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ABSTRACT

In this transformation we present a rhythmically constrained au-
dio style transfer technique for automatic mixing and mashing of
two audio inputs. In this transformation the rhythmic and timbral
features of both input signals are combined together through the
use of an audio style transfer process that transforms the files so
that they adhere to a larger metrical structure of the chosen input.
This is accomplished by finding beat boundaries of both inputs and
performing the transformation on beat-length audio segments. In
order for the system to perform a mashup between two signals,
we reformulate the previously used audio style transfer loss terms
into three loss functions and enable them to be independent of the
input. We measure and compare rhythmic similarities of the trans-
formed and input audio signals using their rhythmic envelopes to
investigate the influence of the tested transformation objectives.

1. INTRODUCTION

In the field of digital audio effects processing, creative transforma-
tions of musical audio refer to methods for automated manipula-
tions of temporally-relevant sounds in time. These systems can be
seen as part of a larger set of support systems to guide users when
they lack inspiration, technical knowledge, musical capability as it
relates to melody, harmony, rhythm, structure or style [1]. In re-
cent years, the use of powerful machine learning algorithms, such
as convolutional neural networks (CNN), have become an essential
component in the development of such intelligent musical expert
agents. A step in this direction has recently emerged as a research
topic of audio style transfer.

1.1. Background

Audio style transfer (AST) methods use machine learning algo-
rithms to modify the timbral characteristics of musical audio sig-
nals. AST was first attempted in [2, 3], which directly extended
an algorithm proposed for images in [4]. In AST, a new output
is synthesised by minimising the content loss with respect to the
content-contributing audio input and the style loss with respect to
one or more audio examples of a given style. The content loss
is based on comparing the network activations of features derived
from an audio spectrogram. The style loss matches the statistics of
the Gram matrix (i.e., inner product between neural feature maps)
activations in the higher levels of the network. In [5], the authors
argue that content may refer to the underlying structure of the in-
put music (e.g., note pitches, rhythm) and style can refer to timbres
of instruments or genres.

Definitions and challenges of style transfer for music are pre-
sented in [6]. The appropriateness of the Gram matrix as a rep-
resentation for style remains unclear for both music and images.

This challenge is furthered by the ambiguous meaning of the term
style, which is related to nearly all aspects of music. It has been
suggested that the Gram matrix corresponds to a representation of
musical timbre [5, 7]. To test the possibilities of creating rhyth-
mically focused transformations varied according to different loss
formulations we explore the use of the Gram matrix further and
report on the suitability and shortcomings of this approach.

Approaches to AST can be divided into two categories:
(1) time-frequency domain (i.e., spectrogram) based, where log-
magnitudes of a short-time Fourier transform (STFT) are used as
inputs to a CNN that performs the style transformation followed
by a process of phase reconstruction; and (2) time-domain (i.e.,
raw audio) based, where the audio samples are directly optimised,
removing the need for additional phase reconstruction.

The majority of AST research performs timbral transforma-
tion in the time-frequency domain, while preserving the rhyth-
mic characteristics of the content recording. Grinstein et al. [5]
introduced a spectral filtering method based on a sound texture
model to improve the transformation of timbre from style directly
onto a new audio initialised as content sound. The authors ex-
perimented with different pre-trained neural networks to aid their
transformation. Similarly, Wyse [8] explored the effects of pre-
trained weights from a network trained on an audio classification
dataset for AST. The presented system appears to generate a more
integrated transformation of content and style with the included
pre-trained network. In [7] the authors provide an additional loss
term that constrains the temporal envelope of the newly generated
spectrogram to match that of the style recording. The motivation
for the additional loss function was to better portray the temporal
dynamics of the style recording and diminish the impact of the con-
tent recording. Audio style transfer was also used in the attempt to
change the style of prosodic speech by [9]. The authors report suc-
cess in transferring low-level textural features of the content but
difficulty in transferring the high-level prosody such as emotion or
accent of the style voice recording.

In addition to the above spectrogram based methods, AST
systems have been proposed that can change rhythmic patterns
of the input by applying the transformation directly on the raw
audio. Mital [10] combines information from multiple discrete
Fourier transform parts and presents them as different concate-
nated batches (layers) of a convolutional filter. Concatenated real,
imaginary, and magnitude features are presented as producing the
best results. Barry and Kim [11] implemented a parallel architec-
ture that adds deep specialised networks with reduced frequency
channels projected onto constant-Q transform basis, for key invari-
ance capabilities, and Mel basis for representing longer rhythmic
patterns. Their approach allows for longer temporal memory over
the input features.

While the above methods are capable of timbral transforma-

DAFX-1

DAFx-45



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018
Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

Figure 1: Audio style transfer with rhythmic constraints in three stages: Segmentation, Feature Representation and Optimisation. A noise
signal ⌥ is iteratively transformed to represent the timbral and rhythmic characteristics of a user-defined mix between two input audio
recordings A and B. Solid lines divide the three stages; dotted lines represent convolution, dashed lines represent style Gram computation
and the vertical solid-dashed line represents a scaled exponential linear unit (SeLU) activation layer.

tions, these modifications are not temporally restrictive and there-
fore do not constrain the elements in a metrically relevant man-
ner. Alternatively, there have been several signal processing ap-
proaches to rhythmic transformations, including: percussive swing
modification in polyphonic audio recordings [12]; rhythmic pat-
tern manipulation of a drum loop to match that of another [13]; the
rhythmic modification of an input polyphonic recording given the
intra-measure structure of a model recording [14] and multi-song
music mashup creation [15].

1.2. Motivation

In this paper we propose a system that extends the AST method to
preserve the meter and the rhythmic structure of the chosen mu-
sical signal, while maintaining stylistic elements of both inputs.
Our aim in the following is to transform two recordings such that
their timbral and rhythmic patterns are merged together, with the
presence of each being user-defined. To do this, we alter the orig-
inal AST formulation to optimise the style representations of the
input recordings simultaneously. To improve the creative applica-
tion of this approach we constrain the transformation to act only
on beat-length segments and test it on a small corpus of drum per-
formances. This approach ensures that the transformation adheres
to a larger rhythmic structure of the recordings with opportunities
to generate new music that is both creative and realistic, as well
as to uncover musical relationships of familiar audio samples that
might otherwise have never been conceptualised.

The remainder of this paper is structured as follows: Section 2
presents our proposed method for AST with rhythmic constraints.
Section 3 presents experiments undertaken and the results with dis-
cussion. We conclude with suggestions for future work in Section
4.

2. METHOD

Figure 1 presents an overview of our proposed system for AST.
The system extends work by [11],1 in which a noise signal Y is
iteratively transformed to embody the timbral characteristics of a
target associated with two audio recordings (↵ and �). In [11],
the content refers to a network projection of input audio and style
refers to a statistical representation of the feature map generated
from previous layers of the network (as discussed in Section 2.3.1).
We add to this kind of transformation through the integration of
rhythmic constraints and with the addition of interchangeable loss
terms with regards to both inputs.

The proposed model consists of three stages: (1) segmenta-
tion, where the two audio files (↵ and �) are divided into beat-
length segments (A and B respectively); (2) feature representa-
tion, in which feature representations (Z, M and X) of A, B and
Y are created using a CNN; and (3) optimisation in which Y is iter-
atively transformed to simultaneously match loss functions related
to the feature representations of A and B. The resultant transfor-
mation ⌥ is a concatenation of the transformed beat-length seg-
ments Y .

2.1. Segmentation

Our motivation for the inclusion of segmentation in AST is to di-
vide the inputs so that they adhere to a larger metrical structure
during the transformation, while reducing the computation cost.
In our experience, musically-interesting and rhythmically-stable
transformations may be obtained when assessing beat-length audio
segments. In order for input audio files to be processed by the pro-
posed system, beat and downbeat positions must be first extracted.
We compute segment boundaries using a state-of-the-art beat and
downbeat tracking algorithm [16] included in the madmom Python

1https://github.com/anonymousiclr2018/
Style-Transfer-for-Musical-Audio
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library.2 We then use the detected beat positions, starting from the
first downbeat, as segment boundaries for A and B and generate
the new noise segment Y using the same length.

2.2. Feature Representation

The aim of the feature representation stage is to project the input
audio segments onto neural feature maps, which results in the cre-
ation of content and style matrices.

2.2.1. Content

To create the content matrices, the same two-stage process is per-
formed in separate network branches for A, B and Y , where the
weights of signal Y are initialised with random noise and matrices
A and B contain input audio data as in [11]. First, feature maps are
created by projecting the audio onto STFT bases. Then, the feature
maps are projected further onto a larger number of channels as in
[2, 5, 10, 11] to create the content representation.

The input audio (A, B and Y ) is segmented into T frames
using a Hanning window of n samples (n = 2048) with a n

4 hop-
size. A frequency projection of each of the frames is then cre-
ated with a single CNN layer that uses filters initialised with real
and imaginary parts of the discrete Fourier transform resulting in
a Txn

2 spectrogram. We convert the created spectrogram to a log-
magnitude representation. This transformation is represented in
CNN Block 1 in Figure 1, where the filter size is nx1x1xn

2 with
strides of 1xn

4 x1x1.
CNN Block 2 (Figure 1) depicts neural feature computation

from the STFT projections that becomes the content and can be
understood as the low-level features of the input. The CNN ar-
chitecture consists of a single convolutional layer with a filter size
of 1xHxFxQ, where H is the number of time frames convolved
with the filter, F is the number of frequency bins and Q repre-
sents the number of frequency channels that the input spectrogram
will be projected onto. The filter size used in this implementa-
tion is 1x16xn

2 x2n. We use a temporal receptive field (i.e., a con-
textual window modeled by each hidden state of the network) of
16 frames (~370ms) to capture acoustic information about instru-
ments from a context longer than half beat length at 120 beats per
minute (BPM). Each network is followed by a scaled exponen-
tial linear unit (SeLU) [17] activation layer, represented as vertical
solid-dashed line in Figure 1, in place of standard rectified linear
units (ReLU), as in [11]. This is done to increase the quality of the
synthesised audio and reduce convergence time of the optimisation
algorithm. For the rest of the paper, the content matrices for A, B
and Y are termed Z, M and X respectively.

2.2.2. Style

Style can be understood as high-level information of the input neu-
ral features. To obtain a representation of the style of an input
spectrogram, a Gram matrix G is used as in [4]. This feature space
is designed to capture texture or intra-feature map statistics. For
each content matrix (Z, M and X) G is calculated using the inner
product:

G[X]ij =
X

k

XikXjk. (1)

2https://github.com/CPJKU/madmom

2.3. Optimisation

2.3.1. Content and Style Loss Functions

In order to control the contributions of content and style from the
two inputs, the total loss L is expressed as a sum of content `C and
style `S loss functions for the input audio files A and B:

L = �`AC + �`BC + ✓`AS + �`BS , (2)

where �, �, ✓ and � are proportion parameters that add up to 1
and help configure loss preferences between the input recordings.
The individual ` terms can be added and changed according to the
transformation objective. The content loss `C is a squared error
loss between the frame indices i and channels j of the transform
content matrix X and the input audio content matrices (Z or M ):

`AC =
1
2

X

i,j

(Xij � Zij)
2, (3)

`BC =
1
2

X

i,j

(Xij �Mij)
2. (4)

The style loss `S is the sum of the squared difference between
the transformed Gram matrix G[X] and the input Gram matrices
(G[Z] or G[M ]):

`AS =
1
Q2

X

i,j

(G[X]ij �G[Z]ij)
2, (5)

`BS =
1
Q2

X

i,j

(G[X]ij �G[M ]ij)
2. (6)

The motivation for using the style loss as formulated above was to
preserve the statistics about the convolutional representation over
the entire input, while losing local information about where exactly
different elements are.

2.3.2. Training

We use different combinations of style and content loss functions
to shape the output of the transformation (Section 3.3). Following
[11], we normalise the magnitudes of the gradients of loss terms to
1 to moderate the imbalances in weighting of either function. We
use the limited-memory BFGS [18] gradient descent-based opti-
misation algorithm for its appropriateness in non-linear problems
related to neural style transfer [4, 19]. Once initialised, the fea-
ture map representations of content and style from inputs A and B
do not change throughout the training stage. In each gradient step
the content and style activations are back-propagated all the way to
the network output Y . Hence, only weights originating from Y are
being manipulated during the optimisation process, while all fea-
ture representations remain unchanged for inputs A and B. The
optimisation of the concerned weights is stopped after 500 itera-
tions. An NVIDIA Tesla M40 computing processor was used for
this project with an average of 3 seconds per algorithm iteration.

2.4. Implementation

Our system is implemented using the Tensorflow Python library.3

The processing branches of A, B and Y are part of the same CNN
in one Tensorflow computation graph. This means that the neural
representations of the input time-domain audio Y can be optimised
simultaneously in one stage.

3https://www.tensorflow.org/
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Table 1: Mean cosine similarities from 15 transformed target au-
dio pairs. The cosine similarities are calculated between rhythmic
envelopes extracted from full ↵, � and ⌥ audio files for loss func-
tions L1, L2 and L3. Mean cosine similarity calculated from all
↵ and � rhythmic envelopes in the experiment is 0.58.

L1 L2 L3

⌥ to input ↵ 0.32 0.60 0.43
⌥ to input � 0.37 0.60 0.52

3. EXPERIMENTS

3.1. Experimental Setup

We test the rhythmic modification characteristic of our AST ap-
proach by assessing the rhythmic similarity of the transformed out-
put to the input audio for three loss term combinations. To achieve
this comparison, we generate rhythmic envelopes from the newly
created audio files ⌥ and compare them to those of ↵ and �.

3.2. Dataset

For this experiment we created 30 drum loops (mono .wav sam-
pled at 22.05 kHz with 16-bit resolution) of 4 measures in length,
which differ in rhythmic patterns consisting of various kick and
snare drums. All transformation examples are created from 15
pairs of input drum loops to reduce computation cost. All drum
loops have a fixed-tempo set to 120 BPM in 4

4 meter. Our motiva-
tion for using a fixed-tempo of 120 BPM was to test how our trans-
formation performs on already beat-synchronised inputs essential
in the processes of mixing and mashing audio recordings together.
The chosen tempo is typical for many genres in popular music as
well, as it is the default tempo in various digital audio workstations
used in music production. The drum loops used in our tests were
generated with twelve different pattern styles defined by the Logic
X Drummer virtual instrument.4

3.3. Rhythmic Similarity

To test the rhythmic constraints imposed by different transforma-
tion objectives within the AST technique, we compare the rhyth-
mic similarity [15] of pairs of transformations. The rhythmic en-
velopes are calculated from the spectral difference function [20]
of new audio ⌥ with inputs ↵ or �. We calculate the rhythmic
envelopes as the sum over frequency bins from the first-order dif-
ference between each adjacent magnitude spectra. The STFT pa-
rameters from Section 2.2 are used. The resulting rhythmic en-
velopes were normalised to range from 0 to 1. To determine the
rhythmic similarity D between every pair of rhythmic envelopes
R we calculate the cosine similarity as:

D!,⌥ =
R! ·R⌥

kR!kkR⌥k
, (7)

where ! can represent envelope of either ↵ or �. Thus, the rhyth-
mic similarity will be close to unity for very similar patterns and
nearer to zero for dissimilar patterns. The mean of all D values
is calculated across 15 transformation audio pairs per loss term
formulation.

4https://support.apple.com/kb/PH13070

Figure 2: Example transformations generated from three loss
terms L1, L2 and L3 from input audio signals ↵ and �.

We test our approach with three objectives associated with
combinations of loss terms with all proportion parameters �, �, ✓
and � set to be equal:

Objective L1: `AS + `BC . In this objective we test the ability
of our system to move acoustic events to create a rhythmically
new performance that is more similar to � through the low-level
information from the content loss.

Objective L2: `AS + `BS . In this objective we test a transfor-
mation that solely uses the style feature representations to mix
high-level characteristics of both recordings. This transformation
is akin to a mashup of both audio inputs.

Objective L3: `AS + `BS + `BC . This objective reinforces the
mashup transformation with more low-level information from �.

3.4. Results and Discussion

The overall similarity results are summarised in Table 1. The co-
sine similarities of the transformations ⌥ compared with input �
are higher for objectives L1 (0.37) and L3 (0.52), where the B
content loss (`BC ) was used. When the B content loss was not used
(L2) the transformation similarities to ↵ and � are both 0.60. We
believe this is due to both style losses having the same weight-
ing, resulting in an equal mix of both inputs that creates a kind of
rhythmic and timbral mashup. This is in agreement with the mean
similarities of the ↵ and � together (0.58). In addition, when larger
proportions of the content loss are used the transformations are ex-
pected to be more similar to the corresponding content loss of the
chosen input.

Figure 2 shows transformed waveforms of inputs ↵ and � us-
ing the three different loss term combinations. In L1 the rhythmic
pattern of ↵ is recreated at different metrical positions that match
the beat pattern of � (e.g., on beat 4 of the second measure). On
beat 2 of the first measure the event from � does not appear in the
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resulting transformation, while in objectives L2 and L3 the event
is included. Similarly, the transformation in beat 4 of the first mea-
sure from L1 removes an event that is present in objectives L2 and
L3 as an instrument from �. In this case a kick from ↵ was trans-
formed into a snare from �. The difference between the L2 and L3

transformations show the effect of the added content loss from B
in that drum events that correspond to silences become attenuated
in the resulting mashup of both recordings (e.g., beat 3 of the first
measure).

Experimental transformations along with other examples are
presented using the web-based audio player by [21] and can be
found on the supporting website for this project.5 The resultant
audio examples acquired from loss terms L1, L2 and L3 are ac-
companied by transformation outputs from publicly available al-
gorithms [11, 10, 2]. Our rhythmically-constrained transformation
differs in that it is capable of generating new rhythmic patterns
from both inputs while preserving the beat pattern of the chosen
recording. Challenges faced by all AST transformations are the
loss of phase information and the addition of noise, potentially
due to the high-level representation of the style loss (i.e., Gram
matrix).

As in other AST methods to date, we have used the Gram
matrix as a representation for style, yet it remains questionable
whether this feature representation is suitable for transformations
based on high-level musical information. Briot and Pachet suggest
that this technique presents challenges for audio due to anisotropy
of the content representation [22]. Anisotropy signifies depen-
dence on directions and here it refers to the nature of the audio
spectrogram. In this time-frequency representation the dimensions
do not correlate together in the same way a pixel would in an im-
age. A pixel almost always corresponds to one object whereas in
music multiple sources overlap causing inherent issues when using
the Gram matrix to transform local changes in timbres.

3.5. Attempted Rhythmic Loss Terms

In addition to segmenting the audio and experimenting with differ-
ent combinations of the existing loss terms, we also tested two new
loss terms which aimed to aid the rhythmic aspects of AST. Both
terms were formulated to minimise the cosine distance between
rhythmic envelopes of the chosen input and the transformation. In
the first loss term, each rhythmic envelope was calculated as the
sum over frequency bins of the two spectrograms (i.e., feature rep-
resentations from CNN Block 1 in Figure 1). In the second term,
we created a new network branch for the chosen input where the
resulting STFT projection was filtered with the first-order differ-
ence between each adjacent log-magnitude spectra to then create a
detection function focused more on percussive events. The second
loss term was formulated to minimise the cosine distance between
rhythmic envelopes of the filtered input spectrogram and the trans-
formation. Through informal listening we found that neither term
improved the transformation in conjunction with L1 and L2 loss
terms. The first loss term was causing generated drum events to
lose their transient information, whereas the second term removed
events created in the silent sections of the rhythmic envelope, while
increasing amplitudes of drum event transients.

5https://maciek-tomczak.github.io/maciek.
github.io/Audio-Style-Transfer-with-Rhythmic-Constraints

3.6. Additional Audio Inputs

In our rhythmic extension of AST we are able to create transfor-
mations using an arbitrary number of input recordings. In a music
composition scenario, once the desired individual recordings are
found, it is possible to create their combined transformation. One
such purpose would be to mix multiple individual drum recordings
together such as hi-hats, kicks and snares with the aim of creat-
ing their new rhythmic and timbral interpretation. However, with
additional audio input signals the transformation becomes more
difficult to control.

4. CONCLUSIONS AND FUTURE WORK

In this work we present a rhythmically constrained audio style
transfer technique that explores different loss formulations. Our
method utilises a time-domain approach to AST that acts on beat
length segments of the input music signals. By constraining the
transformation to shorter analysis segments that follow the metri-
cal structure of the chosen input recording, we show that the result-
ing transformations sound rhythmically coherent, while reducing
the computation cost. In the transformation the two input files are
mixed together and allow the user to adjust the parameters of each
loss term to experiment with the desired objective. The resulting
transformation can be formulated as to replicate the exact spectral
information of the input or to create a mashup.

Our attempt to measure the transformation similarities com-
pared to their corresponding inputs shows differences in their
rhythmic envelopes. From informal listening it can be heard that
the beat detection does not need to be accurate for the transforma-
tion to produce rhythmically valid examples, however both inputs
should have at least some rhythmic agreement when the content
loss is used. In the case of the loss formulation that uses only the
information about content and style of the inputs, the transforma-
tions are more different from both input files.

In future work, we intend to explore transformation objectives
related to additional instrumentation and time scales, as well as,
improving the phase reconstruction inherent in this kind of sound
transformation.
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