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Abstract
Forests degradation and deforestation are increasingly becoming a risk to the world’s ecosystem with major effects on climate
change. Mitigating these dangers is tackled through reliable management of monitoring tree species, insect infestations and
wildlife behaviour. Although forest rangers can use artificial intelligence and machine learning techniques to analyse forest
health through visionary sensing, exploring the accuracy of object detection under low illuminations such as sunsets, clouds
or below dense forest canopy is often ignored. In this paper, we have investigated the importance of illumination on detection
through a high definition GoPro9 camera as compared to the low-cost RaspberryPi camera. An external sensing platform
accommodated by a quadruped robot is developed to carry the hardware, one of the first implementations of autonomous
system in forest health monitoring. The compound-scaled object detection, YOLOv5s model pretrained on COCO dataset
containing 800,000 instances, used for person detection, is retrained on custom dataset to detect forest health indicators
such as burrows and deadwood. The system is tested and evaluated under various lighting conditions to detect objects
located at various distances from the vision sensors. This study concludes that YOLOv5s model can detect a person and forest
health indicators up to a distance of 10m with accuracy of 67% and 51% respectively at dusk which shows that light exposure
has a major effect on detection performance. Furthermore, the quadruped robot carrying the sensing platform managed to
successfully shift between different positions while carrying out the detection.
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1. Introduction
Over the past decade, the forests’ health has been deteri-
orating due to climate change, air pollution, and defor-
estation. Forest management and Forest ecological re-
search observe many forest health indicators (FHI) such
as insects infestations, wildlife signs, tree species and
deadwood to support in monitoring the forests health [1].
The forest surveying tasks can be accelerated by leverag-
ing autonomous vehicles such as robots equipped with
computer vision and machine learning technologies [2].
Mobile robots have immensely advanced into attracting
the attention of users of different disciplines worldwide.
In-depth research on these robots using artificial intelli-
gence (AI) such as image classifications, and object de-
tection has enabled them to become applicable for many
applications that include complex environments, rescue
operations, monitoring, indoor tracking, outdoor track-
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ing, policing and many more [3]. While these vehicles
are uniquely developed to support human operations
or carry out certain tasks that are non-reachable by a
person, the operational outcomes achieved thus far with
multi-model visionary sensing and AI has resulted in
the advancement of further autonomy through smart
computing platforms.

In terms of ground robots, these can be broadly classi-
fied into three categories: wheeled robot, tracked robot
and quadruped robot [4]. The category that is generally
selected by the operator is based on the set application
and its environments. Due to the fact that this paper is
focused on evaluating the detection of certain objects
within the forest, the quadruped robot was selected for
this study because of the uneven terrain and the lack of
wheeled robots that can navigate through trees, branches
and muddy areas.

The authors in [5] promotes quadruped robots in work-
ing within dangerous and unreachable environments.
Other researchers have also explored the gait motions of
the robot through adaptive control algorithms, such that
the operational lifetimes can be improved by enabling
smart adaptability through different environments [6],
[7]. Another research group have also explored the ad-
vancements in robotics within forestry environments [8].
Hence, Quadruped robots are found to be most applicable
for monitoring in the forest as they do not require consis-
tent ground contacts [9]. This makes them particularly
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useful as they can surpass logs, branches, twigs and soft
lands successfully. Although these vehicles are vastly
being implemented for many applications, there is cur-
rently a lack of research into implementing them within
native forests. Hence this paper highlights an approach
of using a unique robot to collect data from the forest,
which can be suitable within different sites to support
the forest ranger.

A variety of object detection algorithms have been
proposed with the recent advancement in deep learning.
The most popular object detection algorithms are GPU-
accelerated and Convolutional Neural Networks (CNN)
deep learning frameworks. For the CNN-based object
detectors, the number of classes can can range up to a few
thousand for training. These algorithms can be roughly
categorised as: two-staged and single-staged. The two-
staged object detection algorithms are Faster R-CNN [10],
Fast R-CNN [11], Region Based Fully CNN (R-FCN) [12],
and Regions-Based CNN (R-CNN) [13]. R-CNN is the
first real target detection CNN-based model that achieves
a mean average precision (mAP) of 66%. Single-staged
object detection algorithms include Single Shot Detector
(SSD) [14] and You Only Look Once (YOLO) [15] series,
i.e. YOLOv1, YOLOv2, YOLOv3, YOLOv4, and YOLOv5.

Under ideal conditions of target visibility, a high de-
tection accuracy can be achieved using these algorithms.
However, adverse visual conditions such as low light il-
lumination, rain, fog, and snow extremely degrade the
performance of object detection models. Evidently, the
importance of camera-based object detection is very high
in critical situations such as vehicle safety, construction
object detection, and search and rescue. In this regard,
the authors in [16], reviewed the state-of-art technologies
to address the problem of object detection under rainy
conditions for autonomous vehicles. They combined the
Deraining [17] and Image Translation [18] techniques
with Faster R-CNN and YOLOv3 algorithms for mitigat-
ing the influence of rainy conditions. The comparison of
detection accuracy shows that the performance of these
algorithms deteriorates after feeding derained images.
This is because the process of deraining smooths out
the input image with a loss of meaningful information
and distinctive scene features. For instance, The authors
of [19] found that the YOLOv3 model significantly out-
performed YOLOv2 with the mean Average Precision
(mAP) of 78.2% for detecting construction vehicles under
different visualisations. Similarly, due to limited avail-
ability of weather image data, the researchers in [20]
used Generative Adversarial Networks (GAN) to gener-
ate realistic-looking weather effects for the rain, fog and
snow. These data can be used for object detection under
poor visible conditions, which can help in improving the
algorithms performance.

The network structure of YOLOv5’s is similar to any
other YOLO series in terms of components, i.e. Input,

Backbone and Neck. It functions similar to its predeces-
sor algorithms where the backbone network consists of
PyTorch rather than Darknet. The Input in YOLOv5 uses
adaptive anchor frame calculation that adaptively gives
the optimal anchor frame in different training sets. The
Backbone contains a focus structure to realise the slicing
operation while the Neck uses a new FPN structure to
enhance the propagation of low-level features [21]. As
a result, YOLOv5 achieves a reduction in computation
complexity at least by a factor of four [22]. As compared
to the previous versions, it is a lightweight algorithm
that trains and infers more quickly while performing
positively. For this reason, YOLOv5 has the potential to
be the most effective for object detection operations for
time-critical applications such as the detection of a person
lost in the dense forest. Muhammad etal. [23] reviewed
and evaluated the detection algorithms when objects are
hidden by occlusions, present in low-light images, or
they are merged within the background. Their compari-
son included Faster-RCNN, Mask R-CNN, YOLOv3, and
Cascade Mask R-CNN [24] on publicly available dataset
such as ExDark [25], CURE-TSD [26], and RESIDE [27].
These datasets contain images and videos taken under
challenging environments such as low-light. In our case
study of forest, places under dense tree canopy resemble
with darkness. To the best of our knowledge, the object
detection algorithms trained on day light images are not
tested in the dark. Hence, the purpose of this paper is to
evaluate the performance of YOLOv5 to detect a person
and various FHI such as deadwood and wildlife signs
in the forest areas where light is impenetrable during
the day. We tested the algorithm under a range of light
variations.

The main contributions include: 1) training YOLOv5
algorithm on a custom dataset containing images of FHI
such as deadwood and burrows (wildlife signs) taken dur-
ing daylight, 2) incorporating an external sensing plat-
form for forest monitoring through a quadruped robot 3)
analyse the accuracy of real-time detection against the
illumination variance using a chroma meter.

2. Methods and Materials

2.1. Unmanned Forest Ranger
The purpose of the quadruped machine is to monitor the
health of the forest as it navigates through trees and un-
even grounds. The Unitree Aliengo robot which has been
selected for this study is capable of achieving numerous
motions. Thanks to the robot’s 12 high-performance
servo motors, evolutionary gait motions enable it to walk
through a range of terrains and conditions. The servo
motors are arranged in places relevant to the robot fuse-
lage, with three servo motors attached in each leg to



achieve calf, thigh and hip angular motions. With this
configuration in mind, the unmanned vehicle becomes
most suitable for forestry environments due to uneven
terrain with potential ground obstacles faced during the
mission (i.e. logs, twigs, tree roots, rocks etc).

2.2. External sensory platform
Although the robot consists of integrated perception sen-
sors, several challenges have been faced during the devel-
opment process. For instance, controlling the robot essen-
tially relies on quick responsivity and stability. Therefore,
incorporating detection algorithms into the same com-
puter that controls the machine will result in the CPU
using extensive energy, eventually reducing the perfor-
mance and introducing constant autonomy delays. Addi-
tionally, the visionary sensors currently integrated are
only facing forward with a limited field of view. There-
fore, developing an external box that can sit on top of the
robot to accommodate in sensing the non-viewable ar-
eas will certainly enable further autonomy and improved
forest monitoring.

The aim of developing such a platform is to detect
various objects, tree species, and humans. So far, the
system developed has been purely focused on detecting
deadwood, tree species, persons, and burrows. Although
the detection approach was found successful, numerous
challenges have been faced in the forest while walking
under trees and gloomy areas, although it was sunny
and bright. Hence, developing the sensing box to fit
above the robot will carry out detection of these objects
under different lightning streams while also taking into
consideration the type of camera used.

Initially, an off the shelf enclosure was used to store the
hardware which is connected to the camera. The aim is to
collect various information from specified objects using
AI and machine learning techniques as the robot moves
around a forest. Since the robot motions may create
distortions to the camera quality as the robot is moving
in different terrains, a WG2X Feiyutech gimbal was used
to ensure that stability is maintained throughout the
tests. Hence, the set-up made incorporates a single-board
computer (SBC) Raspberry Pi (RPi) as well as the readily
available low-cost RPi camera. On the other hand, a
GoPro9 camera will also be used to carry out the same
analysis under similar illuminations before the results
are compared. Table 1 illustrates the specifications of the
selected cameras and their overall costs.

Since the WG2X gimbal is only compatible with Go-
Pro, a SolidWorks geometry was designed and 3D printed,
weighing approximately 36 grams to accommodate the
SBC camera. It is worth mentioning that the model devel-
oped is only used for exploration purposes in this initial
phase. Figure 1 illustrates the quadruped robot accom-
modating the external sensing box. A 73Wh portable

Table 1
Comparing GoPro9 specification against a low-cost RPI cam-
era

Specification GoPro9 RPI Camera

Resolution (Megapixel) 23.6 12.3
Sensor CMOS IMX477R

Back Focus Auto Auto
White Balance Auto Manual

Audio Yes No
Weight 450g 50g
Cost £350 £50

battery is used to deliver a long-lasting power to the SBC
as it collects data from the forest. Once the data was col-
lected from the RPi camera, the GoPro9 was then easily
switched and connected to the same SBC to re-collect and
compare the data. With the sensing platform now incor-

Figure 1: Aliengo Quadruped robot accompanied with the
external sensing box

porated into the robot, the responsivity of the real-time
detection algorithm through various illuminations was
compared between a low-cost and a high-cost camera.
Two cameras will be connected to the RPi respectively
through a CSI port while the GoPro9 connects through a
video capture card. With regard to the internal function-
alities, a server will constantly be running on the cloud,
which includes the trained machine learning algorithm
and the media server. For clarity, the primary function
of the media server is to enable Web real-time communi-
cation (WebRTC) which is a browser-based technology
for video conferencing, file transfer and screen sharing
without any external applications or plugins. With this
user-friendly interface, the machine learning algorithm
uses a Flask server to get images from the media server.
The outputs are then sent back to the media server via
HTTP Post, and is displayed to the viewer in the form
of drawing boxes on each object detected [28, 29]. For
our system, the preferred network is 5G. However, in
situations where there is no 5G coverage in the area, we



use WiFi instead. When both are unstable because of
emergency situations such as fire, we designed our sys-
tem to automatically switch to the edge computer (RPi)
instead of the cloud virtual machine (VM). The main dif-
ference between the edge and cloud VMs is that the edge
uses the lite version of TensorFlow, whereas the cloud
uses the full version (TensorFlow 2). This is because our
cloud VM is more powerful than the edge computer with
limited memory and CPU. We use network RSSI to de-
termine if the streaming and detection should happen
locally or remotely. For example, if the RSSI is more than
-80dBm (stable), everything happens on the cloud virtual
machine (VM). However, if connection is unstable or un-
available, it will automatically switch back to the local
device where both the streaming and detection will be
performed. This paper assumes that there will always
be a 4G/5G or WiFi network in the area where the test
is being conducted. If neither network is available in
the area, offline detection can be used. The drawback of
offline detection is that there will be no real-time data
collection, and data will only be accessible after the robot
returns to the station.The full architecture of quadruped
robot-based object detection is shown in Figure 2.

Figure 2: System design of the forestry detection system

2.3. Dataset and Training
For forest use cases, the custom dataset comprised of 200
images captured using a 4K quality RGB camera with two
classes: deadwood and burrow. The images were resized
to 640x640 and labelled using Makesense.ai [30]. The
images were annotated with all the classes using bound-
ing boxes. The YOLOv5 pre-trained on Common Objects
in Context (COCO) [31] dataset containing 800,000 of
person instances in images taken during daylight. We
used this model for person detection. The model was
re-trained on custom datasets for FHI detection. The
hardware to train the model included a Lenovo laptop

Table 2
Accuracy of YOLOv5 Model on Custom Dataset (Deadwood,
Burrow)

Classes mAP@0.5 mAP@0.5:0.95 Precision Recall

Deadwood 0.996 0.743 0.994 0.979
Burrow 0.996 0.755 1 1
All 0.996 0.749 0.997 0.989

equipped with an NVIDIA Quadro RTX 3000 GPU, 8265U
CPU at 1.80 GHz of Intel Core i5, 8 GB of RAM running
on a Windows 10 64-bit system. The dataset was divided
into train and test data with a ratio of 80:20 where the
model took approximately 1 hour and 23 minutes to train
in 200 epochs. Detecting the illuminations at different
periods was achieved by using an RS-pro Chroma Meter,
which can provide an exposure value according to the
illumination in the region. While these measurements
were taken, the robot carrying the GoPro and RPi camera
respectively was used to detect the accuracy of the algo-
rithm based on real-time images taken from the forest.

3. Results and Discussion
Once the model was completely trained, raw pictures
and a videos were fed into the model with a confidence
threshold of 0.25. This resulted in the algorithm detecting
deadwood and burrows with a prediction value of more
than 90% in almost all instances. The model improved sig-
nificantly in terms of precision, recall and mAP after 70
epochs and became stable after 100 epochs, which means
stopping the model early would give almost the same
results in 50% less time. The mAP results for each class at
IoU 0.5, from 0.5 to 0.95, Precision, and Recall are shown
in Table 2. The performance of the algorithm was pre-
liminarily tested through the external sensing platform
placed on the quadruped robot. Initially, it was observed
that the tests took place in a cloudy day in Oakland Park,
Birmingham, UK. Figure 3 illustrates the exposure value
(EV) which was initially taken at 4pm (GMT) with en
EV rating of 586.9. As the sun continued to set, the EV
ratings have consistently reduced to approximately 215.5
at sunset, while it reached below 10 at dusk. For the
real-time object detection in the forest, the web-based
application running on the cloud was utilised [28, 29].
The detection of deadwood, burrows, and person was
performed on and after sunset under three EV’s, i.e. 100,
20, and 10. The detection accuracy of burrows, deadwood
and person using GoPro and RPi cameras are shown in
Figure 4, 5, and 6 based on the three respective EV’s.
In Figure 4, the detection accuracy of all three objects
was relatively accurate on both cameras between 2m-6m.
However, the accuracy begins to immensely deteriorate
at 8m, 10m and 12m for burrows and deadwood using



Figure 3: Exposure value measured between 4-5:30pm in
Oakland Park, Birmingham, UK under a cloudy sky

the RPi camera. On the other hand, the GoPro remains
stable with the accuracy consistently maintained above
50% especially for person detection. As for Figure 5, the
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Figure 4: Detection accuracy according to distance under 100
EV

detection algorithm can be seen to immensely reduce as
the the distance is increased from the object. The GoPro
remained stable with accuracy maintained above 75%
while the RPi camera was accurate above 35% for person
detection, but could not detect burrows at 10m and dead-
wood at 12m. During the period of 10 EV, Figure 6 shows
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Figure 5: Detection accuracy according to distance under 20
EV

how the accuracy of detection became increasingly ef-
fected especially at larger distances. In fact, both cameras

failed to detect anything at 12 meters. The GoPro showed
an improved response of 67%, 60% and 55% for person,
deadwood and burrows in comparison to the RPi results
of 57%, 30% and 0% at 10m. The Figure 7 consists of Go-
Pro images to show the detection of person at 10 EV and
burrows under 20 EV with the accuracy percentage.

Although both cameras have successfully detected
objects after sunset to a certain extent, the YOLOv5 is
trained on thousands of images under day light which
may not be suitable for application that requires detection
of distant objects with low light illuminations. The bur-
rows could not be detected with RPi under all three EV’s
at 10m and 12m, possibly because of their size. Hence, it
can be concluded that camera selection plays a major role
in detection, but the limitation of detection after sunset
will always become a challenge based on the dataset that
has been trained for this system.

4. Conclusion
In this paper, we proposed and utilised a quadruped robot
as a forest ranger to detect persons and various health
indicators under low visible conditions. An external sens-
ing platform was developed which includes an SBC that
connects to a GoPro and a low-cost RPi camera. This has
been performed to estimate the object detection accuracy
in dense forests or adverse weather conditions. The ob-
ject detection was performed by utilising YOLOv5 model
in a cloud-based application before and after sunset. Our
results show that a person could be detected after sun-
set at around 10m via both cameras with good accuracy,
which will be helpful for search and rescue missions. As
for carrying out detection after dusk, some other mea-
sures will be required, such as using a thermal camera
instead of RGB. To increase the detection accuracy of FHI,
we will need to expand our dataset with more images of
burrows and deadwood along with other key FHI. We
have found some large-scale datasets in the literature
containing videos and images captured in a harsh envi-
ronment. In the future we aim to train YOLOv5 model
on these datasets and evaluate its performance.
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