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ABSTRACT

Neural audio synthesizers exploit deep learning as an al-
ternative to traditional synthesizers that generate audio
from hand-designed components, such as oscillators and
wavetables. For a neural audio synthesizer to be applica-
ble to music creation, meaningful control over the output is
essential. This paper provides an overview of an unsuper-
vised approach to deriving useful feature controls learned
by a generative model. A system for generation and trans-
formation of drum samples using a style-based generative
adversarial network (GAN) is proposed. The system pro-
vides functional control of audio style features, based on
principal component analysis (PCA) applied to the inter-
mediate latent space. Additionally, we propose the use of
an encoder trained to invert input drums back to the latent
space of the pre-trained GAN. We experiment with three
modes of control and provide audio results on a supporting
website.

1. INTRODUCTION

One of the chief skills harnessed by electronic music
(EM) producers is the ability to select and arrange suit-
able drum sounds. The integration of drum sounds into an
EM composition may be achieved either through the time-
consuming task of browsing sound libraries for an appro-
priate drum recording or alternatively through the use of
traditional drum synthesizers, which require mastery over
a large number of parameters, and provide only limited
control over sound generation. More recently, neural drum
synthesis [1–3] has been proposed to allow EM produc-
ers to interactively generate and manipulate drum sounds
based on personal sound collections.

As compared to traditional drum synthesis techniques
(e.g., subtractive, FM), control parameters are learned
through an unsupervised process. Neural audio synthesis
enables intuitive exploration of a generation space through
a compact latent representation. A crucial requirement of
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a well-trained latent representation is its ability to gener-
ate audio with musically-meaningful control over the out-
put. In the case of neural drum synthesis, previous methods
have been proposed to enable continuous semantic control
over generations by supplying high-level conditional infor-
mation based on a chosen set of audio features [2–4].

In this paper, an unsupervised approach for deriving
useful synthesis parameters is used as an alternative to
selecting and extracting a fixed set of audio features.
The proposed system is based on [1], and is extended
with a conditional style-based generator network [5] for
drum style (i.e., timbre) transformations. A mapping be-
tween a distribution of labelled drum sounds and a low-
dimensional latent space is learned, providing high-level
control over generation. The system operates directly on
waveforms and leads to an unsupervised separation of
high-level features (e.g., pitch, envelope shape, loudness),
and enables intuitive, layer-wise control of the synthesis.
Additionally, we introduce a novel approach to audio re-
construction through GAN inversion—a set of techniques
for inverting a given input back into the latent space of a
pre-trained GAN [6]. Using the predicted latent code, an
input can be reconstructed by the GAN and manipulated
using directions found in its latent space.

2. SYSTEM OVERVIEW

Figure 1 provides an overview of the proposed system for
neural drum synthesis, which is achieved using four net-
works: (1) mapping network, (2) generator, (3) discrimina-
tor, (4) encoder. In a style-based GAN formalisation [5,7],
latent space Z is transformed into an intermediate space
W using mapping network M : Z −→ W . To facilitate
the functionality of the mapping network, G is modified
to take a constant value as input, and an intermediate la-
tent vector w ∈ W is provided to each upsampling layer.
The mapping network M is a conditional multilayer per-
ceptron, that learns to create disentangled features that are
integrated at each upsampling block of the generator net-
work G through adaptive instance normalisation (AdaIN).
The generator is trained to output audio waveforms given
a constant input and latent vector w for each upsampling
block with affine transform A. Gaussian noise is added to
each upsampling block using per-layer scaling factors B
to introduce stochastic variation at each layer. Discrimi-



Figure 1. Overview of proposed style-based drum synthesis system.

nator D takes both a waveform and conditioning variable
as an input and is trained to estimate the Wasserstein dis-
tance between the generated and observed distributions.
All three networks are optimised simultaneously until G
can produce waveforms that are indistinguishable from the
observed training data.

The model was trained using a dataset of 9000 single
drum hits selected from multiple commercially available
sample libraries [1]. To increase the size of the dataset,
individual drum sounds were augmented by pitch shifting
between ±3 semitones, resulting in a total of 63000 sam-
ples. The system uses WGAN-GP [8] training strategy to
minimise the Wasserstein distance [9] between the train-
ing data distribution and generated data distribution. The
model is trained using Adam optimiser [10] with a learn-
ing rate of 0.002 for the D and G networks and a minibatch
size of 64 on an NVIDIA 2080ti GPU for 200k iterations.

2.1 Audio Inversion Network

Based on recent advances in the image domain [6], an en-
coder network E is trained separately to embed a given
waveform into the intermediate latent space of the pre-
trained generator. The predicted latent vectors are fed into
the generator to synthesise drum sounds with similar char-
acteristics to the input waveform. E replicates the architec-
ture of the discriminator network D; however, the model is
unconditional and its final dense layer has been modified
to have has 128 output units to match the dimensionality
of W . Using a dataset of 10000 drum sounds generated
with pre-trained network G, E is trained to minimise the
MSE between the ground truth latent vectors and the pre-
dicted latent vectors.

2.2 Principal Feature Directions

PCA identifies patterns within the intermediate latent space
W , deriving a set of coordinates that emphasise variation in
timbre. G feature controls are achieved by layer-wise per-
turbation along the principal directions. Following [11],
principal axes of p(w) are identified with PCA. N ran-
dom vectors are sampled from Z and the corresponding wl

values are computed with M . At inference, PCA can be
computed on wl to obtain a basis V forW . The principal
components of wl can then be used to control features of

the generator by varying PCA coordinates scaled by con-
trol parameter g such that w′ = w + V g. Each entry gi is
initialised with zeros until modified by a user.

2.3 Synthesis Control Parameters

Style-based drum synthesis with GAN inversion allows the
user to interact with the system parameters in three ways.
In the first approach, drum synthesis can be controlled by
sampling from the intermediate latent space and exploring
the timbral characteristics with a preset number of style
faders (i.e., PCA coordinates at each layer). In the second
approach, the user can input a single drum sample to the
encoder and modify its characteristics with style faders. In
the third approach, the encoder can be used to reconstruct
two arbitrary drum sounds, and various interpolation tech-
niques may be incorporated for style transformation. Ad-
ditionally, in each control method, Gaussian noise can be
introduced into individual generator layers to modify the
amount of stochastic variation within network layers. This
is useful for shaping the high-frequency content of the gen-
erated drum sounds—especially for cymbals and snares.

3. EXPERIMENTAL RESULTS

For a demonstration of the generated drum sounds and
synthesis parameters, we invite the reader to listen to the
results and experiment with the code available on the ac-
companying website. 1 A python script is provided, which
loads the networks pre-trained weights and enables utilisa-
tion of the synthesis control parameters described in Sec-
tion 2.3. By traversing the latent space using the controls
provided, a user can explore a space of different drum
sounds. The audio examples demonstrate the systems
capacity to generate a variety of different drum sounds,
manipulate timbral characteristics and perform transfor-
mations between different inputs such as beatboxing and
breakbeats. Although it is currently difficult to anticipate
the exact effect that each principal direction has on the gen-
erated drum sounds, the directions correlate to changes in
timbre, pitch and amplitude envelope.

1 https://jake-drysdale.github.io/blog/
stylegan-drumsynth/
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