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a b s t r a c t

Ontology-based data-centric systems support open-world reasoning. Therefore, for these systems,
Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) are not suitable for
expressing integrity constraints based on the closed-world assumption. Thus, the requirement of
integrating the open-world assumption of OWL/SWRL with closed-world integrity constraint checking
is inevitable. SPARQL, recommended by World Wide Web (W3C), is a query language for RDF graphs,
and many research studies have shown that it is a perfect candidate for closed-world constraint
checking for ontology-based data-centric applications. In this regard, many research studies have been
performed to transform integrity constraints into SPARQL queries where some studies have shown the
limitations of partial expressivity of knowledge bases while performing the indirect transformations,
whereas others are limited to a platform-specific implementation. To address these issues, this paper
presents a flexible and formal methodology that employs Model-Driven Engineering (MDE) to model
closed-world integrity constraints for open-world reasoning. The proposed approach offers semantic
validation of data by expressing integrity constraints at both the model level and the code level.
Moreover, straightforward transformations from OWL/SWRL to SPARQL can be performed. Finally, the
methodology is demonstrated via a real-world case study of water observations data.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Model-Driven Engineering (MDE) [1], also referred to as
odel-Driven Software development (MDSD), is a paradigm shift

rom code-oriented to model-oriented, where modelling is the
ain activity in the software development life cycle. Utilising
DE enhances communication by raising the level of abstraction
nd domain specification to target different audiences. Through
odelling, developers can reason at a higher level of abstraction,
nd model transformation can automate the code generation
o relieve the developers from error-prone and repetitive tasks.
umerous artefacts could be generated for different platforms
sing a single model. The system is modelled first to consider
he vulnerabilities from the early stages of the development to
eveal potential risks before its implementation. In this regard,
pecification of the integrity constraints and business rules on the
odel [2] for the system and data validation can be performed
sing textual constraint languages.

∗ Corresponding author.
E-mail addresses: ambreen.hussain@ieee.org (A. Hussain),

enyan.wu@bcu.ac.uk (W. Wu), zhaozhao.tang@foxmail.com (Z. Tang).
ttps://doi.org/10.1016/j.websem.2022.100717
570-8268/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
The W3C recommends Web Ontology Language (OWL) [3]
to express ontologies in the semantic web. However, OWL has
expressive limitations, such as being undecidable for key in-
ference problems. Another W3C standard, Semantic Web Rule
Language (SWRL1) [3], is an unrestricted combination of OWL DL
and Horn-style rules for modelling added domain knowledge [4].
Both OWL and SWRL inherit Open-World Assumption (OWA) and
do not support UNA (Unique Name Assumption). Under OWA,
a statement cannot be inferred to be false from the inability to
prove that it is true. According to UNA, if we find two individuals
with different names, we can assume they are two different
individuals.

In contrast, Closed-World Assumption (CWA) allows deriving
falsehood from the incapacity to derive truth [5] and offers a
unique name for each individual. In other words, it assumes
that knowledge of some or all parts of the domain exists. Thus,
for the ontology-based data-centric applications, OWL/SWRL is
not suitable to check closed-world integrity constraints because
of OWA. The closed-world integrity constraints are the condi-
tions to verify whether the knowledge explicitly present in the
domain meets specific criteria [6]. The ontology-based systems

1 https://www.w3.org/Submission/SWRL/.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.websem.2022.100717
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2022.100717&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ambreen.hussain@ieee.org
mailto:wenyan.wu@bcu.ac.uk
mailto:zhaozhao.tang@foxmail.com
https://www.w3.org/Submission/SWRL/
https://doi.org/10.1016/j.websem.2022.100717
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Hussain, W. Wu and Z. Tang Web Semantics: Science, Services and Agents on the World Wide Web 74 (2022) 100717

p
e
t
a
b
p
g
i
e
S
c
c
w
m
i
r
c
m

i
a
i
c
s
c
w
v
i
f
h
F
s
t
c
W
d
t
p

j
r
r
a
o
s
e
I
I
d
s
i
t
t
a
b
b
a
i
b

2

n

prefer OWL to check constraints because existing OWL reason-
ers are open source, practical, easily accessible, provide many
standard and extended reasoning, and exhibit competitive per-
formance. OWL is not a triple-based language and requires reifi-
cation of axioms when using a triple-based language, whereas
SPARQL2 is a triple-based query language for RDF graphs. Re-
search studies have suggested SPARQL as the right candidate for
ontology-based applications to check integrity constraints based
on the closed-world assumption [7]. In this regard, many pre-
vious research studies have attempted to transform OWL/SWRL
into SPARQL queries; however, some of these approaches pre-
sented a complex indirect transformation of OWL/SWRL axioms
to SPARQL queries with limited expressivity [8,9], while others
were platform-specific [10].

MDE increases the level of abstraction to help deal with com-
lexity and handles risk by specifying integrity constraints at an
arly stage of the system development lifecycle [11]. In addi-
ion, it allows to build a platform-independent model to gener-
te the code for more than one platform. Therefore, motivated
y the work presented by [12] and [13], in this paper, we
ropose a formal and flexible MDE-based methodology to inte-
rate closed-world constraint checking with open-world reason-
ng. This work focuses on modelling OWL and SWRL rules to gen-
rate SPARQL queries to check closed-world integrity constraints.
ome constraints (such as unique and contextual constraints dis-
ussed below), cannot be expressed in OWL. These constraints
an be expressed with SWRL; moreover, they should be checked
ith SPARQL. Therefore, SWRL rules are included in the ontology
odel to capture these constraints, which are then transformed

nto SPARQL queries at the code level. Thus, the existing OWL
easoners that support SPARQL query answering will be used to
heck closed-world constraints for semantic validation of data
aintaining their integrity.
To demonstrate the usefulness of our methodology, we have

mplemented it on a real-world water case study. Water Supply
nd Distribution Systems (WSDS) are experiencing a significant
mprovement in the availability of observational data due to
ontinuous environmental monitoring via either in situ or remote
ensing [14]. Recent advancements in information and communi-
ation technologies have provided the environmental community
ith continuously evolving software solutions for the increasing
olumes of data often referred to as big data for their access,
ntegration, sharing, publishing, and analysis [15]. While per-
orming these tasks, the semantics of the data becomes highly
eterogeneous as it originated from different data sources [16,17].
or the semantic interoperability of the data, the water case
tudy (detailed in Section 5) developed an ontology. Therefore,
he semantic validation of data was crucial by checking integrity
onstraints imposed on these data to ensure data consistency.
ithout semantic validation of these data, the integrity of the
ata could be violated, which could lead to a negative impact on
he economy. The requirements of this case study inspired us to
erform this research.
Our main contributions are:

1. The use of MDE for closed-world integrity constraint check-
ing for ontology-based data-centric applications. For this
purpose, we included SWRL rules in the ontology model
to represent integrity constraints based on CWA. More-
over, the semantics of these constraints are made explicit
through their annotation.

2. Flexible semantic validation. As discussed in Section 4.4,
users can either use textual constraints (OCL) from the
model or generated code to check integrity constraints.

2 https://www.w3.org/TR/rdf-sparql-query/.
2

3. Direct transformation of the SWRL rules into SPARQL
queries at the code level for the closed-world integrity
constraint checking using existing reasoners.

4. Finally, we demonstrated our methodology through a real
case study using water observations data for their semantic
validation.

The rest of the paper is organised as follows. In Section 2, we
introduce the syntax and semantics of SWRL, integrity constraints
in SWRL/OWL, MDE, and integrity constraints in MDE. The related
work is reviewed in Section 3, and stepwise methodology is
proposed in Section 4. The methodology is demonstrated via a
water case study in Section 5 and Section 6 concludes the paper.

2. Preliminaries

This section overviews the syntax and semantics of SWRL and
MDE to represent the integrity constraints in SWRL and OCL, a
popular textual constraint language in the MDE field.

2.1. Syntax and semantics of SWRL

SWRL [3] extends OWL with the addition of Horn-style rules.
Due to space limitations, we only present the syntax and seman-
tics of SWRL and refer the reader to [18].

The purpose of including the SWRL rules is to capture those
integrity constraints, which could not be expressed as OWL ax-
ioms, e.g. unique [9] and contextual constraints explained in the
next section. Similar to all the other rule-based representation
languages, a rule constitutes a body (antecedent) and a head
(consequent), where if the rule’s body is true, then the rule’s head
should be true. Both body and head of the rule are conjunctions
of atoms. The abstract syntax of SWRL is given in Fig. 2.1. The ab-
stract syntax is in the form of Extended BNF where terminals are
quoted, and non-terminals are bold and unquoted; alternatives
are either separated by (|) or are given in a different production.
The components enclosed in square brackets ([. . . ]) can occur at
most once, and those in braces ({. . . }) can occur any number of
times, and whitespaces are ignored. The abstract syntax of SWRL
helped us to build the model in Section 4.2.

An atom can be in the form of C(i), D(v), R(i, j), U(i, v), sameAs(i,
), differentFrom(i, j), or builtIn(p,v1,...,vn), where C, D, R, and U
epresent a Class, datatype, object property, datatype property
espectively; p is a built-in predicate, i.e. a built-in function; i
nd j are OWL individuals or variables, and v, v(n) are data values
r variables. The built-in functions in SWRL are for mathematics,
tring manipulation and value comparison. The SWRL semantics
xtends the OWL semantics. For an abstract OWL interpretation,
, a binding B(I) is an abstract OWL interpretation that extends
such that variables i and v map to elements of the object or
atatype interpretation domains, and built-ins are mapped to a
ubset of n-ary relations over the datatype interpretation domain,
.e. built-ins have fixed mapping. The notation ∈ means belongs
o or is an element of, = refers to equals and ̸= means not equals
o. According to the condition on interpretations given in Table 1,
n Atom is satisfied by a binding B(I). A binding B(I) satisfies a
ody of the rule if it is empty, or B(I) satisfies every atom in the
ody. A binding B(I) satisfies the rule’s head if it is not empty,
nd B(I) satisfies every atom in the head. A rule is satisfied by an
nterpretation I if for every binding B such that B(I) satisfies the
ody, and B(I) also satisfies the head [3,9].

.2. Integrity constraints in SWRL

As mentioned above, SWRL/OWL inherit OWA and non-unique
ame assumption (NUNA). Let us assume that p is an individual

https://www.w3.org/TR/rdf-sparql-query/
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Fig. 2.1. Abstract syntax of SWRL [3].
Table 1
Conditions on interpretation of SWRL atoms.
SWRL atom Condition on interpretation

C(i) iI ∈ CI

D(v) vD ∈ DD

R(i, j) (iI , jI ) ∈ RI

U(i, v) (iI , vD) ∈ UI

builtIn(p, v1 , . . . , vn) (vD
1 , . . . , vD

n ) ∈ pD

sameAs(i, j) iI = jI

differentFrom(i, j) iI ̸= jI

of type Person, and that class Person is described by the following
axiom:

Person ⊑ ∃hasID.ID (2.1)

hen, using axiom (2.1) OWL reasoning infers that an individual Id
xists such that object property assertion ‘hasID(p, Id)’ and class
ssertion ‘ID (Id)’ are true; if the existence of Id is not explicit,

then its existence will be implied. CWA assumes that we have a
complete knowledge about the domain. Thus, according to CWA,
to satisfy the axiom (2.1), all of the instances of Person (p) will
need to be given ID (Id) and object property hasID (p, Id) will be
true. Suppose a person has an Id1 and Id2, which are not stated
as different.

Person ⊑≤ 1hasID.T (2.2)

hen, according to the axiom (2.2), Id1 and Id2 will be inferred
o be the same because OWL/SWRL does not follow UNA. Instead
f drawing the inference, however, ontology-based systems will
refer to have CWA/UNA treating axiom (2.2) as an integrity
onstraint for inconsistency detection. Mostly the SWRL/OWL
easoners follow the open-world reasoning only and are not
uitable for checking closed-world constraints [6].
The most common constraints are type, cardinality, key,

nique, and contextual. These constraints are detailed in [9].
ost of the constraints can be expressed with either OWL or
WRL, whereas some constraints can only/better be expressed
ith SWRL, i.e. unique constraints and contextual constraints [9]
re discussed in this section:

nique Constraints:
The unique constraints check that the value of a property for

n object is unique. For example, the constraint that two persons
hould not have the same IDs can be expressed in SWRL as:

erson (?p1) ∧ hasID (?p1, ?Id1) ∧ Person (?p2) ∧

asID (?p2, ?Id2) ∧ swrlb : equal (?Id1, ?Id2) →

ameAs(?p1, ?p2) (2.3)
3

This constraint (2.3) cannot be expressed as OWL axiom as
OWL expresses tree-like interdependencies of variables only [19].

Contextual Constraints
Contextual constraints apply the restriction on the value of

one attribute according to the values of other properties. In other
words, the value of one property of an object depends on the
values of other properties of the same object. The co-occurrence
or co-constraints [20] in XML are also contextual constraints.
Standard Markup languages could not capture these constraints.
To illustrate the constraint that a person with a certain job type
(Professor) should be in the department (Education), we can
employ the following rule:

Person (?p1) ∧ hasJobtype (?p1, Professor) →

Department(?p1, Education) (2.4)

2.3. Model-driven engineering

MDE suggests constructing a model to describe a system’s
abstraction first, and then transform this model into a real and ex-
ecutable system, i.e. source code. The models are represented by
the modelling languages, which are defined by meta-modelling
languages. A modelling language comprises an abstract syntax,
semantics, and at least one concrete syntax.

In this context, Model Driven Architecture (MDA) of Object
Management Group’s (OMG) [21] is used widely for MDE. Its
main idea is to abstract the Platform Independent Model (PIM),
a conceptual model based on visual diagrams such as Unified
Modelling Language (UML) [22], which can describe the entire
business function and is not concerned with the implementation
details and techniques. Then, according to different implemen-
tation techniques, multiple transformation rules are formulated.
These rules and assistant tools help transform PIM into PSM
(Platform Specific Model), and finally, the PSM is transformed into
the code. Meta-Object Facility (MOF) [23] is OMG’s standard to
define meta-models. MOF’s version 2.0 provides two metameta-
models: Essential MOF (EMOF) and Complete MOF (CMOF). The
four-layer architecture of MDA is shown in Fig. 2.2. The Object
Constraint Language (OCL) [24] aims to provide a class diagram
with additional information that UML diagrams cannot expose.
OCL allows the definition of integrity constraints for the model. As
a modelling language, modelling constructs are first-class citizens
in OCL, and the OCL code is considerably more compact than the
other programming languages.

Another meta-model is provided by Ecore [26], which is used
in the Eclipse Modelling Framework [27]. Ecore resembles EMOF,
a subset of MOF. Therefore, both terms metameta-model as in
[26] and meta-model as in [27] are used for Ecore. EMF is a
modelling framework and code generation utility for building
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Fig. 2.2. The four-layer architecture of MDA [25].
Fig. 2.3. Subset of Ecore meta-model.
applications and tools based on a structured data model. The
EMF core’s modelling subprojects provide abstract and concrete
syntax development, model-to-model transformation, model-to-
text transformation, database integration and graphical editor
generation [28]. A subset of this Ecore’s meta-model is shown
in Fig. 2.3 , which is used in this research to build the model. It
provides four basic constructs: (1) an EClass is used to represent
a modelled class with a name, zero or more attributes and zero or
more references; (2) an EAttribute is used to define a modelled
attribute with a name and a type; (3) an EReference is used to
express one end of the association between classes. It has a name,
a Boolean flag to indicate whether it expresses a containment, and
a reference (target Class) type; (4) an EDatatype is used to define
the type of an attribute. A data type can be a primitive such as int
and float or an object type such as java.util.Date. Eclipse OCL is
based on OMG’s OCL 2.4 specification to be used with the Ecore
and UML meta-models [29].

2.4. Integrity constraints in MDE

Modelling languages allow specifying structural constraints

such as unique and multiplicity. These are often defined by the

4

Class properties and relations in the model. For example, the
requirement that ‘a person has exactly two parents’ in the model
can be expressed by the multiplicity constraint, which utilises
the ‘Lowerbound’ and ‘Upperbound’ properties inherited by class
EReference of the Ecore for the EClass association Fig. 2.4(a).

The instance of the model should satisfy the multiplicity con-
straint by allowing to have exactly two parents. However, com-
plex constraints (attached constraints) are usually defined by tex-
tual constraint languages such as OCL. For example, the require-
ment that ‘a person cannot be a parent of him/herself’ which, is an
irreflexive property of a concept in the ontology, can be satisfied
by an attached constraint in OCL expression Fig. 2.4(b). This
constraint will be attached with the model. Irreflexive property
is elaborated via an instance of the model in Fig. 2.4(c). In terms
of constraint expression, the model can express structural closed-
world integrity constraints such as unique and typing constraints.
The typing constraints restrict the individuals’ type that partici-
pates in relation or values’ type allowed for a property. However,
the constraints defined on multiple structural properties must
be expressed through OCL on the model, such as contextual

constraints or pattern constraints. Even though we can express
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Fig. 2.4. (a) Multiplicity constraint defined on the Person. (b) An Attached Constraint in OCL. (c) Irreflexive property of the class Person.
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nique and contextual constraints through OCL, our requirement
n this paper is to use existing OWL reasoners to check the closed-
orld integrity constraints. Thus, we aim at transforming SWRL
ules into SPARQL ASK queries at the M0 level. Code generation
ould be performed only from the entities in the model and not
rom OCL. Transformation of OCL into SPARQL will require to
nclude entities into the model for OCL instead of ontology, which
s an interesting direction for future work. As we are focusing
n addressing the problem for ontology-based applications, we
ncluded ontology in the model.

. Related work

Integrity constraints are mostly checked to analyse relational
atabases. However, research studies in the Semantic web have
hown interest to include the integrity constraints to validate the
ata. One such task is presented by [6]. The authors compared
elational databases and OWL on the basis of their schema lan-
uages and computation problems and extended the OWL with
ntegrity constraints that behaved similarly to the statements in
elational databases. Their work was based on a minimal Her-
rand model semantics of OWL. Given an OWL KB K containing
n ABox and a TBox, and a constraint TBox C, an axiom in
he constraint TBox is satisfied by K if all minimal Herbrand
odels satisfy it. Another approach given by [30] was to extend
Ls with autoepistemic operators to model integrity constraints.
he authors presented Description Logics of minimal knowledge
nd negation as failure (MKNF-DLs) that combined closed-world
nd open-world reasoning with modal operators for a formal
haracterisation of non-monotonic features. Kharlamov et al. [31]
eveloped a tool for creating ontology-based models and cap-
uring integrity constraints as OWL 2 RL axioms. The constraints
ere translated into Datalog programs with stratified negation
s a failure for query answering and data validation. They con-
ucted an evaluation of the tool over data from two industrial use
ases. Fang [32] presented and applied an approach on biomedical
ntologies for maintaining integrity constraints throughout the
ifecycle of OWL, including the processes of OWL generation and
aintenance. For OWL generation, a paraconsistent model was
sed for maintaining integrity constraints during the process
f translation of relational database to OWL. A rule-based lan-
uage with a set extension was used as a platform for constraint
pecification.
An approach by [8] presented the combination of closed world

onstraint validation with the open-world reasoning of OWL
5

hrough a query translation technique. This approach represented
ntegrity constraints as OWL axioms that were translated into
PARQL queries to use the existing OWL reasoners for con-
traint validation. To address this approach’s limitations, [10]
resented a platform-specific method by extending the transla-
ion rules with the inclusion of data types and data values for
onstraint representation without a formal description of con-
traint semantics and translation rules. This extended approach
as used in [9] to formalise the description of the semantics
f OWL/SWRL constraints and translation rules. The strategies
resented by [8,9] used the indirect transformation, i.e. from
WRL to DCQnot+ and from DCQnot+ to SPARQL. A DCQnot is a

Disjointed Conjunctive Query with Negation As Failure (NAF)
operator (‘‘not’’). Consequently, these approaches had a limita-
tion to express the knowledge base and the constraints pair
to either <SROIQ, SROI> or <SRI, SROIQ>. Patel-Schneider [7]
emonstrated that DL axioms could be interpreted and be used
or both constraint checking and closed-world recognition when
nformation sources are expressed as RDF or RDFS. The constraint
hecking could be effectively implemented using a translation to
PARQL queries. Lausen et al. [33] extended RDF by a set of con-
traints such as primary and foreign key restrictions for relational
ata mapping to RDF and demonstrated that SPARQL was able to
eal with all types of constraints. The Shapes Constraint Language
SHACL3) [34] is recommended by W3C for validating RDF graphs
gainst a set of constraints. These constraints were provided as
PARQL queries or shapes.
Due to the complexity of commercial products, the verification

nd validation procedures are quite challenging. To deal with this
roblem, Model-based Systems Engineering (MBSE) was applied
hrough the formal application of models in the system develop-
ent life cycle to help with system’s verification activities [11].
or managing the complex system monitoring and fault diagnosis
nd verification, [35] proposed a combination of data-driven and
odel-based methods to improve fault detection. Given a com-
licated system such as automotive, a framework was proposed
y [36] to use ontology for fault detection. The use of Model-
riven technologies for ontology-based systems for semantic uni-
ication and verification has emerged in many research studies.
ur methodology in the next section is based on the approach
resented by [12,13]. The reason for selecting their approach was
hat the domain model was separated from the ontology (seman-
ic) model, and the annotations were made explicit by using a

3 https://www.w3.org/TR/shacl/.

https://www.w3.org/TR/shacl/
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separate annotation model. So, the domain ontologies and mod-
els could evolve asynchronously. However, our methodology is
extended and overcame their limitations, such as domain-specific
meta-model and confined constraints expressivity to ontological
concepts and properties with no code generation. Similarly, Par-
reiras and Staab [37] integrated MOF-based meta-models for UML
and OWL and presented a framework named Transforming and
Weaving Ontologies and UML in Software Engineering (TwoUse).
One of the building blocks of this framework was a specification
of SPARQL-DL Abstract Syntax (SPARQLAS), which employed OWL
Functional-Style Syntax to compose queries. The model-to-model
transformation was performed from SPARQLAS to SPARQL [38].
An approach proposed by [2] used constraint-aware model trans-
formation, which supported constraint specification in the def-
inition of transformation rules. The authors used this approach
for the specification of data validation constraints [39] in OCL
at the model level. The specified constraints were mapped with
Java annotations, which were transformed to tests that could
be executed by an existing framework for data validation. The
authors in [40] presented an ontology-based verification method
where the UML class diagram was represented as OWL, and OCL
constraints were transformed into SPARQL NAF queries. From
research studies mentioned above, it is clear that SPARQL is
the right candidate for constraint checking for ontology-based
applications. For the validation of integrity constraints at model
level only, SWRL rules could be mapped to OCL statements.
One such approach was presented by [41] where they described
syntactic mapping from SWRL to OCL and as a result of this
mapping they introduced a subset of OCL, i.e. OCL-Lite. OCL-Lite
could be used to express rules, which later could be mapped into
the SWRL. A similar approach was presented by [42], where
the authors used REWERSE Rule Markup Language (R2ML) as a
pivotal metamodel for interchanging between OWL/SWRL and
UML/OCL. For model transformations, they used ATLAS Transfor-
mation Language (ATL4). The authors of [43] proposed the direct
transformation of OWL/SWRL to UML/OCL.

Many research studies have highlighted the advantages of
semantic annotation on the design models and are focused on
a range of perspectives. For example, sharing and reusing of
the knowledge for the data integration [44,45], domain-specific
knowledge interoperability such as computer-aided design mod-
els [46] and to assist analysts and designers in managing their
models [47]. The authors in [48] proposed an approach for se-
mantic interoperability between stakeholders by annotating the
enterprise models with an ontology. The structure of semantic
annotation was based on its type (decoration, link, Instance Iden-
tification, etc.), textual description, location, formal, and graphical
description. The informal validation was performed by check-
ing whether the annotations had conveyed the correct meaning
to the model. Another method was presented by [49] where
the authors used the XMI version of the UML class diagram to
annotate class attributes with ontology concepts by generating
annotation files using the XSLT templates. They gave the idea
of using annotation in the code generation if required. An ap-
proach was proposed by [50] in which the authors used semantic
annotation to bring the semantic interoperability between the
models during the product life cycle management. They used
two types of ontologies to semantically enrich the model. Their
method of verifying the semantics of the annotated elements was
semi-automatic based on the likeness comparability between the
two-domain semantics of a common annotated model element.
However, rarely semantic annotation of the design models dealt
with the semantic validation of the constraints imposed on the
domain.

4 https://www.eclipse.org/atl/.
6

Fig. 4.1. Four-step methodology. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

4. Methodology

The methodology proposed in this paper (Fig. 4.1) is based
on approaches presented in [12,13], where the authors anno-
tated domain models by references to the domain ontologies.
Our methodology is enhanced by making the model generic and
including further concepts in the ontology model, such as SWRL
rules, to express the integrity constraints. By generic, we mean
that it is a domain-independent model. It can be used for any
domain with that domain’s ontology. The name of the domain
is not mentioned in the model. Instead, the ‘‘name’’ is added as
an attribute of the domain and ontology model, explained in the
next subsection. We express the closed-world semantics of the
SWRL rules based on the explicit data present in the ontology,
i.e. ABox assertions [51]. These rules are translated into OCL
expressions for semantic validation of data at the model level and
SPARQL queries are generated for each integrity constraint for the
semantic validation of data using existing OWL reasoners.

The methodology consists of the following four steps:
(1) semantic model,
(2) design model,
(3) semantic annotation, and
(4) semantic validation.

4.1. Step 1: Semantic model

The first step involves formalising the domain knowledge in
the form of a semantic model, i.e. ontology. The semantic model
can be designed by domain engineers with the collaboration
of the users using the domain knowledge. The knowledge can
be represented by the ontology expressed in languages such as
Web Ontology Language (OWL5) recommended by the W3C and
formulated using software such as Protégé [52]. The ontology
consists of entities and relations between those entities. It can
include the rules and restriction axioms to define the integrity
constraints imposed on the domain. The semantic model is built
first so that domain-specific elements could be included in the
model, if required, in the next step. This step can be performed
by building ontologies from scratch or by using the existing ones.
If these are not available already, this step can be eliminated

5 https://www.w3.org/TR/owl-ref/.

https://www.eclipse.org/atl/
https://www.w3.org/TR/owl-ref/
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Fig. 4.2. Generic model.
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ecause the ontology is modelled in the next step, which can
llow the generation of .owl file as a result of generated code in
he last step. Automatic generation of .owl is out of scope for this
aper.

.2. Step 2: Design model

The second step involves designing the model, i.e. Platform
ndependent Model (PIM). The generic model constitutes an in-
ependent technological specification of a system. The model is
eveloped using EMF in Eclipse IDE. It consists of three separate
arts shown in Fig. 4.1 Domain’s ontology model (left part coded
n cyan colour), is used to annotate the domain model, (2) Domain
odel (right part depicted in red colour), and (3) A separate
nnotation model (middle part shown in blue), provides a means
f domain model linkage with the ontology model for the se-
antic annotations (discussed in next subsection). The domain’s
ntology model includes the concepts, relationship between the
oncepts, properties and constraints in the form of rules and
estrictions. SWRL rules are added in the ontology model, shown
n Fig. 4.3, to express the integrity constraints with careful con-
ideration of the abstract syntax of SWRL given in Fig. 2.1. The
ule contains a body (antecedent) and head (consequent). Both
he body and the head consist of several atoms, which could be
ero, as depicted by the multiplicity in Fig. 4.3. A rule states that
f all the atoms in the body of the rule hold, then the head of
he rule also holds. An empty body is regarded as trivially true,
hereas an empty head is regarded as trivially false.
In the domain’s ontology model, the class Atom is made as an

bstract class. All the types of Atom such as ClassAtom, DataRan-
eAtom, ObjectPropertyAtom, DataPropertyAtom, SameAs, Different-
rom and BuiltIn are defined as subclasses of class Atom. Class
ariable is made an abstract class. The IndividualVariable class
nd DataVariable class are inherited from the Variable class to
eclare variable of type Individual and datatype. Due to the space
imitation, some atoms are defined as follows:

– The ClassAtom has a relation classRef, which is an ontological
class (OClass) and one IndividualObject (iobject), which can
be of type Individual or IndividualVariable.

– The ObjectPropertyAtom has an ObjectProperty relation be-
tween two iobjects.

– The atom BuiltIn has a builtinID, a symbol, and one or more
DataObject (dobject), which can be of type DataValue or
DataVariable.
7

he domain’s ontology model can be extended with further con-
epts in the ontology, and the domain model can be extended
ith domain-specific elements. The key concepts of the domain
odel are: (1) Model with an attribute name to represent the
omain’s name. The Model can have zero, one or several classes
MClass), (2) MClass represents a Class in the domain model,
hich can have zero, one or several properties (MProperty) with
heir type, (3) MProperty represents a property in MClass with its
ype. AnMProperty can be of two types:MDProperty,which can be
tring, Integer, or Date; and MCProperty, which has an attribute
lassType, which refers to another MClass.

.3. Step 3: Semantic annotation

In this step, the ontology model is used to annotate the domain
odel to explicit the semantics and to understand it in the right
ay. The generic model (Fig. 4.2) offers the linkage of the domain
odel entities with the concepts in the ontology. The middle
art of the model is called ModelAnnotation, which is the entry
oint for the semantic annotation and links the domain model
ith the ontology model. It annotates the domain model with the
ntology model by establishing an association. The ClassAnnota-
ion associates the ontological entities with the domain model’s
lasses. PropertyAnnotation defines a model’s class properties by
nnotating them with the ontological properties. Finally, the Ex-
ression class provides the association by its type with enum
xpressionType that could be restrictionConstraint, ruleConstraint,
r algebraic, by setting its description in the value field. The se-
antic annotation exposes the relationship between the model’s
lasses and ontology’s concepts and helped to interpret the model
orrectly because it integrates the domain knowledge into the
omain model, making it self-explanatory. The annotation will
elp the programmers to perform the transformation process to
et the desired output. It will also help the domain experts, as
hey are familiar with the domain knowledge.

.4. Step 4: Semantic validation

The domain model enriched with the ontological annotations
btained in the previous step is validated in this last step. To
rovide the user with the flexibility of options, two types of se-
antic validations of data are performed: (1) semantic validation
f the data by checking integrity constraints expressed on the
omain model, (2) semantic validation of the data by checking
ntegrity constraints generated as the code. For the semantic
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Fig. 4.3. Rules in ontology model.
alidation of data at the model level, the integrity constraints are
mposed on the domain model by the domain ontology through
roperties, relations, rules, or restrictions to determine whether
hey are valid. These constraints are translated into OCL scripts to
alidate the model when it is instantiated (M1). The translation
f constraints into OCL is manual. The automated translation of
onstraints into OCL will be considered in the future work. This
ay, the user is given a flexibility in options to perform semantic
alidation of the data. OCL will allow the constraint checking at
he model level in case code generation is not needed. If the
equirement is to perform semantic validation of data at the code
evel, then code can be generated in any desired language.

.4.1. Code generation
Certain mapping rules are formulated to generate the integrity

onstraints for the semantic validation of data. In our case, the
WRL rules are transformed into the SPARQL queries. To design
he transformation rules, two types of rule constraints (Fig. 4.3):
bject property rule constraint and data property rule constraint,
re added. As the name suggests, the rules that contain class
toms and object property atoms are given the type of ‘‘ob-
ectPropertyRuleConstraint’’ and the rest are given the type of
‘‘dataPropertyRuleConstraint’’. The transformation rules are given
n Table 2, and the transformation of SWRL atoms to SPARQL ASK
ueries is given in Table 3.
8

The code is generated directly from the PIM using Model2Text
(M2T6) transformations in the desired programming language,
i.e. SPARQL. These transformations use a template-based ap-
proach where a Template is a text template with placeholders. The
data can be extracted from models through these placeholders.
The placeholders are expression specified over model entities,
with queries being the primary mechanisms for selecting and
extracting the values from models. In this paper, Acceleo7 is used
for these transformations. During the mapping, the concepts from
the source model are linked to the concepts in the target code.

5. Semantic validation of water observational data

In this section, the four-step methodology proposed in the
previous section is implemented for the semantic validation of
the water observations data used for a WatERP8 case study.

A successful WSDS meets the requirements of quality, water
demand, and distribution system. These requirements include
maintaining water pressure ensuring the durability of the water
supply resources. Information collection, system monitoring, and

6 https://www.omg.org/spec/MOFM2T/1.0/PDF.
7 https://www.eclipse.org/acceleo/.
8 https://eurecat.org/en/portfolio-items/waterp/.

https://www.omg.org/spec/MOFM2T/1.0/PDF
https://www.eclipse.org/acceleo/
https://eurecat.org/en/portfolio-items/waterp/


A. Hussain, W. Wu and Z. Tang Web Semantics: Science, Services and Agents on the World Wide Web 74 (2022) 100717

D
D
w
m
i

Table 2
Transformation rules.
Rule Transformation rule Source (PIM) Target (SPARQL)

1 Rule2Query Rule Ask Query

2 RuleName2QueryName Rule.Name Query.name

3 RuleComment2QueryComment EClass = ‘Expression’
Attribute = ‘Comment ’

# SPARQL Comment

4 Rules of type ObjectPropertyRuleConstraint Atoms in Body
Atoms in Head

Ask WHERE {Atoms in body}
Filter EXISTS {Atoms in head}

5 Rules of type DataPropertyRuleConstraint Atoms in Body
Atoms in Head

Ask Where (Atoms in body except
dataRange/dataPropertyAtoms) filter
(dataRange/dataPropertyAtoms/atoms
in head)

Atoms:

6 ClassAtom2Triple IndividualObject
ClassRef

?var
Predicate = rdf:type
Class Name

7 ObjectPropertyAtom2ObjectPropertyTriple objectProperty
IndividualObject

Individual/IndividualVariable
Predicate = object property
Individual/IndividualVariable

8 DataPropertyAtom2DataPropertyTriple Individual Object
dataProperty
data Object

Individual/individualVariable
Predicate = data property
DataValue/dataVariable

9 DataRangeAtom2FilteronDataType dvar
Datatype

?dataVariable
datatype(?dvar) = dataType
Table 3
Transformation of SWRL to SPARQL.
SWRL atom Source (Model) Transformation SPARQL query (Target)

Class Atom = C(i) i = iobject, C = classRef ?iobject rdf:type classRef ?i rdf:type C

DataRangeAtom = D(v) v = dvar
D = datatype

Filter(datatype(?dvar) = xsd:datatype) Filter (datatype(?v) = D)

objectPropertyAtom = R(i, j) i, j = iobject
R = objectProperty

?iobject objectProperty ?iobject ?i R ?j

dataPropertyAtom = U(i, v) i = iobject, v = dataobject
U = dataProperty

?iobject dataProperty ?dataobject ?i U ?v

sameAs i = j i, j = iobject ?iobject owl:sameAs ?iobject ?i owl:sameAs ?j

DifferentFrom i ̸= j i, j = iobject ?iobject owl:DifferentFrom ?iobject ?i owl:differentFrom ?j

builtIn(p, v1 , . . . , vn) p = builtInID
v1 , . . . , vn = dobject
symbol = function symbol

filter (builtInID(?dobject1 symbol ?dobject2)) filter(builtInID(?v1 symbol ?v2))
data exchange occur in each part of the WSDS architecture to
inspect water flow, volume, and pressure for ensuring proper op-
erations and detect system abnormalities. The managers require
information from different parts of the WSDS system for decision-
making and planning procedures. A WSDS aims at supplying
water to consumers under sufficient pressure. The water pressure
is maintained between the minimum and maximum acceptable
levels for reliable and safe operation [53]. High-pressure systems
are prone to cause pipe breaks, increased energy usage and leak-
age, whereas low-pressure systems cause users inconveniences
in performing routine tasks [54]. The WatERP data integration
framework [55,56] overcame the problems of data heterogeneity,
lack of management perspective and unavailability of semantic
linkage of data in the ontology by developing Water Management
Ontology (WMO) [57,58]. The water data were integrated using
hydrological standards presented by Open Geospatial Consortium
(OGC), such as Sensor Observation Service (SOS9) in the Water
ata Warehouse (WDW). As a result, a Knowledge-Based Water
ecision Support System (WDSS) was developed to perceive the
ater cycle from the management perspective using WMO infor-
ation. The WMO information was then supplied to the different

nference engines, such as the Rule-Based reasoning engine (RBR)

9 https://www.ogc.org/standards/sos.
9

that was used to support the management objectives. The RBR
inference engine aimed to apply water resource manager experi-
ence to improve water allocation to satisfy different water usage
demands. The water manager experience was represented in the
form of a set of rules, and the allocation of water resource (recom-
mendation) was generated by applying RBR. The rules were in the
form of ontology restrictions stored in the rule set repository. The
facts definition part of RBR generated facts by reading WML-OWL
file using SPARQL queries and converted them into JAVA objects
[59]. The method of facts generation is out scope in this paper.
Our primary motivations to apply the proposed methodology on
this case study are:

1. Semantic validation of water data before it was aggregated
in WDW.

2. Expressing the rules in SWRL for the rule set repository in
RBR

The proposed MDE-based methodology offers the integration
of rules in the model to generate the semantic validation code in
Java for data integration framework and SPARQL queries for fact
definition in RBR. Several integrity constraints imposed on water
observations data were identified, such as cardinality, typing,
pattern, range and contextual. In this work, we focus on integrity
constraints represented by rules to generate SPARQL queries for

https://www.ogc.org/standards/sos
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Fig. 5.1. The implementation of four-step methodology.
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the semantic validation of water data using existing semantic
reasoners by evaluating the SPARQL queries. The contextual con-
straints regarding maintained water pressure for reliable WSDS
are mainly discussed. Since WMO was developed from a man-
agement point of view, in case of a high-water pressure in pipes
at any particular time, an alert should be notified in the system
to take a suitable action. To raise such an alert, rules are added
to enhance the WMO in the first step of the methodology. The
implementation of the methodology in the context of MDE is
given in Fig. 5.1.

5.1. Step one: Semantic model

The first step of the methodology involved building a new
semantic model or use existing ontologies. In this step, we have
enhanced the existing WMO.

5.1.1. Enhanced WatERP ontology
The semantic structure of WMO mainly was based on SSN

ontology.10 To align the SSN ontology with the OGC-SOS architec-
ture, several standard ontologies were used, such as Geo-SPARQL
schema11 (‘‘Geo ontology’’) and shecma.org12 [60]. In the WMO,
the ‘Unit ’ was considered as a data property for the ‘Observations’.
To enhance the WMO and to represent the constraints related to
a sensor, we consider ‘Sensor ’ as a separate entity because sensors
are deployed at the feature of interest to observe a phenomenon
and transmit time-series data. This entity is aligned with the
SSN ontology. A sensor has two data properties: ‘hasURI ’ and
‘hasUniqueID’ of types string and integer. The entity ‘Sensor ’ with
its two properties and restrictions is given in Fig. 5.2. Moreover,
the ‘Unit ’ is defined as a separate entity with an object property
‘hasUnit ’ within the domain ‘Results’. A necessary restriction of
the type universal is also defined on ‘Results’ (5.1).

Results ⊏ ∀ hasUnit Unit (5.1)

10 https://www.w3.org/2005/Incubator/ssn/ssnx/ssn.
11 http://www.opengeospatial.org/standards/geosparql.
12 http://schema.org/.
 l

10
Fig. 5.2. The entity ‘‘Sensor’’.

A segment of WMO [60] shown in Fig. 5.3 is updated with ‘Re-
sults’ and ‘Unit ’ entities with a relationship of ‘hasUnit’ between
hem and the relation between ‘Observation’ and ‘Results’ enti-
ies is ‘hasObservationResults’. The relation ‘ObservationResult’
s an obsolete relation from the SSN ontology. The enhanced
atERP ontology consists of 547 Class, 21 object property, 12
ata property, 5425 Axiom, 3827 logical axiom, 25 rules and 29
ndividuals. The ontology covers all the concepts related to water
esource management, water uses, water supply and distribution.
his ontology is used as a reference ontology for the semantic
nnotation in the third step of the methodology.

ules
For the semantic annotation and validation of the contex-

ual constraints, unique constraints, range constraints and type
onstraints, DL-Safe rules (Fig. 5.4) are added in the ontology
ecause OWL and standard Markup languages cannot capture
onstraints such as contextual. As mentioned earlier, SWRL is
he combination of OWL and function-free Horn logic. The result
s very expressive formalism but, unsurprisingly, undecidable.
ecidability can be regained if a safety condition can be imposed
n them. This safety condition is known as ‘DL-Safety’, and such
ules are called the ‘DL-Safe’ rules [51]. The closed-world seman-
ics of these constraints involved only named individuals and
ata values. Similar to all the other Rule-based representation
anguages, a DL-Safe rule constituted a body and head. The safety

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.opengeospatial.org/standards/geosparql
http://schema.org/
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Fig. 5.4. DL-Safe rules.
Observations (?obs) , Results (?result) , hasObservationResults (?obs, ?result) , hasPhenomenon (?obs,WaterPressure) ,

hasValue (?res, ?val) , greaterThan (?val, 7) −→ HighWaterPressureObservation (?obs) (5.2)
Observations (?obs) , Results (?res) , hasObservationResults (?obs, ?res) , hasPhenomenon (?obs,WaterPressure)

−→ hasUnit (?res, bar) (5.3)

Box I.
ondition in the DL-Safe rules states that variables that appeared
n the body of the rule are permitted to exist in the head of the
ule. Moreover, the individual variables in a rule are bound only
o the individuals explicitly named in the ontology [61]. Eqs. (5.2)
nd (5.3) are given in Box I.
The rules are defined on the entity ‘Observations’. The DL-

afe rule about the maximum water pressure in the pipe is a
ange constraint with a defined range of data values typed as
dataValueConstraint ’ is shown in (5.2) and a contextual constraint
yped as ‘objectPropertyRuleConstraint’, i.e. if the observation is
11
having phenomenon ‘WaterPressure’ the unit in the ‘Result ’ should
be in ‘bar ’ as given in (5.3).

The rule’s body stated the following:

• Observations(?obs), i.e. ‘obs’, is a variable for the class ‘Ob-
servations’.

• Results(?result), i.e. ‘res’, is a variable for the class ‘Result ’.
• hasObservationResults(?obs, ?result), i.e. the object property

‘hasobservationResults’, is between the classes ‘Observations’
and ‘Results’ through the variables ‘obs’ and ‘result’.
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• hasPhenomenon(?obs, WaterPressure), i.e. the ‘WaterPres-
sure’, is an individual of the class ‘Phenomenon’ when the
object property ‘hasPhenomenon’ between the classes ‘Obser-
vations’ and ‘Phenomenon’.

• hasValue(?res, ?val), i.e. the variable ‘res’ for the class ‘Result’
has data property ‘hasValue’ represented by the variable
?val.

• greaterThan(?val, 7), i.e. if the value of the variable ?val is
greater than the number 7.

• HighWaterPressureObservation(?obs), i.e. the head of the
rule states that the variable ‘obs’ for the class ‘Observation’
belongs to the class ‘HighWaterPressureObservation’.

• hasUnit(?res,bar), i.e. the head of contextual constraint
states that if ‘Phenomenon’ is ‘Water Pressure’, then the ‘Unit ’
should be in ‘bar’.

5.2. Step two: Design model

This step involves designing the model, i.e. PIM, which can be
xtended. We have extended the domain model by incorporating
omain-specific entities.

.2.1. Extended model
Extending the model with elements specific to the domain

ermits the scripting of these elements’ constraints by including
heir properties in OCL to verify semantics during the semantic
alidation phase.

omain Model Extension
The domain model is extended with the elements specific to

he water field (Fig. 5.5). In this extension, the MClass is inher-
ited by five sub-classes: ‘Sensor ’, ‘Observation’, ‘ObservedProperty’,
‘Result ’, and ‘Export ’ with their attributes. A sensor has attributes:
‘AssignedSensorId’, ‘URI ’, and ‘Observation’. Note here that all the
attributes inside ‘Sensor ’ and ‘Observation’ MClasses are of the
type MDProperty or MCProperty instead of the primitive types.
This is chosen because, in the ‘ModelAnnotation’, the attribute
‘annotatedProperty’ is of the type MProperty, which is a superclass
of MDProperty/MCProperty. Any other property type will not
allow the annotation of these properties. This is one of the aspects
of the generic model.

Ontological Annotations
To accommodate the ontological annotations in the WMO, the
class ‘Expression’ is extended with the attributes of ‘comment ’, o

12
‘label’, and ‘alignedWith’. This will allow to add a technical type of
description about the ontological resources in the ontology and
to include meta-data as a human-readable ontological concept.
It also allows linking the ontology to the external resources to
acquire and offer ontological resources to third parties making
the ontology both more accessible and interoperable. The ‘Expres-
sionType’ enum is also extended with the ‘cardinality Constraint ’,
‘object Property Rule Constraint ’, ‘data Property Rule Constraint’,
nd ‘data Value Constraint ’ options to create the OCL expressions
nd generate code according to the constraint type. The class
Expression’ and the enum ‘ExpressionType’ are shown in Fig. 5.6.

.3. Step three: Semantic annotation

For the semantic annotation, the model is instantiated, and
nnotations are performed manually by the domain user/expert
t level M1. Annotation by association is conducted in the an-
otation model by applying water knowledge, with the ‘Ontology
ater ’, onto the ‘Model Water ’.

.3.1. Rule annotation
In Eclipse IDE, the model is instantiated (M1) with the relevant

ata such as an observation with results, pressure phenomenon,
ressure value and the unit. The DL-Safe rule ‘HighPressureValue’
s applied on the OClass ‘Observation’ from ‘Ontology Water’ to
emonstrate the range constraint (5.2) shown in (Fig. 5.7). The
nnotation of this rule is performed in the ‘Model Annotation’ on
he MClass ‘Observation1’ from ‘Model Water’ is shown in Fig. 5.8.
lease note, the ‘Expression’ is attached with the ‘ClassAnnotation’
o define the rule on the ontological class.

In this annotation, the ‘type’ attribute is of ‘dataValueCon-
traint ’, and the ‘value’ attribute is the rule in SWRL. The ‘com-
ent ’ attribute explained the constraint in the form of a math-
matical expression. The annotation provides the sustainable se-
antic understanding of the formal semantics, i.e. rules which
re human-readable and understandable from a domain modeller
nd domain user point of view. The semantic interoperability
f the rule is sustainable because with an update in the on-
ology in terms of adding a new rule or with an update in
he values of an ‘object property’ or ‘individual’ for the existing
ule, will update/add the annotation only and rest of the model
ill remain the same. Similarly, the semantic annotation of the
ontextual constraint (5.3) is performed, which is shown via an

bject diagram in (Fig. 5.9).



A. Hussain, W. Wu and Z. Tang Web Semantics: Science, Services and Agents on the World Wide Web 74 (2022) 100717

i
i
F
d
a
v
a
t
a
q
f

5

t
s
t
t
g
‘
u
(
T
v
e
o
v

Fig. 5.6. Class expression and enum ExpressionType.
‘

Fig. 5.7. DL-Safe Rule ‘HighPressureValue’ on OClass observation.

5.4. Semantic validation

This is the last step of the methodology where semantic val-
dation of the water data is performed by checking constraints
mposed on these data. Two types of validations are performed.
irst, the constraint is translated into OCL invariant to validate the
ata when the model is instantiated at level (M1). An invariant is
n OCL expression, which evaluates to true or false. Secondly, to
erify the closed-world integrity constraints for ontology-based
pplications, the code is generated as SPARQL queries. Therefore,
he data could be validated by querying the knowledge base. The
nnotations are also generated from the model for the generated
ueries for the sustainable semantic interoperability of the rules
or the programmers.

.4.1. Rule validation
The integrity constraints are translated into the OCL invariants

o validate the data for model-specific classes, i.e. Sensor and Ob-
ervation. The OCL invariants shown in (Fig. 5.10) are defined on
he MClass ‘Observation1’ to validate whether an observation has
he phenomenon ‘WaterPressure’ and the value of the pressure is
reater than ‘7’, in which case the observation will be regarded as
HighWaterPressureObservation’. The second invariant checks the
nit (c, m3/h/, bar) if they are according to the phenomenon
temperature, flowdischarge, waterpressure) of the observation.
he OCL invariants includes the hardcoded values to check and
alidate the data in the domain model. The EMF allows the
xecution of these invariants within the model. On success/failure
f a constraint, a system notification appears informing if it is

iolated.

13
5.4.2. Code generation for contextual constraints
The constraints in the ontology model are automatically trans-

formed into the SPARQL queries by following the transformation
rules in Tables 2 and 3. First, to generate a query for a constraint,
the annotation model is checked for each class in the model.
If the ‘MClass’ is annotated, and the type of class ‘Expression’ is
dataValueConstraint ’ or ‘objectPropertyruleConstraint ’, the query
is generated for the rule with its name. The object properties
of ‘ObjectPropertyAtom’ that were used to annotate the model
properties in the annotation model are selected to be filled in
the generated query, such as ‘hasObservationResults’. The value of
the comment in the annotation for the constraint appears as a
comment at the top of the query to facilitate the understanding.
The code generated in SPARQL for the contextual constraint is
shown in Fig. 5.11. The generated queries are executed in Protégé
using SPARQL tab. On execution of the query, the result appears
in the form of True/False message. The query execution time
depends on the number of triple patterns included in it. The time
interval increases if there are ‘join’ operations in the query [62].
At the moment, our queries have four to five triples without a
‘join’ operation. Therefore, the time to execute the query is less
than a second. During the semantic validation of constraints, we
did not face any performance or consistency issues and no error
in implementation is detected. An excerpt from generate.mtl in
the Acceleo module is given in Fig. 5.12.

5.5. Discussion

In this paper, our focus is to demonstrate the transformation
of those constraints, which could be exhibited only as SWRL rules,
i.e. contextual constraints. We generated the SPARQL queries for
contextual and unique constraints. After transformation we had
to adjust some of the generated code such as for the range
constraint in (5.2) the ‘?val > 7’ was part of the body of the
rule but we put it in the head of the generated query in SPARQL.
For the transformation of unique constraints, the generated code
is adjusted by using ‘Union’ and ‘&& ’ operators. Through our
methodology, the translation to SPARQL is complete and sound
within the expressivity of the SWRL. For example, SWRL is mono-
tonic and does not support missing values, negative expressions,
modification, mathematical functions, and priority relationships,
which are frequently used when modelling real situations [63].
SWRL will need to be extended to handle such constraints [64].
The SPARQL queries can be produced with NAF operator ‘‘not’’
with our approach, as it was performed in [8–10]. The approach
presented by [9] transformed the range, cardinality, and datatype
constraints, whereas our demonstration included contextual, pat-
tern constraints in addition to the above constraints. Our method
outperforms these approaches by providing a straightforward
transformation of SWRL to SPARQL with predefined modelling
elements for composing rules. The rules can be used by domain
experts and non-technical users for managing formal systems and
complex formalisms. In this work, we have shown the transfor-
mation of contextual and range constraints in SPARQL; however,
multiple artefacts could be generated from a single model. For
example, to generate code in other languages such as VB, C# and
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Fig. 5.8. Annotation of rule (dataValueConstraint) on class observation.

Fig. 5.9. Annotation of rule (contextual constraint) on class observation.

Fig. 5.10. OCL invariants for DataValue (range) and contextual constraints.

14
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Fig. 5.11. Code generated in SPARQL for the contextual constraint.
Fig. 5.12. Generate.mtl in the Acceleo module.
ava, the code in the template (generate.mtl) could be rearranged
nd replaced. For the WatERP project, we generated code in Java
nd SPARQL. The transformation rules would help the program-
ers to understand the template and code replacement. This way,

ndirect semantic interoperability between the programmers is
15
brought because they share the understanding of abstract knowl-
edge, i.e. model-driven paradigm. On this basis, they can place the
code in the programming language of their choice and replace
code stubs in the template. For the WatERP case study, the trans-
formation of the extended ontological annotations can be used
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for ontology linkage to resources externally to acquire and offer
ontological resources to the third parties making ontology both
more accessible and semantically interoperable. We have also
applied the methodology for the semantic validation of IoT-based
healthcare data [65].

6. Conclusion

Semantic validation is crucial for the consistency and integrity
f data. This paper proposed a formal and flexible MDE-based
ethodology to enable open-world assumption based applica-

ions to check closed-world integrity constraints for semantic
alidation of the data. The methodology demonstrated the use
f MDE to model integrity constraints as SWRL rules. The rules
re expressed using ontology model concepts and are added as
emantic annotations on domain model elements. We showed
he semantic validation of data by expressing integrity constraints
s OCL expressions at the model level. We also showed the
utomatic transformation of SWRL rules into SPARQL queries
or closed-world constraint checking, which is the primary focus
f the paper. The SPARQL compatible existing OWL reasoners
an evaluate these queries for semantic validation of data. The
odel is generic and can be extended with additional ontological
oncepts and domain-specific entities if required. We can apply
his methodology to any domain for the semantic validation of
ata. For the evaluation of our approach, we implemented it on
water case study.
The code can be generated for more than one platform by

ollowing the transformation rules and replacing the code stubs.
owever, the modellers and domain experts will need to have
basic understanding of SWRL, OWL, modelling and transfor-
ation techniques. Moreover, further empirical evaluation is re-
uired, e.g., in the case of large rules containing hundreds of
toms, advanced techniques such as groupings will need to be
ncorporated. We include the automated population of ontol-
gy/domain models and semantic annotations of the domain
odel with ontology model in future work. This will allow us

o perform quantitative evaluation in terms of number of data
iolations and time to perform the data validation.
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