
AudiWFlow: Confidential, Collusion-resistant
Auditing of Distributed Workflows

Xiaohu Zhou*, Antonio Nehme*, Vitor Jesus†, Yonghao Wang*,
Mark Josephs*, Khaled Mahbub*, Ali Abdallah*

*School of Computing and Digital Technology
Birmingham City University, Birmingham B4 7XG, UK

{antonio.nehme, yonghao.wang, mark.josephs, khaled.mahbub, ali.abdallah}@bcu.ac.uk
xiaohu.zhou@mail.bcu.ac.uk

†Aston Business School
Aston University, Birmingham, UK

v.jesus@aston.ac.uk

Abstract—We discuss the problem of accountability when
multiple parties cooperate towards an end result such as multiple
companies in a supply chain or departments of a government
service under different authorities. In cases where a full trusted
central point does not exist, it is difficult to obtain a trusted
audit trail of a workflow when each individual participant
is unaccountable to all others. We propose AudiWFlow, an
auditing architecture which makes participants accountable for
its contributions in a distributed workflow. Our scheme provides
confidentiality in most cases, collusion detection and availability
of evidence after the workflow terminates. AudiWFlow is based
on verifiable secret sharing and real-time peer-to-peer verification
of records; it further supports multiple levels of assurance to meet
a desired trade-off between the availability of evidence and the
overhead resulting from the auditing approach.

We propose and evaluate two implementation approaches for
AudiWFlow. The first one is fully distributed except for a central
auxiliary point that, nevertheless, needs only a low level of trust.
The second one is based on smart-contracts running on a public
blockchain which is able to remove the need of any central point
but requires the integration with a blockchain.

Index Terms—auditing, distributed workflows, confidentiality,
blockchains, smart-contracts

I. INTRODUCTION

Distributed workflows with multiple organisations involved,
cooperating towards a certain outcome (such as a supply
chain), is now a common way of work leveraging the potential
of the Internet. This is common in many domains including
governments, digital health, education, engineering, supply
chains, goods distribution, etc. Collaboration is enabled by
interoperable applications through which each organisation
contributes to a workflow. A key enabler is trust: organisations
need to trust each other in that each will deliver their part as
contracted. When a problem occurs, the workflow needs to be
audited in order to determine what failed.

We start with a simple example. A shopper orders a book
online. After payment using an independent payment proces-
sor, the book is collected from the warehouse and sent for
post dispatch. An independent courier picks up the book and

transports to the destination hub. The book is then delivered
by a person to the door of the shopper. The shopper signs
a form and the workflow is completed. One can see that
all the participating parties are, for the most part, unknown
to each other. If a problem occurs, the shopper needs to be
refunded and an audit to the particular workflow is started.
Such an audit is typically time-consuming and lengthy and,
most of the times, the costs does not justify the effort. A full
refund, “no questions asked”, is then issued to the shopper.
A key obstacle is that, if an audit does happen, a dishonest
party is able to easily hide or create evidence so to waive its
liability. The likelihood is that one runs into an inconclusive
“finger-pointing” problem which only a human judge can
resolve using the law and principles such as the “balance
of probabilities”. The problem AudiWFlow tackles is how
to generate evidence, as the workflow happens, that is able
to guarantee that all the evidence is stored with integrity, is
unforgeable, is available and cannot be repudiated.

With massive digitisation, nearly every domain has similar
needs – supply chains [1], inter-department business pro-
cesses [2], e-government services [3], [4], etc. To note that the
problem becomes trivial if a central party is able to coordinate
and gather evidence; however, trusting a central party is a
difficult problem in itself especially in a distributed workflow,
where parties may not even know each other beyond their
adjacency. Furthermore, simple log recording is not enough
as any valid evidence cannot be open to manipulation [5].
A further problem is, collusion both with a central entity
managing the workflow or between two adjacent parties in
the workflow topology to tamper with digital evidence. Even
if the orchestration of the workflow is managed in the cloud, a
privileged insider can tamper with the logging process. Finally,
the confidentiality requirements should be noted [6]. In a pure
distributed workflow, organisations may want to only deliver
the expected outcome and not disclose any other information.

A. Scenario

To illustrate the challenge, we present and informally anal-
yse a simple working scenario of health insurance – see Figure
1.

Figure 1: The example scenario of health insurance

Alice (A) wants health insurance from insurer Bob (B). Alice
has to provide her medical history to Bob and allow Bob to
contact her doctor, Dr. Cathy (C). Insurer Bob also needs
Alice’s family medical history but this has to go through Dr.
Cathy who, following a confidentiality friendly approach, will
provide an overall report after she contacts the family doctors
Dr. Dippy (D) and Dr. Eva (E).

To save on insurance costs, Alice asks her doctor, Dr. Cathy,
to provide an untruthful medical record. Bob thus obtains
Alice’s medical history from Dr. Cathy (which includes reports
from Dr. Dippy and Dr. Eva). Happy with the outcomes,
insurer Bob offered a deal with which Alice was happy.

After two years, Alice claimed a compensation after a
medical incident. Referring to Alice’s insurance claims, Bob
investigated all documents of Alice and found that Alice’s
medical records provided by Dr. Cathy contradicts records
in the hospital. Insurer Bob rejects Alice’s claim. Alice
counter-argued that the insurance company was responsible
for collecting her medical history and is thus entitled to a
compensation. Insurer Bob then tries to obtain the contacts
of Dr. Dippy and Dr. Eva which Dr. Cathy refuses to give on
behalf of confidentiality.

As we see, there are a number of parties (A, B, C, D, E),
which are independent and, a prior, individually unaccountable
to any other party. All have to collaborate towards the end re-
sult, which is health insurance for Alice. A further component
is that some parties are not known to other parties: B does not
know who are D and E and, in fact, only knows that there are
other parties beyond C. Overall, we have a workflow topology
(as in Figure 1) where vertices are the collaborating parties and
the directed edges the sequence of actions and deliverables.
The audit trail consists of all the interactions represented by
the edges of the graph.

In the absence of perfectly shared information, there is no
way for any party to verify the accuracy of the information
provided. For example, insurer Bob is in a position where he
cannot prove Alice is at fault. This is because Alice can claim
that insurer Bob colluded with doctors from the hospital and
modified her original documents to close a sale. Insurer Bob
also cannot find any traces of a collusion attack between Dr.

Cathy and Alice. Finally, Dr. Cathy denies ever signing the
records that insurer Bob holds and raises the suspicion that
her signature was forged.

This scenario illustrates the challenges of obtaining strong
evidence in case of a distributed multi-party workflow. The key
requirements are the following. First, all participants must be
accountable for their actions either by denying a past action or
manipulating an audit record. Second, no participant should be
able to destroy evidence as this can be a way to waive liability.
Third, one should be able to detect if dishonest parties collude
even if it is not impossible to prevent false records between
themselves. Fourth, and final, there are important use-cases
where confidentiality is required. This comes in two forms:
(1) confidentiality of information exchanged and (2) identity
of the participants themselves beyond a certain point in the
workflow graph. We discuss these requirements in more detail
when formalising our problem in section IV.

B. Organisation of This Paper

Section II reviews the literature on existing schemes of audit
trails built. Section III formally defines the problem, presents a
threat model and introduces notation and terminology. Section
IV presents two architectural approaches to achieve the prob-
lem. The first is based on a peer-to-peer distributed architecture
but relies on an accessory central node. The second removes
the central node by replacing it with a public blockchain; we
used Ethereum, a public blockchain and one that now has
proven the ability to deliver complex requirements while main-
taining the security and integrity expected from blockchains. In
Section V, we describe how we implemented both approaches
and discuss experimental results. In Section VI we conclude
our paper and discuss future work.

II. RELATED WORK

Despite its crucial importance, workflow auditing is a topic
which has not been abundantly discussed in literature. We split
this section in two subsections: conventional systems auditing
and using properties of blockchain to secure evidence and
records.

A. Secure Auditing and Logging System

Literature about conventional auditing systems commonly
review cloud and database storage of logs in order to store
proof of evidence. This raises the problem of protecting
audit records at storage for which encryption is a commonly
used technique followed in the literature [7]–[9]. However,
encryption requires the management of keys which raises
problems of confidentiality or destruction of evidence. In
simple terms, whoever owns the keys can modify or breach
the confidentiality of evidence. To mitigate these problems,
some approaches using secret sharing have been proposed [7],
[10]; other approaches rely on integrating secret sharing with
multi-parties workflows, such as adopting in software-defined
network controller [5]. The problem of trusted auditing is also
pervasive and is a requirement across many different fields,
such as in the e-government services [8].

Zawoad, Dutta, and Hasan built a secure logging service
model, named “SecLaaS”, to achieve confidentiality and in-
tegrity of logs in cloud storage [6]. Although this approach
minimizes the risk of unauthorized modifications of the logs,
the cloud service provider is entrusted with the generation
of the audit trail without any means to verify the accuracy
of the audit records. Flores [11] presents a salting-based
authentication module to target credential protection in user
registration and authentication. A database intrusion detection
module is also mentioned to report and record insider login
attempts to the database within the network. Although it
concerns malicious behaviours in the back-end and application
levels, the irreversibility of records for login attempts in the
database is not discussed.

Rajalakshmi, Rathinraj, and Braveen [8] propose a mech-
anism addressing the requirements of secure logging and
auditing between untrusted parties that uses homomorphic
encryption. It aims to prevent exposure of private information
and save logs in the tamper-proof cloud so that the logs can
be used as audit forensics. Ma and Tsudik [9] use hash chains
to verify the logging entity. They aim to detect attempts to
modify logs generated before a compromise of the logging
entity and rely on trusted storage for their approach. However,
approaches of [8], [9] do not consider collusion-related attacks
between involved participants.

B. Distributed Ledgers in Auditing

Distributed ledger technology (DLT) in auditing is a promis-
ing direction at present. Blockchain is the popular technology
in the DLT. A number of approaches in the literature based
on blockchain technology have been applied on data auditing
and provenance for different industry fields currently, such as
adopting in business collaborative process [2] and in health
data sharing [12], [13]. Different proposals achieve a different
level of security and data confidentiality in auditing and some
of them do not target the same trust level for the logging entity.
These approaches typically rely on smart-contracts to produce
audit trails and verify the records on the blockchain network.

Cucurull and Puiggalı́ [14] propose to add checkpoints
to storage that generate logs which are then published to
the Bitcoin blockchain; however, tampering with logs is
possible between the checkpoint intervals. Putz, Menges,
and Pernul [15] target this limitation by enabling integrity
verification of each log entry through hashes published on
a permissioned blockchain. They verify each log collected
from different organisations. Tian [1] uses blockchain with
distributed databases to track a food supply chain process.
Each participant in the supply chain generates and maintains
audit records of its part of the process, and submits proof
of authenticity to the blockchain. Lu and Xu [16] present
another application of blockchain to verify whether a product
is genuine in a supply chain. Ahmad, Saad, Bassiouni, and Mo-
haisen [17] show a blockchain-based application ‘BlockAudit’
that save logs into the relational database management system
and convert logs into the JSON package as a transaction
reported to the Hyperledger blockchain. These approaches

reflect a common assumption that an entity is trusted to
produce digital evidence; we argue that there needs to be a
(near) real-time verification of the audit data, as it is generated.

Tapas, Merlino, Longo, and Puliafito [18] propose an ap-
proach to leverage DLT in order to detect misconducts between
customers and providers in the cloud storage. They rely on
mutual challenges between clients and cloud service providers
to verify the authenticity of evidence reporting but do not
consider workflows including multiple administrative domains,
which is a requirement we take into account in this paper.
Weber et al. [2] use smart-contracts to check and control
interactions in the execution of business processes. Audit trails
are generated following smart-contracts execution. However,
this model requires the data not to be encrypted at the level of
smart-contracts which jeopardises the confidentiality of their
approach. Pourmajidi and Miranskyy [19] present a prototype
of a blockchain-based log system to store and verify the
collected logs from different cloud storage providers. They
save logs and its hashes into the hierarchical ledger, and design
APIs for clients to interact with the storage. Not requiring
encryption at rest is a threat to the confidentiality of the
records.

C. Contributions of This Paper

In this paper, we introduce AudiWFlow, which is a con-
fidentiality friendly and collusion-resistant auditing approach
for distributed workflows. We discuss two implementations
of AudiWFlow; one uses a central coordination point to has
minimal trust requirements between involved third party and
participants, and the other relies on a public blockchain with
smart-contracts to replace with a third party for audit trail
record and sharing. The double lock with key pairs of the
workflow and of a participant in the workflow enables the en-
crypted exchange of messages and of encrypted audit records
between participants. Both of our implementation approaches
offer the same assurances for the confidentiality, integrity at
generation and storage, and the availability of audit records
reflecting the contribution of each participant in a workflow.

Our analysis of approaches in the literature [7]–[9] that rely
on a centralised mechanism for auditing of distributed/general
workflows concludes that a collusion between participants and
a party trusted to record audit trails makes tampering with or
destroying digital evidence possible, as well as breaching the
confidentiality of workflow transactions. Our approach using
a central point builds a complete audit trail through timely
following exchanged messages with encrypted audit records
and requires the nodes to push these audit records into the
central server. The audit trail and timely verification in both
sides of the server and the client prevent malicious behaviours
from participants such as collusion attacks. It also solves
the problem of data accuracy and integrity discussed in the
literature [6], [20]. On the other hand, prior practices [1], [14],
[16], [17] that use blockchain for auditing of workflow collab-
orations spreading across multiple organisations fall short on
providing assurances for the combination of the availability,
confidentiality, and correctness of reported audit records. Our

approach using a public blockchain runs smart-contracts to
exchange a valid digest of an audit record for an attestation of
the integrity of the verified record, which minimizes risk in the
involvement and affection of third-party on malicious act. The
audit record is shared, alongside the exchanged message, with
the next participant. Both of the sender and recipient store the
audit record to compare it with a digest of the message in the
blockchain. All transactions are encrypted with a secret key
of workflow or node key pair including in smart contract, it
addresses the problem of data disclosure that may happen in
the model of [2], [19]. For any arbitrary distributed workflow,
our approach offers a robust and confidentiality-friendly way
to record and verify audit records at any desired granularity,
while giving auditing capability to key shares of participants
in a distributed workflow.

III. PROBLEM STATEMENT

The key requirements an auditing architecture needs to
satisfy are accountability, non-repudiation, confidentiality
(records and graph), availability and collusion detection.

Figure 2: The representation of system structure

Figure 2 shows a linear workflow which has an auditing
component (the Coordination Point - CP). The specific role
of CP will be discussed later. Whereas in our first approach
we use a central coordination point, in the blockchain approach
this is replaced with smart-contracts running on a public
blockchain. In the simple topology of Figure 2, participant
A starts by requesting work from B; B then requests work
from C in order to complete the request from A. Then it
continues to D. When D performs the expected action based
on the request from C, the workflow terminates. The evidence
generated while the workflow progresses is composed of the
individual audit records. Should a dispute arise at a point in
the future, this evidence must hold all participants accountable
for their contributions.

Each workflowW is modelled as a topology with a directed
graph G = (V,E). Figure 3 gives a working example where
participants are V = {A,B,C, ...} and edge set are E =
{1, 2, 3, ...}. Each participant contributes to the overall work
done, in sequence. We assume the topology of a particular
workflow is established before it starts and is static for its
duration. We further assume, without loss of generalisation,
that the graph is acyclic when annotating each participant as
a requester or responder. In other words, the workflow uses

a path over the graph such that no node is a requester or
a responder twice. If a particular workflow uses the same
participant twice at different times, the workflow graph is
different.

Figure 3: The representation of an example workflow [20]

A. notation

We use the following notation:
• a workflowW executes over a directed graph G = (V,E)

and associated audit evidence A produced during execu-
tion of the workflow.

• V = {A,B,C, ...} is the set of members of a workflow.
• E = {1, 2, 3, ...} is a set of the sequence of participants

actions in a workflow.
• CP is an auxiliary Coordination Point.
• pkW , skW are, respectively, the public and private keys

of a workflow W .
• pki, ski is, respectively, a public and private key of

participant i = 1, 2, ..., N with |V | = N participants.
• kj is the j-th share of a threshold key, in the sense of

secret sharing, and j = 1, 2, ..., N . It is derived from skW

and any threshold K ≤ N members can recover the key.
• M1‖M2 denotes concatenation of messages M1 and M2.
• Mi,j is a message sent from participant i to j.
• signi(M) is a message M signed by participant i.
• enci(M) is message M encrypted with pki.
• encW(M) is message M encrypted with pkW .
• hash(M) is a digest of message M using a one-way

collision-resistant function (a “hash”).
We use the following messages formats in our signalling

diagrams:
• authenticity

Pij = encj(signi(Mij))

Node i is sending a plaintext output Mij to j and, to
assure authenticity in a future audit, it signs the message.
For confidentiality, node i encrypts the result with j’s
public key.

• receipt
Rij = signj(signi(Mij))

After i sends an output to j, j is returning a receipt of
delivery to i.

• audit record

Aij = signi(encW(signi(Mij))

This message generates an audit record which, for confi-
dentiality, is encrypted with the public key of the work-
flow. The resulting object is then signed again with i’s pri-
vate key as we will need a quick verification of the record
without the need of inspecting its contents. The full audit
trail of workflow W is AW = {A1,2, A2,3, ..., Aij , ...}
with indexes matching the graph path of the workflow.

• integrity proof
Iij = hash(Aij)

This message simply extracts digest of an audit record.

B. Threat Model

Our architecture takes into account the following security
requirements for our threat model:
• completeness, integrity and authenticity The audit evi-

dence AW generated as workflow W executes needs to
capture all inputs and outputs, in the sequence as they
were generated, with participants identities embedded in
the evidence.

• non-repudiation No participant should be able to dispute
recorded evidence.

• confidentiality The evidence should be confidential to a
certain agreed level; furthermore, it should be possible to
protect the graph (participants identities and associations)
if desired.

• availability No participant should be able to destroy
evidence, at any time after releasing.

• collusion detection No two or more participants should
not be able to collude and not be detected. Note that the
effort is in detection.

IV. ARCHITECTURES

Our approach to the problem is to store audit records, as
they are produced, in all nodes participating in the workflow.
This will assure the availability of the audit trail. In this section
we present our approaches to the problem.

A. Overview

The degree of availability of the audit trail is bound to the
size of the subset of participants which are allowed to inspect
the evidence as all evidence is, primarily, stored in encrypted
form. The key technique is to use a workflow-wide secret
key skW which is split in K ≤ N shares. The shares are
then distributed to all participants and it requires K out of N
to open the full audit trail. All audit records are encrypted
with pkW . A dispute can be resolved if K nodes decide
independently to open the evidence and verify the claims. K
is dependent on the case but it should be at K > 2 as we will
not be able to detect collusion in case 2 adjacent nodes are
malicious.

As the audit records are generated, they are verified by
both nodes involved. If B responds to a request from A,

both A and B will verify the records of each other; if a
discrepancy exists, the detecting node will alert the whole
workflow. If no discrepancy exists, the audit record is sent
to the Coordination Point, CP . The CP then displays the
individual record, encrypted with pkW to all participants who
keep a copy of the encrypted audit records.

To note that the CP only exists to manage the distribution
of the individual records. As a malicious actor, its effects
are limited to availability as it could help distribute corrupted
evidence. The CP is challenged by every participant to verify
that it is not acting maliciously. Details about our approach to
challenge the CP are discussed in section IV-E. In this sense,
we propose two alternative architectures:
• using a coordination point. If the availability of the

CP can be trusted for the only purpose of displaying
encrypted audit records during the workflow, using a CP
makes our architecture simple to adopt.

• using smart-contracts with a public blockchain. If full
assurances are required, we propose to replace the CP
with a public blockchain which, being not managed
centrally but behaving as if it were, cleanly provides
a trust anchor. It brings its own security challenges,
however, which we will discuss later.

After the workflow terminates, and there is a dispute, K
out of the N nodes can decide to join their threshold keys and
recover the complete audit trail. To note that all N nodes have
a copy of the audit trail albeit encrypted with pkW to protect
confidentiality.

B. Key Management

Our scheme involves several keys which need to be securely
generated, distributed and locally validated. This preparatory
step is common to both of our approaches. There are two sets
of keys involved.

1) Node Keys: We assume that identity credentials pki and
ski for every participant are managed before the workflow
starts– for example, with conventional certificates that can
be verified. It should be noted that storing public keys for
a particular workflow can potentially disclose the number
and identity of participants. We assume this is an acceptable
relaxation and leave this case for future work.

2) Workflow Keys: We need to generate and distribute, for
each workflowW , the keys pkW and skW . The threshold keys
kj are derived from skW : we use a verifiable secret sharing
mechanism [21]–[23] to create N shares where K are enough
to reconstruct the secret. Workflow key distribution can either
be done through direct messages to each participant over a
secure channel or by encrypting each share of the key with
the corresponding participant’s private key and posting them
to CP .

We adopt a pragmatic approach and task the participant with
the least incentive to corrupt the audit trail to generate and
distribute the key shares. This is generally the first or last
participant depending on the workflow: a first participant in a
workflow can be a gift shop salesman required to keep track
of orders for its customers; and the last participant in another

workflow can be a supermarket manager that needs to keep
track of which food, ordered by customers, are from.

Furthermore, using a publicly verifiable secret sharing
(PVSS) scheme enables any participant to verify that other
participants have received authentic shares of the same secret
without revealing this secret. PVSS was first proposed by
Stadler [23] and used by Schoenmakers [24] for an electronic
voting application. D’Souza et al [25] paper later adopted
PVSS and explicitly required the secret shared among par-
ticipants to be a legitimate private key equivalent for a public
key in their approach to support key recovery. In our context,
this enables any entity knowing the public keys of workflow
participants as well as equivalent public key pkW of the shared
secret ki to verify that the key generator was honest with
the key distribution, and that the secret key skW can be
reconstructed with key shares.

C. Approach Using a Coordination Point

This approach uses a centralised Coordination Point (CP)
as shown in Figure 4 with the corresponding signalling di-
agram in Figure 5. The CP is a special node which can
be hosted by any participants or a third party. It is only
responsible for distributing the audit records Aij across all
participants. It does not permanently store any data.

Figure 4: Architectural approach using a coordination
point [20]

We do not strictly need a CP in the topology of the graph
because of confidentiality. In that case, nodes can distribute
individual audit records (and keys) between themselves. The
trade-off incurs in added coordination complexity which may
not acceptable.

Node i sends message Pij to node j. Node j extracts the
original output Mij and is now able to continue the workflow.
Node j further performs the following verification. First, it
verifies that the signature in Pij is valid. Second, it uses its
private key to extract signi(Mij) which it keeps as a receipt.
As for i, it gets receipt Rij from j. In parallel, i sends to CP
the audit record Aij .

Furthermore, node j needs to confirm that i sent the
expected audit record Aij to CP in order to prevent the
corruption of the audit trail. Node j extracts signi(Mij) and

Figure 5: Signalling diagram using a coordination point [20]

encrypts it with pkW . The result is compared to what was
stored in CP by i. Should there be any discrepancy between
this record and what i stored in CP , the workflow is stopped.
This is the gist of our approach for Audit Records Verification.
The precise way of notifying all participants of a halted
workflow is out of scope; solutions could pass by using a
messaging protocol based on gossip (peer-to-peer propagation
of direct messages)

An important aspect of our proposal is that all participants
verify and keep the whole of the audit trail. Each participant
will independently verify that the audit records they peri-
odically pull from CP are validly signed by the node that
generated it. This is done by verifying that the records on
the CP are correctly signed. This is important in order to
prevent the destruction or corruption of the audit trail by either
a node or by CP . To note that a potential attack is that CP
will selectively distribute incorrect audit records depending on
which node is requesting. To mitigate that, nodes verify that
they all received the same copy of the encrypted records by
displaying a digest of the records and their signature over the
digest on the CP .

Overall, all participants will have the full audit trail when
the workflow terminates. No participant will be able to inspect
the actual audit trail since it is encrypted with the workflow
key pkW . However, each participant has a share of the key.
Upon open dispute, a subset K of all participants can decide
to gather their key shares and open the whole audit trail and
resolve the dispute.

D. Approach Using a Public Blockchain

The previous approach uses a central Coordination Point.
We envision that, in most practical cases, simplicity of use out-
weights the weaknesses it introduces. In this section we show
how a public blockchain able to run smart-contracts can fully
replace any central point while reducing the surface attack
area. The trade-off is, essentially, complexity of integration.
Figure 6 depicts this approach.

We did not consider any private blockchain for two main
reasons. Firstly, projects have been abandoning the idea of
private blockchains and have been moved to public blockchain
such as Ethereum, Cardano or Algorand. Second, a private

Figure 6: Architectural approach using public blockchain

blockchain cannot deliver the same security assurances as a
public blockchain due to its very high scale. For example,
where it is virtually impossible to modify a block of Bitcoin
or Ethereum, and even less modify without detection, a private
blockchain, necessarily much smaller, suffers from governance
and administration weaknesses and, should access control not
be perfect, modification without detection is much easier. We
have used Ethereum and adopted the consensus mechanism
used by the technology.

The blockchain fully replaces CP . Since we use a public
blockchain, with auditable and open code, any participant can
independently verify the code meets the intended require-
ments. Public keys of all nodes need to be stored in the
blockchain and are always available. Audit records hashes can
be verified at any time, etc. Note that reading a hash of the
public records does not disclose the identity of the participant,
albeit the number of participants needs attention (which we
will presume acceptable). This depends on the smart-contract
code which, to reiterate, is publicly available for inspection.

The anonymity of the individuals participating in the work-
flow is not jeopardised by the use of a public blockchain. The
identity of the individual approving or requesting a transaction
at the level of each participant (node) is part of the encrypted
payload in the audit record. The nodes in Figure 2 represent
the platform (a mobile app or website) that the individuals are
using. The signature of the service provider only shows on the
public ledger, and this is a reasonable level of privacy given
that the list service providers is public in most use cases.

The blockchain can also act as a trusted messaging channel
such as halting a workflow and notifying all nodes. To note that
one still needs to store audit records somewhere outside the
blockchain. Participant can choose this location for the record
storage. The hash of the records (on the blockchain) will
assure nodes of authenticity and integrity. The audit records
are immediately accessed by each node and locally stored. If
a particular node attempts to retrieve an audit record but fails
to find the correct record or does not gets a response from
the data storage that is chosen by nodes to store the encrypted
audit record, it can broadcast an alert on the blockchain to
warn other workflow nodes about this failure.

Our protocol using a public blockchain, which consists of
four phases: initialisation, data exchange, records verification
and distribution. See message diagram in Figure 7.

In the initialisation phase, there involves key generation
and nodes registration. We need to create a key pair for the
wide workflow, pkW and skW . Similarly to the previous case,

Figure 7: Signalling diagram using public blockchain

we still need a trust anchor (may the first node of workflow)
to bootstrap the process. We once more delegate the choice
of the entity who coordinates the distribution to the specific
use-case, such as to the participant with least incentives to
be malicious. Whereas pkW is stored in the blockchain for
public access, the ki split shares of skW are distributed to
each participant. We further assume that each participant has a
cryptographic key pair previously generated and all have stored
and made available their public keys in the blockchain. When
a participant wants to get a public key from the blockchain,
a smart contract is called in order to find the respective key.
In the first phase, all involved workflow nodes are required to
register in the blockchain network before any act start. Nodes
can push and pull records to/from the blockchain.

During the data exchange phase, the actual execution of the
workflow happens and interactions between each participant
are similar as in the CP approach. Nodes will cycle through
a records distribution and verification phase. The essential
difference is that message Iij (audit record integrity), along
with metadata and a location to the actual audit record, is
pushed and stored in the blockchain. The messages are never
stored on the public Blockchain; only the integrity proofs
Iij of the audit records are stored and verified through the
smart contracts. Once published, any participant can verify
the records and obtain the actual audit record from a public
location. Algorithm 1 shows the pseudo code of the smart-
contract for record verification; the algorithm shows that the
smart-contract only performs a string comparison operation,
without any additional cryptographic operations to the ones
dictated by the concensus mechanism of the blockchain, to
verify that the integrity proof (the digest value of an audit
record) has been published on the blockchain.

E. Security Analysis

In this section we discuss our approach by revisiting our key
requirements: completeness, integrity and authenticity, non-
repudiation, confidentiality, availability, and collusion detec-
tion.

Algorithm 1 Smart Contract on Record Verification
Input: HashAudit Rec[]
. hash value of an audit record reported by a participant
Integrity Rec[]
. integrity proofs reporting by the recipient
Output: Boolean indicating if a record is stored or verified
successfully

1: if HashAudit Rec[] !=∅ then
2: func(saveHash) . save Hash into blockchain
3: return True
4: end if
5: Blockchain.push(Integrity Rec[])

. upload an integrity proof to blockchain for comparison
6: if Blockchain.push(Integrity Rec[]) !=∅ then
7: func(getHash)
8: func(compareHash)
9: for each Audit Rec[] ∈Integrity Rec[] do

10: while Audit Rec[hashId]==Integ Rec[hashId]
do

11: return True
12: end while
13: end for
14: else
15: return False
16: end if

1) Completeness, Integrity, Authenticity and Non-
Repudiation: We consider a dishonest participant who
attempts to tamper with data in the existing audit records
or disseminate an incorrect audit record. Our approach can
detect these situations since each individual audit record
(Aij) is verified immediately after generation while each
node keeps receipts Rij of locally exchanged (between pairs
of nodes) audit records. Unless two adjacent nodes collude
(as discussed below), and assuming the key distribution (as
below) is secure, this assures non-repudiation. All participants
also perform the Audit Record Verification mechanism after
the exchanged data is received. In this sense, there are a few
points where data corruption or concealment is checked.

In the CP case, the central element can potentially modify
audit records. It can also provide invalid records, perhaps even
selectively depending on which participant is requesting. This
is prevented since all records need to be signed and verified
by all nodes. For the blockchain-based case, the code of the
smart-contracts is publicly auditable while not disclosing any
important information about the workflow itself.

2) Availability and Confidentiality: The full audit trail, if
desired, can be kept by all participants while not jeopardizing
the confidentiality of any participation in the workflow given
that the records are encrypted with the workflow key which no
participant holds. The protected audit trail can be opened in
case of a dispute and a pre-defined (configurable) K number
of participants agree. Availability of the audit trail is, in the
limit, guaranteed since (up to) all nodes keep the whole audit
trail. To note that we use a verifiable shared scheme scheme

in order to prevent distribution of invalid key shares.

3) Collusion-detection: Our scheme, and we informally ar-
gue none other, cannot prevent collusion between two adjacent
nodes. Consider the following workflow: A→ B → C → D.
Nodes B and C are free to decide to forge, modify or entirely
destroy its internal audit records since no-one else can verify
or attest integrity. There will, however, be proof of collusion.

It should be noted that this attack can be made much less
likely, for small workflows (say, up to 10 participants), if every
node is to link the previous audit records in their own record.
At least 4 nodes would have to collude. However, the generated
audit records need to be open for verification and inspection
among the 4. This scheme could be expanded to any number
of nodes and, depending on the topology, quickly expand to
the whole graph. In this case, no CP would be needed as the
trail of records could be made to propagate across the entire
topology. We leave this approach out for simplicity.

Collusion involving the CP could be far more harmful
but, as explained before, the CP only serves to coordinate
the distribution of the audit trails and has special verification
mechanisms associated.

4) Key Management: Participants are assumed to protect
their credentials which are assumed to use well-known means
such as those in Public Key Cryptography eXchange. As such,
we leave this particular aspect out of scope of our paper.

Following the Public Verifiable Secret Sharing Scheme for
the key distribution of the shares ki of skW , participants can
verify that the key generation and distribution is correct such
that each of them has a correct share of the same secret
key. This still raises the problem that skW is exposed by
the participating node that generates the key. This is common
to both the CP and blockchain cases. To minimise the risk
of breaching the confidentiality of audit records, we assign
the key generation role to the participants that have the least
incentive to cheat which is, in the case, a participant that does
not hold the audit trail yet has interest in it succeeding –
such as the user requesting the workflow. We, nevertheless,
acknowledge this is an open problem is, seemingly, only
resolved by either a collaborative generation of the shares
could resolve or case-based design.

5) Complexity: A CP approach is attractive given its
simplicity. The CP is little more than a simple file server with
some verification logic. It however requires a high availability
of a CP . The blockchain approach seems to elegantly resolve
those problems but at the cost of integration of complexity
which, in itself, provides possibility for implementation vul-
nerabilities both at the code of the smart contracts and also at
a system level. For example, the audit records need to be sent
securely (in some form) to be stored out of the blockchain.
Considering this is specific to an actual implementation, we
do not discuss it further.

V. EVALUATION

In this section, we present experimental evaluation results1

of our implementation of the two described approaches2, using
a Coordination Point and using Smart Contracts running on a
public blockchain.

The workflow topologies were generated using BRITE3,
a network topology generator. Even though BRITE was de-
signed to generate Internet topologies, we hold the expec-
tation that BRITE is sufficiently representative of real-world
workflows for a small number of nodes (say, up to 20). We
configured BRITE to generate a connectivity graph based on
Barabasi-Albert algorithm with two key parameters:
• the number of nodes N , where we use N = {10, 15, 20}.
• the connectivity degree m which is, on average, the

number of nodes each node connects to. For example,
for m = 1 the topology is linear and for m = N the
topology was a full mesh with all nodes connected to all
nodes. We used m = {2, 5, 7, 10}

For every pair of parameters (N,m), we generated 5 differ-
ent random topologies in order to generate enough randomness
and extract statistical parameters such as averages. In total, we
had about 100 different topologies.

Above the working nodes topology, we added either a
special server (the Coordination Point, CP) or an interface
to the Ethereum blockchain.

In terms of the software implementation, we should stress
that this is experimental code which is not designed for perfor-
mance but only to demonstrate and validate our approaches.
For this demonstration, we used OpenSSL genrsa function to
generate the key pairs for the participants and workflow; 2048
bit was selected as the size of each of the keys. We also used a
public implementation of Shamir Secret Sharing4 to generate
the shares of the workflow private key. At the level of the
workflow participants, we relied on Nimbus-JOSE library5 for
the cryptographic functions including the encryption of the
audit records, the generation and verification of the integrity
proofs. We further used common desktop hardware or low-
end, but modern, servers such as Intel Core i7 at 2.6 GHz
with 32GB RAM. As such, we are only interested in overall
behaviour and orders of magnitude. All source code is open
and available on request. Specifically,
• for the CP approach, we used Apache Tomcat application

servers which uses Java SE 8.
• for the blockchain approach, we combined an Apache

Tomcat application server for the workflow nodes and
then implemented an interface which called an Ethereum
smart-contract written in Solidity. We run our approach
in the local test environment of Ethereum.

To evaluate the performance of each implementation, we
record the response time for each transaction which includes

1Relevant Data: https://github.com/Jency/AudiWFlow.git
2https://github.com/antonionehme/AuditingWorkflows-Blockchain
3https://github.com/nsol-nmsu/brite-patch
4Shamir Secret Sharing Scheme: https://github.com/iancoleman/shamir/

blob/master/src/js/secrets.js
5Nimbus JOSE: https://connect2id.com/products/nimbus-jose-jwt

(a) N = 10

(b) N = 15

(c) N = 20

Figure 8: Evaluation of response time using a CP

the message propagation time, the generation and reporting
time of audit record, and the time taken by the verification
mechanisms, often using cryptography.

A. Using a Coordination Point

We evaluate our CP implementation with different size for
the individual record. For a fair and consistent evaluation, we
separated the results according to the number of participants
N ; this gives comparable computational resource allocation
for each iteration of the experiment after dedicating the re-
sources required to bootstrap participants and the audit server.

Figure 8 shows the average response time. The key pa-
rameter we evaluate is the response time (vertical axis). We
used three sizes for the individual audit records each node
generates: 3KB, 6KB and 10KB.

https://github.com/Jency/AudiWFlow.git
https://github.com/antonionehme/AuditingWorkflows-Blockchain
https://github.com/iancoleman/shamir/blob/master/src/js/secrets.js
https://github.com/iancoleman/shamir/blob/master/src/js/secrets.js
https://connect2id.com/products/nimbus-jose-jwt

For small topologies up to N = 20, we obtained an
approximate linear relation. This is likely to be shaped like
a logarithmic curve if we allowed the size of the topology to
scale to different orders of magnitude.

(a) N = 10

(b) N = 15

(c) N = 20

Figure 9: Evaluation of size of audit trail using a CP

Figure 9 shows the size of the final audit trail. We evaluated
the size of the audit trail (vertical axis) against three sizes of
the individual audit record (fixed for the set of runs). It follows
the generic pattern and the size of the total audit trail increases
sub-linearly with increasing of size of the individual record at
the N = 20. This was expected since the emulated workflows
run increasingly in parallel with increasing m which reduces
the size of pair-wise messages.

Figure 10 shows the impact of the connectivity degree m.
We evaluated the size of individual records (horizontal axis)
and size of final audit trail (vertical axis) when we allowed the
increasing of the connectivity degree m of each node connects:
2, 3, 5, 7. If the topology is larger, the size of final audit trail

also increase, as expected, but, once again, we see a sub-linear
relation.

(a) N = 10

(b) N = 15

(c) N = 20

Figure 10: Evaluation of size of audit trail and individual
record using a coordination point

In absolute terms, we note that the delay of our approach
is on the order of seconds. If one considers that (1) each node
will have to perform some kind of task which is likely to last
more than a few seconds, and (2) that our code is likely to
not be optimised, these results suggest our scheme can support
fully automated workflows in real-time.

B. Using a Public Blockchain

To reduce the time it takes to mine a block, we set up
the variable of difficulty to a low value. We evaluated and
discussed the processing time and gas cost, and compared the
performance of implementations by CP and Blockchain.

1) Processing Time: Figure 11 shows the average response
time. The key parameter involved is the numbers of records
(vertical axis) which are generated and shared in each iteration.
We chosen that each node generates 10KB for the individual
audit record. With topology N = 20, we found a stable
relationship between the average response time and numbers of
records at the different graph connectivity. The time to process
a set of records is essentially dominated by the mining delay.

Figure 11: Evaluation using a public blockchain. N = 20
nodes, size of audit record is 10KB

2) Cost: Figure 12 shows the gas cost for different sizes
of records. We took the gas spent for each transaction and
record size and calculated averages for topologies of N=20.
As expected, we see a linear dependency with the record
size. This is because we only store in the blockchain the
minimum information which is digests of the records. Since
each node will generate 1 record, the gas used will be
G ∝ N · hash(M) + galg + gsetup, where galg is the gas
spent to execute the storage procedure (fixed and independent
of the topology), and gsetup is any initial, one-time, setup of
the smart-contract. As such, and using the O-notation, the the
costs will be C = O(hash(M) ·N ·Cgas. Cgas) is the actual
monetary cost per unit of gas. This is dependent on the actual
platform (such as Ethereum) and on market conditions.

A remark about Ethereum. We selected this platform purely
on the basis of a proof-of-concept. Even though it is the most
popular currently, we do not set any expectations or make any
recommendations as to which platform to use. In other words,
any blockchain able to store a value (the hash of the records),
is fit for use. We do make the assumption that the cost structure
will be similar in any smart-contract platform even if current
alternatives (such as Algorand or EOS operate differently).

Furthermore, we note that the gas as measured in our
implementation may not be accurate as we used the source-
code of Ethereum as of early 2021. Ethereum changed how
gas is calculated and spent recently (in the London upgrade).
The structure of costs, however, did not change and still is
C = O(hash(M) · N · Cgas). A similar structure of costs
will exist when Ethereum, and perhaps most other platforms,
change to Proof-of-Stake instead of Proof-of-Work.

3) Performance Comparison: In Figure 13 we compare
the performance, in time to store the complete audit trail, of

Figure 12: Average processing gas cost of each iteration with
size of record. N = 20 nodes

our two implementations. We used N = 20 and record size
of 10KB. For Figure 13a, the relationship of response time
and numbers of records in the implementation of coordina-
tion point and blockchain behave significantly different. The
comparison of relationship between average response time and
specified numbers of records in Figure 13b is a similar result
as Figure 13a. When using a coordination point, the response
time is essentially linear as audit records are generated. For the
blockchain implementation, we see jumps of about 15 seconds
which corresponds to the mining period.

VI. CONCLUSION AND FUTURE WORK

We presented an architecture that tackles the problem of
auditing workflows satisfying accountability, non-repudiation,
confidentiality of records and graph, availability and collusion
detection. We proposed and evaluated two implementations
based on either a coordination point or a blockchain. Whereas
the CP approach is simpler and could meet real-world re-
quirements of most cases, we showed that using a central
point target the minimal trust requirements and using a public
blockchain makes our approach more robust at the expense
of processing delay. Although AudiWFlow is designed with
confidentiality, integrity and availability requirements in mind,
its tight security measures can be relaxed for applications
that do not require, for example, strict confidentiality re-
quirements between participants. Different implementation of
our approach can be adopted in different cases; offering
both implementations enable the adoption of the approach
for organisations that have legal, political, or corporate cul-
ture restrictions on the technology that can be used. While
the blockchain-based implementation of our approach offers
a stable processing time and permanently stored integrity
proofs of the audit records on the public blockchain, the
implementation with the central coordination point requires
less processing time (limited nodes involved) subject to the
availability of a central server. Our discussion and evaluation
of each implementation enable adopters to make an informed
decision on which implementation is a better fit for their
business context.

There remains a number of questions for future work. Two
of them are the following. First, we will strengthen our ap-

(a) Processing time with numbers of records

(b) Average processing time of each iteration with numbers of
records

Figure 13: Comparison evaluation using CP and blockchain in
response time with numbers of records. N = 20 nodes, record
size = 10KB.

proach to satisfy identity confidentiality: at present our scheme
relaxes this requirement and the identity of nodes needs to be
known beforehand – for example, to distribute cryptographic
material such as public keys. Second, our approach requires a
starting point that needs to be trusted for some tasks such as
generating the threshold keys. Solving this particular problem
will necessarily raise the complexity by, for example, making
use of multiparty secure computation techniques. Finally, the
overall architecture of an approach using blockchain needs
elaboration.

REFERENCES

[1] Feng Tian, “A supply chain traceability system for food safety based
on haccp, blockchain amp; internet of things,” in 2017 International
Conference on Service Systems and Service Management, June 2017,
pp. 1–6.

[2] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling, “Untrusted business process monitoring and execution
using blockchain,” in Business Process Management. Cham: Springer,
2016, pp. 329–347.

[3] K. Hartmann and C. Steup, “On the security of international
data exchange services for e-governance systems,” Datenschutz und
Datensicherheit-DuD, vol. 39, no. 7, pp. 472–476, Jun 2015.

[4] I. Pappel, I. Pappel, J. Tepandi, and D. Draheim, “Systematic digital
signing in estonian e-government processes,” in Transactions on large-
scale data-and knowledge-centered systems XXXVI:Special Issue on

Data and Security Engineering. Berlin, Heidelberg: Springer, 2017,
pp. 31–51.

[5] Z. Guan, H. Lyu, H. Zheng, D. Li, and J. Liu, “Distributed audit system
of sdn controller based on blockchain,” in Smart Blockchain. Cham:
Springer International Publishing, 2019, pp. 21–31.

[6] S. Zawoad, A. K. Dutta, and R. Hasan, “Towards building forensics
enabled cloud through secure logging-as-a-service,” IEEE Transactions
on Dependable and Secure Computing, vol. 13, no. 2, pp. 148–162,
March 2016.

[7] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram, “Secure
logging as a service—delegating log management to the cloud,” IEEE
Systems Journal, vol. 7, no. 2, pp. 323–334, June 2013.

[8] J. R. Rajalakshmi, M. Rathinraj, and M. Braveen, “Anonymizing log
management process for secure logging in the cloud,” in 2014 Inter-
national Conference on Circuits, Power and Computing Technologies
[ICCPCT-2014], March 2014, pp. 1559–1564.

[9] D. Ma and G. Tsudik, “A new approach to secure logging,” in Data
and Applications Security XXII. Berlin, Heidelberg: Springer, 2008,
pp. 48–63.

[10] M. A. M. Ahsan, M. A. M. Ahsan, A. W. A. Wahab, M. Y. I. Idris,
S. Khan, E. Bachura, and K. R. Choo, “Class: Cloud log assuring
soundness and secrecy scheme for cloud forensics,” IEEE Transactions
on Sustainable Computing, pp. 1–1, 2018.

[11] D. A. Flores, “An authentication and auditing architecture for enhancing
security on egovernment services,” in 2014 First International Confer-
ence on eDemocracy eGovernment (ICEDEG), April 2014, pp. 73–76.

[12] C. Esposito, A. De Santis, G. Tortora, H. Chang, and K. R. Choo,
“Blockchain: A panacea for healthcare cloud-based data security and
privacy?” IEEE Cloud Computing, vol. 5, no. 1, pp. 31–37, Jan 2018.

[13] X. Zhou, V. Jesus, Y. Wang, and M. Josephs, “User-controlled, auditable,
cross-jurisdiction sharing of healthcare data mediated by a public
blockchain,” in 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE, 2020, pp. 87–96.

[14] J. Cucurull and J. Puiggalı́, “Distributed immutabilization of secure
logs,” in International Workshop on Security and Trust Management.
Cham: Springer, 2016, pp. 122–137.

[15] B. Putz, F. Menges, and G. Pernul, “A secure and auditable logging
infrastructure based on a permissioned blockchain,” Computers & Secu-
rity, vol. 87, p. 101602, 2019.

[16] Q. Lu and X. Xu, “Adaptable blockchain-based systems: A case study
for product traceability,” IEEE Software, vol. 34, no. 6, pp. 21–27,
November 2017.

[17] A. Ahmad, M. Saad, M. Bassiouni, and A. Mohaisen, “Towards
blockchain-driven, secure and transparent audit logs,” in Proceedings
of the 15th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services. New York, NY, USA:
ACM, 2018, pp. 443–448.

[18] N. Tapas, G. Merlino, F. Longo, and A. Puliafito, “Blockchain-based
publicly verifiable cloud storage,” in 2019 IEEE International Confer-
ence on Smart Computing (SMARTCOMP), June 2019, pp. 381–386.

[19] W. Pourmajidi and A. Miranskyy, “Logchain: Blockchain-assisted log
storage,” in 2018 IEEE 11th International Conference on Cloud Com-
puting (CLOUD), July 2018, pp. 978–982.

[20] A. Nehme, V. Jesus, K. Mahbub, and A. Abdallah, “Decentralised and
collaborative auditing of workflows,” in Trust, Privacy and Security in
Digital Business. Cham: Springer, 2019, pp. 129–144.

[21] E. F. Brickell, “Some ideal secret sharing schemes,” in Advances in
Cryptology — EUROCRYPT ’89. Berlin, Heidelberg: Springer, 1990,
pp. 468–475.

[22] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, Nov 1979.

[23] M. Stadler, “Publicly verifiable secret sharing,” in Advances in Cryp-
tology — EUROCRYPT ’96. Berlin, Heidelberg: Springer, 1996, pp.
190–199.

[24] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme
and its application to electronic voting,” in Advances in Cryptology —
CRYPTO’ 99, M. Wiener, Ed. Berlin, Heidelberg: Springer, 1999, pp.
148–164.

[25] R. D’Souza, D. Jao, I. Mironov, and O. Pandey, “Publicly verifiable
secret sharing for cloud-based key management,” in Progress in Cryp-
tology – INDOCRYPT 2011. Berlin, Heidelberg: Springer, 2011, pp.
290–309.

	Introduction
	Scenario
	Organisation of This Paper

	Related Work
	Secure Auditing and Logging System
	Distributed Ledgers in Auditing
	Contributions of This Paper

	Problem Statement
	notation
	Threat Model

	Architectures
	Overview
	Key Management
	Node Keys
	Workflow Keys

	Approach Using a Coordination Point
	Approach Using a Public Blockchain
	Security Analysis
	Completeness, Integrity, Authenticity and Non-Repudiation
	Availability and Confidentiality
	Collusion-detection
	Key Management
	Complexity

	Evaluation
	Using a Coordination Point
	Using a Public Blockchain
	Processing Time
	Cost
	Performance Comparison

	Conclusion and Future Work
	References

