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Nonlinear control laws often need be implemented with digital hardware. Use of digital control systems leads to 
communication/processing delays which are widely neglected in control of mechanical systems. This paper proposes a discrete 
approach to feedback linearization that considers these commonly overlooked delays in design. The proposed approach is shown to 
both improve the performance and remove the need for continuous derivative terms. In feedback linearization control systems 
designed in continuous domain, derivative terms are required to speed up the control response of mechanical systems, but 
disadvantageously cause high sensitivity to noise. The proposed approach was used to design a feedback linearization control system 
for a common turning manoeuvre of an unmanned helicopter in yaw. At this manoeuvre, the helicopter centroid motion and pitch 
rotational speed are almost zero. Governing differential equations of the helicopter at this manoeuvre are nonlinear and coupled. A 
feedback linearization law was proposed to curb nonlinearity and a discrete control system, considering the inevitable delay due to 
use of digital control systems, was adopted to complete the control law. This innovative approach resulted in less sensitivity to noises 
and performance boost. Practical limits in terms of control input, rotor speed, sampling frequency and noises of the gyroscope, the 
tachometer and the acceleration sensor were taken into account in this research. The results show that the proposed control system 
leads to fast and smooth yaw turns even at a high pitch angle (close to vertical) or in the case of being hit by external objects. 
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1. Introduction 

Unmanned helicopters have been investigated for several 
decades and are still subject to active research  [1-3]. A major 
component of an unmanned helicopter is its control system, 
which should provide the helicopter with autonomy. A 
prominent difficulty in control of unmanned helicopters is their 
inherited nonlinearity; it is quite well-known that torques of 
rotors influence the position and angles of the helicopter in a 
nonlinear way [4-6]. The other issue in control of unmanned 
helicopters, less renowned than nonlinearity, is time-delays 
occurring due to use of digital control systems; in reality, the 
control systems are mostly designed in continuous domain and 
implemented with digital tools. Hence, the delays induced in 
digital systems are not taken into account at design stage. The 
influence of aforementioned time delays in control of 
helicopters has barely attracted attention of research community 
[7]. 

There are three foremost approaches to address nonlinearity 
of a helicopter in control system design. The first approach is to 
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use linear controllers based on linearized models, which is 
common particularly for quadcopters [8-12].  This approach 
leads to inevitable inaccuracy due to linear approximation.  
Another popular approach is the use of non-model-based 
artificial intelligence techniques such as fuzzy logic [13-16] and 
artificial neural networks [17-19] or a combination of them [20, 
21]. This approach removes the need to deal with complex 
nonlinear mathematical models of helicopters and relies on the 
collected data and/or experience of human observers/users in the 
form of linguistic terms [22, 23]. However, this approach 
demands manned control of the helicopter for some time to 
obtain required information. The third approach is the use of 
model-based nonlinear methods. Two popular methods of this 
approach are sliding mode [24, 25] and feedback linearization 
[26, 27]. A comparative study shows the superiority of feedback 
linearization over sliding mode to control an unmanned 
helicopter when noises are negligible [28]. As a result, feedback 
linearization was opted, designed and examined in this research. 
However, feedback linearization has been shown to be less 
robust against noises, mainly due to derivative terms [28].  
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Feedback linearization control systems used in control of 
unmanned helicopters have continuous linear components with 
derivative terms [26, 27, 29]. Therefore, if the linear 
components (and the entire feedback linearization control 
system) are designed in discrete domain, the issue of sensitivity 
to noise can be curbed. In addition, in discrete domain, the 
delays occurring due to digital implementation can be 
appropriately addressed. As a result, this paper aims to design a 
feedback linearization control system for a specific manoeuvre 
of an unmanned helicopter.  

An unmanned helicopter has six degrees of freedom, and 
several modes of operation. As a result, different algorithms 
have been designed to be employed for landing, take-off or other 
specific manoeuvres [30-35]. In this research, turning in yaw, or 
change of yaw angle at fixed pitch and roll angles, is addressed, 
and a control algorithm dedicated to this task/manoeuvre is 
designed.  

2. Problem Statement and Helicopter Model 

This paper focuses on control of an unmanned helicopter driven 
by electrical motors, when it turns in horizontal plane at a 
controlled constant pitch,θ, and roll angles, a common and 
difficult manoeuvre for such machines [36, 37]. It can be 
reasonably assumed that the centre of helicopter mass nearly 
does not move in this manoeuvre. With no linear motion, and no 
change in pitch or roll angle, the helicopter has only one degree 
of freedom, the yaw angle,ψ, in this specific maneuvre. 
Decoupling, presented in [33] has demonstrated that the input 
voltage to the main rotor has negligible effect on yaw angle; 
thus, there is a single input for this problem, the input voltage to 
the rear rotor, U, which affects the rotational speed of the rear 
rotor,ω, and the yaw angle. Using analysis presented in [4, 19, 
27], motion equations during the aforementioned manoeuvre are 
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(1) 
where IR and IV stand for moment of inertia for the rear rotor and 
the whole helicopter, perpendicular to the rear rotor and ground 
planes, respectively. K, c and χ represent coefficients regarding 
electrical constants of the rear rotor, mechanical friction and air-
related forces. R stands for the rear rotor electrical resistance. d 
is the projection of distance between mass centre and the rear 
rotor on the axis perpendicular to the main rotor. Indices M and 
G clarify the role of rotors in equations, motor (driver) or 
generator (the source of opposing electromotive force).  
Complete mathematical model of a helicopter and its reduction 
to (1) is available in the literature (e.g. in [4, 22]) and is not 
repeated here. Equations (1) can be re-written as following: 
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For a small helicopter with steel body, the following are 

mechanical and geometrical properties [4]: KM=0.03 N.m/A, 
KG=0.03 V.s/rad, IR=3.2×10-7 kg.m2, R=0.2 Ω, cR=10-5 
N.m.s/rad, d=0.1743 m, χR=10-8 N.s2/rad2, IV=0.032 kg.m2, 
cV=10-3 N.m.s/rad, χψ=10-5 N.s2/rad2. Therefore, k1=4.6875×105, 
k2=1.4094×104 and k3=k4=0.0313.  

Equation (2) will be slightly different, if the control 
command is generated by a digital control system, with a 
feedback component and the sample time of tS. In such a control 
system, due to the effect of analogue to digital converter clock 
and other probable communication/processing delays, the 
measured value is fed into the controller with a delay of td. 
Therefore, the control law generates the control input, U, based 
on measurements of td seconds prior to the current time. This 
phenomenon exists in all digital closed loop systems; otherwise, 
an algebraic loop occurs. Therefore, practically, an input-delay 
is added to (2): 
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Commonly, due to fast data transmission and process, td equals 
tS, which is the minimum realisable delay in the system. Only if 
transmission/process of the sensed data takes longer than the 
sample time, td  would be longer than tS. In such an exceptional 
case, td should be estimated experimentally. This delay seems to 
be a communication-induced delay rather than an input-induced 
delay [38]; however, its role in system dynamics, presented in 
(3), is very similar to an input-induced one. In this paper, for the 
first time, an approximate discrete approach is proposed to 
formulate the control problem with partly consideration of the 
largely neglected delay due to digital implementation, presented 
in (3). 

3. Control Law Development  

The following feedback-linearizing control law is proposed for 
the problem detailed in section 2: 
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where uL is a control command to be found. With incorporating 
(4) into (3), here is the system dynamics:  
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3.1.  Control Problem Formulation 

The system dynamics, presented in (5) was simplified and used 
to find uL with two approaches: 
i-Conventional Continuous Design Approach: Assuming 
time delay, td,  is negligible, (4) and (5) result in the following 
remaining dynamics: 

4( ) ( ) ( ) 0Lψ t k ψ t u t+ − =  .                         (6) 
ii-Proposed Approximate Discrete Design Approach: 
Assuming ( )ω t ≃ ( )dω t t−  and ( )ω t ≃ ( )dω t t− ,  (4) and (5) 
result in the following remaining dynamics: 

4( ) ( ) ( ) 0L dψ t k ψ t u t t+ − − =  .                     (7) 
With the control error de ψ ψ= −  (8), where dψ is the desired 
yaw angle, assuming that for the regulation problem 

0d dψ ψ= =    (9), error dynamics in continuous and approximate 
discrete approaches are (10 and 11), respectively: 

4( ) ( ) ( ) 0Le t k e t u t+ + =   .                         (10) 

4( ) ( ) ( ) 0L de t k e t u t t+ + − =   .                       (11)       

3-2. Solution of the Control Problem 

With approach (i), a classical continuous linear controller was 
designed for the error dynamics of (10), as detailed in the 
appendix, to generate uL. 
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Thus, for the regulation problem defined by (8 and 9), the 
control law of (5) becomes   
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where Kp is the controller parameter to be chosen.  
In the proposed approach (ii), discrete domain was used to 

find uL for the system presented in (7) , because the delay in (7) 
leads to nonlinearity in continuous domain. Let us consider an 
auxiliary variable of uLD : 
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As a result, (7) can be re-written as  

4( ) ( ) ( ) 0LDψ t k ψ t u t+ − =  .                          (15) 
Equation (15) can be presented as the following transfer 
function:  
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Equation (16) was then transferred from s-domain to z-domain 
using zero-order hold:  
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Considering (14 and 17):  
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Due to high speed of processors, it is assumed that control and 
filtering calculations take a very short time; thus, the minimum 
delay is enough to avoid an algebraic loop, or  td= tS  (19). Thus, 

( ) 

21

4 44

4 4

2
1

4 4
2 2

4 4
3 2

2 3 1
1 2

1 2 1
1 2

1 1
( )
( ) 1

B( ) .
1 A( )

S S

S S

bb

k t k tk T
S S

k t k t
L

a
a

t k e t k e ez
k kψ z

u z z e z e z

b z b z z
a z a z z

− −−

− −

− − −

− − −

− + − −
+

=
− + +

+
= =

+ +




                      (20)                                            

Considering (8), the following feedback controller may be used 
to control a system presented by (20): 
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Evidently, the closed-loop transfer function, composed of the 
feedback controller of (21) and the plant of (20), is 
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Considering (20 and 21), in the denominator of (22), the 
coefficient of the zeroth order of z-1 is 1. Thus, the poles of (22) 
are the values of pi in (23): 
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z p z z z z− − − − −− = + =∏ .         (23)                                                                                                               

Any R(z-1) and S(z-1) which lead to the desirable poles in (23) 
can be used to form (21).  

Equation (23) can be written as (24): 
B(z-1) R(z-1)=-A(z-1) S(z-1).                       (24)  

That is, for any z= pi , the coefficients of  each power of z-1 
should be equal in both sides of (24). Such an equality requires  
ns=2 and nr=1 in (21), or  
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where Γ is a column consisting of coefficients of different orders 
of z-1 in 1(1 )i

i

z p−−∏ . 

Χ in (27) or the column of coefficients of controller (21) can 
be found with (28), if Τ is non-singular,  

X= Τ-1Γ.                                      (28)                                                                                                                                                
Considering (21, 25 and 28) and Z transform of derivative, 

the control law of (4) can be presented as (29) in the proposed 
discrete approach: 

( )

1
2

1 1

1
3 0 1

1 2
5 1 1 2

1( ) ( )

( ) .
1

s

d

k zU t ω t
k k t

k r r z
ψ ψ t

k k s z s z

−

−

− −

 −
= + 

 
+

+ −
+ +

                                        (29)                                                                                                    

4. Implementation of Control Laws 

Implementation of the control laws of continuous and proposed 
discrete approaches, Eqs. (13 and 29), requires definition of Kp 
and desired poles, pi s, of Eq.(23), respectively. These final steps 
of design were completed considering practical limits to assure 
realistic simulations and conclusions. If these practical limits 
were not considered, we would have apparently excellent 
performance in simulation, which could not be realized.  Here is 
the list of parameters or variables in which practical limits were 
considered for them: 

1. Sampling time/frequency: The electrical part of the 
system is very fast. If nonlinearities were disregarded in (3), the 
time constant of the system would be k4

-1 <7.1×10-5 s. As a 
result, a sampling time, at least, comparable with this value 
should be opted. In this research, the sampling time/frequency 
of 10-4s/ 10 kHz was chosen. A higher sampling frequency could 
lead to better performance particularly with undermining the 
ignored delays of (5); however, too high sampling frequency 
(rate) imposes excessive expense for hardware.  

2. Rear rotor rotational speed or ω : Although, use of 
feedback linearization removes ω from linear control system 
design in subsections 3-1 and 3-2; however, this value cannot be 
unbounded, and a realistic limit of [-1000 1000] rad/s was 
considered for it.  

3. Control input or U in  (4): The essence of control input is 
voltage and should be supplied with a DC voltage supply; a limit 
of [-24 24]V was assumed for U to be realistic. In order to 
investigate system’s behaviour beyond U saturation limits, the 
transfer function of (16) was employed; the input to the transfer 
function is  uLD, in  the proposed approach. Let us assume both  
ω and U are saturated. Based on (29), uL/ uLD will have a fixed 
value of A immediately or after tS seconds. Then, 
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Equation (30) demonstrates that the control system is unstable 
when saturated; thus, saturation limits should be considered in 
design. A similar reasoning can be offered for the continuous 
approach, where uL replaces uLD in (30). 

Design of (13 and 26) was completed based on 
aforementioned triple limits.  

4.1. Implementation of Control Law Derived from 
Continuous Approach 

Figure 1 shows the response of (13) in turning the helicopter 20° 
in yaw with different values of Kp, while the pitch angle is 
maintained around 30°. Overshoots are evident; although, the 
design, presented in the appendix, aimed to prevent them for any 
value of Kp. This is influenced by non-cancelled nonlinearities 
(including saturations) and the delays neglected to form (6). 
Maximum overshoot and the settling time seem to be reversely 
related to each other. Disadvantageously, the control law of (13) 
adds some repeating overshoot to the system anyway.  

 
Fig. 1.  The response of (13) (continuous approach) with different 
values of Kp 

4.2. Implementation of Control Law Derived from the 
Proposed Discrete Approach 

In order to finalise the design of (29) control law, derived out of 
the proposed discrete approach, the desired poles of the closed 
loop system, pi s of (23), should be chosen. Any discrete pole 
with an absolute value below 1 is stable, and closed loop poles 
closer to 0 result in faster convergence [39]. However, a fast 
converging pole pushes the control input towards saturation 
limits very quickly, and the system will face the risk of 
instability as presented in (30). Appendix B presents the result 
for some too fast poles and demonstrate the effect of saturation. 
A single desired discrete pole of 0.999 can lead to a stable and 
still very fast closed loop system. With a sampling frequency of 
10 kHz, such a discrete pole equals a continuous pole of -10.005.   
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Fig. 2.  The response of (36) (derived out of the proposed discrete 
approach), where the closed loop system of (23) has a single discrete 
pole of 0.999 

Having a single real pole removes the chance for overshoot, if 
nonlinearities are ignorable. Figure 2 confirms this expectation. 

With this single pole of p1=0.999, the following Γ was used 
in (27): 

1
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Γ .                                                                        (31)                                                                    

Hence, with use of (28), the linear controller of (21) becomes  
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Considering the values in section 2, the control law of Eq. (29) 
can be written as Eq. (33): 

( )

( )

1

5 5 1

1 2

( ) 0.0514 0.0213 ( )

1.4168 10 1.4154 10 ( ) .
1 1.001 0.5008 d

U t z ω t

z ψ ψ t
z z

−

− − −

− −

= −

× + ×
+ −

+ +

                         (33)                                     

 

5. Results and Discussion  

Comparison of Figs. 1 and 2 demonstrate the superiority of the 
proposed discrete approach to control system design. Therefore, 
in this section, test results of the proposed control law of (33) is 
only presented with the following initial values: ψ (0)=ω (0)=0 
and (0) 0.1rad/sψ =  .  

The control system  deals with three sensors of the 
unmanned model helicopter: a gyroscope to measure yaw angle 
rate,𝜓̇𝜓 (to be used in (33)) [40], a piezoresistive angular 
acceleration sensor [41] and a tachometer  [42] to measure the 
rear rotor angle and its rate,𝜔𝜔 and 𝜔̇𝜔. Yaw angle,ψ, is calculated 
through integration of its rate. Gyroscope, angular acceleration 
sensor and the tachometer have random noises in the range of  
±5%, ±0.1% and ±3% of their measured values. Several 

simulations demonstrated that sensor noises have a negligible 
influence on the performance of control law of (33), so that, the 
curves of simulations with and without noise are hardly 
recognisable. Same noises can seriously affect the performance 
of a control system including an error derivative, as 
demonstrated in [43]. 

Figure 3 demonstrates two test results, both with the 
ψ𝑑𝑑=40o, but at the pitch angles of 30° and 80°. The latter, close 
to a vertical situation, witnesses an overshoot of over 13°. This 
manoeuvre requires higher input voltage and rear rotor 
rotational speed and pushes the operating area towards 
saturation.  

Fig. 3. The performance of the control law of Eq. (33) at different pitch 
angles with the same desired yaw angle of 40° 

It is probable that an unmanned aerial vehicle hits an object 
during flight. Such an occurrences was simulated with sudden 
exertion an external torque, T, for a limited time. During torque 
exertion, yaw dynamics (below equation of (1)) is  

( )( )21( ) cos ( ) sgn ( ) ( ) ( ) .
ψ V

V

ψ t d θ t χ ω t ω t c ψ t T
I

= − +      (34)                                                                                                    

Figure 4 depicts the response of the control system with 
desired yaw angles of 10°, 30° and 50°, where the unmanned 
helicopter is hit in/against the direction of its rotation for 0.001s 
at time t=1 s with 50 and100 N.m external torques. Considering 
Euler’s law, these values of external torque are severe and can 
apply extreme angular acceleration of 1562.5 and 3125 rad/s2 on 
the helicopter body. This figure shows that the control system 
of Eq. (33) can return the unmanned helicopter to the desired 
conditions very fast. Expectedly, at the pitch angle of 80°, close 
to the vertical situation, damping the disturbance is more 
difficult.  

Eq.(34) can also simulate the situation where pitch or roll 
angles deviate their references. Such a situation leads to non-
zero pitch or roll rotational speeds. As an instance, the presence 
of pitch rotation causes a torque, Tθ , in yaw plane [4, 19, 27], 
shown in Eq.(35), which can replace T in (34). 

sinθ M M θT I ω ω θ= − .                          (35) 
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where IM =4.7×10-7 kg.m2 and ωM  are the moment of inertia and 
the rotational speed of the main rotor, respectively. Even with 
extremely high value of 1000 rad/s for both rotational speeds in 
(35), the absolute value of Tθ would be less than 0.5 N.m. 

   

 

Fig. 4. The response the unmanned helicopter with the control law of 
(33) to disturbance at different pitch angles and desired yaw angles 

If the models and the control laws presented in this paper are 
compared to the ones in the literature, two innovations can be 
highlighted: 
(i) Considering the inherent delay of digital control systems, e.g. 
in (5 and 7)  
(ii) Deign of feedback linearization control system for 
unmanned helicopters in discrete domain to take the delay into 
account, (29 and 33) 
Figures 1-4 show the aptness of the proposed design approach.  

This research also underlines two advantages of control 
systems with discrete linear controllers over the ones with 
continuous linear controllers: 
1) In discrete domain, delays can be embedded into linear 
discrete models without adding nonlinearity; while, delays are 
nonlinear (exponential) components in continuous domain.  
2) Discrete controllers tend to be less sensitive to noises 
compared to continuous controllers with derivatives.  

The first advantage lets a more accurate model, i.e. (7), be 
used in control system design, a reason for higher performance. 
Equation (7) would be a nonlinear equation in Laplace domain. 
A Smith-predictor-based control system or a similar method 
might be able to use (7)  in continuous domain; however, that 
would impose an extra loop and its complexities to the control 
system [44]. The second afore-listed advantage removes a well-
known drawback of feedback linearization control of unmanned 
helicopters: high sensitivity to noises [28]. Classical continuous 
controllers, widely used within feedback linearization control 
systems of helicopters and other mechanical system, often 
include derivatives as discussed in the appendix. These 
derivatives, which are non-existent in discrete controllers, are a 
major source of sensitivity to noises. 

As to Problem Statement, the proposed control system and 
results are for the prevalent manoeuvre presented in section 2. 
For more complex manoeuvres, e.g. when the centre of mass 
witnesses a significant motion while yawing, the mathematical 
model and consequently the control law would be different. 
However, the demonstrated advantages of the proposed design 
approach in discrete domain, including (i) performance 
improvement as a result of considering inherent data 
transfer/processing delays, and (ii) reduction of sensitivity to 
noises, due to removal of derivative terms plausibly remain 
valid.  

6. Conclusion 

This paper deals with the control of an unmanned helicopter in 
yaw turning, while the pitch and roll angles are well regulated, 
a frequent manoeuvre. Nonlinear and coupled governing 
differential equations of the manoeuvre dynamics compel the 
use of a nonlinear method; hence, feedback linearization was 
opted. Use of feedback linearization to control unmanned 
helicopters has been reported in the literature; however, (a) a 
delay existing in all digital closed loop systems has been 
disregarded, and (b) discrete domain design methods (which can 
deal with the aforementioned delay) have not been employed. 
Both of these were considered/used in this research resulting in 
high performance as well as robustness against noises and 
disturbances (external hits).  

A feedback linearization control system with a linear 
continuous component for the unmanned helicopter was 
designed, reported in the appendix, to be compared to the 
proposed control system; it was shown that a derivative term is 
essential for such a control system to have a reasonably fast 
response. However, derivatives are very sensitive to noises, and 
this is why low robustness against noises is a known weak point 
of helicopter control systems based on feedback linearization. 
Use of discrete domain design removed this drawback and 
resulted in an excellent robustness against noises.  

In addition, it was mathematically proven that a control 
input, voltage to the rear rotor, beyond its saturation limit leads 
to instability. As a result, in discrete control system design, a 
closed loop pole rather close to stability border was chosen to 
moderate convergence speed and shorten the time that the 
control limit lies beyond its saturation limits.  
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Appendix A.   Linear Control System Design 
This appendix reports the design of a linear controller based on 
system/error dynamics presented in (6)/(10). 

A.1. Proportional Controller  
With  uL =Ke, Eq. (10) becomes a homogenous differential 
equation of 

4( ) ( ) ( ) 0e t k e t Ke t+ + =  .                           (A.1)                                                                                                      
 

with the following characteristic equation and time response:  

1 2
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1 2
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                                                      (A.2)                                                                                                                                                       

Then, the poles of error dynamics, p1 and p2, are  

( )0.52
4 4

1,2

4

2

k k K
p

− ± −
= .                        (A.3)                                                                                                                                                                                                    

A negative K always leads to a positive pole and instability; 
hence, K should be positive. For positive K and k4, the real part 
of the poles is always negative; thus, the system is stable with 
the dominant pole of (A.4): 

( )0.52
4 4 4

2d

k k K
p

− + −
= .                           (A.4)                                                                                                                                                                                                                                                                                           

Since k4 is positive, the greatest absolute value of the dominant 
pole, leading to the fastest convergence of the error towards 
zero, happens at 2

4  4 0k K− = .                                          (A.5)                                                                                                                                                                                                                                                                                                                                                                                                                       
Moreover, in order to have real poles (to assure non-oscillating 
response), it is required that 2

4  4 0k K− ≥ .                       (A.6)                                                                                                                                                                
As a result, the fastest non-oscillating convergence of the 
control error towards zero happens when (A.5) is met or 

2
4

4
kK = .                                 (A.7)                                                                                                                                                                                                                                                                                                                  

This value of K leads to twin poles of -0.5 k4; that is, the time 
constant of the response is 2π/pole or 4π/ k4. Therefore, with the 
values provided in section 2 for the parameters of a steel 
unmanned helicopter, the time constant of the response is 402 s. 
This response is obviously too slow. Hence, proportional 
controller is not a good choice to generate uL. 

A.2. Proportional Derivative Controller  
An alternative to improve classical linear controllers with slow 
responses is to add derivatives. Thus, a proportional-derivative 
(PD) linear control law of  

 ( ) ( ) ( )L p du t K e t K e t= +  .                          (A.8) 
was opted. With combination of (10 and A-8), error dynamics 
will be 

( )4( ) ( ) ( ) 0d pe t k K e t K e t+ + + =  ,                 (A.9)  
with characteristic equation of ( )2

4 0.d ps k K s K+ + + = (A.10)  
Thus, the closed loop poles are 
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= .          (A.11)     
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With similar reasons to the ones provided for (A.1-3), (46) 

is the requirement to have the fastest non-oscillating 
convergence of the error towards zero: 

( )2
4

4

4 0,
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d p

k K K

or K K k

 + − =


= −
                      (A.12)                                                                                                                                                                               

Thus, resultant twin non-oscillating poles are: 
( )4

1,2 2
dk K

p
− +

= .                         (A.13)                                                                                                                                                                                                      

As a result, time constant is 4π/( k4 + Kd), which can be quite 
short for a high positive Kd. As to (A.12), (A.8) can be presented 
as (12).  
 
Appendix B.   Too Fast Poles and Saturation 

As mentioned in section 4, e.g. in Eq.(30), while the  control 
command is saturated, the system is unstable. As mentioned in 
subsection 4.2, the pole of 0.999 was chosen to avoid too high 
values of control command and saturation. Figure 5 shows the 
system undesirable behaviour, if the control system is designed 
based on too fast poles, i.e. discrete poles too close to zero.  

 
Fig. 5.  The response of (29) with the parameters derived so that the 
closed loop system of (23) has a single discrete pole of 0.9, 0.99 and 
0.999. 
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