
  

  

Abstract— Secondary recovery involves injecting water or gas 

into reservoirs to maintain or boost the pressure and sustain 

production levels at viable rates. Accurate tracking of pressure 

dynamics as reservoirs produce under secondary production is 

one of the challenging tasks in reservoir modelling. In this paper, 

a data-driven based technique called Dynamic Mode Learning 

(DML) that aims to provide an efficient alternative approach for 

learning and decomposing pressure dynamics in multiphase 

reservoir model that produces under secondary recovery is 

proposed. Existing algorithms suffer from complexity and 

thereby resulting to expensive computational demand. The 

proposed DML technique is developed in the form of a learning 

system by first, constructing a simple, fast and efficient learning 

system that extracts important features from original full-state 

data and places them in a low-dimensional representation as 

extracted features. The extracted features are then used to 

reduce the original high-dimensional data after which dynamic 

modes are computed on the reduced data. The performance of 

the proposed DML method is illustrated on pressure field data 

generated from direct numerical simulations. Experimental 

results performed on the reference data reveal that the proposed 

DML method exhibits better and effective performance over 

standard and compressed dynamic mode decomposition (DMD) 

mainstream algorithms. 

I. INTRODUCTION 

As the world population keeps on rising and industrial and 
residential activities increase, so also the demand for energy. 
To meet the rapidly increasing global energy demand, various 
forms of energy sources need to employ available and new 
techniques to meet this increasing demand. So far, renewable 
energy (solar, wind, hydro, tidal, geothermal and biomass) has 
accounted for up to 35% of the overall energy supply [1]. 
Nuclear energy is another source, however, the possible risk 
of contamination associated with nuclear energy is high [2]. 
Fossil fuels, which include oil, natural gas and coal, supply 
almost 65% of the total world energy. Fossil fuels in 
conventional and unconventional hydrocarbon reservoirs will 
continue to account for the large proportion of the world 
energy supply in the next several decades [3]. Managing 
hydrocarbon reservoir workflows normally involve numerous 
simulations for optimizing production, enhancing oil recovery 
and history matching [4]. Flow of fluid in porous media is 
governed by complex nonlinear partial differential equations 
(PDEs), which in practice, are spatially discretized into a high-
dimensional set of nonlinear ordinary differential equations 
(ODEs) [5]. For consistent representation of flow dynamics 
and subsurface geology, grid blocks in very large numbers are 
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required and cumbersome algorithms are employed for their 
spatiotemporal solutions. It requires thousands of simulations 
even with advanced algorithms to achieve optimal solutions 
when solving with nonlinear constraints [6]. The complexity 
in physics associated with reservoir multiphase fluid flow and 
the multiscale nature of the rock and fluid properties present 
challenges in achieving better predictive models. At early 
stage of production, most hydrocarbon reservoirs produce 
under primary recovery where a reservoir (formation) pressure 
forces the fluid into the well. However, since production is 
usually accompanied by a decrease in reservoir pressure, 
primary recovery via natural lift soon comes to an end.  When 
a large portion of the oil or gas in a reservoir cannot be 
recovered by primary production, a method known as 
secondary or enhanced recovery is employed to pressurize the 
reservoir. Secondary recovery is achieved by injecting water 
(waterflooding) or gas (gas flooding) into the reservoir to 
displace produced fluids and hence maintain or boost the 
reservoir pressure [7]. The performance of a reservoir model 
operating under secondary recovery can be significantly 
influenced by different types of parameters. These parameters 
include static reservoir parameters (such as porosity, 
permeability, grid location), dynamic reservoir parameters 
(such as reservoir pressure, fluid composition, fluid saturation, 
relative permeability, and well data (such as injection rate, 
production rate, well radius and well patterns [1]. 
Conventionally, numerical simulation is used to quantify 
uncertainties and find the best set of parameters that give the 
best performing model. However, the higher the number of 
parameters, the more cumbersome the reservoir model 
becomes and consequently, the more computationally 
expensive the entire simulation process becomes. In 
comparison to numerical simulation, in which model set up is 
laborious and implementation is time consuming, a data-
driven model that not only scales down computational 
complexity but also, offers accuracy without compromising 
results would be of great benefit [8], [9], [10]. Data-driven 
based machine learning techniques have been successfully 
applied in reservoir characterization and engineering to 
provide solutions to challenges that include estimation of flow 
rates of oil and gas in multiphase production systems [11], 
investigation of pressure flow in underground gas storage [12], 
[13], prediction of well performance [14], prediction of 
deliverability in underground natural gas storage [15], to 
mention but a few.  In recent years, a large body of research 
called Dynamic Mode Decomposition (DMD) has emerged 
around modal decomposition and machine learning methods 
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[16]. DMD originated as a new promising tool in the fluid 
dynamics community to discover spatiotemporal meaningful 
structures from high-dimensional fluids data. The evolving 
success of DMD arises from the fact that it is a data-driven and 
equation-free technique that is capable of discovering 
spatiotemporal meaningful patterns that may be used for 
diagnosis, control, state estimation and future-state prediction 
of complex dynamical systems [17]. Being a data-driven 
technique and despite its successful application in diverse 
areas, it is observed that standard DMD works best when the 
number of columns of the snapshot matrix, which is also the 
number of time steps, is smaller than the number of rows, 
which is also the number of observations, measurements, or 
samples for the purpose of retaining the spatial information 
wherever possible. In standard DMD, Singular Value 
Decomposition (SVD) is performed on the full-state snapshot 
data. For instance, performing SVD on a m×n snapshot matrix 
M results in three matrices U, S, and V, where U is an m×m 
unitary matrix, S is an m×n diagonal matrix, and V is an n×n 
unitary matrix. The entries of S are referred to as the singular 
values of M, the columns of U and V are referred to as the left-
singular and right-singular vectors of M, respectively. After 
performing SVD on the full-state snapshot matrix M, one 
needs to truncate the components of the three matrices U, S 
and V according to the rank of the snapshot matrix. In a 
situation like this, if the number of columns of the full-state 
snapshot matrix M is greater than the number of rows, part of 
the columns of U (left-singular vector) that carries spatial 
information will be lost. Even though, this might not be a 
problem when dealing with overdetermined systems, 
nevertheless, this is a drawback when dealing with 
underdetermined systems as information regarding low level 
dynamics in spatiotemporal data might not be analyzed. A 
modified version of standard DMD called compressed DMD 
produces almost similar result as standard DMD but at low 
cost of computation. Compressed DMD integrates standard 
DMD with compressive sensing to achieve results by 
reconstructing a full-state snapshot from a random under 
sampling of the full-state data [18]. The basic idea behind 
compressed DMD method is to construct a measurement 
matrix C ∈R(p×n) of random samples first. The measurement 
matrix C is then used to compressed the full-state snapshot 
matrices after which mode decomposition is computed on the 
compressed representation of the original data. It is worth 
noting that the measurement matrix C ∈R(p×n) which is the 
cornerstone of compressed DMD is formed by drawing (p X n) 
independent random samples, where p stands for the number 
of samples randomly drawn. As such, the measurement matrix 
C is a kind of random sensing matrix whose number of 
samples (rows) randomly generated is equal to the value of p. 
To compress the full-state snapshot matrices, the algorithm 
uses the measurement matrix C to generate compressed 
matrices whose number of rows are randomly picked from the 
full-state snapshot matrices without replacement and are equal 
to the value of p. Even though, with compressed DMD, 
computational cost is reduced compared to standard DMD, 
nevertheless, a noticeable drawback with compressed DMD is 
that, the compression of the full-state snapshot data is 
performed by a measurement matrix whose components are 
randomly generated, as such, due to the randomness nature of 
the measurement matrix, anytime the algorithm is ran, its 
components change and in turn, the overall result changes. 

This paper presents a new technique known as Dynamic Mode 
Learning (DML) that is developed based on extracting the 
characteristics of the full-state data and using the learned and 
extracted features to develop a model that accurately capture 
dynamics and provide behavior analysis of the full-state 
system. To achieve this, a simple and fast learning system that 
extracts important features of the full-state data is developed 
first. The extracted features that contain the characteristics and 
underlying dynamics in the full-state data are then used to 
reduce the full-state data, after which SVD and dynamic 
modes are computed on the resulting reduced data. Finally, the 
full-state system is reconstructed from the eigenvalues and 
dynamic modes of the reduced system. As such, this approach 
is aimed at developing a model that accurately capture the 
underlying dynamics in the full-state system. 

The remaining parts of this paper are organized as follows: 
Section two presents materials and methods used to develop 
the proposed DML model. Section three presents the 
formulation and implementation of the reservoir model whose 
data were used to validate the proposed DML model. Section 
four presents experimental results and discussion. Section five 
ends the paper with conclusion and focus for future work. 

 

II. MATERIALS AND METHODS 

This section presents the details of the proposed DML 

model development. This includes a description of the 

learning system that extracts features of the full-state data and 

a detailed description of the proposed DML method working 

principle. 
 

A. Feature Extraction 

The proposed DML method is developed based on the idea of 

future extraction in high-dimensional data. The main idea 

behind the proposed DML model is learning and extracting 

important features of the full-state data first, and then using 

the extracted features to reduce the full-state data. In contrast 

to the traditional compressed DMD that constructs a 

measurement matrix from random samples and uses it to 

compress the full-state data, we first developed a simple 

learning system that extracts and maps the underlying features 

of the full-state data to a low-dimensional space and saves 

them as a set of extracted features. This set of extracted 

features is then use to reduce the full-state data after which 

dynamic modes are computed on the reduced data. Suppose 

we present the full-state data which contains 𝑛  samples as 

input data 𝑋 and project it using 𝑔(𝑋𝑊𝑖  +  𝑏𝑖), to transform 

it into 𝑖th extracted features, 𝐹𝑖, where 𝑔: 𝑅𝑛 → 𝑅𝑛  represents 

the transfer function, 𝑊𝑖 stands for the weight matrix, and 𝑏𝑖 

stands for the bias vector. The concatenation of all the first 𝑖 
sets of extracted features is denoted as 𝐹𝑖 ≡ [𝐹1, … , 𝐹𝑖]. If 𝐿 

∈ 𝑅𝑘×𝑛 is defined as the output matrix where 𝑘 is the number 

of nodes in the extraction layer, then for any 𝑛 samples of the 

full-state data the learning system generates  𝑘 samples of 

extracted features which can be expressed as follows 

 

𝐹𝑖 = 𝑔(𝑋𝑊𝑖  +  𝑏𝑖),   𝑖 = 1, … , 𝑘                     (1) 



  

where 𝑊𝑖  and 𝑏𝑖 are randomly generated from the normal 

uniform distributions within the interval of [-1, 1]. For the 

transfer function, log-sigmoid is chosen to establish the 

samples of extracted features and to improve the 

generalization ability of the system, 𝐿2-norm weight 

regulirizer is added to the transfer function. The architecture 

of the feature extraction system that describes its working 

process is shown in Figure 1. Once the system extracts the 

features and placed them in 𝐿 ∈ ℝ𝑘×𝑛 , the extracted features 

are then used to reduce the full-state data after which the 

dynamic modes are computed on the reduced data. As such, 

computationally expensive SVD on the high-dimensional 

original data is bypassed, and is rather, performed on the 

reduced snapshot data. Also, it is worth noting that the 

number of samples/rows in the reduced snapshot data will be 

equal to the number of samples/rows in the output layer of the 

feature extraction system (that is, the value of k). 

Figure 1: Illustration of the working process of the feature extraction system 

B. Dynamic Mode Learning Technique 

     In this section, a detailed description of the proposed DML 

method is presented. Suppose that a high-dimensional data 

𝑋 𝜖 𝑅𝑛×𝑚 is generated and collected from numerical 

simulations or experiments, the features of the original data 𝑋 

are first extracted using (1) and placed in a low-dimensional 

matrix, 𝐿 𝜖 𝑅𝑘×𝑛. Next, the original data are arranged in two 

snapshot matrices as follows 

 

𝑋 = [
| | |

𝑥1 … 𝑥𝑚−1

| | |
] ,                                    (2𝑎) 

 

𝑋′ = [
| | |

𝑥2 … 𝑥𝑚

| | |
] .                                     (2𝑏) 

These two matrices have large number of rows than columns, 

that is, 𝑛 ≫ 𝑚 and consist of the states of the system and their 

columns were captured in equal-spaced time, with a time step 

∆𝑡. Each 𝑋𝑖 = 𝑋(𝑖∆𝑡) is a vector with components c, as such, 

𝑋, 𝑋′ ∈ ℝ𝑐×(𝑚−1). Dynamic mode learning method attempts 

to construct a linear dynamical system 

𝑋𝑡+1 ≈ 𝐴𝑋𝑡                                             (3) 

and thus 

𝑋′ ≈ 𝐴𝑋.                                               (4) 

It is interesting to realize that the least-squares solution of (4) 

leads to 

𝐴 = 𝑋′𝑋ϯ                                           (5) 

here, 𝑋ϯ stands for the Moore-Penrose pseudo-inverse of X. 

To get an estimate of matrix A, DML method uses the matrix 

that contains the extracted features to reduce the snapshot 

matrices as follows 

𝑋𝑅 = 𝐿 ∗ 𝑋                                       (6𝑎) 

𝑋𝑅
′ = 𝐿 ∗ 𝑋′,                                      (6𝑏) 

then Singular Value Decomposition (SVD) is computed on 

the reduced snapshot matrix 𝑋𝑅 as follows 

𝑋𝑅 = 𝑈𝑆𝑉∗                                          (7) 

where 𝑈 ∈ ℝ𝑛×𝑟 , 𝑆 ∈ ℝ𝑟×𝑟 , 𝑉 ∈ ℝ𝑚×𝑟 and 𝑟 ≤ 𝑚 stands for 

the rank of truncating the snapshot matrix 𝑋𝑅. The columns 

of U are referred to as POD modes, and they satisfy 𝑈∗ ∙ 𝑈 =
𝐼. In the same manner, columns of V are orthonormal, and 

satisfy 𝑉∗ ∙ 𝑉 = 𝐼. The diagonal of S contains the singular 

values of matrix 𝑋𝑅. The full matrix A then can be acquired 

by solving the pseudo-inverse of 𝑋𝑅 as follows 

𝐴 = 𝑋𝑅
′ 𝑉𝑆−1𝑈∗.                                        (8) 

In DML method, the interest is in the leading eigenvalues r 

and eigenvectors of A, for this reason, A is therefore projected 

onto the POD modes in U as follows 

𝐴̃ = 𝑈𝑋𝑅
′ 𝑉𝑆−1                                            (9) 

It is worth mentioning that the solution of (9) is the least 

squares fit of 𝐴. The point here is, instead of working on the 

full matrix A, we directly computed the reduced-order 

approximation 𝐴̃ in such a way that the full matrix A and the 

reduced-order matrix 𝐴̃ have the same nonzero eigenvalues. 

Thus, the spectral decomposition of 𝐴̃ can be computed as 

𝐴̃𝐻 = 𝐻𝛬.                                               (10) 

Here, the DML eigenvalues are the elements of the diagonal 

matrix 𝛬 and the eigenvectors of 𝐴̃ are represented by the 

columns of H. The dynamic mode 𝜙 can then be obtained by 

using W of the reduced system and the snapshot matrix 𝑋′ as 

follows 

 



  

𝜙 = 𝑋′𝑉𝑆−1𝐻.                                         (11) 

 

C. Formulation of the Multiphase Gas Injection Reservoir 

Model 

The gas injection reservoir model used as the reference model 

is implemented using the benchmark data of the first SPE 

Comparative Solution Project [19]. The SPE 1 benchmark is 

a description of a depletion problem with gas injection in a 

10 × 10 × 3  reservoir model with injector and producer 

wells completed in diagonally opposite corners. The gas 

injection well was completed in layer 1 and is located at grid 

point (1, 1) while the producing well was completed in layer 

3 and is located at grid point (10, 10). The reservoir has a 

porosity of 0.3 uniformly distributed within the grid blocks, 

whereas the permeability is heterogeneous with values 500, 

50, and 200 mD in layers 1, 2, and 3, respectively with 

respective thicknesses of 20, 30, and 50 ft. Initially, the 

reservoir is undersaturated with a constant pressure field in 

each layer, a homogeneous mixture of water (𝑆𝑤 = 0.12), 

and oil (𝑆𝑜 = 0.88), and zero free gas (𝑆𝑔 = 0.0) throughout 

the reservoir model. Detailed data that describes the 

petrophysical and PVT properties as well as the relative 

permeability of the reservoir model can be found in [45]. As 

mentioned above, the geological structure of the gas injection 

reservoir model is a three-dimensional formation that consists 

of 10 × 10 grid blocks in the 𝑥 − 𝑦 dimension and 3 layers in 

the 𝑧 dimension. Thus, the reservoir model consists of 

10 × 10 × 3 = 300 grid blocks (cells). To generate the 

reservoir’s data at any grid cell in time, the reservoir is 

numerically simulated for 1200 days in 120 time-steps. The 

result of the numerical simulation yielded a 300 × 120 matrix 

that contains 36,000 records in the spatiotemporal database. 

Each record in the spatiotemporal database contains 

information about the reservoir’s static and dynamic 

parameters in a single grid block in a given run and given time 

step. For the purpose of this study, the pressure field data of 

the gas injection reservoir model is retrieved and utilized as 

benchmark data by the proposed DML model and comparison 

algorithms. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, results of experiments for the purpose of 

verifying the proposed DML model are presented. To validate 

the effectiveness of the proposed model, experiments are 

performed on the pressure filed data generated from 

simulating the multiphase gas injection reservoir model.  To 

proof the performance of the proposed DML model, its ability 

to reconstruct reservoir pressure field and approximate 

average reservoir pressure change is compared to existing 

mainstream standard and compressed DMD methods. Each of 

the three algorithms mentioned above was evaluated using 10, 

15, 20, and 25 number of modes at a time. Two classic 

statistical quantities are selected namely, mean square error 

(MSE), and root mean squared error (RMSE) to evaluate the 

performance of the three algorithms. The aim of performing 

the experiments is to measure the errors generated by each 

algorithm on each of the tasks performed on the reference 

data. 

     Recall that the proposed DML algorithm uses the extracted 

features representation matrix 𝐿 ∈ ℝ𝑘×𝑛 to reduce the full-

state snapshot matrices after which mode decomposition is 

computed on the reduced data. In the proposed DML 

algorithm, the number of rows/samples in the reduced 

snapshot data is equal to the number of rows/samples in 𝐿 ∈
ℝ𝑘×𝑛 which in turn, is equal to the number of nodes in the 

output layer (value of k). Recall also, that in compressed 

DMD, a measurement matrix 𝐶 ∈ ℝ𝑝×𝑛  is used to compress 

the snapshot matrices after which mode decomposition is 

applied on the compressed data. In compressed DMD, the 

number of rows/samples in the compressed snapshot data is 

equal to the number of rows/samples in the measurement 

matrix which is the number of random samples generated by 

the measurement matrix (value of p). For fair comparison, we 

set the value of p for the compressed DMD method, and k for 

the proposed DML model to 25 each.  Thus, 𝐶 ∈ ℝ𝑝×𝑛 and 

𝐿 ∈ ℝ𝑘×𝑛 have the same number of rows/samples so that the 

resulting compressed snapshot matrices that the compressed 

DMD algorithm utilized have the same rows/samples with the 

reduced snapshot matrices utilized by the proposed DML 

algorithm. For the standard DMD algorithm, no compression 

or reduction of the full-sate data is needed, thus, SVD is 

applied directly on the full-state snapshots. 

A. Experiment on Pressure Field Data of Gas Injection 

Reservoir Model 

First experiment is performed on the pressure field data 

generated from simulating the gas injection reservoir model. 

The original data contains 300 samples generated in 120 time 

steps. Thus, the original data is represented in a 300 × 120 

matrix. To gain an insight of how the pressure evolves within 

the reservoir grid cells as the reservoir produces while natural 

gas is being injected, plot of the reservoir’s average pressure 

change over time is shown in Figure 2 and the reservoir’s pore 

pressure evolution for some selected days of the simulation 

period is shown in Figure 3. 

Figure 2: Plot of average reservoir pressure change with time for gas 

injection reservoir simulation 

 



  

 
Figure 3: Reservoir pore pressure variations for some selected days of gas 

injection reservoir simulation 

Projecting the original data on the feature extraction system 

described in section II(A) and setting the value of k to 25, not 

only reduces the dimension of the data, but also captures the 

characteristics of the data and stored them in 25 × 300 

matrix. This matrix is then used to reduce the full-state 

300 × 120 matrix after which dynamics modes are 

computed on the reduced data. Table I presents the 

experimental results performed on the pressure field data of 

the gas injection reservoir model by the three algorithms using 

10, 15, 20, and 25 number of modes. From Table I, it can be 

observed that on general note, pressure field reconstruction 

and average reservoir pressure approximation errors for all 

the three methods decrease as the number of modes increases. 

In other words, accuracy for all the three methods improves 

as the number of modes increases. However, it is worth noting 

that the proposed DML model exhibits better performance 

with all the number of modes over standard and compressed 

DMD methods. In particular, it can be observed that with 15 

modes, the proposed DML model is able to record < 1 MSE 

and < 1 RMSE for both pressure field reconstruction and 

average reservoir pressure approximation while standard and 

compressed DMD methods have not recorded such results 

even with 25 modes. Overall performance ranking for this 

first experiment is DML model, followed by standard DMD, 

then compressed DMD. 

 
TABLE I. COMPARISON OF ALGORITHM PERFORMANCE ON 

PRESSURE FIELD DATA OF GAS INJECTION RESERVOIR USING 
DIFFERENT NUMBER OF MODES 

 
 Reservoir’s Pressure 

Field Reconstruction 

Average Reservoir 

Pressure 

Approximation 

 MSE RMSE MSE RMSE 

10 Modes 

Standard 

DMD 

26.7476 5.1718 25.8519 5.0845 

Compressed 

DMD 

27.2875 5.2237 26.8314 5.1799 

DML model 10.5455 3.2474 10.2619 3.2034 

15 Modes 

Standard 

DMD 

9.1087 3.0181 8.9316 2.9886 

Compressed 

DMD 

12.3192 3.5099 11.8441 3.4415 

DML model 0.3289 0.5735 0.2873 0.5360 

20 Modes 

Standard 

DMD 

6.8884 2.6246 6.7435 2.5968 

Compressed 

DMD 

7.0209 2.6497 6.7113 2.5906 

DML model 0.4286 0.6547 0.3841 0.6198 

25 Modes 

Standard 

DMD 

2.2879 1.5126 2.1944 1.4813 

Compressed 

DMD 

3.5791 1.8919 3.4204 1.8494 

DML model 0.3093 0.5561 0.2706 0.5202 

 

For the sake of visualization, plots that compare the prediction 

of average reservoir pressure over time by all the three 

algorithms using 15 number of modes on the pressure field 

data of the gas reservoir model is presented in Figure 4. 

 
Figure 4: Comparison of algorithms performance for average reservoir 

pressure prediction on gas injection reservoir data 

 

Figure 4 reports the effect of gas injection on the reservoir’s 

pressure dynamics over the simulation period. It can be 

observed from Figure 4 that as gas is being injected through 

the injection well into the reservoir model, the formation 

pressure keeps raising above the initial pressure and thereby 

enhancing the recovery of oil through the production well. As 

for the ability of the three algorithms on the reservoir’s 

pressure dynamics for the simulation period, it can be noticed 

that from day 1 to approximately 300 days, all algorithms 

perform well to capture the reservoir’s pressure dynamics. 

However, after 300 days, standard and compressed DMD 

algorithms begin to lose track of the reservoir’s pressure 

dynamics and their deviations continue to increase to the end 

of the simulation period. On the other hand, it can be observed 

that the proposed DML algorithm is able to capture the 

reservoir’s pressure dynamics from day 1 to the end of the 

simulation period with a slight deviation at around day 570 to 

day 690. 

     In Figure 5, comparison is made between the reference 

data of the gas injection reservoir pore pressure variations for 

some selected days and the ones reconstructed by the 

proposed DML model using 15 number of modes. It can be 

noticed that the reservoir’s pore pressure variations 

reconstructed by the proposed DML model is in good 

agreement with the reference data. Furthermore, comparisons 



  

are made between the true eigenvalues and the ones generated 

by the proposed DML model using 15 modes on the pressure 

field data of the gas injection reservoir model and the result is 

presented in Figure 6. It can be observed from Figure 6 that 

the eigenvalues generated by the proposed DML model match 

the true eigenvalues. 

 
Figure 5: Comparison of gas injection reservoir pore pressure variations for 

some selected days between reference data and DML model 

 

Figure 6: Comparison of reference eigenvalues and the ones generated by 

the proposed DML model for gas injection reservoir pressure data 

 

IV. CONCLUSION 

In this paper, DML method that efficiently learns and 

decomposes dynamic modes in high-dimensional data is 

proposed. Developed based on the idea of dimensionality 

reduction and feature extraction, the proposed model 

eliminates the computationally expensive SVD of standard 

DMD and addresses the issue of random sampling in 

compressed DMD. Performance of the proposed model is 

validated on pressure field data generated from direct 

numerical simulations of a benchmark multiphase reservoir 

model. Ability of the proposed model to keep track of 

reservoir pressure dynamics and reconstruct reservoir’s pore 

pressure variations are compared to mainstream algorithms 

namely, standard and compressed DMD methods. 

Experiments performed on the pressure field data reveal that 

the proposed DML model exhibits better performance with 

the least prediction and reconstruction errors over standard 

and compressed DMD methods. Furthermore, eigenvalues 

generated by the proposed DML model are shown to match 

the true eigenvalues of the reference data utilized in this study. 

This shows that it is possible to apply the proposed model to 

high-dimensional systems in porous media, fluid dynamics, 

and to other spatiotemporal measurements. As focus for 

future research, consideration will be given to combining the 

proposed technique with other DMD innovations such as 

DMD with control.  
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