
Received 25 February 2022; revised 17 April 2022; accepted 1 May 2022. Date of publication 6 May 2022; date of current version 17 May 2022.

Digital Object Identifier 10.1109/OJCOMS.2022.3172551

An Adapted Nondominated Sorting Genetic
Algorithm III (NSGA-III) With Repair-Based Operator

for Solving Controller Placement Problem in
Software-Defined Wide Area Networks

OLADIPUPO ADEKOYA (Graduate Student Member, IEEE), AND ADEL ANEIBA
Computing Engineering and Built Environment Department, Birmingham City University, Birmingham B5 5JU, U.K.

CORRESPONDING AUTHOR: O. ADEKOYA (e-mail: oladipupo.adekoya@mail.bcu.ac.uk)

ABSTRACT Optimum controller placement in the presence of several conflicting objectives has received
significant attention in the Software-Defined Wide Area Network (SD-WAN) deployment. Multi-objective
evolutionary algorithms, like Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective
Particle Swamp Optimization (MOPSO), have proved helpful in solving Controller Placement Problem
(CPP) in SD-WAN. However, these algorithms were associated with the challenge of scalability (when there
are more than three objectives) for optimization in the SD-WAN. Hence, this study proposed an adapted
NSGA-III (A-NSGA-III) to resolve the scalability challenges associated with NSGA-II and MOPSO
algorithms in the presence of more than three objectives. This study developed and introduced a repair-
based operator into the existing Mechanical Engineering based NSGA-III to propose the A-NSGA-III
for optimal controller placement in the SD-WAN. The proposed A-NSGA-III, the NSGA-II and MOPSO
algorithms were subjected to evaluation using datasets from Internet2 OS3E WAN topology with six
objective functions. The Hypervolume indicator, Percentage Coefficient of Variation (PCV), the percentage
difference and the Parallel Coordinate Plots (PCP) confirmed that the proposed A-NSGA-III exhibited high
convergence and diversification than the NSGA-II and MOPSO algorithms in the presence of scalability
challenge (when the number of objective function exceeded three). The result confirmed that the proposed
A-NSGA-III solved the scalability challenges associated with the optimal Controller Placement in the
SD-WAN. Hence, A-NSGA-III was recommended over NSGA-II and MOPSO algorithms, subject to the
confirmation usage conditions.

INDEX TERMS Controller placement, adapted NSGA-III, repair operator-based mechanism, Pareto-
frontier, SD-WAN.

I. INTRODUCTION

SOFTWARE-DEFINED Wide Area Network (SD-WAN)
architecture in recent years has become emerging tech-

nology that provides various benefits to the industry and
academia. In contrast to conventional network architec-
tures, which combine the data plane and the control plane
on the same plane, the SD-WAN architecture separates
the control plane, and the data plane [1]. The SD-WAN
enables centralised network management, which signifi-
cantly improves the way the network is managed [2].

Although, the SD-WAN architecture originally comes with
the controller being logically centralised within the topol-
ogy. However, several related literature studies suggested that
the controller should be logically centralised and physically
distributed to enhance various performance metrics. Such
metrics include deployment cost, load balancing, resilience,
scalability, switch-to-controller latency, and inter-controller
latency, among others [3].
The initial centralised controller (also known as Software

Defined Network) approach is less efficient in a large-scale

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

888 VOLUME 3, 2022

HTTPS://ORCID.ORG/0000-0003-4947-9174

network like SD-WAN [4]. When this controller is deployed
in such less efficient environment, the centralised controller
would be associated with scalability challenge (optimizing
more than three competing objectives simultaneously) and
low latency performance. However, the work of [5] had
suggested the deployment of multiple controllers in SD-
WAN for the correction of the aforementioned challenges.
The identification of the appropriate location for the con-
troller placement within the network topology among several
connected nodes to meet the network requirements has cre-
ated a controller placement challenge which is known as
Non-deterministic Polynomial hardness (NP-hard) [6].
Given the several objectives, the simultaneous

optimization of these objectives (called multi/many-
objectives optimization or scalability) has been considered
a challenge in SD-WAN. The Pareto-Optimal solutions [7]
had been implemented to place a trade-off for optimal
solutions within the SD-WAN. The Controller Placement
Problem (CPP), also known as NP-hard [8], considers n
switches (nodes) to position k number of controllers, such
that (k < n), to create the most optimum network in the
presence of several conflicting objectives [5].
Mathematical optimization techniques (such as mixed-

integer linear programming and dynamic programming) are
optimization techniques for solving controller placement in
SD-WAN. However, these techniques could quickly get stuck
in local optimal due to its lack of memory during the algo-
rithm operations. It may take tens of minutes or more which
is not an effective solution to manage a large-scale envi-
ronment with dynamically changing network conditions [7].
The evolutionary algorithm, for instance, Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [9] and Swarm
Intelligence algorithms, such as Multi-Objective Particle
Swamp Optimization (MOPSO) [10] are examples of those
algorithms developed in the literature to optimize CPP. The
above two evolutionary techniques are problem-dependent
and utilise non-dominating sorting and crowding distance
techniques to ensure convergence to the true Pareto Front
and preserve diversity among the solutions. However, these
approaches are characterised by diversification challenges,
significantly when the objectives exceed three [9] and the
population is over a hundred ([11] and [12]). Similarly, all
solutions in these approaches would become non-dominated
as most or almost all solutions would domicile in the first
front. Consequent to the aforementioned drawbacks, an algo-
rithm that would ensure diverse solutions among the set of
solutions, should be considered [13]. Hence, there is a need
to explore an alternative and improved method for a vast
network environment where the condition of the network
(traffic pattern and bandwidth usage) changes dynamically.
This study has adapted an evolutionary algorithm called

Non-dominated Sorting Genetic Algorithm III (NSGA-III).
The NSGA-III algorithm was adopted from the Mechanical
Engineering discipline. In order to accomplish the aim of
this study, the NSGA-III was modified by introducing a
repair-based operator mechanism to effectively solve the

identified challenge of controller placement in an SD-WAN
environment.
The main contributions of this research are summarised

as follows.
• Limited to the literature, this research proposes the
maiden adaption of NSGA-III to solve the problem of
controller placement in a SD-WAN environment.

• The study shall develop a repair operator-based mecha-
nism to replace the continuous optimization character-
istics with discrete optimization characteristics in the
existing NSGA-III.

• The study incorporates the developed repair operator-
based mechanism onto the adapted NSGA-III for the
optimal placement of controllers in SD-WAN, which
ensures both convergence and well-diversified solutions
among the non-dominated solutions.

• The study adapts a many-objective evolutionary algo-
rithm that shows the trade-offs among the objective
functions.

The contents of this manuscript are organized as fol-
lows. Section II surveys the related works. Section III
explains the scenario of many-objective controller place-
ment. Section IV proposes an efficient adapted NSGA-III
that addresses the controller placement problem in SD-WAN.
Finally, the experimentation with analytical results and the
conclusion of this research are described in Sections V, VI,
and VII, respectively.

II. RELATED WORKS
The CPP in SD-WAN had been well explored in the litera-
ture. However, there are still many ongoing types of research
in this regard, especially when there is a need to simulta-
neously optimize several conflicting objectives to meet the
SD-WAN requirements. Like the Facility Location Problem
(FLP), the CPP is a Non-Deterministic Polynomial (NP-hard)
problem. Random placement of controllers in an accessible
location would give rise to the network overhead and reduce
the performance of SD-WAN based infrastructure [14].
The work of [15] considered SDN controller security,

although this is out of the scope of this work. However,
the security knowledge of controllers in SDN will enhance
the overall performance of controllers. The work of [16]
explored the reaction of the controller placement on aver-
age and the worst-case switch-to-controller latencies in
small-to-medium size networks and static environments. The
study formulated CPP as a minimum k-center problem and
minimum k-median problem to minimise the average and
worst-case node-to-controller latency. The number of con-
trollers is represented as k. Similarly, the k-center problem
is a facility location problem similar to the optimization
problem in operation research [14]. The exhaustive approach
considered in the study evaluated all possible combinations
of controller placement concerning node-to-controller latency
for the average and worst-case scenarios. Although, this
approach guarantees optimal solutions concerning latency.
However, a practical, computational and quick approach is

VOLUME 3, 2022 889

ADEKOYA AND ANEIBA: A-NSGA-III WITH REPAIR-BASED OPERATOR

required to manage large-scale and dynamic environments
such as SD-WAN.
The study of [17] improved on the developed solution

of [16] by presenting a Capacitated Controller Placement
Problem (CCPP). The study considered the load of the con-
trol plane as a second objective in addition to the propagation
latency that was considered by [16]. The authors established
that load is also a key component metric that needs proper
consideration as much as latency when finding the optimal
location of controllers. It was further shown that the propaga-
tion latency, as a metric, is not enough to evaluate controller
placement. Meanwhile, the study assumed that limited data
plane devices could only be assigned to a controller since
the capacity of each controller in the network is limited
by server capacity and bandwidths of the links. This study
ignored performance metrics such as cost, fault-tolerance,
and inter-controller latency, which are all critical in real
networks. Moreover, the dynamic programming proposed in
the approach is computationally expensive and only suitable
in small-medium-sized networks or at the design stage where
time is not a limiting criterion.
The study of [18] explored the optimal placement

of controllers in SD-WAN to enhance failure tolerance
and resiliency. The work simultaneously optimized several
performance metrics and concluded that a trade-off solution
existed between these metrics. It was concluded that a single
controller placement that satisfied several objectives, espe-
cially when these objectives are conflicting in nature, does
not exist. An exhaustive approach, although based on Pareto-
optimal controller placement, was proposed in the [18] to
evaluate possible controller placement. Although, the process
was confirmed to provide a true Pareto optimal solution,
it lacked a heuristics solution which was a severe draw-
back to the approach. Such defects include the inability
to provide well-diversified Pareto Front solutions when the
Pareto-optimal is non-convex. Similarly, the technique was
not efficient in an SD-WAN environment where network
conditions (like bandwidth usage and traffic pattern) change
dynamically.
The study of [19] investigated SD-WAN in an environ-

ment with dynamic network conditions. The study developed
a dynamic controller provisioning problem that is contrary
to the static environment examined by [16]. The location
of controllers in this approach varies over time due to the
network’s traffic flows. The study presented a strategy that
dynamically conforms to the number of controllers during
network operations. Consequently, each controller was asso-
ciated with a set of switches based on dynamic network
changes to ensure that communication budget and minimal
flow setup time were guaranteed. However, this developed
greedy knapsack and simulated annealing algorithm may get
stuck at the local optimal. Consequently, this may not pro-
duce a well-diversified solution set when the number of
conflicting objectives is more than three.
Unlike the mathematical approach, the evolutionary

algorithm can address multi/many-objective optimization

problems. This approach is capable of providing multiple
solutions in one simulation run [9]. The literature has
established the development of several multi-objective evolu-
tionary algorithms to address the CPP in SD-WAN. The work
of [10] defined a global latency CPP where latency between
controllers and load on the controller is being considered as
the performance metrics. The study also developed the multi-
objective particle swarm optimization algorithm. However,
the approach may only be efficient when the scalability is
not more than three objectives. Consequently to the violation
of this condition, this may lead to a less widely distributed
solution across the Pareto Front.
Similarly, the work of [20] developed a controller place-

ment algorithm to handle a three-objective placement strat-
egy. The objectives considered were minimising propagation
latency between nodes and the associated controllers, load
imbalance, and minimising inter-controllers latency. The
NSGA-II was presented to solve the CPP. However, the
system may not preserve diverse Pareto Front solutions when
the objectives exceed three [9] and the size of the population
is more than a hundred [11]. This was due to the crowded
distance approach utilised in the algorithm since most solu-
tions would become non-dominated and all domicile on the
first front.
The literature had proposed a multi-Objective

evolutionary-based algorithm to decide where to place
the controller in the company of several or multiple
conflicting objectives. Evolutionary algorithms such as
NSGA-II and MOPSO are examples of those algorithms
developed in the literature to optimize CPP in several con-
flicting objectives. However, multi-objective evolutionary
algorithms that utilise non-dominated sorting and crowding
distance for exploitation and exploration are associated with
the drawback of not preserving diversity across the Pareto
Front solutions and inefficient performance-wise as most
solutions domiciles in the first front.
To solve the scalability challenge (the inability to opti-

mise when the number of objective function is more than
three) and improve the exploration and exploitation of the
candidate solution, this study has presented an A-NSGA-III
with a repair operator strategy for solving CPP in SD-WAN.
This proposed approach gives improved solutions improve-
ment over the existing NSGA-II and MOPSO frameworks
in scalability, convergence, and diversification. The exper-
imentation results conducted, in this study, confirmed the
flexibility and efficiency of the proposed algorithm.

III. PROBLEM DEFINITION
The CPP in SD-WAN was investigated in this study. This
solution proposed optimal placement of controllers regard-
ing the access network topology such that several network
requirements are satisfied simultaneously. While latency
between the switch and its connecting controllers forms
the most critical CPP situation, other conflicting objectives
need to be considered. These objectives include resilience,
controller load balancing, and inter-controller latency.

890 VOLUME 3, 2022

This study proposed a controller placement algorithm as an
unconstrained many-objective CPP. The objective functions
of this study are introduced in equations (1) through (5).
The SD-WAN is constructed as an undirected graph G =
(V,E), where V denotes the set of nodes, and E denotes
the connections between the nodes. Meanwhile, a distance
matrix D with the shortest path latency between each pair
of nodes information is also needed to calculate placement.
The latency between node i and node j is denoted as dij.
Note that this study had divided the latency in D by the
respective graph diameter for the basis of normalization.
Given the desired number of controllers, the search space
is constrained to a set of

(n
k

)
placements to get the desired

result.
This study refers to placement as k-element, such that

k is a subset of V . The search space for the CPP is the
k-subset of V , which is a space of all possible solutions. For
illustrative instance, given a network topology with 38 nodes
and a predefined number of controllers such that k = 5, then
the set X = {4, 14, 17, 28, 33} denotes controller positions
(|P| = 5). The five controllers, on the assumption, should be
placed in nodes 4, 14, 17, 28 and 33. Note that swapping the
members’ locations in each subset would not give any new
combination. Hence, with this instance, the total number of
feasible placements in this network is

(38
5

)
. It is assumed

that a set of objectives {j1, j2, . . . , jm} is known and is to be
minimised. X is Pareto optimal if no alternate placement Y
exists in the search place. That is, ∀i ji(Y) ≤ ji(X) and ji(Y)

< ji(X) no less than one index i. The reason for addressing
the CPP is to locate the Pareto optimal set of the entire
search space and the set of objective values of all Pareto
optimal placements, which form a set of solutions known as
the Pareto Frontier.

A. OBJECTIVE FUNCTIONS
This subsection included an overview of the reviewed objec-
tives. The reader is referred to [20] for additional information
on the reviewed objectives. Various conflicting objectives
should be considered in evaluating controller placement,
given a placement P of controllers. The first two performance
metrics give information about the maximum and average
switch-to-controller latency. This refers to the connection
between the switch and its controller. For each candidate
placement P ∈ 2V and the predefined distance matrix D,
equations (1) and (2) account for the maximum and average
switch-to-controller latency, respectively.

πLat−max−S2C(P) = max
v∈V min

p∈P dv,p, (1)

πLat−avg−S2C(P) = 1

|V|
∑

v∈V
min
p∈P dv,p. (2)

In a large size-networks where multiple controllers are
deployed, these controllers need to communicate and share
information. Consequently, inter-controller latency should be
considered to evaluate controller placement, which should
also be minimised. Similar to equations (1) and (2), which

consider both maximum and average form of latency, equa-
tions (3) and (4) do the same but compute the inter-controller
latency. This objective has a substantial impact on the
coordination of controllers and should be examined in the
CPP.

πLat−max−S2C(P) = max
p1,p2∈P

dp1,p2 , (3)

πLat−avg−S2C(P) = 1
(|P|

2

)
∑

p1,p2∈P
dp1,p2 . (4)

While the latency-based objectives aim for minimum com-
munication paths in the network, controller load balance
should also be considered when network operation relia-
bility is sought. Since the rest of the objective functions
are minimized, an imbalance metric is presented here in
place of a balancing metric for compliance purposes and
also to balance the load distribution between controllers [20].
Therefore, for each placement P and controller p, the total
number of devices allocated to p when each device connects
to its closest controller is referred to as np. The imbalance
metric denotes the dissimilarity between np for two con-
trollers with the lowest and highest allocated nodes and is
depicted in equation (5) [20].

π imbalance(P) = max
p∈P np − min

p∈P np. (5)

This study also considered resilience concerning controller
failure as an objective function during the optimal place-
ment of controllers. Assuming that C = 2P\{∅} represents
all possible placements left from the outages of up to (k – 1)
controllers, then the average switch to controller latency
for any failure scenario is represented mathematically in
equation (6).

πLat−avg−S2C(P) = 1

|C|
∑

P∈C

(
1

|V|
∑

v∈V

(
min
p∈P dv,p

))

. (6)

IV. PROPOSED ADAPTED NSGA-III (A-NSGA-III) FOR
SD-WAN CONTROLLER PLACEMENT
The proposed adapted Non-dominated Sorting Genetic
Algorithm III (hereafter referred to as A-NSGA-III)
with a repair-based operator is presented in this sec-
tion. The NSGA-III [9] was first developed in the
Mechanical Engineering to address more than three-objective
optimization problems. The existing NSGA-III could not be
applied directly to solve the CPP in SD-WAN because it is
limited to continuous optimization problems while the CPP is
a discrete optimization problem. Consequently to this lim-
itation, the existing NSGA-III, in application to CPP, did
not produce a feasible search space and unique solutions
without duplicates. The framework of NSGA-II was used in
NSGA-III but with the reference point-based approach and
other mechanisms (such as reference points, normalization,
association, and niching techniques) to improve convergence
and diversity preservation.

VOLUME 3, 2022 891

ADEKOYA AND ANEIBA: A-NSGA-III WITH REPAIR-BASED OPERATOR

The reviewed NSGA-II and MOPSO algorithms that
employs Pareto dominance techniques in ranking solu-
tions [9] and crowding distance operators for preserving
diversity [21] would not be efficient when they are applied
to address scalability challenge (more than three objectives).
Even in the early generation, most of the solutions would
become non-dominated and lie in the first level layer (first
Front), resulting in difficulty to sustain an adequate selec-
tion pressure of elite solutions towards optimal solutions.
However, [9] and [22] confirmed that the presence of a
guidance mechanism such as a clustering operator with a
well-distributed reference point in NSGA-III helps to main-
tain diversity among solutions. Similarly, [23], and [24]
confirmed that the self-adaptive update of the reference point
set determined from the association state of each reference
point over several evaluations makes the algorithm a more
computationally fast approach. Consequently, the reference
points, association, and niching techniques introduced in the
NSGA-III procedure are expected to justify the significant
diversification and convergence improvement of A-NSGA-III
over NSGA-II.
Literature has established that when the number of objec-

tives exceeds three (scalability challenge) [9], and the size
of the population is more than a hundred [11], the NSGA-II
and MOPSO do not preserve diversity across the Pareto
Optimal set. Consequent to these algorithm’s drawbacks,
there is evidence to develop an algorithm to select diverse
solutions sequel to these characteristics. Hence, this justi-
fies the maiden introduction of the adapted A-NSGA-III in
SD-WAN.

A. THE DESCRIPTION OF THE PROPOSED A-NSGA-III
The proposed A-NSGA-III is presented in Algorithm 1 while
the discussion follows in this subsection. The A-NSGA-III
algorithm is supplied with a structured reference point H
and the parent population as Pt. The reference point can
either be computed using [25] systematic approach where
H = (M+p−1

p

)
or be supplied by the client. The H defined

the reference points number, the P(t+1) is the next-generation
population (output). The reference points are set in advance
and created on a unit hyper-plane to ensure they are uni-
formly distributed across the entire normalized hyper-plane
(see Figure 1). Because the reference points obtained above
are widely distributed across the normalized hyper-plane, the
derived solutions will also be widely distributed towards the
Pareto optimum front. This is a requirement that is based
on the diversity which is defined concerning the reference
points or reference lines [9].
Line 3 of Algorithm 1, Xt (the population set) saves solu-

tion in the Front set {FR1,FR2, . . . ,FRM} and i is the
generation counter which is set to 1. Line 4, the simu-
lated binary crossover and polynomial mutation is applied
to the parent population (Pt) to get the offspring population.
In line 5, a repair-based operator is applied on the newly
formed population set Ct to remove infeasible offspring’s
solutions. In line 6, the parent population and offspring

Algorithm 1 Proposed Adapted NSGA-III for SD-WAN
Controller Placement Problem
1: Input: H uniformly distributed reference
points, Ys or provide aspiration points Ya parent population Pt

2: Output: Pt+1
3: Xt = ∅, i = 1
4: Ct = Recombination+Mutation
5: Apply repair operator mechanism on Ct
6: Wt = Pt ∪ Ct
7:

(
FR1,FR2, ...

) = Nondominated − sort
(
Wt

)

8: repeat
9: Xt = Xt ∪ FRi and i = i+ 1

10: until |Xt| ≥ N
11: Last front to be included:FRl = FRi
12: if |St| = N then
13: Pt+1 = Xt, break
14: else
15: Pt+1 = ⋃l−1

j=1 Fj
16: Points to be chosen from FRl:K = N − |Pt+1|
17: Perform objectives Normalization and create

reference set Ys:Normalize (f n,Xt, Yr, Ys,Ya)
18: Associate each member x of Xt with a ref point:

[π(s), d(s)] = Associate (Xt, Yr,) π(s):closest ref point
d:distance between s and π(s)

19: Calculate niche count of reference point j ∈ Yr: ρj =∑

X∈Xt/FRt
((π(s) = j) ?1:0)

20: Select K members one at a time from FRl to
construct Pt+1:Niching(K, ρj, d, Y

r,Fl,Pt+1)
21: Output Corresponding Placements
22: end if

FIGURE 1. Reference point on a Unit hyperplane [9].

are combined and saved in Wt. The non-dominated sort-
ing was carried out on Wt and the solutions were arranged
in {FR1,FR2, . . . ,FRM} in line 7. The readers are referred
to [9] for more information on the NSGA-III and its mech-
anisms. In line 8, the process of non-dominating sorting is
repeated. In contrast, in lines 9 and 10, the solution from
the front is included in the population set until the popula-
tion set is greater than population size N. Line 11 describes
the characteristics of the last front to be added before the
condition in line 10 could be satisfied. In lines 12 and 13,
if the last front is added and the size of Xt = N, then the

892 VOLUME 3, 2022

algorithm breaks, and the counter increases with 1. In lines
14 and 15, the fronts are added to the next generation P(t+1)

except the last front. Line 16 describes the points chosen
from the last front, while line 17 normalizes all objectives
and creates a reference set Ys. In line 18, each solution x, that
belongs to Xt, is associated with a reference point. A similar
concept of clustering is used here only concerning reference
points. Note that all solutions {FR1,FR2, . . . ,FRM} in Xt are
related. In line 19, the niche count, which defines the number
of solutions associated with the reference line, is computed.
Finally, in line 20, K solutions are chosen from the last front
one at a time. This implies that the solution would be copied
one after the other with the help of niching techniques. This
study further presents the explanation on the repair-based
operator, normalization, association, and niching algorithms
in the A-NSGA-III in Sections IV-B, IV-C, IV-D, and IV-E,
respectively.

B. DESCRIPTION FOR THE REPAIR-BASED OPERATOR
ALGORITHM IN THE A-NSGA-III
The repair-based operator mechanism is mostly problem-
dependent. This study developed the repair-based operator
algorithm and embedded it into the existing NSGA-III. The
function of the repair-based operator algorithm is to ensure
that the algorithm only searches within the feasible space and
to guide the A-NSGA-III to produce unique solutions with
no duplicates. The description of the repair-based operator
algorithm presented Algorithm 2.
Considering Algorithm 2, lines 1 and 2 take the input and

output of the algorithm, respectively. The controller position
values (VA) are taken as the input, while the solution with
unique value return is taken as the algorithm output VA.
Line 3 of the algorithm iterates through the VA by checking
the numbers of rows (i) in VA. The VA is the initial controller
position set to the length of the entire dataset (20). Line 3,
the algorithm iterates through VA by checking the number of
columns (j) in a row in line 5. Similarly, line 4 initialises an
empty list called K while line in line 6, the algorithm rounds-
down values in VA to zero and converts them to an integer.
Similarly, in line 7, the repair-based operator checks if K in
line 4 does not have the value in line 3. Furthermore, in line
8, the algorithm assigns K to be the VA if the condition in
line 7 is true, else 0 is assigned to f (line 9) if the value exists
inside K. For a value within the current value of VA[i, j],
the algorithm checks the first number that is not in K and
assigns it to q in line 10 since the value in VA[i, j] exists
in K up till 20. In lines 14 and 15, the algorithm checks
if q is not in K. If this condition is valid, the first value
that is not found in K is assigned. Consequently, line 16
assigns the value of q to K. Similarly, line 17 assigns 1
to f if value is found for K. The algorithm conditionally
breaks in line 18 or 20 subject to the value of f in line 19.
The reverse operation is performed from line 23 to line 27.
Line 24 checks if q is not in K, then the first value found
that is not in K is assigned to q in lines 25 and 26. Finally,
in the same reverse order, set f as one if a value is found

Algorithm 2 Repair-based Operator Algorithm
1: Input: VA: Controller position values
2: Output: VA: Unique solutions with no duplicate
3: for i in range (len (VA[i])) : check number of rows in VA do
4: Initialize an empty list K : an empty list
5: for j in range (len (VA[i])) : check the number of column
in a row do

6: VA [i] [j] = int (round (VA [i] [j])) : round values inside
VA to zero and convert to integer

7: check if K does not have the value in VA [i] [j]
8: Assign K = VA when the condition is true
9: f = 0 : set f = 0

10: for (q in range (VA [i] [j] 20)): let q be the value
between VA[i][j] up till 20 do

11: end for
12: end for
13: end for
14: if q not in K : check if the value is not found in k (the first one

then
15: VA [i] [j] = q:Assign the first value found that is not in K
16: Assign the value of q to K
17: f = 1 : set f = 1, if value is found for K already
18: break
19: if f == 0 then
20: break
21: end if
22: end if
23: for (q in reversed (range (0,VA [i] [j])): let q be the value

between 0 up till VA[i][j]/ do
24: if q not in K : if the value is not found in k (the first one

then
25: VA [i] [j] = q : Assign the first value found that is not K
26: Assign the value of q to K
27: f = 1 : setf = 1, if value is found for K already
28: break
29: end if
30: end for

for K already (line 27). However, if this condition is true,
the algorithm breaks in line 28 and ends.

C. DESCRIPTION FOR THE NORMALIZATION
ALGORITHM IN THE PROPOSED A-NSGA-III
This section describes the normalization process of the refer-
ence points and the entire population set independent of the
ranks and the corresponding algorithm in the A-NSGA-III.
The normalization algorithm is presented in Algorithm 3.
This algorithm normalizes all objectives between 0 and 1.
This is necessary since the reference points are generated
from the first quadrant on a unit hyper-plane. The algorithm
also ensures that there are standard scales among the objec-
tive vectors. The algorithm normalizes both the population
set and the structure reference point. The normalization algo-
rithm is presented in Algorithm 3 while Figure 2 illustrates
the normalization in the A-NSGA-III as described by [9].
The following paragraph briefly describes Algorithm 3.
In Algorithm 3 lines 3 through 6 compute the ideal point,

which describes the minimum of each objective function vec-
tor computed for every objective. Line 4, the objective in line
3, is translated by subtracting the minimum value zmini=j from

VOLUME 3, 2022 893

ADEKOYA AND ANEIBA: A-NSGA-III WITH REPAIR-BASED OPERATOR

Algorithm 3 Normalize (f n,Xt,Yr,Ys/Ya) procedure
1: Input:Xt, Ys (structured points) orYa (supplied points)
2: Output: f n,Yr(reference points on normalized hyper−plane)
3: for j = 1 to M do
4: Compute ideal point : zmini=j = min

X∈Xt
fj(s)

5: Translate objectives f ′j (s) = fj(s) − zminj ∀s ∈ Xt
6: Determine extreme points (zj

max
j = 1, ...,M)ofXt

7: end for
8: Compute intercepts aj for j = 1, ...,M

9: Normalize objectives (f n) using f ′i (x) = fi(x)−zmini
ai

10: if Ya is given then
11: Map each Ya point on normalized hyper − plane

f ′i (x) and store the points in the set Yr
12: else
13: Yr = Ys

14: end if

FIGURE 2. Graphical representation of the Normalization algorithm.

each objective. This converts all objectives into positive char-
acteristics by translating the objectives into the first quadrant.
This translation is necessary because the reference plane is
drawn from the first quadrant, and diversity is maintained
using the reference point. In lines 6 through 8, the extreme
points are computed because the extreme solutions are not
intercepting the {f1, f2, f3} axis. These interceptions are com-
puted by extending the plane and giving the intersection
point on objectives (1), (2), and (3). The objective function
is normalized by dividing the translated objective fi(x) by
the intercept in line 9. Finally, lines 10 through 14 ensure
that the reference points and the population size lie on the
same plane.

D. DESCRIPTION FOR THE ASSOCIATION ALGORITHM
IN THE PROPOSED A-NSGA-III
Algorithm 4 explains the association between each solution
and the corresponding closest reference line. The perpendic-
ular distance between the points and the line is calculated.
This association is independent of solution rank.
The reference points and corresponding front solutions

are the inputs, while the outputs are the reference lines with
related minimum solutions and minimum distance. In lines
3 and 4, the corresponding reference line is computed for
every available reference point. In lines, 6 through 8, the

Algorithm 4 Association (Xt,Yr) procedure
1: Input: Yr,Xt
2: Output: π(x ∈ Xt), d(x ∈ Xt)
3: for each reference point y ∈ Yr do
4: Calculate reference line w = y
5: end for
6: for each x ∈ Xt do
7: for each w ∈ Yr do
8: Evaluate d⊥(x,w) = ||(x− wTxw/||w||2)||
9: end for

10: Set π(s) = w : argmaxw∈Zr d⊥(x, w)

11: Set d(x) = d⊥(x, π(x))
12: end for

Algorithm 5 Niching (K, ρch, π, d,Yr,FRl,Pt+1)

1: Input:K, ρch, π(x ∈ Xt), d(x ∈ Xt), Yr,FRl
2: Output: Pt+1
3: k = 1
4: while k ≤ K do
5: CHmin = ch : argminch∈Yrρch
6: CH′ = random(CHmin)
7: ICH′ = x:π(x) = CH′, x ∈ FRl
8: if ICH′
= ∅ then
9: if ρch′ = 0 then

10: Pt+1 = Pt+1
⋃

(
x: argminX∈ICH’ d(x)

)

11: else
12: Pt+1 = Pt+1

⋃
random(ICH′)

13: end if
14: ρch′ = ρch′ + 1,FRl = FRl/s
15: k = k + 1
16: else
17: Yr = Yr/j′
18: end if
19: end while

perpendicular distance between the point and the line is
calculated for every solution in Xt and every reference line.
Furthermore, the reference line showing the minimum value
of the solution is computed. Finally, in lines 10 and 11, the
reference line to which solution is the closest and its distance
is stored as π(s) and d(x).

E. DESCRIPTION FOR THE NICHING TECHNIQUE IN THE
A-NSGA-III
This subsection explains the niching technique used in the
A-NSGA-III in this study. The corresponding algorithm is
presented in Algorithm 5. The Niching technique selects the
solutions from the last front associated with the reference
line.
Three niching cases could arise from the last fronts solu-

tions [9]. The Case 1 explains when there exists one solution
that is linked with the reference line, the Case 2 explains
when there exists no solution that is associated with the ref-
erence line and the Case 3 explains when there is more
than one solution that is linked with the reference line.
Considering Algorithm 5, lines 3 and 4 reveal the solu-
tion from the last front that is copied one by one until the
population is complete. The reference line with a minimum

894 VOLUME 3, 2022

value of niche count is identified, and one reference line is
chosen at random in lines 5 and 6. Line 7 runs a check to
determine the solution in the last front linked with the cho-
sen reference line in line 6. Line 15 conditionally removes
the reference line if there is no solution related to the last
front. Hence, lines 8 through 19 affirm if the solution from
the last front (connected with the reference line) is empty.
Meanwhile, if there is a solution from the last front that is
linked with the reference line (that is, there is/are the solu-
tion(s)), then the algorithm checks if the niche count of the
reference line is not zero (0) in line 9. If this condition is
true, the algorithm goes to line 12, to select any random
solution from the last front and include it in the next gener-
ation. In line 14, the reference line’s niche count increases
with one (1) and removes the previously selected solution
from the last front. Hence, the counter increases with one
in line 15 to conduct the next niching exercise.
However, when multiple solutions from the last front are

linked with the reference line and the niche count is zero,
the solution closest to the reference line (line 10) would
be selected to ensure diversity. Contrarily, when multiple
solutions from the last front are linked with the reference
line and the niche count is not zero. Any random solution
could be selected from the target reference line (line 12).
This implies that one solution from front 1 or front 2 is
already linked with the reference line, and the diversity is
already preserved. It is important to note that any randomly
selected solution with high proximity from the reference line
would not increase the search performance.

F. PERCENTAGE COEFFICIENT OF VARIATION (PCV)
This study uses the Percentage Coefficient of Variation
(PCV) as the statistical tool to measure the diversification of
the solutions across the Pareto Front concerning the average
of the objective function independent of the unit of measure-
ment [26], [27]. The [28] applied the PCV tool to dominance
and diversity analysis, while [29] applied PCV to the com-
parison of software. Following the work of [29], the PCV is
defined as the ratio of the Standard Deviation to the Average
of the Objective Function. The Standard Deviation and
the Average of the Objective Function are computed from
the Distributed Evolutionary Algorithms in Python (DEAP)
library. The DEAP library is used in this research to com-
pile statistics on what is going on in the optimization [30].
The diversification characteristics are directly proportional
to the PCV. This implies that the higher the PCV, the better
the diversification characteristics [31]. This conclusion will
be used to interpret the diversity value obtained in this study.

G. PERCENTAGE DIFFERENCE (% DIFF.)
This is a statistical tool that is used to express the differ-
ence (in percentage and as a fraction of the whole) between
the characteristics of two items simultaneously. The per-
centage difference is used in this study to express the
difference between the diversity of the A-NSGA-III and
each of NSGA-II and MOPSO algorithms.The [32] expressed

Percentage Difference (% Diff.) as

% Diff . = Difference between two items

mean of the two items
∗ 100. (7)

H. PARALLEL COORDINATE PLOT (PCP)
The scatter plot in 2-Dimensional (2-D) or 3-Dimensional
(3-D) has been the primary tool to observe solution vec-
tors in the evolutionary algorithm. It helps to understand the
shape, quality, and distribution of a non-domination set of
solutions and the relationship that connects various objec-
tives. However, the 2-D and 3-D plots may be associated
with difficulty understanding when the number of objec-
tives is more than three. A better alternative to studying
the solution sets in this condition is to employ a Parallel
Coordinate Plot (PCP). This plot displays multi-dimensional
data in a 2-D graph with each aspect of the primary data
converted onto a vertical axis. A parallel coordinate plot
is a visualisation tool that has received modest attention in
the evolutionary many-objective optimization method [33].
Sequel to this advancement, this study employed PCP to
visualise and analyse the quality of the solution set obtained
by the A-NSGA-III and the other two compared algorithms.
Parallel coordinates plot helps in understanding high-

dimensional datasets in a simpler and better way. The PCP is
utilised in order to understand the six objectives’ behaviour.
The parallel coordinate plot is easy to build, and it is known
to scale well with the dimensionality of the dataset. Literature
has established that, most often, the quality of non-dominated
set solutions in both multi/many-objective evolutionary algo-
rithms are reviewed through four measures, namely coverage,
convergence, divergence, and uniformity. The focus of this
study is both convergence and diversity. The convergence
of a solution measures how solutions approach each other,
meaning how close the solutions are to the true Pareto front.
Meanwhile, divergence refers to the separation of one solu-
tion from one another. This means that the solutions are
separated from each other. The primary goal of any evo-
lutionary algorithm is to have a convergence solution and
ensure diversity is preserved among the solutions.

I. HYPERVOLUME PERFORMANCE INDICATOR
Hypervolume performance indicators has gained massive
attention in the literature [34]. This performance metric com-
putes the volume of objective space dominated by the Pareto
set solution. The convergence and diversity measures can
be captured in a single scalar produced by a hypervolume
performance metric [35]. The hypervolume indicator used the
reference point to select the optimum solution. This char-
acteristic made the hypervolume indicator preferable over
other indicators that require the availability of the true Pareto
Front, which is unknown in the SD-WAN controller place-
ment. Sequel to the advantages above, this study employed a
hypervolume indicator as a performance metric to assess the
quality of the adapted NSGA-III compared with the two other
algorithms. The Hypervolume indicator ranged between the

VOLUME 3, 2022 895

ADEKOYA AND ANEIBA: A-NSGA-III WITH REPAIR-BASED OPERATOR

scale of zero (0) and one (1) inclusively. The closer the
hypervolume indicator to one, the higher the quality of the
algorithm performance [35]. Contrarily, the closer the hyper-
volume indicator to zero, the lower the performance quality.
This study used hypervolume performance indicators to mea-
sure the quality of the adapted NSGA-III algorithm compared
to the two most well known, similar SD-WAN controller
placement Algorithms, NSGA-II and MOPSO. The NSGA-II
and MOPSO algorithms were used because of their similarity
with the adapted NSGA-III. These algorithms were assessed
based on convergence and diversification criteria. The result
and the associated discussion of the experiment are presented
below.

V. EXPERIMENTATION
This experimentation was executed with a Personal Machine
characterised with Intel Core i7-6820HQ CPU @2.70GHz of
1600MHz DDR3 memory, 64GB and a Microsoft Windows
10 Professional Edition specification. Python programming
language was used for the experiment. A Jupyter notebook
version 6.3.0. was used to compile the code. The code can
be assessed as free and open-source code on the GitHub
code repository with the link https://git.io/JMZNB.
The Multi-objective optimization library in python (pymoo

version 0.5.0.) was used in the computation of convergence
using Hypervolume performance indicator [36]. This sec-
tion presents a case study to demonstrate the A-NSGA-III.
The main purpose of this study is to find a suitable place-
ment of controllers of size k = 5 for Internet2 OS3E
topology [37] such that several conflicting objectives are
simultaneously optimized. These six study objectives are
average switch-to-controller latency, maximum switch-to-
controller latency, average inter-controller latency, maximum
inter-controller latency, load balancing, and resilience. This
topology (BtEurope) [37] included 21 nodes. The following
variables were the parameters set for the A-NSGA-III. The
population size was 495, the number of objectives was 6, the
number of dimensions was 5, the number of division (P) was
8, the reference point H was 495, the crossover probability
was 1.0, and the mutation probability was 1.0 divided by the
number of dimensions. According to the dataset, the lower
and upper bound limits were set to zero (0) and twenty (20).

Following the founding work of [38] and the works
of [39], this study started the generation number of the
experiment at 100 and was systematically increased. It was
observed that the experiment used 75% of the hardware com-
putational resources, and there was no new optimal solution
observed at the 500 generation number. For this study, the
evaluation network scenario was extracted from the Internet2
OS3E topology in the work of [37].

VI. RESULTS AND DISCUSSION
This section presents the summarised outcome of the
experimentation. The analyses results for A-NSGA-III are
compared with NSGA-II and MOPSO algorithm results.
The experiment results are shown in Figures 3 through 19.

FIGURE 3. Hypervolume Indicator for the three Algorithms.

FIGURE 4. Convergence Graph of the three Algorithms.

This study aims to find the optimum position to place
the controller in SD-WAN in the presence of several con-
flicting objectives to satisfy various network requirements.
The experiment exploited six (6) characteristics of the
controller placement problem in SD-WAN to realize the
convergence and diversification results using Hypervolume
performance indicator. These characteristics were average
switch-to-controller latency, maximum switch-to-controller
latency, average inter-controller latency, maximum inter-
controller latency, load balancing, and resilience. This study
makes use of a performance metric tool known as the
Hypervolume indicator to assess the quality of the proposed
A-NSGA-III, NSGA-II, and MOPSO algorithms. The results
of the experimentation are interpreted and discussed in the
subsequent subsections.

A. HYPERVOLUME ANALYSIS RESULTS
Figure 3 shows the merged graph of Figures 5 through 7
for the holistic comparison of the hypervolume indicators.
Figure 4 shows the convergence graph of the three algo-
rithms. Figures 5 through 7 show the descriptive chart of
the hypervolume indicator for the A-NSGA-III, NSGA-II,
and MOPSO algorithms, respectively. The graph shows
that the A-NSGA-III had the highest (most closer to 1
among the three algorithms) traceable hypervolume indicator
value of 0.94876. The NSGA-II had the traceable hyper-
volume indicator of 0.94314, while the MOPSO algorithm
had the lowest (least closer to 1 among the three indi-
cators) traceable hypervolume indicator value of 0.91168.
The hypervolume improvement of NSGA-III (0.9488) over

896 VOLUME 3, 2022

FIGURE 5. Hypervolume Indicator for the A-NSGA-III Algorithms.

NSGA-II (0.9431) and MOPSO (0.9117) is considered to be
significant because it lies between 0 and 1. This follows the
fundamental principle established by [40] and implemented
by [35] and [41], [42]. The same interpretation for Figure 3
is applicable for Figures 5 through 7. Similarly, for the con-
vergence, the A-NSGA-III had the highest (most closer to 1
among the three algorithms) traceable hypervolume indicator
value of 0.94876. The NSGA-II had the traceable hypervol-
ume indicator of 0.93646, while the MOPSO algorithm had
the lowest (least closer to 1 among the three indicators) trace-
able hypervolume indicator value of 0.89348. Meanwhile, the
number of generations (500) in the convergence algorithm
was multiplied by 100 due to the internal library compu-
tations. These results imply that the A-NSGA-III has the
highest convergence and diversity while the MOPSO algo-
rithm has the least convergence and diversity. Hence, only
the A-NSGA-III shows the highest convergence and diversity
characteristics among the three algorithms.

B. CONVERGENCE ANALYSIS RESULTS
Figure 4 shows the convergence graph of the three algo-
rithms. Sequel to the work of [38], the point when no
new optimal solution is observed determines the point of
convergence for the algorithm. In this experiment, the gen-
eration number was initially set to 100 and systematically
increased until the 500 generation number was reached, and
no new optimal solution was found. This implies that the
algorithm converges at 500 generations. To assess further the
quality of this convergence, this study employs the use of
the Hypervolume performance metric to reveal further the
quality of this convergence which is exhibited in Figure 4.
The A-NSGA-III had the highest (most closer to 1 among
the three algorithms) traceable hypervolume indicator value
of 0.94876. The NSGA-II had the traceable hypervolume
indicator of 0.93646, while the MOPSO algorithm had the
lowest (least closer to 1 among the three indicators) trace-
able hypervolume indicator value of 0.89348. Meanwhile,
the number of generations (500) in the convergence algo-
rithm was multiplied by 100 due to the internal library
computations. These results imply that the A-NSGA-III has
the highest convergence while the MOPSO algorithm has
the least convergence. Hence, only the adapted NSGA-III

TABLE 1. Diversity measurement using standard deviation and coefficient of
variation.

shows the highest convergence characteristics among the
three algorithms.
Furthermore, Table 1 shows the inferential statis-

tics of the standard deviation and the PCV associated
with the six objectives for the three algorithms under
consideration.

C. PERCENTAGE OF COEFFICIENT ANALYSIS RESULTS
The PCV [28] was observed to significantly reveal the
internal variability than the standard deviation tool does.
Hence, the PCV results were used to provide additional
interpretation about the diversification characteristics of
the six objectives in each of the three considered algorithms.
The diversification characteristics are directly proportional to
the PCV. This implies that the higher the PCV, the better the
diversification characteristics [31]. Table 1 reveals that the
adapted NSGA-III has the highest PCV over the NSGA-II
for the six objectives. Similarly, the adapted NSGA-III has
the highest PCV over the MOPSO algorithm for five objec-
tives except for objective 2. This implies that the adapted
NSGA-III has the most increased overall diversification over
NSGA-II and MOPSO algorithms.
Table 1 reveals that the A-NSGA-III has the corresponding

highest PCV of (36.867, 18.9024, 23.644, 38.3098, 24.8801,
24.8808) over the NSGA-II PCV of (22.4033, 13.4573,
20.7105, 23.0668, 20.7946, 20.7965) and over MOPSO algo-
rithm PCV of (6.42, 14.3162, 29.149, 5.0297, 11.7147,
11.714) for the objective functions 0 through 5, respectively.
Similarly, the PCV analyses reveals that the A-NSGA-III
has a PCV total of 167.4841% over NSGA-II with the PCV
total of 121.229% and the MOPSO algorithm PCV total of
78.3436%.

D. PERCENTAGE DIFFERENCE ANALYSIS RESULTS
Finding the percentage difference (% Diff.) between
the proposed A-NSGA-III and the reviewed algorithms
(NSGA-II and MOPSO) reveals that the A-NSGA-III out-
performs both the NSGA-II and MOPSO with 32.04%
and 72.52%, respectively. This result validates the estab-
lished conclusion that A-NSGA-III performs efficiently over
NSGA-II and MOPSO in terms of diversification when the
number of objectives is more than 3. This confirms that the
proposed A-NSGA-III is scalable over the NSGA-II and the
MOPSO algorithms.

VOLUME 3, 2022 897

ADEKOYA AND ANEIBA: A-NSGA-III WITH REPAIR-BASED OPERATOR

FIGURE 6. Hypervolume Indicator for the NSGA-II Algorithms.

FIGURE 7. Hypervolume Indicator for the MOPSO Algorithms.

FIGURE 8. Execution time for the three Algorithms.

E. EXPERIMENT EXECUTION TIME RESULTS
Similarly, Figure 8 shows the concatenated descriptive char-
acteristic of the execution time (in seconds) for the three
algorithms, while Figures 9 through 11 exhibit the descriptive
characteristics of the execution time (in seconds) associated
with each of the three algorithms. The maximum generation
time was set to be 500 for each algorithm.
It was observed that, among the three algorithms, the

adapted NSGA-III had a similar execution time to NSGA-II,
with an average execution time of 100.961 seconds and
100.766 seconds, respectively. Meanwhile, the MOPSO
algorithm had an average execution time of 165.652 seconds.

F. PARALLEL COORDINATE PLOT (PCP) RESULT
Figures 12 through 14 display the non-dominated solu-
tions attained by the three algorithms in three-dimensional
space. Analyses revealed that the A-NSGA-III is more

FIGURE 9. Execution time for the A-NSGA-III Algorithm.

FIGURE 10. Execution time for the NSGA-II Algorithm.

FIGURE 11. Execution time for the MOPSO Algorithm.

FIGURE 12. 3-D Scatter plots for A-NSGA-III Pareto sets.

diversified among the non-dominated solution because its
solution is well spread across the objective space compared
with NSGA-II and MOPSO algorithms. The NSGA-II and
MOPSO solutions are not well distributed across the objec-
tive space but clustered together at most points of the entire
space. NSGA-II and MOPSO algorithms exhibited these
clustered characteristics revealing that such algorithms are

898 VOLUME 3, 2022

FIGURE 13. 3-D Scatter plots for NSGA-II Pareto sets.

FIGURE 14. 3-D Scatter plots for MOPSO Pareto sets.

FIGURE 15. 2-D Scatter plots for A-NSGA-III.

FIGURE 16. 2-D Scatter plots for A-NSGA-III.

not well distributed across the Pareto Fronts. Meanwhile,
Figures 15 and 16 depict the non-dominated set solution
obtained by A-NSGA-III in a two-dimensional space. These

FIGURE 17. Parallel coordinate plot for A-NSGA-III solution.

FIGURE 18. Parallel coordinate plot for NSGA-II solution.

FIGURE 19. Parallel coordinate plot for MOPSO solution.

reveal that the final solutions provided by A-NSGA-III
were widely distributed across the Pareto Front. The result
complemented the results obtained in the previous results.
Figures 17 through 19 show the PCP of the three algo-

rithms. It was observed that the three algorithms converged to
the true Pareto front. Meanwhile, the proposed A-NSGA-III
preserved the diversity of solutions extended into the bor-
der, with its solution not being clustered in one position.
Contrarily, it was observed that solutions from the NSGA-II,
starting from objective 1 through 6, were all huddled
together, and there was no evidence of diversification across

VOLUME 3, 2022 899

ADEKOYA AND ANEIBA: A-NSGA-III WITH REPAIR-BASED OPERATOR

the objective space. This result indicates that NSGA-II does
not maintain a good diversity among the solutions. Like
NSGA-II, the MOPSO algorithm does not maintain a good
convergence towards the true Pareto front, as revealed by the
PCP between 0.28 and 0.42. The higher the values, the lower
the convergence with the MOPSO algorithm. However, this
was contrary to what was observed in the A-NSGA-III and
NSGA-II. It was also observed that the MOPSO algorithm
struggled to cover the problem frontier on some objec-
tives. Meanwhile, the solutions of the A-NSGA-III and
NSGA-II algorithms appeared to have a good convergence
over the entire Pareto front. These results also complimented
the evidence established with the hypervolume performance
indicators.

VII. CONCLUSION
Achieving an optimal controller placement in the SD-WAN
environment, in the presence of more than three conflict-
ing objectives, has been confirmed to be associated with
the challenge of scalability. There is a need to develop
an algorithm that can simultaneously handle several con-
flicting objectives for organisations to optimise more than
three objectives simultaneously. This study had proposed
an A-NSGA-III evolutionary algorithm from the existing
NSGA-III in the Mechanical Engineering discipline. A
repair-based mechanism was developed and introduced into
the existing NSGA-III [9] to ensure that infeasible solutions
were removed during the recombination process and also
to avoid the production of duplicates among the final non-
dominated set solutions. The proposed A-NSGA-III algo-
rithm was subjected to efficiency evaluation and comparison
with the reviewed NSGA-II and MOPSO algorithms, based
on the diversity characteristic among the non-dominated
set of solutions with six objectives. The experimentation
results revealed even when the algorithms efficiently con-
verged in the presence of more than three objectives, the
adapted NSGA-III showed more convergence quality in the
hypervolume performance indicator. The A-NSGA-III algo-
rithm outperformed the NSGA-II and MOPSO algorithms
in the presence of more than three objective functions.
The algorithm performance to solve scalability challenge
was measured with hypervolume performance metric which
revealed the convergence and diversification of the algo-
rithms performance. The diversification was measured with
the hypervolume performance metric, the percentage coef-
ficient of variation and the percentage difference metrics.
The NSGA-II and MOPSO were confirmed to be charac-
terised with the inability to obtain diverse solutions among
the non-dominated solutions. Consequently, the A-NSGA-III
performed efficiently over NSGA-II and MOPSO algorithms
when the number of objective function is more than three.
Hence, the proposed A-NSGA-III was confirmed to solve
the challenge of scalability in the controller placement in the
SD-WAN. This study recommends the use of the proposed
A-NSGA-III algorithm for an efficient controller placement

in the SD-WAN when there are more than three conflicting
objective functions.

ACKNOWLEDGMENT
The authors of this study appreciate the significant con-
tribution of Prof. Deepak Sharma of the Department of
Mechanical Engineering Indian Institute of Technology
Guwahati in illustrating and demonstrating the existing
NSGA-III.

REFERENCES
[1] L. Mamushiane, J. Mwangama, and A. A. Lysko, Controller Placement

Optimization for Software Defined Wide Area Networks (SDWAN),
ITU, Geneva, Switzerland, 2021.

[2] A. Sallahi and M. St-Hilaire, “Expansion model for the controller
placement problem in software defined networks,” IEEE Commun.
Lett., vol. 21, no. 2, pp. 274–277, Feb. 2017.

[3] A. Ksentini, M. Bagaa, and T. Taleb, “On using SDN in 5G: The
controller placement problem,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), 2016, pp. 1–6.

[4] O. Adekoya, A. Aneiba, and M. Patwary, “An improved switch migra-
tion decision algorithm for SDN load balancing,” IEEE Open J.
Commun. Soc., vol. 1, pp. 1602–1613, 2020.

[5] V. Ahmadi and M. Khorramizadeh, “An adaptive heuristic for multi-
objective controller placement in software-defined networks,” Comput.
Electr. Eng., vol. 66, pp. 204–228, Feb. 2018.

[6] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, “Density cluster based
approach for controller placement problem in large-scale software
defined networkings,” Comput. Netw., vol. 112, pp. 24–35, Jan. 2017.

[7] D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia, “Poco-
PLC: Enabling dynamic Pareto-optimal resilient controller placement
in SDN networks,” in Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), 2014, pp. 115–116.

[8] A. Jalili, M. Keshtgari, and R. Akbari, “Optimal controller placement
in large scale software defined networks based on modified NSGA-II,”
Appl. Intell., vol. 48, no. 9, pp. 2809–2823, 2018.

[9] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014.

[10] C. Gao, H. Wang, F. Zhu, L. Zhai, and S. Yi, “A particle swarm
optimization algorithm for controller placement problem in soft-
ware defined network,” in Proc. Int. Conf. Algorithms Archit. Parallel
Process., 2015, pp. 44–54.

[11] G. G. Yen and H. Lu, “Dynamic multiobjective evolutionary algorithm:
Adaptive cell-based rank and density estimation,” IEEE Trans. Evol.
Comput., vol. 7, no. 3, pp. 253–274, Jun. 2003.

[12] M. Hamdy, M. Palonen, and A. Hasan, “Implementation of Pareto-
archive NSGA-II algorithms to a nearly-zero-energy building optimisa-
tion problem,” in Proc. Build. Simul. Optim. Conf., 2012, pp. 181–187.

[13] H. Li, K. Deb, Q. Zhang, P. N. Suganthan, and L. Chen, “Comparison
between moea/d and NSGA-III on a set of novel many and multi-
objective benchmark problems with challenging difficulties,” Swarm
Evol. Comput., vol. 46, pp. 104–117, May 2019.

[14] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 1, pp. 333–354, 1st Quart., 2018.

[15] A. L. Aliyu, A. Aneiba, and M. Patwary, “Secure communication
between network applications and controller in software defined
network,” in Proc. IEEE 18th Int. Symp. Netw. Comput. Appl. (NCA),
2019, pp. 1–8.

[16] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 473–478, 2012.

[17] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller
placement problem in software defined networks,” IEEE Commun.
Lett., vol. 18, no. 8, pp. 1339–1342, Aug. 2014.

[18] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and
P. Tran-Gia, “Pareto-optimal resilient controller placement in SDN-
based core networks,” in Proc. IEEE 25th Int. Teletraffic Congr. (ITC),
2013, pp. 1–9.

900 VOLUME 3, 2022

[19] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. IEEE 9th Int. Conf. Netw. Serv. Manag. (CNSM),
2013, pp. 18–25.

[20] S. Lange et al., “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Trans. Netw. Service
Manag., vol. 12, no. 1, pp. 4–17, Mar. 2015.

[21] S. Kukkonen and K. Deb, “Improved pruning of non-dominated solu-
tions based on crowding distance for bi-objective optimization prob-
lems,” in Proc. IEEE Int. Conf. Evol. Comput., 2006, pp. 1179–1186.

[22] H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting approach,
part II: Handling constraints and extending to an adaptive approach,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014.

[23] H. Seada and K. Deb, “U-NSGA-III: A unified evolutionary algorithm
for single, multiple, and many-objective optimization,” Dept. Electr.
Comput. Eng., Michigan State Univ., East Lansing, MI, USA, COIN
Rep. 2014022, 2014.

[24] Y. Yuan, H. Xu, and B. Wang, “An improved NSGA-III procedure
for evolutionary many-objective optimization,” in Proc. Annu. Conf.
Genet. Evol. Comput., 2014, pp. 661–668.

[25] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method
for generating the Pareto surface in nonlinear multicriteria optimization
problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631–657, 1998.

[26] M. Marcisz, “Practical application of coefficient of variation,” in Proc.
13th Int. Congr. Energy Mineral Resour. (CIERM), 2013, pp. 202–208.

[27] H. Abdi, “Coefficient of variation,” in Encyclopedia of Research
Design, vol. 1. Thousand Oaks, CA, USA: SAGE Publ., 2010,
pp. 169–171.

[28] A. K. Thukral, R. Bhardwaj, V. Kumar, and A. Sharma, “New indices
regarding the dominance and diversity of communities, derived from
sample variance and standard deviation,” Heliyon, vol. 5, no. 10, 2019,
Art. no. e02606.

[29] D. A. Agunbiade, S. O. Folorunso, K.-K. A. Abdullah, and
P. I. Ogunyinka, “Two-phase sampling for stratification: Application
to software industry,” Ann. Comput. Sci. Ser., vol. 15, no. 2, pp. 56–60,
2017.

[30] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: A python framework for evolutionary algorithms,”
in Proc. 14th Annu. Conf. Companion Genet. Evol. Comput., 2012,
pp. 85–92.

[31] J. Mwaura, A. P. Engelbrecht, and F. V. Nepomuceno, “Diversity
measures for niching algorithms,” Algorithms, vol. 14, no. 2, p. 36,
2021.

[32] T. J. Cole and D. G. Altman, “Statistics notes: What is a percentage
difference?” Brit. Med. J., vol. 358, p. j3663, Aug. 2017.

[33] M. Li, L. Zhen, and X. Yao, “How to read many-objective solution
sets in parallel coordinates [educational forum],” IEEE Comput. Intell.
Mag., vol. 12, no. 4, pp. 88–100, Nov. 2017.

[34] H. Ji and C. Dai, “A simplified hypervolume-based evolutionary
algorithm for many-objective optimization,” Complexity, vol. 2020,
Aug. 2020, Art. no. 8353154.

[35] K. Shang, H. Ishibuchi, L. He, and L. M. Pang, “A survey on the
hypervolume indicator in evolutionary multiobjective optimization,”
IEEE Trans. Evol. Comput., vol. 25, no. 1, pp. 1–20, Feb. 2021.

[36] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,”
IEEE Access, vol. 8, pp. 89497–89509, 2020.

[37] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29,
no. 9, pp. 1765–1775, Oct. 2011.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and eli-
tist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[39] Y. Tian, H. Wang, X. Zhang, and Y. Jin, “Effectiveness and efficiency
of non-dominated sorting for evolutionary multi- and many-objective
optimization,” Complex Intell. Syst., vol. 3, no. 4, pp. 247–263, 2017.

[40] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and
indicator-based methods in many-objective optimization,” in Proc. Int.
Conf. Evol. Multi-Criterion Optim., 2007, pp. 742–756.

[41] D. Brockhoff, T. Friedrich, and F. Neumann, “Analyzing hypervol-
ume indicator based algorithms,” in Proc. Int. Conf. Parallel Problem
Solving Nat., 2008, pp. 651–660.

[42] Z. Li, X. Wang, S. Ruan, Z. Li, C. Shen, and Y. Zeng, “A mod-
ified hypervolume based expected improvement for multi-objective
efficient global optimization method,” Struct. Multidiscipl. Optim.,
vol. 58, no. 5, pp. 1961–1979, 2018.

OLADIPUPO ADEKOYA (Graduate Student
Member, IEEE) received the B.Sc. degree
in computer science from Olabisi Onabanjo
University, Nigeria, in 2007, and the M.Sc.
degree in data network and security from
Birmingham City University, U.K., in 2018,
where he is currently pursuing the Ph.D. degree
with the School of Computing Engineering and
Built Environment. His research interests include
SDN/NFV and artificial intelligence. He is a
member of IET.

ADEL ANEIBA received the B.Sc. degree in com-
puter science from the University of Benghazi,
Libya, the M.Sc. degree in e-commerce from
Staffordshire University in 2003, and the Ph.D.
degree in computing in 2008. He is an Associate
Professor of Internet of Things (IoT) with
Birmingham City University, U.K. His research
interests include IoT, computer network simula-
tion, evaluation, optimization, and block-chain. He
is a member of IET.

VOLUME 3, 2022 901

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

