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ABSTRACT

Many recent approaches to creative transformations of musical au-
dio have been motivated by the success of raw audio generation
models such as WaveNet, in which audio samples are modeled
by generative neural networks. This paper describes a genera-
tive audio synthesis model for multi-drum translation based on
a WaveNet denosing autoencoder architecture. The timbre of an
arbitrary source audio input is transformed to sound as if it were
played by various percussive instruments while preserving its rhyth-
mic structure. Two evaluations of the transformations are con-
ducted based on the capacity of the model to preserve the rhythmic
patterns of the input and the audio quality as it relates to timbre of
the target drum domain. The first evaluation measures the rhyth-
mic similarities between the source audio and the corresponding
drum translations, and the second provides a numerical analysis
of the quality of the synthesised audio. Additionally, a semi- and
fully-automatic audio effect has been proposed, in which the user
may assist the system by manually labelling source audio segments
or use a state-of-the-art automatic drum transcription system prior
to drum translation.

1. INTRODUCTION

The creative transformation addressed in this paper is generative
audio synthesis of percussive instruments, which involves map-
ping (or translation) of musical audio to drum sounds achieved
with artificial neural networks. Flexible digital audio effects that
utilise machine learning techniques would benefit musicians and
music producers by generating audio controllable by a target rhythm,
melody or style that may be used directly in the music production
process. Among such tools, autoregressive (AR) models for raw
audio generation such as WaveNet [1] have inspired several sys-
tems that utilise the power of generative neural networks for mu-
sical audio synthesis. Audio synthesis in these models is achieved
by learning an AR distribution that predicts the next audio sample
from the previous samples in its receptive field using a series of di-
lated convolutions. The majority of these systems have been devel-
oped to address pitched instruments [1, 2], while no such systems
have been focused on the generation of percussive instruments and
rhythmic aspects of such transformations.
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1.1. Background

In the field of digital audio effects, rhythmic and timbral transfor-
mations have initially been addressed through signal processing
architectures [3, 4, 5, 6]. At present there are only a handful of
systems that approach this type of transformation using artificial
neural networks in areas such as audio style transfer [7] and AR
generative audio synthesis [1, 8, 9].

WaveNet is a generative audio synthesis model that was devel-
oped for tasks related to speech synthesis [10, 11]. To date, a rela-
tively small number of systems have experimented with it for syn-
thesis of musical audio. Engel et al. [2] proposed a WaveNet au-
toencoder that learns codes that meaningfully represent the space
of musical instruments with the ability to model long temporal
dependencies. This work led to the NSynth system [2], a neural
synthesiser capable of generating new sound embeddings learned
from a large dataset of musical notes. Dieleman et al. [12] adapted
the WaveNet architecture for the unconditional generation of piano
music that exhibits stylistic consistency at longer timescales across
tens of seconds. In [13], the authors combined audio and symbolic
models and use a long short-term memory recurrent neural net-
work (RNN) to learn melodic structures of different styles of mu-
sic, which are used as conditioning input to a WaveNet-based in-
strument melody generator. Other AR models include RNN-based
architectures such as: VRNN [14], SampleRNN [15] and Wav-
eRNN [16]. Alternatively, the WaveNet architecture has been used
in the context of musical timbre transfer. Huang et al. [17] adapted
an image-based style transfer method [18] for translation of an im-
age from one domain to another using a conditional WaveNet syn-
thesiser within the TimbreTron model. Kim et al. [8] proposed a
music synthesis system with timbre control that learns to generate
spectrograms from symbolic music representations and instrument
embeddings, and generates raw audio with a WaveNet vocoder.

Mor et al. [9, 19] introduced a novel system for timbre and
style translations that combined the WaveNet autoencoder with
unsupervised adversarial training. This architecture differed from
other generative audio synthesis models in that it could convert the
timbre of one instrument to that of another while preserving the
melody and rhythm of the input. The WaveNet autoencoder archi-
tecture of Mor et al. [19] has been adopted, with key differences
made in training strategies and the use of a simplified architecture,
specialised for rhythmic and timbral transformations of percussion
instruments.

1.2. Motivation

In this paper, a system that adapts the music translation approach
for timbre transfer is proposed, with the aim of encoding the rhyth-
mic structure of an arbitrary audio input as a combination of dif-
ferent percussion instruments from the common drum kit. In this
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Figure 1: Drum translation overview in three stages. Source audio is transformed to output through a single shared autoencoder of domain
p specialised on domain decoders Dp, where p represents: kick (k), snare (s), kick and snare (ks), hi-hat (h), kick, snare and hi-hat (ksh),
kick and hi-hat (kh) or snare and hi-hat (sh). Colours illustrate pathways between source and corresponding Dp trained to synthesise
the target instrument (e.g., orange decoder Ds synthesises snare drums). Solid lines represent information flow during synthesis and
dashed-dotted line represents information flow to a domain confusion network present only during training.

transformation, the timbre of an input is transformed such that it
sounds as if it were played on a different drum. To that end, a
denoising WaveNet autoencoder architecture is modified and spe-
cialised for drum translation by utilising an unsupervised training
strategy of a multi-domain latent space that is trained end-to-end
on combinations of drum samples. In this architecture, a single en-
coder of [19] encodes a shared latent space for multiple decoders
to use during training and audio generation. The size of the ar-
chitecture is adjusted to learn short-term sounds of drum samples,
while maintaining encodings for different drum instruments. The
rhythmic accuracy of this model has been explored as well as a va-
riety of creative percussive transformations in a simplified task of
drum-to-drum translation akin to the task of redrumming or drum
replacement [20]. The aims of the system are to facilitate the cre-
ation of new drum arrangements from arbitrary audio inputs pro-
vided by untrained musicians and to uncover the musical relation-
ships between audio recordings that might otherwise have never
been heard.

The remainder of this paper is structured as follows: Section
2 outlines our proposed method for drum translation. Section 3
presents experiments undertaken to assess the rhythmic accuracy
and the quality of the translated audio. Section 4 provides experi-
ment results with a discussion on audio degradation caused by the
system for different drum domains. Conclusions and suggestions
for future work are presented in Section 5.

2. METHOD

This approach to drum translation concerns the task of synthesis-
ing source audio to corresponding drum sounds. The system is
inspired by architecture of [19], in which music signals can be
translated across instruments and styles. This paper contributes to
this kind of transformation by simplifying the translation network
and proposing a new training strategy specialised towards percus-
sion instruments.

Figure 1 provides an overview of the proposed drum trans-
lation system, which is comprised of three stages: (1) Feature
representation; (2) WaveNet autoencoder; and (3) Generation. At
the core of the system is a WaveNet autoencoder network with a
shared encoder and a disentangled latent space, distributed across
each drum domain decoder Dp, where p represents a percussion
domain for P total number of domains. In total, there are seven
percussion domains (P = 7) defined as kick (k), snare (s), hi-
hat (h) instruments as well as their combinations such as, kick and
hi-hat (kh). During training, multiple source-target p pathways
(one per drum domain illustrated by different colours in Figure 1)
are encoded by a domain-independent encoder E. The input to
the neural network is an audio segment Xp of length T samples
(T = 6000) representing a waveform of one of the seven drum
domains. Each segment is distorted by random pitch modulation
to prevent the network from memorising the input signal and pro-
vide a semantic encoding.

To improve the generalisability of a single encoder during train-
ing and to increase the size of the training data, a pitch augmen-
tation approach of [19] is implemented. In popular music pro-
duction, pitch shifting of individual drum samples is a common
processing technique that is used either on all drums or on a sub-
set of drum samples that are layered underneath other sounds to
create richer timbres. Instead of augmenting only parts of the in-
put data as in [19], pitch is modulated across the whole length of
each audio segmentXp by a random value between±3 semi-tones
with LibROSA [21]. The final representation of each augmented
percussion segment used for training is Xp = {xp,1, ..., xp,T }.

The input audio goes through the Wavenet encoder E, a fully
convolutional network, and outputs latent space Z that is down-
sampled with 8-bit µ-law encoding [1]. The latent space is then
used to condition a domain confusion network [22] responsible
for providing an adversarial signal to the encoder during training.
The latent signal is then temporally upsampled to the original au-
dio rate and is used to condition a WaveNet decoder Dp. Each
decoder uses a softmax activation to output the probability of the
next time step. Once training is finished the embeddings of all
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drum domains in the shared latent space can be used to transform
source audio from any arbitrary audio domain.

2.1. WaveNet Autoencoder

A similar dilated convolutional WaveNet encoder architecture as
[2] is adopted and a WaveNet decoder from [19] to model percus-
sion sounds in the time domain. Dilated convolutions are convolu-
tions with holes that greatly increase the receptive field while sig-
nificantly reducing the model parameters and computational cost.
In addition to dilated convolutions, WaveNet incorporates a resid-
ual learning framework [23] that reduces training time and avoids
the vanishing gradient problem linked with the training of very
deep neural networks.

The shared encoder E has 18 layers with two blocks of nine
residual-layers [23] and a maximum dilation of 512 samples. As in
[19], a residual-layer structure with a ReLU non-linearity is used,
a non-causal dilated convolution with an increasing kernel size, a
second ReLU, and a 1x1 convolution (i.e., a time-distributed fully
connected layer) followed by a residual summation of the activa-
tions before the first ReLU. Unless specified otherwise, 64 chan-
nels are used in all hidden layers of the autoencoder architecture.
After two blocks, the encoding goes through a 1x1 layer and an
average pooling with a kernel size of υ samples (υ = 400).

The WaveNet domain decoder Dp is conditioned with a tem-
porally upsampled version of the latent encoding Zup obtained
with nearest neighbour interpolation. The conditioning signal adds
parameters to the probability distribution so that it depends on
variables that describe the audio to be generated instead of only
using the previously generated samples. Without conditioners,
WaveNet has been shown to mix sequences of speech by repeated
phoneme shifting between voices of all speakers used in training
of the model. As in [19], the conditioning goes through a differ-
ent 1x1 layer for each decoder Dp to ensure that the latent space
is domain independent. This reduces source-target pathway mem-
orisation, which is also aided by pitch augmentation. To ensure
that only previous samples are used in the generation of the new
ones, decoders Dp use dilated causal convolutions together with
additional non-linear operations to enable them to learn input au-
dio representations that cannot be captured with just linear opera-
tions. Each Dp has two blocks of nine residual-layers, where each
layer contains a causal dilated convolution with an increasing ker-
nel size, a gated hyperbolic tangent activation [1] (the main source
of non-linearity), a 1x1 convolution followed by the residual sum-
mation of the layer input, and a 1x1 convolution layer for skip
connections. Encoding Zup is used to condition each residual-
layer during training. The skip connections are summed with a
ReLU non-linearity activation and passed through a 1x1 convolu-
tion layer before a softmax activation layer.

2.2. Domain Confusion Network

In order to introduce an adversarial signal to the autoencoder and
ensure that the encoding is not domain-specific, a domain confu-
sion network C is implemented following [19]. The network pre-
dicts the percussion domain label of the input data based on the
latent vectors Z. It uses a single gradient reversal layer defined
in [22] and three 1D-convolution layers. The gradient reversal
layer (GRL) reverses the gradient by multiplying it with a negative
scalar λ (λ = 0.01). The GRL ensures that the feature distribu-
tions over the P drum domains are made similar (i.e., as difficult as

possible to recognise for the domain classifier C), thus resulting in
the domain-independent features. The three 1D-convolutional lay-
ers all include ELU non-linearities [24] with 128 channels in all
hidden layers. After three layers the output is passed through a
tanh and a 1x1 convolution layer to project the vectors to P total
number of domains.

2.3. µ-law Quantisation

WaveNet predicts a non-normalised probability distribution from
the residual-layers and transforms it into a proper probability dis-
tribution by using a softmax function. The authors of the original
WaveNet [1] show that softmax distribution tends to be more flexi-
ble than other mixture models and can more easily model arbitrary
distributions as it makes no assumptions about their shape.

All audio files processed by the model use a sampling rate of
22.05 kHz and are stored as 16-bit integers. To model all possible
values per time step, a softmax layer would need to output 216

probabilities. To moderate this high bit-depth resolution of the
input audio, a µ-law algorithm [25] is implemented and quantises
the data to 28 quantisation levels:

f(xp) = sign(xp) ∗
ln(1 + µ|xp|)
ln(1 + µ)

, (1)

where µ = 255 and −1 < xp < 1. This quantises the high reso-
lution input to 256 possible values causing a loss in audio quality
[1], however it makes the model feasible to train.

2.4. Model Details

Two losses are minimised during training with regards to an input
sample xp at time step t from augmented segmentXp: (1) domain
confusion loss Ldc,

Ldc =
∑
p

∑
xp

`ce(C(E(xp)), p), (2)

which applies cross entropy loss `ce to each element of the output
Z and the corresponding percussion label p, and (2) autoencoder
loss Lac,

Lac =
∑
p

∑
xp

`ce(Dp(E(xp)), xp). (3)

The decoder Dp is an AR model conditioned on the output of the
shared encoder E. Final loss L is defined as:

L = Lac − λLdc, (4)

where λ is a scaling factor for Ldc described in Section 2.2.
An Adam optimiser with the initial learning rate of 0.001, and

a decay factor of 0.98 is used. The model is trained for 10 epochs
and 50,000 iterations in total, where each iteration takes a random
mini-batch of 8 randomly pitch shifted Xp segments. All weights
in the network are initialised using Xavier initialisation [26].

The system consists of a naïve WaveNet architecture [27],
where O(2L) is the overall computation time for a single output
withL total number of layers of the WaveNet autoencoder outlined
in Section 2.1. The system is implemented using the Tensorflow
Python library1 and was trained on an NVIDIA Tesla M40 com-
puting processor.

1https://www.tensorflow.org/
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2.5. Generation

During the transformation of an unaugmented audio sample y from
any source domain, the autoencoder of domain p with its corre-
sponding Dp is used to output the new sample ŷ through:

ŷ = Dp(E(y)). (5)

3. EXPERIMENTS

Two individual experiments are conducted to evaluate the rhyth-
mic modification characteristics of the system as well as the trans-
lation quality through numerical analysis. In the first experiment
(Section 3.2), the rhythmic similarity between source and drum
translated audio pairs are evaluated by measuring the cosine sim-
ilarity between rhythmic envelopes. For the second experiment
(Section 3.3) a numerical analysis of audio degradation by [8] is
presented measuring the Pearson correlation between the trans-
lated and source audio.

3.1. Training Data

For all experiments, the system is trained using raw audio wave-
forms as input features. Kick, snare and hi-hat samples used in the
creation of different domains p for training are selected from a va-
riety of different sample libraries included in the Ableton Live 10
Suite software. Drum samples are reduced to mono 16-bit WAV
files and downsampled from 44.1 kHz to 22.05 kHz. To ensure
each domain is accurately represented by the model, silence is re-
moved from the start of each audio recording. The additional do-
mains, which represent when two or more percussion instruments
are played simultaneously (e.g., kick drum and hi-hat together),
are artificially synthesised by overlaying randomly selected per-
cussion samples.

In total, there are 1000 drum recordings for each domain re-
sulting in a total dataset size of 7000. The mean duration of the
drum recordings is 4862 samples (i.e., 0.22s). The resulting seg-
ments are normalised and zero-padded to a constant length T . Au-
dio samples longer than T are trimmed, with a linear fade applied
to the last 1000 samples. To mitigate the low resolution at ranges
near±1 that results from the µ-law encoding stage, the amplitudes
of all audio segments are randomly scaled between 0.5 and 0.6.

3.2. Experiment 1: Rhythmic Similarity

The purpose of the first experiment is to evaluate the capacity of
the proposed system for preservation of rhythmic patterns during
transformations. A variety of different drum loops are used as the
source for this experiment. The events in each drum loop are man-
ually labelled, then translated into an output drum loop where do-
mains correspond to the source. The cosine similarity is measured
between the rhythmic envelopes of source and output transforma-
tion pairs.

In order to extract the rhythmic envelope R from each file,
the short-time Fourier transform of each audio file is computed us-
ing an n-length Hanning window (n = 2048) with a hop size of
n
4

. The standard spectral difference envelopes are then calculated
as the sum of the first-order difference between each spectrogram
(e.g., [28]). The resulting envelopes are then normalised between
0 and 1. Following the approach described in [7], the cosine sim-
ilarity Φ between rhythmic envelopes of inputs and their transfor-
mations is calculated as follows:

Φα,β =
Rα ·Rβ
‖Rα‖‖Rβ‖

, (6)

where α and β represent source input and drum translated output
respectively.

This experiment is conducted using 20 drum loops selected
from the Apple Logic Pro sample library, resulting in 20 trans-
formations to be evaluated. The drum loops are chosen to reflect
a variety of different drum patterns and styles, with multiple do-
mains reflected in each loop. The drum loops have a mean duration
of 3.5s and tempo ranges from 100 beats per minute (BPM) to 170
BPM. All loops are in the mono WAV format and are resampled to
22.05 kHz with 16-bit resolution.

3.3. Experiment 2: Translation Quality

In the second experiment, the timbral differences linked to the
µ-law quantisation and the limited WaveNet model capacity are
analysed. As an objective measure of audio quality, following
[8], the Pearson correlations between the source and the drum
translated audio are plotted. The correlations are visualised over
a logarithmically scaled range of frequencies between 32–10548
Hz and calculated using 101-bin log-magnitude constant-Q trans-
forms (CQT) with 12 bins per octave starting from C1 (≈32.70Hz)
and hop size of 512 using LibROSA [21]. For the purpose of this
experiment, seven audio tracks are created using drum samples
selected from the Logic Pro sample library. Each track contains
ten drum samples with different timbres from the corresponding
domains p (e.g., ten kick drum samples). All ten samples are
translated into their corresponding domains (e.g., ten kick sam-
ples transformed into ten kick samples), resulting in a total of 70
separate drum translations.

4. RESULTS AND DISCUSSION

4.1. Rhythmic Similarity

The mean cosine similarity score across the 20 transformations in
the rhythmic similarity experiment is 0.75. This indicates that in
most cases, the proposed system is capable of preserving rhyth-
mic structure when translating from source to target domain. The
highest rhythmic similarity score is 0.96, which suggests that for
this transformation the majority of the target domains were suc-
cessfully translated resulting in a rhythmic envelope that is almost
identical to the input. Transformations receiving low similarity
scores failed to translate parts of the input resulting in dissimilar
rhythmic envelopes. The lowest performing transformation has a
rhythmic similarity score of 0.48 due to a frequent failure in prop-
erly translating domain k. The possible reasons for different arti-
facts and behaviours of the synthesised audio are discussed using
two translation outputs presented in Figure 2.

To better understand the issues present in the translated out-
puts, two examples of source and output waveforms have been
plotted in Figure 2. The cosine similarity of the translation A is
0.79 indicating some differences in their rhythmic similarities. In
the first beat of the output example A, it can be seen that the wave-
form of the source kick drum was unnaturally smeared, whereas
the source kick drum A from beat 3 was not translated at all. Both,
the smearing and the missing event are examples of the system
failing to correctly translate to domain k that is a cause of multiple
failed transformations in Experiment 1. In example B, all drum
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Figure 2: Example translations generated from two sources (A and
B), with spectral difference functions as solid lines over each wave-
form. Output colours correspond to target drum domains (e.g.,
blue represents kick drum translations).

domains were effectively translated resulting in a high rhythmic
similarity score of 0.96. Is is likely that the timbral characteris-
tics of source B contributed to a more suitable translation output
that shared, to a certain extent, some of the latent representations
of different drum domains. For instance, the output kick drum
translation from source B in beat 1 exhibits a noisy attack but then
effectively transforms the expected low frequencies, while still no-
tably changing the characteristics of the source thus creating a new
kick sound.

4.2. Translation Quality

Figure 3 presents the results using evaluation methodology de-
scribed in Section 3.3. For each domain, the mean Pearson cor-
relation is taken for ten different source and output log-magnitude
CQT spectrograms. The correlation values across all frequencies
are smoothed using a median filter. High Pearson correlations in-
dicate that translation quality for a particular domain is well pre-
served, whereas lower correlations indicate larger quality degrada-
tion from the source.

For all domains, the results indicate that frequency informa-
tion below 100 Hz is well preserved. Across all domains there is
a significant drop in correlation for low-mid frequencies between
220–1760 Hz. In comparison to other instruments, domain k (blue
curve) maintains higher correlation for these low-mid frequencies
however, there is a significant roll-off for high frequencies above
1760 Hz due to noise introduced by the model. Domain ksh (pink
curve) represents when a kick, snare and hi-hat are all played si-
multaneously and has the lowest Pearson correlation across all fre-
quency bands demonstrating that this domain was most difficult to
reconstruct accurately due to complexity introduced by the three
instruments.

Drum translations used in Experiment 1 as well as other ex-
amples can be found on the supporting website for this project.2

As can be heard from many of the drum translations, the proposed
system is capable of generating samples indicative of the intended

2https://maciek-tomczak.github.io/maciek.github.io/
Drum-Translation-for-Timbral-and-Rhythmic-Transformation

Figure 3: Smoothed mean Pearson correlations between the trans-
lated and source audio for all drum domains.

target domains; however, a considerable amount of noise is pro-
duced in the transformations. It is assumed that the audio qual-
ity of the system is currently restricted by the limited amount of
data on which it has been trained; by using more varied training
data that has not been synthesised artificially (e.g., audio samples
corresponding to real life audio loops or drum recordings), it is
expected that the system would be capable of producing more ac-
curate transformations. In addition to this, the limited size of the
model restricts the number of possible transformations.

4.3. Automatic and Semi-automatic Drum Translation

An automatic and semi-automatic extension to drum translation
has been proposed, in which a user can choose to automatically
label different drums in the audio input with ADTLib [29] or man-
ually annotate the input prior to translating it into various target
drum domains. In this transformation, the length of segments at-
tributed to the labelled domain corresponds to detected inter-onset-
intervals. A novice or expert user can use such transformation in
a music composition scenario. Once all onsets are processed the
system translates annotated source audio segments into specified
drum domains.

5. CONCLUSIONS

A drum translation technique that explores the rhythmic and tim-
bral capabilities of generative audio synthesis with WaveNet au-
toencoders has been presented. In this transformation, an input file
is transformed so that it sounds as if it were performed by differ-
ent drum instruments. Two experiments were conducted to assess
the rhythmic accuracy and overall audio quality of the transforma-
tions with respect to different drum instruments. The experimental
results demonstrate that the system produces rhythmically accu-
rate transformations, while there exist significant aspects of the
proposed transformation that contribute to the creation of audio
artifacts and added noisiness that could be mitigated with a net-
work architecture of larger capacity. The memory requirements of
the current model limit the number of available residual channels
and the number of layers which can be overcome by architectures
such as Parallel WaveNet [30]. Another possible avenue of future
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work would explore a broader range of signals outside the tested
datasets as well as other applications of diverse adversarial losses
to audio to improve translation audio quality.
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