
 

Abstract— Experiments have shown that, for an extensive area 
of operating, charge of a piezoelectric actuator is proportional to 
its displacement from relaxing state. Consequently, accurate 
estimation of charge can lead to position/displacement estimation 
for piezoelectric actuators, a prominent progress towards precise 
sensorless micro/nanopositioning. However, disadvantageously, 
all known charge estimators of piezoelectric actuators have 
electrical element(s), e.g.  (a) resistor(s) or (a) capacitor(s), in series 
with the actuator. Such elements, known as sensing elements, take 
a considerable share of the excitation voltage. Voltage taken by the 
sensing elements is called voltage drop. Charge estimators with a 
resistor in series with the actuator (also known as digital charge 
estimators) have been reported to witness the smallest voltage 
drop. The aim of this paper is to design such charge estimators so 
as to achieve maximum precision at minimum possible voltage 
drop. The aforementioned aim is shown to be obtained when the 
range of the voltage across the resistor equals the narrowest input 
range of the analogue to digital convertor of the charge estimator.  
This, however, is impossible to happen for wide operating areas 
with a sensing resistor with unchangeable resistance, according to 
experimental results. The alternative is an adaptive charge 
estimator with a resistor, in which its resistance varies with 
operating conditions. This paper presents two methods to estimate 
such a varying sensing resistor: approximate analytical 
formulation and artificial intelligence, in which, the latter shows 
evident superiority. 
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I. INTRODUCTION 

anopositioning is a major part of nanotechnology, 
targeting precise motion control at nanometre scale. 

Biological cell manipulation [1], scanning probe microscopy 
[2] [3], ultra-fine machining [4] and robotic surgery [5] are just 
some examples of applications benefit vastly from 
nanopositioning. A variety of actuators have been employed for 
nano/micropositioning such as magnetostrictive actuators [6], 
worm gears [7] and linear motors [8]. Amid all, piezoelectric 
actuators are the most precise and the least bulky  ones [9]. They 
are now the most commonly used actuators in nanopositioning  
and seem to sustain this popularity for years [10].  

The major task in piezo-actuated nanopositioning is accurate 
position control of (an unfixed point/surface of) the actuator 
[11]. The origin of (a point/surface) position is the location (of 
the same point/surface) at relaxing state, when the actuator has 
not been excited for a reasonably long time (e.g. some minutes). 
Experiments have demonstrated that charge of a piezoelectric 
actuator is proportional to its position for an extensive operating 
area [12-15]. That is, a charge estimator can replace a relatively 
costly and troublesome displacement/position sensor. This has 
been the main motivation behind design of charge estimators 
for piezoelectric actuators [9, 16, 17].  

All reported charge estimators consist of electrical 
element(s) (e.g. capacitor(s) or resistor(s)) in series with the 
piezoelectric actuator [18]. These elements are named sensing 
elements. The voltage across the sensing elements is called 
“voltage drop” and is not utilised to expand/contract the 
actuator [14]. It has been shown that charge estimators with a 
sensing resistor have the least voltage drop among all reported 
charge estimators of piezoelectric actuators [15]. Thus, these 
estimators were investigated and further developed in this 
research. Charge estimators of piezoelectric actuators with 
sensing resistor (CEPASRs) are widely called “digital charge 
estimators” [19], because , unlike other estimators, they cannot 
be implemented without digital processors. In this paper, 
instead of term ‘digital’, the acronym of CEPASR represents 
these estimators, as other estimators may be invented based on 
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digital technology in the future, or digital technology may be 
adopted to implement existing analogue charge estimators.  

CEPASRs often use a fixed sensing resistor, e.g. [15, 20, 21]. 
In section III of this paper, it is manifestly shown that such 
estimators encounter either a significant voltage drop or 
impreciseness dealing with extensive operating areas. The 
observed dilemma  was investigated, formulated and tackled.  

II. CHARGE ESTIMATORS OF PIEZOELECTRIC ACTUATORS 

WITH SENSING RESISTOR (CEPASR) 

Figure 1 is a schematic of a CEPASR. Ve is the ‘excitation 
voltage’. VS is the voltage across the sensing resistor, RS, or the 
‘sensing voltage’. Ka is the voltage amplifier gain, and fc is the 
cut-off frequency of the high-pass filter in Hz. The estimator 
includes (i) digital components, in a computer program or 
software, (ii) an I/O card incorporating  digital to analogue 
(D/A)  and analogue to digital (A/D) converters, and (iii) 
analogue components: the piezoelectric actuator, a sensing 
resistor and a voltage amplifier.  

Since the sensing resistor, RS, is grounded, the current 
passing the actuator, iP, mostly proceeds through RS , and only 
a minuscule current enters the analogue to digital converter, 
A/D in Fig 1. As a result, iP is nearly equal to the current passing 
through RS , i.e. iR. Moreover, due to Kirchhoff voltage law,       
VS = iR RS. Thus,  
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R
                                                                             (1) 

 
Fig. 1. A schematic of the experimental setup used in this research 

 
Integral of iP equals the charge of the actuator; hence, 

theoretically, charge can be estimated through integration of            
iP = VS » RS . 

However, such an integration is tricky. A/D converters are 
not ideal and have a tiny offset voltage. This voltage alongside 
dielectric leakage of the piezoelectric actuator generate a low 
frequency (nearly constant) minute bias voltage, Vb. Therefore, 
the voltage of the current entering A/D is VS +Vb, in practice. 
Vb is accumulated through integration and deviates estimation. 
That is, the estimated charge, q̂P, does not equal the actual 
charge of the actuator, qp: 

ˆ .S b S
P P

s s

V V V
q dt dt q

R R


                                                   (2) 

This discrepancy is called drift [21].The high-pass filter, 
shown in Fig.1, supresses low frequency Vb and avoids drift. 
However, this filter adversely suppresses low frequency 

components of VS too. Hence, a CEPASR of Fig.1 does not befit 
low frequency operating areas.   

III. PROBLEM STATEMENT 

In this work, CEPASRs were aimed to have (i) high precision 
and (ii) low voltage drop. 

About the precision, A/D converter is a prominent role 
player. Every A/D convertor has a resolution (n bits) and one or 
a number of range(s) for input voltage. Then, in operation, 2n 
digital numbers is assigned to the selected input range [22]. For 
instance, let us assume an A/D converter has a resolution of 10 
bits, and input ranges of ±0.5 V, ±1 V and ±5V. If the input 
range of ±1 V is selected. 210  numbers are assigned to the range 
of [-1 +1]V, or a digital number is assigned to 2V/210 or almost 
1.95 mV of the input range. Evidently, if the input voltage 
(signal), covers a greater portion of the A/D input range, more 
digital numbers will be used to quantify the input signal. This 
leads to a higher precision. Therefore, with a known resolution, 
maximum precision is realised through full coverage of an A/D 
input range by the input signal, which is VS in digital CEPASRs. 

In terms of lowering the voltage, as to Fig.1,  VS is the voltage 
drop, the part of Ve not utilised for actuation. That is, VS is 
targeted to be small. 

As a result, for a given A/D, the following design guidelines 
can contribute to have both high precision and low voltage 
drop: 

 VS should fully cover an input range of the A/D. 
 VS should be small   

Both these guidelines, with prioritising precision, can be 
merged as a design recommendation: VS  should fully cover the 
narrowest range of the A/D input voltage. This recommendation 
assures the highest precision at the lowest possible voltage 
drop.  

With a known excitation voltage (depending on the desirable 
position profile) and A/D converter, RS, in Fig. 1, is the sole 
variable to adjust VS so as to fulfil the aforesaid design 
recommendation.  

Figure 2 presents VS for the estimator depicted in Fig.1.The 
actuator is a 5536 mm3 piezoelectric stack of SA050536 type 
made by PiezoDrive [23], and RS =44 . The excitation voltage 
follows a triangular function with the peak to peak range of [0 
20] V and frequencies of 20 Hz and 60 Hz. The narrowest input 
range of the A/D is ±0.625 V. As to Fig.2, at the excitation 
frequency of 60 Hz, the input range is almost fully used, and the 
design recommendation is fulfilled. However, at the frequency 
of 20 Hz, 56% of input range is not used; thus, the guideline is 
not met. 

Figure 2 shows that a CEPASR with a sole value of RS cannot 
fulfil the recommendation in an extensive  area of  operation. 
Nevertheless, all reported digital charge estimators for piezo-
actuators have either a single value [20, 21] or only a few 
intuitively selected values of RS [15]. This research proposes an 
adaptive charge estimator with operation-condition-dependent 
RS. Such a charge estimator needs a mathematical formula or 
model, F in (2 and 3), to approximate the appropriate RS for any 



 

 
Fig. 2. The sensing voltage across the sensing resistor of 44  with the 
excitation voltage range of 20 V at excitation frequencies of 20 Hz (red) and 60 
Hz (blue). Tests were carried on piezoelectric stack actuators with dimensions 
of 55 36 mm.  
 

operating condition so as to satisfy the design recommendation: 
R̂S =F(operating conditions),                                                  (2)                                                                                                

Operating conditions consist of amplitude and frequency of the 
excitation voltage (Ve in Fig.1) and its waveform. The symbol 
(^ ) refers to an approximated value.  

This research merely concerns triangular excitation voltages. 
Because in scanning devices, one of the most common 
applications of nanopositioning, the actuator should track a 
triangular waveform [22]. Therefore, as waveform is known, 
the only operating conditions are the range, , and frequency, f, 
of Ve: 
R̂S =F(, f).                                                                                (3)                                                                                                                   

After R̂S identification of F, (3) can adjust RS to obtain an 
adaptive charge estimator. Sections V and VI present 
identification of F with approximate analytical models and fully 
connected cascade networks, respectively.   

IV. EXPERIMENTATION 

The experimental setup, an implementation of Fig.1, is 
shown in Fig.3.  The digital processor is a personal computer 
with MATLAB 8. 6  , Simulink 8.6 and Simulink Real-Time 
Desktop Toolbox 5.1 software. The actuator is a 5536 mm3 
piezoelectric stack made by PiezoDrive [23], and the amplifier 
is an AETECHRON 7114. The I/O card is an Advantech PCI-
1710U with 12 bits of resolution of and five available A/D input 
ranges: ±10, ±5, ±2.5, ±1.25 and ±0.625 V.  

 
Fig. 3. Experimental setup, excluding the computer. Displacement sensor was 
not used in this research. 

In order to develop/asses the function of F in (3), 35 
experiments were conducted. In all of them, triangular 
excitation voltages with the minimum of zero and the range of 
  and the frequency of  f  were used:  

 
 

2 truncate( ) round( ) 0,
( )

2 truncate( ) 2 round( ) 0.e

ρ tf tf if tf tf
V t

ρ tf tf ρ if tf tf

        
(4)                                                  

where t is time in seconds. In the collected experimental data, 
 and f  have the values of 20, 30, 40, 50 or 60 V and 20, 30, 
40, 50, 60, 70 or 80 Hz, respectively. In every experiment, RS, 
was adjusted so that the sensing voltage touches the limits of        
[-0.625 +0.625] V, the narrowest voltage range of the A/D 
converter. That is, the value of RS, with the best agreement to 
the recommendation, were experimentally found for each 
combination of excitation range and frequency. These results 
should ideally equal the outputs of F in (3) for different values 
of  and f . 

V. ANALYTICAL APPROXIMATOR OF THE SENSING 

RESISTANCE 

This section aims to analytically approximate F presented in 
(3) for voltage excitation of (4). For this purpose, the 
piezoelectric actuator is approximately considered as a 
capacitor, CP  [15]. Assuming that the current entering A/D is 
insignificant, the current passing the piezoelectric actuator iP is 
presented in (6): 

( ) ( )
( )

1
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

.                                                      (5) 

Due to (5), a linear relationship  of (6) can be presented 
between VS and  Ve, (both shown Fig.1) [19]:  

( )
.

( ) 1
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


                                                                         (6) 

Let us re-write (4) in the form of (7): 
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(7) 
Then, Vewb (bias-less excitation voltage) can be assumed as a 

triangular wave with the frequency of f  Hz and the amplitude 
of 0.5 V , as depicted in Fig.4. 

A. Analytical Model to Approximate the Sensing 
Resistance for a Bias-less Excitation Voltage 

Bias-less excitation voltage can be presented as (8) using 
Fourier series: 

2 2
0 0

4 1
( ) sin (2 1)2 ( , ),

2(2 1)ewb es
n n

V t n ft V n t
n

 


 

 

        
   

(8) 
where Ves is a sinusoidal constituent of Ve with the amplitude of  

 



 

 
Fig. 4. Original (Ve) and bias-less (Vewb) excitation voltages, described in (5) 
and (8) 
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As to the transfer function of (6), any excitation constituent 
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Considering (6) and (9), 
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Due to linearity, presented in (6), superposition is usable:  

1
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Considering (8), (10) and (11),  
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                                                (12) 
Interestingly, (13) is the Fourier series of a square wave with 

the amplitude of AS : 
2 .S S PA R C f                                                                                    (13) 

Thus, RS leading to a sensing voltage amplitude of AS, can be 
approximated as (15)  

ˆ .
2

S
S

P

A
R

C f
                                                                         (14) 

In this paper, as detailed in sections III and IV, AS=0.625 V 
and  CP =4.07 F, then: 

47.678 10ˆ .SR
f


                                                                    (15) 

B. Effect of Bias  

From (7), Ve= Vewb+ . Based on superposition, two separate 
VS constituents influenced by Vewb and  (bias), respectively, 
may be added to result in VS. 

Let VS be the constituent of VS solely influenced by  .Using 
(6), (16) shows that  the final value of VS is zero:  

0 0
lim ( ) lim ( ) lim 0.

1
S P

S S
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S P

R C s
V t sV s s

R C s s 


  
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
                    (16)                                                      

As a result, the influence of the bias fades shortly, or the 
excitation bias ( )  has no long lasting influence. Therefore, 
(14) and (15) are useable for excitations with a bias either.  

VI. FCC NETWORK APPROXIMATOR OF THE SENSING 

RESISTANCE 

In this research, a fully connected cascade (FCC) network of 
(18) was also employed to approximate F in (3). FCC network 
is a type of artificial neural networks (ANNs) with the most 
powerful architecture for system identification [24]. 
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x

.                                            (18)                                                                                                           

Vectors/matrices T, W, B and C and scalar b are the 
parameters of this model, in total, 23 scalars or matrix/vector 
elements. Size of T (=5) was chosen based on the 
recommendations of [24], as the only difference of an FCC is 
with a multi-layer perceptron  (e.g. the one introduced in [25, 
26]) is C vector. 

35 data sets of experimental data, detailed in section IV, were 
used to develop and validate the FCC model. 25, 5 and 5 
randomly selected data sets were used to (i) identify model 
parameters, (ii) avoid overfitting and (iii) cross-validate the 
model. These data series, named modelling, validation and test 
data, were normalised prior to use, as explained in Appendix A.  

The first step of parameter identification is parameter 
initialisation. Nguyen-Widrow method was employed for this 
purpose as introduced in Appendix B. Then, initial values of the 
parameters were tuned through an iterative algorithm (detailed 
in Appendix C) to minimise the modelling error. Modelling 
error was calculated with (19)  (similar to the one in [27]) and 
the modelling data, nd=25.  

 
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S S
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


.                                                                              (19) 

where the value of RSi and R̂Si are obtained from experiments 
and (17), respectively. At each iteration, both modelling and 
validation errors were calculated. Validation error is the error 
calculated with (19) and 5 sets of validation data. Coincidence 
of decrease in the modelling error and increase in the validation 
error is a sign of overfitting and triggers to end parameter 
identification [28]. Overfitting diminishes the generality of 
ANNs [29, 30]. As explained in Appendix B, it is possible that 
the parameter identification algorithm is trapped and ends at a 
so-called local error minimum, i.e. an inaccurate model. Hence,  



 

 

Fig. 5. Experimental versus analytically-estimated sensing resistances 
 

 
parameter identification was repeated several times to assure 
about aptness of the model; the model with minimum validation 
error was opted. 

After identifying model parameters, test error was calculated 
with (19) and the test data, used neither in parameter 
identification nor in overfitting avoidance. A reasonably small 
test error can ensure cross-validation [31]. 

VII. RESULTS AND DISCUSSION  

This section first assesses the analytical model/approximator 
of the sensing resistance, then compares it with the developed 

FCC network. In the end, the risk of overestimation of RS is 
discussed, and an alternative is presented to reduce this risk.  

A. Analytical Model Results 

Figure 5 compares the values of R̂S approximated by the 
analytical model of (15) of section V with the experimental 
values of RS. With use of RS, VS would fit into the narrowest 
input range of the A/D converter, i.e. [-0.625 0.625] V. The 
analytical model evidently overestimates the sensing resistance 
or R̂S > RS . As a result, with use of R̂S, VS would surpass A/D 
input range, as  depicted  in  Fig. 6. Consequently,  some values  

 
Fig. 6. The sensing voltage for excitation range (ρ) of 30 V and excitation frequency (f ) of 20 Hz with the sensing resistance of 128 , an output of (15) . 



 

 

VS would  not  be transferred to the computer and charge 
estimation would be interrupted. Therefore, analytically 
approximated values of the sensing resistor should not be used 
in practice. Figure 6 clearly demonstrates that the analytical 
approximate model cannot explain the behaviour of the actuator 
in full.  

For the entire available data, the mean absolute value of error 
from the analytical model is 19.26 , 6.33% of maximum RS.  
Relative error, (R̂S-RS)/RS  (20), varies between 11.21% to 
64.41%. Relative error increases with decrease of excitation 
frequency and increase of excitation voltage range ().  The 
approximation bias, Ƃ, average of (R̂S-RS) is 19.26 , equal to 
the mean absolute value of error, because R̂S>RS in all operating 
conditions. Standard deviation,, of approximation by the 
analytical model is 14.96 . 

B. Comparison of Analytical Model and FCC Network 

Table 1 and Fig.7 compare the outputs of the FCC network 
developed in section VI, a combination of (17) and (18), and 
the analytical model. The aforesaid table and figure only 
include five test data sets; as other 30 data sets have been used 
in development of the FCC network and match to this model 
extremely well. 

 

 
Fig. 7. The values of the sensing resistance for the test data, experimental values 
and approximated values by different models  
 

The FCC network obviously outperforms the analytical 
model. For the test data, mean absolute value of error for the 
analytical model and the FCC network are 19.26  
(accidentally same as the one for the entire data) and 2.49 , 
respectively. The approximation bias for the analytical model 
and the FCC network are 19.26  and -1.81  . Standard 
deviation of approximation by the analytical model and the 
FCC network are 15.81   and 1.95 , respectively.  

C. Overestimation Avoidance  

As detailed in section III and subsection VII.A,  
overestimation of the sensing resistor has a seriously damaging 
consequence, i.e. saturation of VS (loss of VS data at times). 
However, underestimation of RS only results in the decrease of 
precision, because it causes the range of VS to be narrower than 
the narrowest input range of the A/D converter.  The developed 
FCC network has a negative approximation bias. That is, it 
advantageously tends to underestimate the sensing resistor not 
to overestimate them.  

Assuming (R̂S -RS) has a Gaussian distribution, there is 50% 
chance of overestimation for any unbiased approximator (with 
Ƃ =0) [32]. (21) is suggested to avoid overestimation of the 
sensing resistance (leading to saturation of VS ).  
R̂SP = R̂S -Ƃ-3 ,                                                                      (21)                                                                                 
where R̂SP is practical approximated sensing resistance. 
According to [32], use of R̂SP reduces the chance of 
overestimation of the sensing resistance to 1%.  

VIII. CONCLUSION 

The paper first briefly introduced charge estimators of 
piezoelectric actuators with a sensing resistor (CEPASRs) in 
section II. Then, CESPARs’ design aiming at maximum 
estimation accuracy with the smallest possible voltage drop 
guideline was investigated. This investigation led to a practical 
design recommendation. The only adjustable parameter of a 
CEPASR is its sensing resistance, RS. Reported experimental 
results show that a sole value of the sensing resistance cannot 
fulfil the design recommendation for an extensive operating 
area. This observation justifies the use of an adaptive RS.  
Considering the fact that reported CEPASRs (and other charge 
estimators) in the literature normally use a single or a few 
values of RS (or other sensing elements) shows the significance 
of this paper’s results.  

A CEPASR with an adaptive sensing resistance needs a 
formula to suggest RS for different operating conditions. Two 
approaches were adopted to tackle this task: (1) analytical 
modelling and formulation, with the assumption that a 
piezoelectric actuator electrically behaves similar to a 
capacitor, and (2) development and use of a fully connected 
cascade (FCC) network, a type of artificial neural network. The 
latter presented much more accurate estimation. FCC network’s 
mean of absolute test error is 2.49  which is nearly 8 times 
smaller than the one of the analytical model. Interestingly, 
analytical approach led to a positive bias, i.e. overestimation of 
RS, in all operating conditions.  

It was discussed that an overestimated RS leads to saturation 
of the sensing voltage and loss of charge data for some time 
spans ; while, underestimation of RS only leads to loss in 
estimation precision to some extent. Even an ideal unbiased 
model has a 50% chance of overestimation; thus, a formula, 
(22), was developed and suggested to decrease this chance to 
only 1% at the cost of higher chance of underestimation. 

APPENDIX A. DATA NORMALISATION 

Prior to use of data for any task in model development, the 

TABLE I 
SENSING RESISTANCE APPROXIMATION RESULTS FOR THE ANALYTICAL 

MODEL AND THE FCC NETWORK 

 (V) f (Hz) RS 
R̂S Relative Error% 

Analytical FCC Net Analytical FCC Net 
10 70 96.5 109.7 94.8 13.7 -1.9 
20 20 141.2 192.0 137.3 36.0 -2.8 
30 60 33.5 42.7 35.2 27.3 5.0 
40 50 27.6 38.4 25.9 39.1 -6.1 
50 40 26.0 38.4 22.6 47.7 -13.1 

 



 

input and output data columns are regularly normalised to 
eliminate the influence of magnitude discrepancy between 
variables [33]. As a customary method of normalisation, in this 
research, the data were mapped from their actual range into the 
range of [-1 1]. After model development with the normalised 
data, to employ the model, the input data to the model need to 
be normalised (mapped to the range of [-1 1]) and the output(s) 
of the model need to be de-normalised (de-mapped) into the 
actual range. Normalisation and de-normalisation may be 
integrated into the algorithms of development and use of the 
models [28]. 

APPENDIX B. BRIEF INTRODUCTION TO NGUYEN-WIDROW 

WEIGHT INITIALISATION ALGORITHM 

The employed FCC network has a sigmoid function of  (·), 
introduced in (18). As depicted in Fig.B.1, a sigmoid function 
is almost linear for an interval. Outer this interval, the output is 
nearly saturated or constant. As a result, an input to  (·), 
located outside the linear interval, only has a trivial effect on 
the output, the error (as defined in (20)) and modelling process. 
Such a situation results in a sluggish parameter identification 
process. Nguyen-Widrow algorithm suggests initial values for 
elements of W and B (in 18) so that the input to  (·) lies within 
its linear interval [34, 35], as the first major advantage of this 
algorithm.  

Parameter identification algorithm of this research, and all 
derivative-based optimisation algorithms, may be trapped in a 
local minimum [36]. Therefore, these algorithms may not yield 
the absolute minimum error function at every single attempt. If 
such algorithms restart from the same initial values of 
parameters, they move towards the same trap again. Nguyen-
Widrow parameter initialisation algorithm includes random 
functions to change initial parameters at every attempt and 
avoid the aforementioned issue. This is the second major 
advantage of Nguyen-Widrow parameter initialisation 
algorithm. 

 

 
Figure B.1. The sigmoid function of (18) and its linear interval 

APPENDIX C. PARAMETER IDENTIFICATION ALGORITHM 

In order to explore the parameter identification algorithm, let 
us present E , defined in (19), as E(θ), where θ is a vector of all 
23 parameters of the FCC network. An iterative parameter 

identification often adjusts θ elements (from their initial values) 
so as to minimise E(θ).  

A popular approach to reach a parameter adjustment 
algorithm is to approximate E(θ) with Taylor series up to the 
second order derivatives: 

2
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where np is the number of parameters.  
As a result of (C.1), Newton direction, presented in (C.2), can 

theoretically minimise E(θ) [37]: 
1 .  θ Η g                                                                          (C.2)                                                                                                                        

Nevertheless, if H is not invertible, (C.2) is no longer 
useable. Alternatively, Levenberg and Marquardt [37] proposed 
(C.3) to fix this shortcoming and generalise (C.2): 

1( ) .     θ H I g                                                              (C.3)                                                                                                                        

where I is the identity matrix with the dimension of npnp, λ is 
the smallest value that can make H+λI invertible. After finding 
λ, the value of η is computed with linear search. Further details 
on finding  η and λ are available in[37, 38].  

REFERENCES 
[1] X. Li and C. Cheah, "Robotic cell manipulation using optical 

tweezers with unknown trapping stiffness and limited FOV," 
IEEE/ASME Transactions on Mechatronics, vol. 20,no.4,pp. 1624-
1632, 2015. 

[2] G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, and S. Devasia, "A 
review of feedforward control approaches in nanopositioning for 
high-speed SPM," Journal of Dynamic Systems, Measurement, and 
Control, vol. 131,no.,pp. 061101, 2009. 

[3] Y. H. Teh, "Labview Based Pid Algorithm Development for Z 
Motion Control in Atomic Force Microscopy," UTAR, 2015. 

[4] H. Tang, Z. Zeng, J. Gao, and X. Zhang, "A flexible parallel 
nanopositioner for large-stroke micro/nano machining," in 
International Conference on Manipulation, Manufacturing and 
Measurement on the Nanoscale (3M-NANO), 2015, pp. 107-110. 

[5] S. Saedi, A. Mirbagheri, A. Jafari, and F. Farahmand, "A local 
hybrid actuator for robotic surgery instruments," International 
Journal of Biomechatronics and Biomedical Robotics vol. 
3,no.2,pp. 100-105, 2014. 

[6] M. Ghodsi, A. Saleem, A. Özer, I. Bahadur, K. Alam, A. Al-
Yahmadi, et al., "Elimination of thermal instability in precise 
positioning of Galfenol actuators," in Behavior and Mechanics of 
Multifunctional Materials and Composites 2016, p. 980008. 

[7] V. Protopopov, "Beam Alignment and Positioning Techniques," in 
Practical Opto-Electronics, ed: Springer, 2014, pp. 309-334. 

[8] L. Díaz Pérez, M. Torralba Gracia, J. Albajez García, and J. Yagüe 
Fabra, "One-Dimensional Control System for a Linear Motor of a 
Two-Dimensional Nanopositioning Stage Using Commercial 
Control Hardware," Micromachines, vol. 9,no.9,pp. 421, 2018. 



 

[9] M. Mohammadzaheri and A. AlQallaf, "Nanopositioning systems 
with piezoelectric actuators, current state and future perspective," 
Science of Advanced Materials, vol. 9,no.7,pp. 1071-1080, 2017. 

[10] S. O. R. Moheimani, "Invited Review Article: Accurate and fast 
nanopositioning with piezoelectric tube scanners: Emerging trends 
and future challenges," Review of Scientific Instruments, vol. 
79,no.7,pp. 071101, 2008. 

[11] N. Miri, M. Mohammadzaheri, and L. Chen, "An enhanced physics-
based model to estimate the displacement of piezoelectric 
actuators," Journal of Intelligent Material Systems and Structures, 
vol. 26,no.11,pp. 1442-1451, 2015. 

[12] K. A. Yi and R. J. Veillette, "A charge controller for linear operation 
of a piezoelectric stack actuator," IEEE Transactions on Control 
Systems Technology, vol. 13,no.4,pp. 517-526, 2005. 

[13] M. Bazghaleh, S. Grainger, B. Cazzolato, and T.-f. Lu, "An 
innovative digital charge amplifier to reduce hysteresis in 
piezoelectric actuators," presented at the Australian Robotics and 
Automation Association (ACRA), Brisbane, Australia, 2010. 

[14] J. Minase, T. F. Lu, B. Cazzolato, and S. Grainger, "A review, 
supported by experimental results, of voltage, charge and capacitor 
insertion method for driving piezoelectric actuators," Precision 
Engineering, vol. 34,no.4,pp. 692-700, 2010. 

[15] M. Bazghaleh, S. Grainger, M. Mohammadzaheri, B. Cazzolato, and 
T. Lu, "A digital charge amplifier for hysteresis elimination in 
piezoelectric actuators," Smart Materials and Structures, vol. 
22,no.7,pp. 075016, 2013. 

[16] C. Yang, C. Li, and J. Zhao, "A Nonlinear Charge Controller With 
Tunable Precision for Highly Linear Operation of Piezoelectric 
Stack Actuators," IEEE Transactions on Industrial Electronics, vol. 
64,no.11,pp. 8618-8625, 2017. 

[17] S.-T. Liu, J.-Y. Yen, and F.-C. Wang, "Compensation for the 
Residual Error of the Voltage Drive of the Charge Control of a 
Piezoelectric Actuator," Journal of Dynamic Systems, 
Measurement, and Control, vol. 140,no.7,pp. 1-9, 2018. 

[18] M. Bazghaleh, S. Grainger, M. J. J. o. I. M. S. Mohammadzaheri, 
and Structures, "A review of charge methods for driving 
piezoelectric actuators," Journal of Intelligent Material Systems and 
Structures, vol. 29,no.10,pp. 2096-2104, 2018. 

[19] M. Mohammadzaheri, M. Emadi, M. Ghodsi, E. Jamshidi, I. 
Bahadur, A. Saleem, et al., "A variable-resistance digital charge 
estimator for piezoelectric actuators: An alternative to maximise 
accuracy and curb voltage drop," Journal of Intelligent Material 
Systems and Structures, vol. 30,no.11,pp. 1699-1705, 2019. 

[20] M. Bazghaleh, S. Grainger, M. Mohammadzaheri, B. Cazzolato, and 
T.-F. Lu, "A novel digital charge-based displacement estimator for 
sensorless control of a grounded-load piezoelectric tube actuator," 
Sensors and Actuators A: Physical, vol. 198,no.,pp. 91-98, 2013. 

[21] M. Bazghaleh, M. Mohammadzaheri, S. Grainger, B. Cazzolato, and 
T. F. Lu, "A new hybrid method for sensorless control of 
piezoelectric actuators," Sensors and Actuators A: Physical, vol. 
194,no.,pp. 25-30, 2013. 

[22] M. Mohammadzaheri, S. Grainger, and M. Bazghaleh, "A system 
identification approach to the characterization and control of a 
piezoelectric tube actuator," Smart Materials and Structures, vol. 
22,no.10,pp. 105022, 2013. 

[23] PiezoDrive. (2018). PiezoDrive Products. Available: 
https://www.piezodrive.com/ 

[24] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. 
Wilamowski, "Selection of proper neural network sizes and 
architectures—A comparative study," IEEE Transactions on 
Industrial Informatics, vol. 8,no.2,pp. 228-240, 2012. 

[25] M. Mohamadian, H. Afarideh, and F. Babapour, "New 2d matrix-
based neural network for image processing applications," IAENG 
International Journal of Computer Science, vol. 42,no.3,pp. 265-
274, 2015. 

[26] M. A. Aslam, C. Xue, M. Liu, K. Wang, and D. Cui, "Classification 
and Prediction of Gastric Cancer from Saliva Diagnosis using 
Artificial Neural Network," Engineering Letters, vol. 29,no.1,pp. 
10-24, 2021. 

[27] Z. Berradi, M. Lazaar, H. Omara, and O. Mahboub, "Effect of 
Architecture in Recurrent Neural Network Applied on the Prediction 
of Stock Price," IAENG International Journal of Computer Science, 
vol. 47,no.3,pp. 436-441, 2020. 

[28] M. Mohammadzaheri, R. Tafreshi, Z. Khan, M. Ghodsi, M. 
Franchek, and K. Grigoriadis, "Modelling of petroleum multiphase 

flow in electrical submersible pumps with shallow artificial neural 
networks," Ships and Offshore Structures,pp. 1-10, 2019. 

[29] M. Mohammadzaheri, A. Mirsepahi, O. Asef-Afshar, and H. Koohi, 
"Neuro-fuzzy modeling of superheating system of a steam power 
plant," Applied Math. Sci, vol. 1,no.,pp. 2091-2099, 2007. 

[30] G. C. Cawley and N. L. Talbot, "On over-fitting in model selection 
and subsequent selection bias in performance evaluation," Journal 
of Machine Learning Research, vol. 11,no.Jul,pp. 2079-2107, 2010. 

[31] A. Lendasse, V. Wertz, and M. Verleysen, "Model selection with 
cross-validations and bootstraps—application to time series 
prediction with RBFN models," Artificial Neural Networks and 
Neural Information Processing—ICANN/ICONIP 2003,pp. 174-
174, 2003. 

[32] D. C. Montgomery and G. C. Runger, Applied statistics and 
probability for engineers: John Wiley and Sons, 2014. 

[33] M. Mohammadzaheri and L. Chen, "Intelligent Modelling of MIMO 
Nonlinear Dynamic Process Plants for Predictive Control 
Purposes," in The 17th World Congress of The International 
Federation of Automatic Control, Seoul, Korea, 2008, pp. 12401-
12406. 

[34] M. Mohammadzaheri, R. Tafreshi, Z. Khan, M. Franchek, and K. 
Grigoriadis, "An intelligent approach to optimize multiphase subsea 
oil fields lifted by electrical submersible pumps," Journal of 
Computational Science, vol. 15,no.,pp. 50-59, 2016. 

[35] D. Nguyen and B. Widrow, "Improving the learning speed of 2-layer 
neural networks by choosing initial values of the adaptive weights," 
presented at the International Joint Conference on Neural Networks, 
San Diego, USA., 1990. 

[36] M. Mohammadzaheri, L. Chen, A. Ghaffari, and J. Willison, "A 
combination of linear and nonlinear activation functions in neural 
networks for modeling a de-superheater," Simulation Modelling 
Practice and Theory, vol. 17,no.2,pp. 398-407, 2009. 

[37] J. R. Jang, C. Sun, and E. Mizutani, Neuro-Fuzzy and Soft 
Computing. New Delhi: Prentice-Hall of India, 2006. 

[38] M. Mohammadzaheri and L. Chen, "Intelliegnt Predictive Control 
of Model Helicopters' Yaw Angle," Asian Journal of Control, vol. 
12,no.6,pp. 1-13, 2010. 

 


