entry, (ii) C&C
communication, (iii) Asset/data recovery, (iv) Data exfiltration. Their MLAPT framework consists
of three phases: threat detection, alert correlation, and attack detection. Their proposed detection
modules are Disguised exe File Detection (DeFD), Malicious File Hash Detection (MFHD), Mali-
cious Domain Name Detection (MDND), Malicious IP Address Detection (MIPD), Malicious
SSL Certificate Detection (MSSLD), Scanning Detection (SD) and Tor Connection Detection
(TorCD) as in Fig. 1.

In [19], the authors proposed an approach for detecting APT using fractal methods based on
a k-NN algorithm, which, according to the authors, resulted in a reduction in false positives and
false negatives. In a similar report [20], the authors performed experiments to detect the stages
of APT attacks. They used the NSL-KDD dataset and selected Principal Component Analysis
(PCA) for feature sampling.

In [21], the author categorized the APT attack lifecycle into five phases: reconnaissance,
compromise, maintaining access, lateral movement, and data exfiltration. In [22], the authors
categorized APT phases into reconnaissance, delivery, exploitation, operation, data collection, and
exfiltration and proposed an APT detection methodology.

Reference [23] studied a conceptual framework for APT detection, building on the work by
the APT dataset provider. Their proposed solution is a work in progress and did not contain
experiments and results to demonstrate their proposed framework’s effectiveness. We differ from
their work significantly because we performed experiments using the APT dataset, reconstructed
the dataset, and performed feature extraction, feature selection, and classification along with
detailed analysis of the results.
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Reference architecture in [18] Our work

Figure 1: The architecture of MLAPT [9] alongside our work

Despite the recent progress in APT research, the existing works are mostly hampered by the
lack of datasets on APT. Most of the current research relies on old datasets that might not reflect
on the current sophistication of the attacks. There are few initiatives for sharing data, such as the
Veris framework [24] but even then, the data could be heavily anonymized. Furthermore, there is
limited experimental evidence of explicit association and linkage between existing APT datasets
and the corresponding machine learning with the Cyber Kill Chain data modeling.

In this research, we attempt to address these aforementioned technical gaps by reconstructing
the recently proposed APT dataset, as mentioned in Section 1, through the Cyber Kill Chain
modeling and mapping approach. Based on the reconstructed dataset, we next design and develop
machine learning models to intelligently learn from the dataset. We then conduct rigorous exper-
iments and analysis of the results to gain insights into the accuracy of the machine learning
models and other relevant performance metrics. This work can provide a foundation for future
provisioning of automated APT detection and classification with minimized human intervention.

3 Cyber Kill Chain Informed Modelling

The Cyber Kill Chain consists of seven stages, as described in the previous section. In this
section, we are going to build on the work by the previous authors. We will reconstruct the data
and map the detection alerts to the stages of the Cyber Kill Chain. We will then perform feature
extraction and selection to enhance the accuracy of the stage detection model. Fig. 3 shows the
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APT stages proposed by the original dataset providers alongside our work based on the Cyber Kill
Chain. We are building on their work to improve the overall detection accuracy. The methodology
proposed by the earlier authors covers six stages, as described in Section 2. Our first step was to
map their proposed APT stages and detection methods to the Cyber Kill Chain.

Fig. 3 depicts that their stages and detection modules fall within the delivery, command &
control, and action on objectives stages of the CKC. Their point of entry stage, which corresponds
to the delivery stage of CKC, is broad and can be matched to the other stages. However, in
our opinion, it is more suitable for the delivery stage of the CKC given this was considered the
initial point of compromise. We will briefly discuss each of the seven CKC stages and assign
detection modules, including those proposed by the APT dataset provider and others from our
proposed work.

3.1 Reconnaissance Detection
Reconnaissance, which is also referred to as information gathering, is the first stage of

carefully planned cyber-attacks. The two main types of reconnaissance techniques are active and
passive reconnaissance. In passive reconnaissance, the attacker has no direct interactions with the
target, while in active reconnaissance, the intruder interacts with the target to obtain information
that could be used during the later stages.

Although there is no detection module for the reconnaissance stage in the framework pro-
posed by the original APT dataset provider and no observations relating to this stage in the
dataset, we believe this is crucial for detecting cyber-attacks in the early stages. We want to
follow this up in our future work and plan to build a detection module. Our proposed detection
methods for this stage include: (i) OS fingerprinting [25], (ii) Port scanning [25], (iii) Alerts on
robot.txt access which can reveal restricted paths [26], (iv) DNS enumeration [27], (v) DNS honey
tokens [28].

3.2 Weaponization Detection
Attackers use the information gathered during the reconnaissance stage to create a carefully

crafted malicious payload tailored to meet their requirements. The attackers usually use automated
tools for packaging their malware. Remote Access Trojan (RAT) and exploits are used during
the weaponization.

The original APT dataset provider’s work did not create a detection module for this stage in
their framework, given the attackers will not be interacting with the target system at this stage. We
agree with the authors and have not assigned any alert to this stage in our CKC informed model.

3.3 Delivery Detection
Malicious actors deploy a weaponized payload to the target during the delivery stage. There

are multiple means for payload delivery available to the attackers, including malicious emails,
click-by downloads, watering hole [29], or infected USB devices [30]. The authors of the original
APT dataset called it the point of entry in their proposed APT lifecycle. They used the detection
methods in Fig. 3. to detect their APT steps. However, we expanded it further, considering some
of the sophisticated APT attacks, such as Stuxnet, were delivered using infected USB sticks [30].
We added infected USB drives, malicious links [31], and injection attacks [32] to the list of alerts
in our proposed detection methods, and we plan to build a detection module.
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3.4 Exploitation Detection
To be able to execute a malicious payload successfully, a vulnerability must exist on the target

system. This could be a known vulnerability or zero-day exploit. Security metrics such as Mean
Time to Patch (MTT) could measure the response times for patching the vulnerabilities and reduce
the window of opportunity for cybercriminals. In the work by the APT dataset provider, the
authors did not directly specify a detection module and alerts for the exploitation stage, although
their point of entry stage may overlap with this stage. In this stage, we used two alerts from the
original authors and added three of our own, namely: (i) Brute force detection, (ii) Pass hash
detection alerts, (iii) Task schedule, (iv) Scripting, (v) PowerShell [33].

3.5 Installation
The attackers execute the malware during this stage. To avoid detection, they often use a

dropper and downloaders to disable the security monitoring tools such as anti-virus to avoid
detection during the malware installation [34]. In this stage, we used one alert from the detection
methods proposed by the APT dataset provider. We added a further two alerts: privilege escalation
and injection attack alerts, as shown in Fig. 3.

3.6 Command and Control (C2)
Attackers get management control of the target and establish a backdoor to maintain persis-

tent access. In this stage, we used the detection methods proposed by the original APT dataset
provider, which are: (i) Malicious IP address, (ii) Malicious SSL certificate, (iii) Malicious domain
flux detection.

3.7 Action on Objectives
This refers to the final part of the Cyber Kill Chain. We mapped it to the lateral movement,

asset/data discovery and data exfiltration stages proposed by the APT dataset provider. The
authors used Tor connection alerts and scanning as their detection methods. We added DNS
tunneling detection [35] and want to create a detection module in our future work. We also added
internal reconnaissance as a subcategory for this stage. Hackers can use Internal reconnaissance
or lateral movement to find valuable assets [36].

4 APT Stage Classification Models

This model’s primary goal is to improve APT detection accuracy using a Cyber Kill Chain
approach and leveraging data-driven intelligence. To achieve this research’s objectives, we used
a publicly available dataset on APT shared by the original APT dataset provider. Most of the
features in the dataset were categorical data except the numerical timestamp. The original dataset
consists of 8 features, 1 label, and 3676 observations. These features are alert id, alert type,
timestamp, source IP, source port, destination IP, destination port, and infected host, with the
last entry being steps that represent the label. To evaluate the prediction model, we prepared the
dataset, performed feature extraction, feature selection, attack stage classification, and then saved
the model. In the next part, we are going to explain how we prepared the dataset.

4.1 Preparing the Dataset
The original dataset consists of 8 features and 3676 observations mapped to a label com-

prising 6 APT stages proposed by the authors. In Section 3, we discussed the attack modules
and alerts proposed in their MLAPT framework. We then mapped their detection modules and
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our proposed detection methods to the CKC stages, as shown in Fig. 3. We reconstructed the
dataset, performed feature extraction and selection during the dataset preparation stage, as shown
in Fig. 2. In the next part, we are going to explain our feature extraction and selection processes.

Figure 2: Data preparation and classification

Figure 3: APT alerts mapped to the CKC, demonstrating state-of-the-art assignment with experi-
mental machine learning and comparison with our work
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4.2 Feature Extraction
Feature extraction represents the task of obtaining a set of features from sample data and

enhancing the classifier’s performance [37]. In our experiment, we considered several feature
extraction methods, including Principal Component Analysis (PCA), Multiple Correspondence
Analysis (MCA), and Multiple Factor Analysis (MFA). PCA denotes a method for reducing
large datasets dimensionality while minimizing information loss using linear combinations (weight
average) of a set of variables [38]. MCA is another statistical technique best suited for tables
with individuals described by several qualitative variables [39]. MFA is a PCA variation, making
it possible to analyze more than one data table representing a group of variables collected on the
same observations [40]. Given this dataset contains both qualitative and quantitative variables, we
selected MFA as our feature extraction methods.

4.3 Feature Selection
Feature selection refers to selecting only the most important features based on their ranking to

reduce complexity, remove noise, and increase the model’s efficiency. The feature selection process’s
objective is to build a less complex but comprehensive model without compromising accuracy [41]
by removing redundant or less relevant futures. In our case, we selected Information Gain (IG),
Gain Ratio (GR), and OneR as the feature selection methods, as shown in Tab. 3. The main
reason for selecting these methods is that they all provide scores and rank features according to
their relevance.

4.4 Attack Stage Classifiers
We applied a set of classifiers to the training data. Many supervised learning algorithms

are widely adopted for classification, and they include Naive Bayes, Support Vector Machine
(SVM), Random Forest, k-NN, Decision trees, and linear classifiers. We used the Weka machine
learning tool to perform our classification. In our experiment, we used the following classification
algorithms.

4.4.1 Naïve Bayes
The Naïve Bayesian classifier is an algorithm that leverages posterior probability for classifica-

tion [42]. Suppose we have P(B |D) and P(D |B) as the probability of B given D and vice-versa,
P(B) and P(D) denote the likelihoods of B and D, respectively. These parameters can be linked
through a Bayesian equation as follows.

P (B |D)= P (D |B)P(B)

P(D)
(1)

Using this, one can construct a classifier using a maximum posterior probability rule gained
from a dataset [42], i.e.,

ŷ= arg max
k∈{1,...,K}

P(Ck)
n∏
i=1

P (xi |Ck) (2)

where Ck are label instances in the dataset, xi are data points (instances) and ŷ is the estimated
label. In our case, the classes Ck refer to our CKC stages while xi refer to data instances of
the features.
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4.4.2 Bayes Net
The Bayes Net, also known as Bayesian Belief Network (BNN), is a classifier that models the

relationship between features in a more generic way. Bayes Net may be employed as a classifier
that gives the posterior probability distribution of the classification node provided by the other
attribute’s value [43]. It is a graphic description of conditional probabilities.

4.4.3 k-NN
k Nearest neighbor is another algorithm for classification and regression. It calculates the

distance between the supplied data and inputs to make its predictions. The k value is the nearest
neighbor’s count, and this value will affect the prediction accuracy. k-NN assumes similar features
are located closer to each other. In our experiment, the value of k is fixed to 5 (k = 5). k-NN
calculates the distance between the new point and the training point. Several methods can be
used to calculate the distance, and these include the Euclidean, Manhattan, and Hamming. For
example, [44] proposed algorithms for anomaly detection in a series of payloads by calculating
the Hamming distance among consecutive payloads.

k-NN has its limitation, including the challenge of determining the true value of k and high
computational time, especially for large datasets due to the need to compute the distance between
each point. The following equations can be used to calculate the distance parameter using the
Euclidean, Manhattan, and Hamming distances denoted by deuc, dman, and dham, respectively.

deuc =
√√√√ k∑

i=1

(xi+ yi)2 (3)

dman=
√√√√ k∑

i=1

|xi+ yi| (4)

dham=Hd (x,y)=
k∑
i=1

|xi− yi| (5)

4.4.4 Support Vector Machine (SVM)
SVM represents an algorithm for supervised learning-based classification and uses hyperplanes

to define the two data classes’ decision boundaries. SVM produces high-performance results, and
kernel functions such as RBFKernel and Polykernel could reduce the complexities of various data
types. It is also less prone to overfitting compared to other models. The main limitation of SVM
is the longer computation time, especially for larger datasets.

5 Analysis and Discussions

In this section, we will be discussing the steps involved in the setup of our experiment and
the analysis of the results. We will start with the performance evaluation metrics, which will be
used to examine the model’s effectiveness. This will be followed by the experiment setup and a
reflection of the results.

5.1 Evaluations Metrics
The performance of the model was investigated using Weka’s performance metrics. These met-

rics include accuracy (Acc), detection rate (DR), F-measure (F1), and false alarm rate (FAR) [45].
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The accuracy score is a reflection of the effectiveness of the algorithms used. The detection rate
is the number of actual stages detected over the total number of stages detected in the dataset.
The measurement for these metrics is defined in Eqs. (6)–(9) as used in [45].

Acc= TP+TN
TP+TN +FN +FP

(6)

DR= TP
TP+FN

(7)

F1 = 2TP
2TP+FP+FN

(8)

FAR= FP
TN +FP

(9)

Herein TP and TN refer to True Positive and Negative, respectively, while FP and FN denote
False Positive and Negative, respectively. Tab. 1 shows an example of the results obtained using
the Naïve Bayes classifier.

Table 1: Results for various feature selection techniques with Naïve Bayes classifier

Feature selection Acc (%) DR (%) FAR (%) F1 (%)

OneR 91.1 91.1 1.3 91.2
Gain Ratio 90.5 90.5 1.2 90.6
InfoGain 87.3 87.3 1.9 87.4

Tab. 1 shows the result from the five metrics using Naïve Bayes. In this example, the highest
prediction accuracy of 91.1% was obtained with features from OneR, while the lowest FAR of
1.2% was obtained with features from GainRatio. The highest detection rate was achieved with
OneR. The results from the F1-measure showed features from OneR scored the highest results
with a prediction of 91.2%.

5.2 Experimental Setup
In this experiment, we began by examining the original dataset to understand the various

features and observations. We then decided to perform the following steps to reconstruct and
relabel the original dataset.

• Removed feature “alert id” from the original dataset. This was a redundant feature that
was not contributing to our model, leaving us with 7 features.

• Perform classification based on the 7 features using Naive Bayes, Bayes Net, k-NN, Random
Forest, and SVM classification algorithms. This will be our baseline results.

• Extract a further 7 features using MFA from the original 7, giving us a total of 14 features.
• Perform classification on the 14 features using the same classifiers.
• We then selected the top 10, 7, and 5 features in turns and performed the classification.

Tab. 2 shows the experiment scenarios along with the description that explains the composi-
tion of stages.
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Table 2: Numerical experiment scenarios

Experiment scenarios Description

Dataset-CKC stage labeling Labeled dataset mapped to CKC stages
Dataset-CKC+MFA
Extraction

Labeled dataset mapped to CKC stages and
feature extraction

Dataset-CKC+MFA+FS1 Labelled dataset mapped to CKC stages,
feature extraction and feature selection#1
(FS1); # of selected features: 10

Dataset-CK+MFA+FS2 Labeled dataset mapped to CKC stages,
feature extraction and feature selection#2
(FS2); # of selected features: 7

Dataset-CK+MFA+FS3 Labelled dataset mapped to CKC stages,
feature extraction and feature selection#3
(FS3); # of selected features: 5

5.3 Results and Discussions
The main aim of this research was to improve the detection accuracy of the APT stages.

We used a dataset on APT, which was shared by other researchers. The main challenge we faced
was the limited number of features on the dataset, and we addressed that by performing feature
extraction and selection techniques. Our experiment set the threshold of a satisfactory outcome
to be 84.9% for the prediction accuracy based on the original APT dataset provider’s work. Our
results achieved a prediction accuracy of 91.1%, which was more than the threshold. In the next
subsections, we will discuss the results of our feature extraction and selection processes followed
by our classifier results.

5.3.1 Results from Feature Extraction and Selection
The original APT dataset contains 8 features and 1 label. We removed the “alert_id” and were

left with 7 features. We then used the R package’s FactoMinerR to convert the non-numerical
features to categorical features before performing the feature extraction. We eventually ended up
with 14 features in total, including 7 extracted features. We then used Information gain, Gain
ratio, and OneR feature selection techniques to choose the features that contributed most to
our model. We started selecting all the features, including the extracted ones, and then gradually
reduced the features until the optimal level was achieved.

The features were ranked from highest to lowest using the techniques described above. The
results showed that 14 of the features had a value greater than zero, which means the MFA
feature extraction technique successfully extracted the features relevant to the model. All our
extracted features had a value greater than zero. We then performed further feature selection
processes until we were left with the final 5 features. Tab. 3 shows the top 5 features from the
InfoGain, GainRatio, and OneR feature selection methods. Features from OneR produced better
results, followed by the features from GainRatio and then InfoGain. The top 5 features from
OneR consist of two original features and three extracted features, while the top 5 features from
GainRatio consisted of three original features and two extracted features. The top 5 features
from InfoGain are all original features, but their prediction accuracy was less than the other two
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method’s features. We compared the results from the experiment stages and found our feature
extraction and selection processes contributed to improvement in the model’s prediction accuracy.

Table 3: Selected features used across all the selected classifiers

Feature selection methods Selected top 5 features

OneR 1,6,13,14,9
GainRatio 1,6,10,5,13
InfoGain 1,5,6,3,7

5.3.2 Classifier Results
Once we completed relabelling the data and removing the redundant feature, we performed

the classification on the remaining 7 features. Tab. 4 shows the classifier’s results, including their
prediction accuracy. This result will be our baseline. The result shows that the highest accuracy
score of 87.43% was obtained with the SVM classifiers.

Table 4: Classifier experiments and accuracy results

No Experiment #of
Features

Naïve
Bayes (%)

Bayes
net (%)

k-NN
(%)

Random
forest (%)

SVM
(%)

1 Dataset-CKC
stage labelling

7 87.31 82.15 83.58 84.32 87.43

2 Dataset-
CKC+MFA
extraction

14 82.02 83.14 83.45 80.65 87.87

3 Dataset-
CKC+MFA+
FS1

10 87.43 91.35 89.6 87.87 91.41

4 Dataset-CK+
MFA+FS2

7 88.24 90.85 89.86 87.68 90.79

5 Dataset-CK+
MFA+FS3

5 91.1 90.73 89.05 87.43 90.79

Our next step was to perform classification on the 14 features, including the 7 extracted
features. The result shows that the highest prediction accuracy of 87.87% was obtained with the
SVM classifier, as shown in Tab. 4. We then performed the classification using the top 10 features
consisting of 4 original and 6 extracted features, which shows our extracted features are relevant
to the model. The original features are feat1, feat2, feat6, and feat8, while the extracted features
are feat9, feat10, feat11, feat12, feat13, and feat14. The result showed improvements in accuracy
compared to the 14 features. The highest accuracy of 91.41% was obtained with SVM.

Having analyzed the top 10 features’ classification results, we then decided to select the top
7 features and perform further classifications. The 7 features in the ranking were feat1 and feat6
from the original dataset and feat9, feat11, feat12, feat13, and feat14 from the extracted features.
The results show a slight decrease in the accuracy results compared to the top 10 features.
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The top-performing classification algorithm was Bayes Net, which had a prediction accuracy of
90.85%.

Finally, we selected the top 5 features according to their ranking score, and the highest
prediction accuracy of 91.1% was obtained with Naive Bayes. Tab. 4 shows the experiment stages
and the corresponding description. There are five stages in total, which start with the relabelled
dataset until we reach the final stage, consisting of the relabelled data, extracted features, and top
selected features. In this table, CKC stands for the Cyber Kill Chain, and FS stands for feature
selection. In FS1, FS2, and FS3, we selected the top 10, 7, and 5 features, respectively. Fig. 4
shows the experiment stages and the selected features, along with the results obtained from the
classifiers. From the figure, it is evident that the prediction accuracy is affected by the number
of features.

Figure 4: Classifier accuracy rates under various numbers of selected features for classification

In this work, our proposed approach has been studied to detecting APTs relevant for a rather
generic IoT framework. Further research may consider applying the Cyber Kill Chain concept to
securing specific areas of IoT-enabled applications, such as [46–48].

6 Conclusion and Future Work

In this work, we used an APT dataset and reconstructed it to match with the CKC stages.
We then performed feature extraction, feature selection, and classification until the final 5 features
were selected, as shown in Tab. 3. Overall, we obtained a performance score of 91.1%. We used
some of the alerts in multiple stages of the CKC compared to the one to one matching between
alerts and stages used by dataset providers. We used feature selection to reduce the impact this
would have had on our model’s overall prediction accuracy. We believe it was sensible to use some
of the alerts in multiple stages, given this will test the performance of the model more rigorously
and the fact that alerts will often appear in multiple stages during the APT attack lifecycle.
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The APT dataset we have used is not large, and the original features were only 8, 1 label, and
3676 observations. Relevant cyber-security works would benefit from the incorporation of more
detection modules and features. We intend to expand on this research in our future work and
plan to build a much larger dataset, which contains the detection modules proposed in our work,
as shown in Fig. 3.
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