

A Novel Graph-Based Modelling Approach for Reducing Complexity

in Model-Based Systems Engineering Environment

Maxim Filimonov

A thesis submitted to BIRMINGHAM CITY UNIVERSITY in partial fulfilment

for the degree of

Doctor of Philosophy

June 2020

To

My parents Olga Filimonova and Valeriy Filimonov,

My brother Anton Filimonov,

and

My beloved wife Liudmila Filimonova

"A method is more important than a discovery, since the right method will lead

to new and even more important discoveries."

- Lev Davidovich Landau

Abstract

I

Abstract

Field of systems engineering (SE) is developing rapidly and becoming more complex, where

multiple issues arise such as over complexity, lack of communication or understanding of the

design process on different stages of its lifecycle. Model-based systems engineering (MBSE)

has been introduced to overcome the communication issues and reduce systems complexity.

A novel approach for modelling interactions is proposed to enhance the existing MBSE

methodologies and further address the identified challenges. The approach is based on graph

theory, where pre-defined rules and relationships are substituted and reorganised

dynamically with graphical constructs.

A framework for reducing complexity and improving logic modelling in MBSE with metagraph

object-oriented approach is presented. This framework is tested in use cases from literature,

where the model-based systems approach is applied to design an automobile system to match

the acceleration requirements, and to improve a CubeSat nanosatellite communication

subsystem. Through the use case scenarios, it has been proven that the methodology

framework meets all the identified functional and design requirements and achieves the aim

of the research.

This work may be viewed as a step forward towards more consistent and automatic modelling

of interactions among subsystems and components in MBSE. Automation techniques have

multiple applications in systems engineering field as engineers always aim to produce higher

quality and cost-effective products in less time and that is achieved by integrating knowledge

on every stage of a development lifecycle. In addition to those advantages for SE field, the

research provides basis for potential research proposals for future work in various engineering

fields such as knowledge based engineering or virtual engineering.

Acknowledgments

II

Acknowledgements

In the beginning, I would like to say thanks to my supervisors, Prof Ilias Oraifige and Dr

Venkatesh Vijay, for their support and guidance throughout the research process. Their

extensive knowledge, motivation and advice have provided me with the strength to complete

the work and excel in the research writing. Conducting such a complicated academic study

could not have been completed without their guidance and help. Their comments and advice

have constantly encouraged me to expand the research my ideas further.

Apart from my supervisors, I would like to express my sincere thanks to all the people who

were part of the research team at different times. That includes my original supervisors, Dr

Pathmeswaran Raju and Prof Craig Chapman. I am eternally grateful to them for believing in

me, acknowledging my skillset and providing me the opportunity to join their team in the UK.

Identifying the focus of this research could not have been done without their ideas and vision.

It was an honor to work with them.

Also, I would like to acknowledge the support of the Birmingham City University staff for

providing consistent support and resolving all the issues during the PhD studies.

I would always remember my friends at Birmingham City University for all our time spent

together, both fun day outs and thorough scientific discussions in the lab. Their support and

comments provided me a lot of useful information and helped me to identify the correct scope

of the research.

In the end, I am grateful to my parents, brother and especially my wife, Liudmila Filimonova,

for constantly supporting me at all times, believing in me no matter what and providing me

enough encouragement and motivation to accomplish the goal of completing this research.

Contents

III

Contents

Abstract ... I

Acknowledgements .. II

Contents .. III

List of Figures ... VI

List of Tables ... X

List of Publications .. XI

List of Acronyms .. XIII

1.0 Introduction .. 1

1.1 Background ... 1

1.2 Aim and objectives ... 5

1.3 Outline of the thesis ... 6

2.0 Systems engineering and interaction modelling .. 8

2.1 Introduction .. 8

2.2 Systems engineering ... 8

2.3 Model-based systems engineering ... 9

2.3.1 Systems Modelling Language ... 11

2.4 Design automation and Knowledge Based Engineering ... 13

2.4.1 Adaptive Modelling Language ... 15

2.5 Limitation in model-based systems engineering .. 15

2.5.1 What is logic? ... 15

2.5.2 Growing complexity in systems engineering ... 16

2.5.3 Inconsistencies in MBSE ... 19

2.5.4 Development state of logic models in MBSE and lack of dynamism 20

2.5.5 Research gap summary .. 21

2.6 Research questions and hypotheses .. 22

2.6.1 Research Question 1 and Hypothesis 1 ... 22

2.6.2 Research Question 2 and Hypothesis 2 ... 23

2.7 Need for interaction modelling automation and expected contribution to knowledge 24

2.8 Summary ... 25

3.0 Graph-based systems modelling ... 27

3.1 Introduction .. 27

3.2 Graph theory ... 27

Contents

IV

3.2.1 General definitions... 28

3.2.2 Comparative analysis of graphical structures .. 29

3.3 Metagraph definition .. 33

3.3.1 Metagraph properties .. 34

3.3.2 Model as a metagraph ... 35

3.3.3 Metagraphs, directed hypergraphs and hierarchical graphs (higraphs) 37

3.3.4 Metagraph applicability ... 38

3.4 Design structure matrix .. 40

3.4.1 Decomposition principle .. 40

3.4.2 General concept ... 40

3.4.3 DSM applicability and connection with graph theory ... 42

3.5 Graph-based design languages ... 43

3.6 Summary ... 46

4.0 Interaction Modelling Framework .. 47

4.1 Introduction .. 47

4.2 Research methodology ... 47

4.3 Research plan ... 49

4.4 Requirements ... 50

4.5 The interaction modelling framework .. 52

4.5.1 System definition ... 54

4.5.2 Systems Modelling ... 55

4.5.3 Interaction Modelling .. 57

4.5.4 Validation and Verification .. 58

4.5.5 Visualisation ... 61

4.6 Summary ... 62

5.0 Development and Implementation ... 64

5.1 Introduction .. 64

5.2 Interaction Modelling Framework .. 64

5.2.1 Framework outline ... 64

5.2.2 System definition ... 65

5.2.3 Systems modelling ... 66

5.2.4 Interaction modelling ... 69

5.2.5 Validation and verification ... 74

5.2.6 Visualisation ... 76

Contents

V

5.3 Summary ... 80

6.0 Evaluation and Effectiveness of the framework ... 81

6.1 Introduction .. 81

6.2 Evaluation objectives .. 81

6.3 USE CASE 1: Acceleration Analysis of Automobile Development 82

6.3.1 Use case overview .. 82

6.3.2 Current interaction modelling state .. 84

6.3.3 Systems modelling ... 85

6.3.4 Interaction modelling framework application ... 91

6.3.5 Critical analysis ... 104

6.4 USE CASE 2: Standard CubeSat example .. 107

6.4.1 Use case overview .. 107

6.4.2 Current interaction modelling state .. 108

6.4.3 Systems modelling ... 109

6.4.4 Interaction modelling framework application ... 111

6.4.5 Critical analysis ... 122

6.5 Discussion and findings... 126

6.6 Validation of Research Hypotheses .. 130

6.6.1 Research question 1 and Hypothesis 1 .. 131

6.6.2 Research question 2 and Hypothesis 2 .. 132

6.7 Summary ... 133

7.0 Discussion, conclusion, and recommendations for future work 134

7.1 Introduction .. 134

7.2 Discussion ... 134

7.3 Contribution to knowledge... 141

7.4 Limitations of research ... 142

7.5 Recommendations for future work .. 143

References .. 146

List of Figures

VI

List of Figures

Figure 1-1: Complexity description through relationships .. 4

Figure 2-1: Relationship between SysML and UML (Willard, 2007) .. 12

Figure 2-2: Complexity description through relationships .. 16

Figure 3-1: Graphs as a way of model representation (Herzig and Paredis, 2014) 28

Figure 3-2: Graphical representation of a set of interacting variables (a) Simple graph, (b)

Directed graph, (c) Hypergraph and (d) AND/OR graph .. 30

Figure 3-3: Example metagraph ... 33

Figure 3-4: Metagraph with a Metapath .. 35

Figure 3-5: (a) Metagraph, (b) directed hypergraph and (c) hierarchical graph representation

of the same system (Basu and Blanning, 2007) ... 38

Figure 3-6: Example DSM ... 41

Figure 3-7: Example DSM: .. 42

Figure 3-8: Example DSM (Yassine and Braha, 2003): ... 43

Figure 3-9: Data exchange process (Gross and Rudolph, 2016b) .. 43

Figure 3-10: Central data model (Gross and Rudolph, 2016b) .. 44

Figure 3-11: Robot Cell example design graph (Kiesel et al., 2017) ... 45

Figure 4-1: Current thesis research design .. 49

Figure 4-2: The framework for interaction modelling ... 53

Figure 4-3: System definition process to acquire key system design concepts, design rules and

parameters ... 54

Figure 4-4: Systems modelling process to create the comprehensive SysML system model . 56

Figure 4-5: Interaction modelling process to construct the formalised object-oriented

metagraph-based logic model of MBSE system ... 58

List of Figures

VII

Figure 4-6: Steps to validate and verify the system and interaction model at the current

moment of time .. 59

Figure 5-1: Example DSM with external input/output regions (Eppinger and Browning, 2012)

 .. 65

Figure 5-2: SysML Block Definition diagram modelled with Visual Paradigm SysML modelling

tool (“Visual Paradigm Web Site,” n.d.) ... 69

Figure 5-3: Developed object-oriented tool example screenshot ... 71

Figure 5-4: Example data for parsed objects ... 72

Figure 5-5: Example data for parsed relationships and interactions 72

Figure 5-6: Metagraph objects data after original data analysis ... 74

Figure 5-7: Input for the developed tool .. 75

Figure 5-8: Metagraph objects example data of the original and modified system models ... 75

Figure 5-9: Example data for changes after metagraph comparison 76

Figure 5-10: Force-Directed Algorithms Method metagraph visualisation example for 50

vertices, 20 metaobjects and 34 edges (Globa et al., 2015) .. 78

Figure 5-11: Force-Directed Algorithms Method metagraph visualisation example for 20

vertices, 10 metaobjects and 13 edges (Globa et al., 2015) .. 78

Figure 6-1: Model organisation package diagram ... 87

Figure 6-2: Automobile Domain block definition diagram .. 88

Figure 6-3: Vehicle Hierarchy block definition diagram ... 89

Figure 6-4: Vehicle Acceleration Analysis (Analysis Context) block definition diagram 90

Figure 6-5: Vehicle Acceleration Analysis parametric diagram ... 90

Figure 6-6: Metagraph for the Automobile Acceleration Example .. 91

List of Figures

VIII

Figure 6-7: The proof-of-concept tool interface representing the metagraph objects

automatically generated from the system model data ... 92

Figure 6-8: Metagraph objects of the original and modified system models 93

Figure 6-9: The proof-of-concept tool interface representing the automatically tracked

changes from the SysML data .. 94

Figure 6-10: Automatically detected changes between the original and modified system

models and list of affected parameters, as shown in the tool .. 95

Figure 6-11: Metagraphs of the Automobile Example, Use Case 1, Scenario 3 96

Figure 6-12: Metagraphs of the Automobile Example, Use Case 1, Scenario 1 98

Figure 6-13: Metagraphs of the Automobile Example, Use Case 1, Scenario 2 99

Figure 6-14: Metagraphs of the Automobile Example, Use Case 1, Scenario 4 101

Figure 6-15: Metagraphs of the Automobile Example, Use Case 1, Scenario 5 103

Figure 6-16: CubeSat overall system structure .. 109

Figure 6-17: Signal-to-noise ratio analysis block definition diagram 110

Figure 6-18: Signal-to-noise ratio analysis parametric diagram .. 111

Figure 6-19: The proof-of-concept tool interface for CubeSat example 112

Figure 6-20: The proof-of-concept tool interface representing the metagraph objects

automatically generated from the system model data for CubeSat example 113

Figure 6-21: Metagraphs of the CubeSat Example, Use Case 2, Scenario 1 115

Figure 6-22: Metagraphs of the CubeSat Example, Use Case 2, Scenario 2 117

Figure 6-23: Metagraphs of the CubeSat Example, Use Case 2, Scenario 3 118

Figure 6-24: Metagraphs of the CubeSat Example, Use Case 2, Scenario 4 119

Figure 6-25: Signal-to-noise ratio analysis parametric diagram for scenario 5 120

Figure 6-26: Metagraphs of the CubeSat Example, Use Case 2, Scenario 5 121

List of Figures

IX

Figure 6-27: The proof-of-concept tool interface representing the metagraph objects and

results for scenario 5 of CubeSat example ... 122

List of Tables

X

List of Tables

Table 3-1: Comparative analysis of graphical constructs ... 32

Table 3-2: Adjacency matrix A for Figure 3-4 ... 36

Table 3-3: Closure A* of the adjacency matrix for Figure 3-4.. 37

Table 5-1: Time required for random metagraph representation ... 79

Table 6-1: Full list of models in the Automobile Example ... 83

Table 6-2: List of models in the Automobile Example relevant for the use case implementation

 .. 86

Table 6-3: Results. Automatically detected changes for scenario 3, use case 1 95

Table 6-4: Colour in metagraphs visualisation ... 97

Table 6-5: Results. Automatically detected changes for scenario 1, use case 1 97

Table 6-6: Results. Automatically detected changes for scenario 2, use case 1 99

Table 6-7: Results. Automatically detected changes for scenario 4, use case 1 100

Table 6-8: Results. Automatically detected changes for scenario 5, use case 1 102

Table 6-9: Critical analysis of the Use Case 1 Interaction Modelling Framework implementation

results ... 105

Table 6-10: Results. Automatically detected changes for scenario 1, use case 2 114

Table 6-11: Results. Automatically detected changes for scenario 2, use case 2 116

Table 6-12: Results. Automatically detected changes for scenario 3, use case 2 117

Table 6-13: Results. Automatically detected changes for scenario 4, use case 2 119

Table 6-14: Results. Automatically detected changes for scenario 5, use case 2 120

Table 6-15: Critical analysis of the Use Case 2 Interaction Modelling Framework

implementation results .. 124

List of Publications

XI

List of Publications

Papers:

• Filimonov, M., Oraifige, I. and Vijay, V. (2020) ‘A novel graph-based modelling approach

for reducing complexity in model-based systems engineering environment’, Int. J. System

of Systems Engineering, Vol. 10, No. 2, pp.143–163.

Abstract

Field of systems engineering is developing rapidly and becoming more complex, where

multiple issues arise like overcomplexity, lack of communication or understanding of the

design process. Model-based systems engineering (MBSE) has been introduced to overcome

these issues and reduce systems complexity. Nonetheless, the system model remains static

and the interactions among submodels are modelled in the form of hard-coded rules.

Therefore, systems interaction in MBSE is not dynamic enough to satisfy the evolving nature

of system models with growing complexity. In this paper, a novel approach for modelling logic

is proposed to address the above challenge. The aim of the research is to improve existing

methodologies and interaction modelling as well as deal with inconsistencies. The approach

is based on graph theory, where pre-defined rules and relationships are substituted and

reorganised dynamically with graphical constructs while metagraphs being the most

applicable for systems modelling. Framework for reducing complexity is presented.

List of Publications

XII

• Filimonov, M., Raju, P. and Chapman, C.B. (2016) ‘Graph-based modelling of systems

interaction in model-based systems engineering environment’, 7th International Systems

& Concurrent Engineering for Space Applications Conference, Madrid, Spain, 5-7 October

2016, pp. 45 – 62.

Abstract

Systems engineering (SE) is a rapidly developing engineering field. Growing complexity of

modern systems causes issues in the development process. Model-based systems engineering

(MBSE) is an emerging area in SE and one of the most advanced ways of reducing the

complexity. By definition MBSE is a formalised application of modelling to support all aspects

of systems development on all lifecycle phases. This paper aims to tackle problems connected

with overcomplexity of system models such as lack of communication, lack of understanding

and lack of dynamic interaction. The aim is set to be achieved by developing new methods

and tools for modelling logic in MBSE, which will allow to avoid problems such as

inconsistencies and will be dynamic. Developing new ways of modelling logic will provide

improvements for systems engineering.

List of Acronyms

XIII

List of Acronyms

AML Adaptive Modelling Language

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

DEE Design and Engineering Engine

DSM Design Structure Matrix

IBM International Business Machines

IMCE Integrated Model-Centric Engineering

INCOSE International Council on Systems Engineering

JPL Jet Propulsion Laboratory

KBE Knowledge Based Engineering

KNOMAD Knowledge Nurture for Optimal Multidisciplinary Analysis and Design

KOMPRESSA Knowledge-Oriented Methodology for the Planning and Rapid Engineering of

Small-Scale Applications

MBSE Model-Based Systems Engineering

MOKA Methodology and tools Oriented to Knowledge-based engineering Applications

NASA The National Aeronautics and Space Administration

OMG Object Management Group

OOP Object-Oriented Programming

OOSEM Object-Oriented System Engineering Method

List of Acronyms

XIV

RAD Rapid Application Development

RGB Red Green Blue Colour Model

SE Systems Engineering

SNR Signal-to-Noise Ratio

SWRL Semantic Web Rule Language

SysML System Modelling Language

UML Unified Modelling Language

XML Extensible Markup Language

1.0 Introduction

1

1.0 Introduction

1.1 Background

In the modern era, a lot of different definitions of engineering has been derived. Engineering

itself is “the creative exploitation of energy, materials and information in organized systems

of people, machine and environment, systems which are useful in terms of contemporary

human values” (Wymore, 1993). At the same time, systems engineering (SE) arouse as an

advanced way of engineering by providing an inter-disciplinary approach and means to enable

the realisation of successful systems from different points of view. SE is “an inter-disciplinary

approach and means to enable the realisation of successful systems” (Haskins, 2006). It has

been evolving rapidly in the past decades and the rate of this evolvement has risen

dramatically recently. This leads to growing complexity of the systems being designed with

the use of SE methods as more sophisticated and larger systems are being developed

nowadays. Numerous issues have become problematic for successful system development

process, which are over complexity, lack of communication and lack of understanding of the

design process at different stages of a lifecycle (Holt and Perry, 2008). Increasing complexity

is further identified as one of the main challenges of the current state of systems engineering

in the most recent studies (Mayfield et al., 2018). Furthermore, a requirement for common

understanding of complex systems is distinguished as key opportunity for future research in

the field (Akundi et al., 2018).

Model-based systems engineering (MBSE) is an emerging approach in SE field that

distinguishes itself as an advanced way to reduce and maintain systems complexity through

storing all development knowledge in an organised model structure. As a fundamental

principle of good system design, the essence of MBSE relies on the application of appropriate

formal models to a given domain (Bahill and Botta, 2008). MBSE itself is “a formalised

1.0 Introduction

2

application of modelling to support system requirements, design, analysis, verification and

validation activities beginning in the conceptual design phase and continuing throughout

development and later lifecycle phases” (“Systems Engineering Vision 2020,” 2007). Despite

rapid development of MBSE field significant issues exist in the way of its further development.

These issues involve over complexity, lack of understanding and proper interaction among

different models as they are parts of the main system model (Madni and Sievers, 2018a).

Existing MBSE approaches propose resolving these by using Systems Modelling Language and

representing the data in the form of diagrams (Feldmann et al., 2019). Even though that is

successful to some extent, the representation remains static and does not offer appropriate

capabilities to automate interactions when one of the models is changed. New directions

involve using the Digital Twin approach, which can be expected to become the integral part of

MBSE in the future (Madni et al., 2019). Despite the promising applicability of the digital twin

technology for MBSE, being a relatively new concept, there is a number of concerns that need

to be resolved before its wide-spread application. These concerns include the data

management, privacy, and data security. Making data management more dynamic and

automating the interactions between different parts of the main system model can possibly

help to ease the application of the virtual reality concepts for MBSE.

Main system model in MBSE is decomposed into multiple sub models corresponding to

separate sub systems (Yassine and Braha, 2003). These submodels represent various aspects

of the development process - design engineering, computational analysis, cost model,

manufacturing analysis, requirements model etc. All the components and systems are in

constant interaction among each other but this interaction is not modelled in a way to

automatically and dynamically update the system on time as well as check the consistency of

the development process on its every stage (Shekar et al., 2011). The interactions within

1.0 Introduction

3

systems need to be understood and identified before they can be modelled using MBSE

methodologies. One of the ways to analyse systems is using decomposition principle, which is

one of the key aspects of engineering helping to organise complex problem in the initial stages

of the systems development. That provides a technique for quantifying the complexity of

system being developed and understanding of how each individual sub system and

component affects the behaviour of the system as a whole (Akundi et al., 2018).

Once the model interactions are understood, the communication such as messages, decisions

and response among models are set to be analysed. In this research, such communication

among systems, subsystems and components is defined as logic. In current systems this logic

is maintained manually through hard-coded rules, pre-defined relationships, constraints and

fixed mathematical formulas (Wang et al., 2017). This increases the time required for the

actual development and further leads to designing the system from scratch whenever serious

and contradicting problems are discovered at the later stages of lifecycle. Moreover, often

there are logical contradictions – inconsistencies in rules and dependencies among the rules

that are not captured (Herzig et al., 2014). This could lead to incorrect system design,

increased time spent on testing, redesign, and ultimately systems failures.

Holt and Perry discuss the broader issues facing SE and call them “three evils of systems

engineering” (Holt and Perry, 2008). These are further analysed in more recent research, and

it is confirmed that they are becoming more evident with modern systems (Bajaj et al., 2017).

These issues have been distinguished as follows:

• Complexity: large systems have lots of interacting components and relationships between

its entities. As shown in Figure 1-1, adding more rules and relationships make system more

complex than before.

1.0 Introduction

4

• Lack of understanding: concept of “lack of understanding” can arise at any stage of a

lifecycle beginning with requirements formulation. It might lead to issues during the

development stage, and then even during the operation of a product. Understanding of a

system model is a major factor in any development (Rousseau, 2018). Models have to be

dynamic as the systems are usually observed only from particular aspects of certain design.

Similarly, it is legit for overcomplicated models with lots of communication, rules and

relationships.

• Communication problems: This problem can arise on any level, between several people or

groups of people, companies, systems or different departments involved in process of

development, where there is not enough data exchange among various sub models.

Figure 1-1: Complexity description through relationships

Development Model A

Sub model 1

Sub model 3

Sub model 2

Sub model 4

Sub model 5

Sub model 1

Sub model 3

Sub model 2

Sub model 4

Sub model 5

Development Model B

Development Model C

Sub model 1

Sub model 3

Sub model 2

Sub model 4

Sub model 5

1.0 Introduction

5

Thus, at present the mechanism of modelling interaction among different models is not

dynamic enough to be able to support MBSE to full extent and there is a need to improve the

way of modelling logic for future development in MBSE domain. Delivering new ways of

modelling logic has its potential utilisation in design automation as making interaction

mechanism dynamic, demand-driven and, therefore, more automatic, provides

improvements to Knowledge Based Engineering (KBE) field (Vatchova et al., 2019). Therefore,

this study aims to answer the following research questions:

• How can the organisation of the interactions among the sub systems be analysed in MBSE

for the purpose of solving complexity issues such as lack of communication and lack of

understanding?

• How can the new dynamic ways of interactions modelling improve and enhance the

existing MBSE methods and static ways – hard-coded rules, pre-defined rules, relationship

and mathematical expressions?

In this research, the author proposes a novel approach that would address those questions.

The proposed approach develops a central model that governs all interactions and data

exchange among different models as well as substituting pre-defined rules and relationships

with more sophisticated dynamic approach by utilising the principles of graph theory -

specifically the graphical constructs known as Metagraphs.

1.2 Aim and objectives

In the previous section the general need for improving the interaction modelling has been

presented and that leads to the aim and objectives of the study.

This research aims to identify and develop methods and tools for creating dynamic ways of

modelling logic in form of systems interaction for reducing complexity in MBSE environment.

1.0 Introduction

6

The aim will be accomplished through successful achievement of the following objectives:

1. Review methods and tools used in systems engineering for developing system models.

2. Analyse current approaches for modelling logic in MBSE and KBE.

3. Distinguish new approaches and techniques of improving the process of modelling

systems interaction in MBSE where knowledge can be most usefully held and reasoned

with.

4. Develop these approaches to make dynamic ways of modelling logic in MBSE.

5. Validate proposed approaches of modelling logic in MBSE and their potential utilisation

for reducing systems complexity and design automation.

6. Generate guidance on how to utilise the approach and enhance the effectiveness of the

framework for product development using MBSE.

1.3 Outline of the thesis

The outline of the thesis is presented in this section. The research consists of five primary

sections: research problem statement, literature review, framework representation,

validation and verification, and conclusions.

Chapter 1 of the thesis provides a brief introduction to the field of the research and shows the

research questions addressed by the current work. This chapter also presents aim and

objectives of the research.

Chapter 2 of the thesis focuses on the literature review of the current approaches in model-

based systems engineering and design engineering. The different methods are discussed and

compared. Expected contribution to knowledge is also presented. As a conclusion, the need

for interaction modelling framework is summarised.

1.0 Introduction

7

Chapter 3 explains the graph-based modelling theories and reviews the potential utilisation of

graphical constructs for achieving the aim of the research. It discusses various methods,

compares them, shows limitations and at the end selects the most appropriate ones.

Chapter 4 presents the interaction modelling framework, which bridges the research gaps

identified in the previous chapters. The chapter initially distinguishes the requirements for the

developed framework and moves on to the actual representation of the framework elements

themselves. Additional explanations are provided where appropriate.

Chapter 5 explains the techniques and tools used for the proof-of-concept implementation

and development explaining why particular methods have been utilised and on which stages.

Chapter 6 shows the evaluation of the framework in a set of use cases. These test cases are

Automobile Acceleration analysis example and CubeSat development example from the

literature. The validation ensures that the proposed framework is doing appropriate job on

modelling interactions among subsystems in MBSE environment.

Chapter 7 overviews the key research thesis objectives, provides the summary of the thesis,

discusses the findings of the proof-of-concept implementation and evaluation, summarises

the research outcome in detail, limitations and draws conclusions based on the results.

Furthermore, it outlines the recommendations for future work.

2.0 Systems engineering and interaction modelling

8

2.0 Systems engineering and interaction modelling

2.1 Introduction

As the research lies within the area of systems engineering there is a need to analyse

definitions of key elements in this field in order to thoroughly understand research context of

the thesis and key trends in the discipline being researched. A careful assessment of the

current systems engineering and model-based systems engineering techniques has identified

that the interaction modelling is still done mostly manually without the use of appropriate

interactions automation techniques. This chapter provides an overview of the current state of

systems engineering, model-based systems engineering and design automation. In the end

the research gaps are distinguished based on the identified shortcomings of existing

methodologies.

2.2 Systems engineering

As cited by Rhodes, one of the earliest definitions of Systems Engineering (SE) was given by

Ramo in 1973 where Ramo argued that there is a necessity of looking at the bigger picture and

taking into account all aspects on every stage of a lifecycle, which include non-technical sides

such as various social factors (Rhodes and Hastings, 2004). Chase in 1974 also spoke of SE as

a way of looking at systems being developed as not separate components but a coherent

whole (Chase, 1974). Thus, defining SE started with identifying the importance of looking at a

broader picture while developing systems.

Systems engineering definition evolved through time while scientists added some new aspects

as well as making old definitions clearer. In his definition Eisner introduced iterative process

as a compulsory part of any design process (Eisner, 2008). Holt spoke of SE simply as “the

implementation of common sense” (Holt, 2004), although it is rather difficult to define the

2.0 Systems engineering and interaction modelling

9

meaning of “common sense”. Humans have also started to be seen as a component of SE

(Hybertson and Sheard, 2008).

Modern definition of SE was provided by International Council on SE (INCOSE) and in fact was

seen to be a combination of various viewpoints – “An interdisciplinary approach and means

to enable the realization of successful systems. SE integrates all the disciplines and specialty

groups into a team effort forming a structured development process that proceeds from

concept to production and operation” (Haskins, 2006). Systems engineering consists of a rich

and useful set of principles, tools, and techniques. SE provides ways to deal with complex

issued in understandable and quantitative terms (Kenett et al., 2019).

Moreover, there are already references to “the old SE” and “the new SE” which arose in the

beginning of 2010s (Tien, 2008), (Sheard, 2007). The main difference is that “the new SE”

identifies already existent complex systems and their development patterns whereas

“conventional SE” solves specified problem with design and solution.

Thus, it is significant not to forget about the ongoing evolving nature of the core subject itself

– systems engineering.

2.3 Model-based systems engineering

The term “model” is a key concept part of Model-Based Systems Engineering (MBSE), which

leads to the fact there is a need to define the model itself at first. According to Rumbaugh, a

model is identified as a representation of a certain part of the world, which captures needed

important aspects and does not include irrelevant features (Rumbaugh et al., 2004). A model

has to obtain three features: it has to be based on original, it has to reflect some properties

accordingly and it has to have a purpose to be used in place of the original (Stachowiak, 1973).

2.0 Systems engineering and interaction modelling

10

MBSE is an emerging approach and considered to be one of the most advanced approaches in

engineering (Rhodes, 2008). It is acknowledged that practice of MBSE is becoming more

widely adopted in engineering, industry and academia (Holt et al., 2016). INCOSE defines

MBSE as “a formalised application of modelling to support system requirements, design,

analysis, verification and validation activities beginning in the conceptual design the phase and

continuing throughout development and later life cycle phases” (Sillitto et al., 2018). The key

aspect of MBSE is the system model which consists of all aspects of the system being

developed and used to support the development process on every stage of a lifecycle from

meeting requirements to integrating design engineering and engineering analysis. It is widely

recognised that MBSE is going to become the most applicable new generation approach in SE

allowing systems engineers to model any kind of systems and support development of any

product type.

Weilkiens provides a survey through leading MBSE methodologies (Weilkiens et al., 2016).

There are numbers of methodologies but among them there is a Vitech MBSE methodology

and INCOSE Object-Oriented System Engineering Method (OOSEM) which involve generation

of a system model with numerous interacting components.

Vitech methodology is based on four concurrently maintained SE activities that are linked

together through a common System Design Repository (Morkevicius et al., 2017). It is

necessary to adequately manage behaviour of model components whereas organised scheme

or ontology is essential. OOSEM methodology utilises System Modelling Language (SysML) to

support all aspects of systems engineering which is used alongside object-oriented

methodology in a hybrid approach (Dickerson and Mavris, 2013).

This research aims to develop new methods and tools for modelling logic and comparison

between various MBSE methodologies lies beyond the scope of the thesis. Nevertheless, one

2.0 Systems engineering and interaction modelling

11

of the MBSE methodologies must be utilised since the field of interest is building

improvements upon existing MBSE basis. Thus, OOSEM methodology has been identified to

be the most suitable candidate now as it involves object-oriented mechanisms which are

widely used in programming, MBSE and can be utilised to develop framework to achieve the

research goal. Also, SysML is a key part of OOSEM and this particular language is going to be

used in the research process.

2.3.1 Systems Modelling Language

Systems Modelling Language (SysML) is defined by OMG as “a general-purpose graphical

modelling language for specifying, analysing, designing and verifying complex system that may

include hardware, software, information, personnel, procedures and facilities” (“The Official

OMG SysML site,” n.d.).

Technically SysML is a language intended for systems engineers allowing them to model all

aspects of systems engineering such as requirements, behaviour and structure. The main

purpose of developing SysML is to unify various modelling languages that are used by systems

engineers for better cooperation and understanding (Holt et al., 2016). The work comes from

initiative by OMG and INCOSE (“INCOSE Model-Based Systems Engineering (MBSE) initiative,”

n.d.).

SysML is considered as a newly language although it shares a close relationship to Unified

Modelling Language (UML). Indeed, SysML is based on UML and utilises same kind of diagrams

used in UML. Nevertheless, UML was developed in 1997 and mainly aimed at software

engineering which leads to the fact that SysML is more advanced, includes all advantages of

UML and offers more for SE. SysML and UML relationship is illustrated in Figure 2-1.

2.0 Systems engineering and interaction modelling

12

Figure 2-1: Relationship between SysML and UML (Willard, 2007)

Willard identifies usefulness of UML/SysML in SE field and recognises SysML as a step in right

direction in evolution of modelling languages for systems engineering (Willard, 2007). SysML

is considered to be a more advanced tool for systems engineers then UML which is intended

more for software engineers. Additionally, SysML has a history of successful application in

MBSE field (Holt et al., 2016). Thus, SysML is more suitable for the research.

Nikolaidou further recognises growing significance of SysML and argues that additional

diagrams used in SysML allow engineers to model more complex systems for systems

engineering purposes (Nikolaidou et al., 2015). Moreover, it is emphasised that SysML is not

a methodology itself but a tool that can be utilised in any environment. In fact, UML and/or

SysML are implemented in most of MBSE methodologies (Wymore, 2018).

There are nine diagrams in SysML, each of them represents certain aspects of a system model

and can be utilised as a representation of a corresponding submodel/subsystem of the system

model for the purpose of defining interactions between models.

2.0 Systems engineering and interaction modelling

13

2.4 Design automation and Knowledge Based Engineering

According to Rosenfeld in 1989, Knowledge Based Engineering (KBE) “is software technology

that provides a means of storing product of process information as a set of engineering

attributes, rules and requirements. The rules and requirements can generate designs, tooling

or process plans automatically” (Rosenfeld, 1989). Conventional computer-aided design (CAD)

software works only with geometric data and do not capture ideas involved to generate this

geometry. On the other hand, KBE systems capture the intent behind the product design – the

how and why, in addition to the what of the design – and then use the model of engineering

design processes to automate all or part of the process and reduce lead-time of the product

development (Chapman and Pinfold, 1999).

Thus, the idea of KBE is to utilise previously collected knowledge of product development for

design automation. This is achieved by integration of this knowledge into the design process

making this process easier to maintain and allowing new products development with higher

quality in less time (Reddy et al., 2015).

There is a number of KBE methodologies. One of objectives of the research is to review these

methodologies to be able to understand how they deal with logic modelling.

MOKA (Methodology and tools Oriented to Knowledge-based engineering Applications)

describes in terms of rules, processes, modelling techniques and definitions, the necessary

stages for the specification of KBE systems (Stokes, 2001). As shown by Perry, there are two

levels in this framework: informal (formalisation of knowledge in language that can be

understood by experts without being specialist in formalisation languages) and formal

(representing and storing knowledge in an encoding form) (Perry and Ammar-Khodja, 2010).

2.0 Systems engineering and interaction modelling

14

The MOKA methodology takes structural division of knowledge into account for its

representation and storing (Górski et al., 2016).

KOMPRESSA (Knowledge-Oriented Methodology for the Planning and Rapid Engineering of

Small-Scale Applications) is designed to develop small-scale KBE systems (Chapman et al.,

2007). It shares lots of principles with MOKA but makes a bigger emphasis on risk evaluation

and management (Lindholm and Johansen, 2018).

KNOMAD (Knowledge Nurture for Optimal Multidisciplinary Analysis and Design)

methodology identifies drawbacks in MOKA and aims to place KBE techniques within the

design process supporting it on every stage from knowledge capturing to knowledge retention

and maintenance (Curran et al., 2010).

Methodologies such as Design and Engineering Engine (DEE) (Rocca and Tooren, 2007) and

Rapid Application Development (RAD) (Zhou et al., 2015)try to improve KBE process even

further although they do not move away from utilisation of pre-defined relationships and

hard-coded rules.

All of these methodologies were successful (Reddy et al., 2015), (Chapman and Pinfold, 2001),

(Sandberg, 2003) in improving KBE on different stages of its lifecycle by providing techniques

for capturing, acquiring and analysing knowledge through implementing different ways of

representing it diagrammatically and visually (KOMPRESSA) and creating formal knowledge

representation models in MOKA.

Most KBE systems are based on object-oriented programming (OOP), so they use special

procedures called objects (Chapman and Pinfold, 1999), (Stjepandić et al., 2015).

Methodologies behind OOP and KBE define these objects, what properties are assigned to

them, how they interact and combined to form more complex objects.

2.0 Systems engineering and interaction modelling

15

2.4.1 Adaptive Modelling Language

One of the most advanced modern KBE modelling frameworks is Adaptive Modelling

Language(AML) from Technosoft (“Technosoft Inc. The Adaptive Modelling Language. A

Technical Perspective,” n.d.). This approach enables multidisciplinary modelling and

integration of the entire product and process development cycle. Computation in AML is

innately demand-driven, utilizing automatic dependency tracking between objects and

properties to compute only that which is required. In that perspective AML can be

hypothetically used in combination with MBSE approaches for creating truly dynamic logic

modelling techniques.

2.5 Limitation in model-based systems engineering

2.5.1 What is logic?

With decomposition principle in place all the subsystems and components are maintained

independently, therefore modelling of individual sub models is done simultaneously. Classic

approach to model and increase understanding of a complex system, which can be any kind

of process, product or organisation, is to follow three steps (Browning, 2001):

1. Decompose main complex system into simpler subsystem and then into components

about which we have more information.

2. Distinguish relationships among the subsystems to understand system behaviour.

3. Identify external influence on the system.

In context of this research logic is defined as a way of interaction among different sub models

included in the main system model in the process of development (Chapman and Pinfold,

1999). Each of these models covers its own part of product development such as design

2.0 Systems engineering and interaction modelling

16

engineering, requirements management, analysis, cost model etc. Any of these sub models

can possess its own internal logic.

2.5.2 Growing complexity in systems engineering

In his book on SE Holt identifies “the three evils of engineering” as (Holt et al., 2016):

• Complexity

Large systems have large number of relationships between its entities and adding more of

them make its complexity become significantly higher than it was previously. Figure 2-2

illustrates this problem and a block-diagram is utilised to show the complexity increase with

the addition of more relationships and rules where (c) is the most complex one.

Figure 2-2: Complexity description through relationships

• Lack of understanding

Concept of “lack of understanding” can arise at any stage of a lifecycle beginning with

formulation of requirements which will lead to issues during the development stage and after

that even during the operation of a product. Friedenthal argues that understanding of a

system model is a major factor (Friedenthal et al., 2014). Models have to be dynamic due to

the fact that usually there is a need to look at the system only from a particular aspect of

2.0 Systems engineering and interaction modelling

17

certain design. The same thing can be said about overcomplicated models with lots of

communication, rules and relationships.

• Communication problems

With the “complexity concept” in place another issue arise which is the communication

problem. This can happen on any level, between several people, groups of people, companies,

systems or different departments involved in process of development. This problem leads to

lack of communication between different models which are parts of a main system model in

MBSE.

Three of these problems cannot happen on their own but they will generate one another. It is

always significant to tackle these issues on early stages of lifecycle. It is highlighted that

modern systems are becoming more and more complex and these issues persist (Mayfield et

al., 2018). Thus, creating a proper dynamic model of communication between different

models of MBSE is a needed step in the development of the corresponding field.

Paul Goossens from Maplesoft identifies major challenged arising when designing and

delivering dynamic in nature products (Goossens, 2016). The most significant one is the need

to follow through the entire design process multiple times due to discovering serious design

issues in the later stages of lifecycle. The worst possible option is identifying problems even

after a system has been commissioned and sold to end customers.

In a paper from European Southern Observatory main issues of system projects complexity

are stated (Karban et al., 2014) as identified by NASA’s Jet Propulsion Laboratory (JPL)

(Integrated Model-Centric Engineering (IMCE) Workshop for JEO, 2011). These issues consist

of growing mission complexity, huge number of pieces in system design without exact

architecture, losing knowledge at lifecycle stage boundaries and different technical sides

communicating poorly. This shows growing complexity of modern models in MBSE. The author

2.0 Systems engineering and interaction modelling

18

argues that MBSE is an advanced modern approach and identifies SysML as a key for modelling

and integrating all parts of systems engineering. Nevertheless, conventional V-model

development is seen to be outdated as validation stage comes too late and it is almost

impossible to deal with the design problems on later stages of a lifecycle as it basically means

to develop everything from scratch once again. MBSE allows verification and validation of

requirements, concept and full design on early stages of the lifecycle but proper means of

communication between different parts of design process are required to be integrated in

MBSE.

The concepts of concurrent engineering require a large amount of coordination between

engineers who focus on different parts of product development. Mayfield names this problem

as “design management’s challenge” and identifies that engineers usually works in isolation

(Mayfield et al., 2018). The reason behind this challenge is to break down complex tasks into

simple subtasks that individual engineers can perform. Addressing all these subtasks

simultaneously makes engineering truly parallel and concurrent (Martelo Gomez et al., 2018).

Thus, transforming a complex problem into sequence of relatively simple sub problems and

organising communication between all these sub problems make the project work and

improve problem-solving mechanisms.

Farnell identifies growth of engineering system in size, scope and complexity (Farnell et al.,

2019). Concurrent engineering is seen to be a philosophy which makes product development

lifecycle more successful in its completion but lacks certain aspects like proper parallelism,

decomposition and stability.

2.0 Systems engineering and interaction modelling

19

2.5.3 Inconsistencies in MBSE

Finkelstein identifies inconsistency as a logical contradiction (Finkelstein, 2000). As an

example of inconsistency in MBSE any technical statement which includes ambiguous

definition can be considered. With complexity of systems in industry increasing through time

modern approaches tend more to decompose main system model into simpler sub models.

Thus, quite a lot of inconsistencies can arise when you arrange communication between all

the sub models.

Friedenthal recognises that design inconsistencies can arise especially when multiple people

work on the same model (Friedenthal et al., 2014).To tackle this problem just a well-defined

disciplined process is proposed which leaves space for human mistakes generating

inconsistencies. The crucial point of the systems engineering development process is the need

to study the systems from various viewpoints as different experts study the systems from their

own perspective. These views might hold multiple interrelations and that might lead to

potential inconsistencies (Herzig and Paredis, 2014). It was identified that in current MBSE

practices managing inconsistencies is highly limited by the underlying methods and overall

static representation nature (Sandhu, 2015). Currently some graph-based methods to

distinguish inconsistencies are being developed but as the number of all possible

inconsistency patters is infinitely large, the issue remains (Feldmann et al., 2019).

Developing proper means for communication between all parts of MBSE process and stages

of product development lifecycle will allow systems engineers to reduce quantity of

inconsistencies and lower possible impact of mistakes in design originating from inconsistent

management.

2.0 Systems engineering and interaction modelling

20

2.5.4 Development state of logic models in MBSE and lack of dynamism

MBSE methodologies utilise logic models where interaction is modelled in the ways of hard-

coded rules, pre-defined relationships and strict mathematical expressions. Knowledge is

being implemented into the model itself or broken-down during capturing stage into different

parts, features, relationships and rules.

It is implied that there are some further limitations present in MBSE regarding the system

representation for addressing general behavioural aspects of the product development

process (Graignic et al., 2013). Furthermore, it has been shown that MBSE methods and tools

are able to integrate and manage not only requirements but also all other aspects of the

development process – product design, development test and production. Indeed, MBSE is

successful in achieving its aim – minimising risks and avoiding changes at the later stages of

the lifecycle. Despite that, systems are becoming more complex and even though MBSE can

most definitely be applied to many industrial applications, in practice large systems remain

static and extra difficult to manage and maintain (Li et al., 2019). That shows the need for the

improvements for the current MBSE methodologies to be able to diminish the complexity of

the system and make it manageable on all the development stages and making the system

more dynamic (Motamedian, 2013).

Also, it was recognised that most MBSE approaches demand certain forms of code

instrumentalism that prevents the use of dynamic verification through the development

process (Sandhu, 2015). MBSE tools allow the division of the production into two separate

processes – domain engineering and application engineering that further generates the gap

between different engineers involved in the modelling process.

2.0 Systems engineering and interaction modelling

21

According to Chapman, successful commercial developments are felt not to be flexible enough

to model the dynamic design engineering environment (Chapman and Pinfold, 2001). Work

carried out by Reddy et al. recognises the scarcity of dynamic specific KBE methodologies

(Reddy et al., 2015). Moreover, Lolli argues that “blind spots” exist in logic because of the fact

that pre-described set of rules can’t prove to be useful in every situation (Lolli et al., 2014).

This identifies shortcomings of current methodologies and shows the potential of their

improvement in the area of dynamic logic development.

2.5.5 Research gap summary

In summary, the outcome of the literature review has identified research gaps that need to

be addressed. Logic in context of this research is seen as an interaction between different sub

models forming the main system model. The survey through existing systems engineering

trends shows that major issues in the engineering process which include growing complexity,

lack of understanding, communication problems, and inconsistent management.

Thus, the research gaps are:

• Interactions are hard-coded in the form of rules, relationships or mathematical

expressions not providing enough flexibility in the design process.

• Logic is not dynamic leading to bulky rules/mathematical expressions systems with many

unused parts in the logical tree process.

• Growing complexity of current system models leads to a high possibility of inconsistencies

existence in the form of logical contradictions which must be dealt with on all stages

of a lifecycle.

2.0 Systems engineering and interaction modelling

22

• Different models in MBSE uses different forms of interaction models in its structure.

Therefore, universal way for dynamic modelling of the systems interaction is not existent.

2.6 Research questions and hypotheses

The objective of this section is to go from the statement and description of the problem and

gaps to developing research questions and hypotheses for a possible solution approach. As

discussed in Chapter 1, the primary question that motivated this research is as follows:

How can the organisation of the interactions among the sub systems be analysed in MBSE

for the purpose of solving complexity issues such as lack of communication and lack of

understanding?

Having explored and discussed this question, key research gaps have then been identified and

presented in the previous sections.

Based on the literature review presented in this Chapter, it was concluded that existing MBSE

methodologies and approaches do not provide enough capabilities to effectively analyse and

model the interactions among sub systems of the main system model. That leads to the

formulation of the primary research hypothesis. Also, based on the original research

hypotheses, the additional research question is posed for this research stating its own

hypotheses.

2.6.1 Research Question 1 and Hypothesis 1

Research question 1: How can the organisation of the interactions among the sub systems be

analysed in MBSE for the purpose of solving complexity issues such as lack of communication

and lack of understanding?

2.0 Systems engineering and interaction modelling

23

Research hypothesis 1: The new methods and tools for modelling interactions in MBSE can

improve the effectiveness of interactions analysis MBSE by:

• Creating the common interaction module storing all information on interactions and

relationships among the sub systems.

• Formalising the interactions definitions and generating new dynamic ways of tracking the

relationships among system model components.

2.6.2 Research Question 2 and Hypothesis 2

Research question 2: How can the new dynamic ways of interactions modelling improve and

enhance the existing MBSE methods and static ways – hard-coded rules, pre-defined rules,

relationship and mathematical expressions?

Research hypothesis 2: The new methods and tools for modelling interactions can improve the

existing MBSE techniques in such a way that the interaction model can be reused at any stage

of the development process by:

• Using a general formalism to describe the concept and the interaction knowledge storage.

• Automatically tracking changes in the main system model and its sub systems and

propagating changes to the other model components.

• Providing capabilities to track interactions and relationships when performing various

changes on all stages of the development lifecycle.

2.0 Systems engineering and interaction modelling

24

2.7 Need for interaction modelling automation and expected contribution to knowledge

The interaction modelling addresses critical research gaps in effectively modelling interaction

among sub systems and components in the main system model in MBSE methodologies.

From the literature review conducted through this work, it is evident that there are many

MBSE methodologies present in the current state of systems engineering. Also, from the

description of the methods it can be distinguished that there are similarities between them.

Each of the MBSE methodologies is successful in providing systems modelling capabilities to

some extent based on the needs of a systems engineer (Weilkiens et al., 2016). However, the

interactions are defined in the same manner and there is no automation mechanism used in

the methodologies. Changes propagation is performed by all methods but ultimately leaves

the changes tracking to the systems engineer to do it manually. With growing complexity, it

becomes impossible to take everything into account, resulting in the lack of understanding of

the design process on different stages of the development lifecycle and errors in design that

might lead to redoing many things from scratch. The literature also shows that MBSE

methodologies and associated methods pre-define the relationships between components of

the main system model in form of hard-coded rules and constraints making systems not

dynamic and leading to the drastic growth of overall system complexity (Shekar et al., 2011).

The development of any engineering system highly depends on quality, time and cost of the

product (Chapman and Pinfold, 1999). Ultimately, MBSE methodologies provide the means to

diminish times required to develop better quality in less time but fail to fully automate that

process and still leave room for many mistakes based on unanticipated changes in some

components while changing other models, values or relationships. Knowledge based

engineering extends the automation capabilities but even though they are successful in

making design knowledge reusable in new design processes, literature review of the current

2.0 Systems engineering and interaction modelling

25

KBE methodologies shows that they also require a lot of manual modelling and deep

understanding of the whole project by everyone involved in the process of development

(Rocca and Tooren, 2007). A similar understanding of KBE and MBSE methodologies

limitations is discussed in the graph-based design languages paper (Gross and Rudolph,

2016a).

With regards to solving the interaction modelling issue, a research conducted by Albers (Albers

and Zingel, 2013) provided some background information. Unfortunately, author

acknowledges the fact that a lot of advancements are still needed for MBSE methodologies in

product development processes to make changes propagation easier and more convenient

for systems engineering. The relationships among sub systems are presented with pre-defined

rules with not enough flexibility in the design process. The author distinguishes the need for

extending existing methodologies and developing central model for controlling interactions in

model-based systems engineering environment.

The need for developing central model is further discussed by Rudolph and Gross (Groß and

Rudolph, 2012). Designing modern complex systems includes solving a huge amount of

problems among different interacting engineering domains (Madni and Sievers, 2018b). Thus,

it is significant to construct proper data exchange mechanism between different engineering

models to allow easy and convenient way of propagating changes in one model to all other

models and track these changes beginning in early stages with conceptual modelling.

2.8 Summary

In this chapter review of the current state of systems engineering is provided. Initially,

understanding of the existing systems engineering, model-based systems engineering, and

design automation techniques is shown. The chapter further discusses the tools and software

2.0 Systems engineering and interaction modelling

26

that are available for performing systems engineering such as SysML. Even though model-

based systems engineering has been successful in its attempt to allow engineers to reduce

systems complexity, significant research gaps were identified that interactions among

subsystems are modelled manually in the form of hard-coded rules and pre-defined

relationships. Based on the research gaps and the motivation, the research questions were

formulated with corresponding hypotheses of how to provide an answer for them. The need

for the interaction modelling automation is discussed based on the findings from the literature

and expected contribution to knowledge is provided. That clearly shows that current logic

modelling in systems engineering is limited and interaction modelling framework is needed,

which fills the research gaps and answers the research questions. That leads to the next

chapter that further discusses the state of the interaction modelling in the current engineering

applications and introduces graph-based modelling approaches.

3.0 Graph-based systems modelling

27

3.0 Graph-based systems modelling

3.1 Introduction

This chapter outlines the major aspects of the graph theory, which is a basis for the

methodology developed in this research. Key graphical constructs are identified, and their

own advantages and disadvantages are discussed. Next, the comparative analysis of all the

graphical structures is provided where the best applicable concept is derived, which is a

metagraph. Then the theory behind metagraphs utilisation for systems modelling is provided

with examples of existing research and applications. Also, the related research is further

discussed with the introduction to the graph-based design languages being developed. Finally,

the applicability and the need of the metagraphs concept is discussed while concluding the

chapter.

3.2 Graph theory

Literature review shows that graph theory is widely utilised in engineering and provides many

functional capabilities for systems engineers. Deo highlights the usefulness of different

graphical constructs in various engineering and computer science applications (Deo, 2017).

Walter provides the information on utilising graph theory representation of engineering

systems and their knowledge (Walter et al., 2019). Moreover, Basu and Blanning discuss the

effectiveness of using graph and their extensions, such as metagraphs, in modelling decision

support systems (Basu and Blanning, 2007). That leads to the clear idea that graphs provide

extensive capacity to be used in the systems engineering field and be applied in modelling of

sub systems, components and interactions among them in MBSE.

3.0 Graph-based systems modelling

28

3.2.1 General definitions

Graph itself is a “representation of a set of objects where some pairs of objects are connected

by links. The interconnected objects are represented by mathematical abstractions called

vertices (also called nodes or points), and the links that connect some pairs of vertices are

called edges (also called arcs or lines)” (Tutte, 1984).

Herzig recognises graphs as the best way of model representation and utilisation (Herzig et

al., 2014). Every statement is divided into three parts – subject, predicate and object, vertices

of a graph stand for subject and object as directed labelled edge is a predicate between subject

and object (Giarratano and Riley, 1998). Graph visual representation is illustrated in

Figure 3-1. For finding inconsistencies in MBSE Herzig proposes exact matching problem of

graph patterns to determine whether or not ambiguous definition of a property exists.

Figure 3-1: Graphs as a way of model representation (Herzig and Paredis, 2014)

Heckmann recognises the fact that any big system with numerous related entities can be

modelled by some kind of a graph (Heckmann et al., 2015). By utilising graph constructs

number of benefits is provided. First of all, basis for use of graphs is the reason that it is an

effective way to represent, visualise and understand very complex systems. This might not be

possible with conventional system description techniques either text-based or formal ones,

which are useful only to those who can understand utilised formal language. Secondly, formal

properties of graph structures provide one of the most applicable ways to analyse structure

3.0 Graph-based systems modelling

29

and behaviour of complex systems. The further usefulness of graph theory in application to

systems engineering is highlighted by applying it to explore complex system of systems

architecture (Potts et al., 2017).

The main reason behind the use of the graphs is the fact that they provide effective means to

represent, visualise and maintain very complex systems that might not be possible with

standard text-based or formal description methods useful only to those who can understand

corresponding formal language or familiar with the organisation of corresponding text-based

document. Additionally, use of graphical structures present applicable ways to analyse

structure and behaviour of complex systems.

3.2.2 Comparative analysis of graphical structures

There are a number of different graphical constructs applicable to various areas. Therefore,

there is a need to distinguish among them the best methodology for the purposes of this

research. To solve this problem a comparative analysis of different graphical constructs was

performed with the help of literature. For this comparison the following list of criteria were

identified:

• Visualisation – shows model representation capabilities.

• Directionality – implies that current graphical construct has means for showing directions

of each input-output dependencies.

• Model composition – displays whether we have enough information to determine set of

variables involved in each relationship.

• Multiple inputs/outputs – represents capabilities of each graphical construct to deal with

multiple inputs/outputs in relationships.

3.0 Graph-based systems modelling

30

• Simple algebraic form – shows that graphical construct has algebraic form representation

that can be utilised to some extent in programming and this graphical construct

application.

• Multiple components – implies that graphical construct has developed theory for dealing

with multiple interacting components.

Based on the example set of interacting variables it is possible to perform comparative analysis

of different graphical constructs that can be utilised for modelling interaction among these

variables (Basu and Blanning, 1995). This example is shown in Figure 3-2.

Figure 3-2: Graphical representation of a set of interacting variables

(a) Simple graph, (b) Directed graph, (c) Hypergraph and (d) AND/OR graph

Simple graph provides a good visualisation that can be utilised to show that a link between

some variables exists but fails in providing information about the direction of existing

relationships. Directed graph, in addition to showing the relationships among entities,

includes the direction of the input-output dependencies. Thus, we know that some variables

X1 X2

X3 X4

X5
X6

X7

X1 X2

X3 X4

X5
X6

X7

X1

X2

X3

X5

X6
X7

X4

X7

X1 X2

X3 X4

X5

X6

(a) Graph (b) Directed

(c) Hypergraph

(d) AND/OR

3.0 Graph-based systems modelling

31

determine other variables but we still do not have enough information about the composition

of models to determine particular variables.

The more sophisticated concept such a hypergraph is seen to be even more advanced way

that can be utilised in systems engineering. Hypergraph handles any generalised object that

represents physical or abstract properties: particles, states, points in space etc. Analytical

representation in the matrix form can be comfortably used by the computer and easily

modified according to the needs of a particular system. Gazdik’s analysis of modern graph

approaches shows that hypergraph has to be considered as one of the most adaptable tool

for modelling systems (Gazdík, 2006). That is further confirmed by more recent studies carried

out by Bruza (Bruza, 2018).

Hypergraph representation provides additional capabilities to determine the set of variable

relevant to each relationship as a single hypergraph edge covers all the variables involved in

particular interaction. However, hypergraph does not provide enough information to

determine outputs and inputs in each relationship. A possible solution to this is to label all the

variables/nodes of a hypergraph but it can be rather difficult for variables involved in different

models simultaneously. Additionally, Basu provides discussion on existence of directed

hypergraphs that are helpful to overcome identified problems.

Directed hypergraphs can be used to overcome identified problems although theory of

directed hypergraphs has been developed mostly for modelling relationships among

individual elements and we aim to model interaction among large quantity of components.

AND/OR graphs combines advantages of both previous graph constructs but in some

situations, where model has multiple outputs, requires multiple edges and becomes too

difficult. Harel explains that in Higraphs variables are grouped into special objects called

“blobs”, which can be additionally grouped into higher-level blobs and so on (Harel, 1988).

3.0 Graph-based systems modelling

32

Thus, these blobs can be sets of variables, sets of sets of variables etc., where edges connect

one blob to another blob. Higraph is a useful and flexible graphical structure but requires very

difficult mathematical concepts to represent it.

Summary of this comparison together with directed hypergraphs and hierarchical graphs

(Higraphs), which were introduced in section 3.5, is shown in Table 3-1.

Table 3-1: Comparative analysis of graphical constructs

Criteria
Simple
graph

Directed
Graph

Hypergraph
AND/OR

Graph
Metagrap

h

Directed
hypergrap

h
Higraph

Visualisation + + + + + + +

Directionality – + – + + + +

Model
composition

– – + + + + +

Multiple
inputs/outputs

+ + – – + + +

Simple
algebraic form

+ + – – + + –

Multiple
components

+ + + + + – +

Pluses (+) in the table mean that corresponding graphical construct has capabilities to meet

the developed criteria whereas Minus (-) means the opposite.

Thus, all these constructs can be useful to some extent in numerous scientific areas but each

of them fails to cover all aspects of models interaction. This includes direction representation,

input/output identification and overcoming inconsistencies problems that can exist if we work

with multiple models with large number of interacting variables involved in numerous models

simultaneously. To solve this problem, it is possible to utilise a more sophisticated graphical

construct known as metagraph.

3.0 Graph-based systems modelling

33

3.3 Metagraph definition

Metagraphs, an extension of directed graphs and hypergraphs, differ from conventional

graphical constructs as each edge is an ordered pair of sets of elements, not an ordered pair

of elements as in directed graphs or an unordered set of one or more elements as in

hypergraph (Basu and Blanning, 2007). Metagraphs are considered to be a powerful method

for decision support systems as they can be utilised for interaction between components

analysis no matter what these components are, models, relationships

or rules (Basu and Blanning, 1999).

Nodes or elements of a metagraph represent the variables and the edges represent

calculation procedure of models. Example metagraph is shown in Figure 3-3. This example

represents the same model, which was used for comparative analysis of different graph

structures in section 3.2.

Figure 3-3: Example metagraph

Here metagraph consists of 7 elements and 5 edges and each edge provides full information

on scope and direction of every relationship. For example, edge e5 shows that knowing

variables TCOST and LSLS is enough to fully determine variable CAP, which makes TCOS and

LSLS invertex of e5 and CAP its outvertex.

X6

X1

X2

X3

X4

X5

X7

e3 e1

e2

e5

e4

3.0 Graph-based systems modelling

34

3.3.1 Metagraph properties

Path. The one of the important aspects of metagraphs is a path that is a sequence of

metagraph edges. First element of each path is its source whereas end of a path is its target.

The source is a part of the invertex of the first edge in the path, the target is a part of the

outvertex of the last edge in the path and the length of the path is number of edges in it (Basu

and Blanning, 2007). For any adjacent pair of edges invertex of the first edge and outvertex of

the second edge have at least one element in common. Paths not necessarily provide enough

information to determine a target from its source as some other variable might be needed

and these variables are called coinput of the path’s target.

Metapath. However, concept of the path is not sufficient to describe all calculations in

metagraphs. Figure 3-4 shows a metagraph, which contains two paths {sls, fin} and {cost, fin}

but both paths do not have null coinput and do not provide enough information to calculate

NI out of INFL. Thus, variable INFL, both edges sls and cost and edge fin form general

instrument of metagraph connectivity called a metapath. Like a path, each metapath consists

its source, which is an origin set of elements, and a target, which is a final set of elements.

Metapath has three key properties: each edge of a metapath is on a conventional path from

an element in metapath’s source to an element in metapath’s target, set of all elements in the

invertices of the edges of the metapath that are not in the outvertex of some edge in the

metapath are contained within metapath’s source, set of elements in the outvertices of all the

edges in the metapath contains a target.

3.0 Graph-based systems modelling

35

Figure 3-4: Metagraph with a Metapath

Metapath is considerably different from a conventional path as edges do not have to be put

in sequence, which allows designer to model parallel calculation procedures. Also, source and

target of a metapath are sets of elements so there is no need for considering the coinput for

metapaths as all the necessary information for calculation is contained inside a metapath.

For small metagraphs it is easy to determine path and metapaths visually but for modelling

real and large systems this can be done with the use of an adjacency matrix.

3.3.2 Model as a metagraph

In the metagraph view of models each model is represented as an edge with inputs as invertex

and the outputs as outvertex. Yet, the main issue is connectivity, which implies that there

might be lack of existence of one of more metapaths connecting a source set of elements to

a target set of elements. This means that the corresponding models must exist if the source

elements can be utilised to calculate the target elements. To overcome this issue, we need to

distinguish whether there are any bridges, which are the intersection of all metapaths, and if

there are more than one metapath between invertex and outvertex.

Simple example model base is illustrated in Figure 3-4 (Basu and Blanning, 2007). There are

four variables: INFL stands for inflation rate, REV are the revenues, EXP are the expenses and

NI is the net income. Also, there are three models, which are represented by three edges: sls

is a sales model that calculates REV out of INFL, cost model cost that calculates EXP from INFL

and financial model fin, which determines NI from REV and EXP.

3.0 Graph-based systems modelling

36

Table 3-2 shows the adjacency matrix A for this simple metagraph. From this matrix we can

distinguish in simple manner that sls and cost models do not have coinputs or cooutputs but

NI column of the matrix defines that financial model fin takes both EXP and REV as inputs and

produces NI as output, which means that EXP is a coinput of 𝑎REV,NI and REV is a

coinput of 𝑎EXP,NI.

Table 3-2: Adjacency matrix A for Figure 3-4

 INFL REV EXP NI

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>} ∅

REV ∅ ∅ ∅ {<EXP, ∅, <fin>>}

EXP ∅ ∅ ∅ {<REV, ∅, <fin>>}

NI ∅ ∅ ∅ ∅

The closure of the adjacency matrix A* is shown in Table 3-3.

It completes adjacency in a way that it shows the smallest relations among the elements. From

this closure, we can determine that there are only two simple paths of length more than 1 -

<sls, fin> and <cost, fin> and there is no sequence of models connecting INFL to NI that is free

of coinputs. For that purpose, there is a metapath {sls, cost, fin} connecting INFL and NI, which

shows the advantage of representing model bases as metagraphs and defining metapaths that

can define connectivity where simple paths fail to do so.

3.0 Graph-based systems modelling

37

Table 3-3: Closure A* of the adjacency matrix for Figure 3-4

 INFL REV EXP NI

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>}
{<{EXP}, {REV}, <sls, fin>>,

<{REV}, {EXP}, <cost, fin>>}

REV ∅ ∅ ∅ {<EXP, ∅, <fin>>}

EXP ∅ ∅ ∅ {<REV, ∅, <fin>>}

NI ∅ ∅ ∅ ∅

Main advantage of a metagraph is a general, non-procedural formalism that defines all

properties such as reachability, connectivity and transitive closure. This formalism can be

utilised to distinguish coinputs, cooutputs of any path or metapath. Also, metagraphs provide

convenient mathematical way of defining metapaths with the use of an adjacency matrix as

discussed earlier.

This further shows applicability of metagraphs for model organisation and logic management.

Thus, this research currently identifies metagraphs as a basis upon which the desired

framework can be most reasonably developed. Graphs extensions, such as hypergraphs and

metagraphs, provide all sorts of potential to be applied for modelling systems interaction.

3.3.3 Metagraphs, directed hypergraphs and hierarchical graphs (higraphs)

Metagraphs, directed hypergraphs and higraphs share similar capabilities and from a

visualisation point they appear close as shown in Figure 3-5.

For directed hypergraph useful notions such as metapath, coinputs and cooutputs have not

been developed as theory of directed hypergraphs has been developed mostly for modelling

relationships among individual elements.

Basu cites Harel and explains that in higraphs variables are grouped into special objects called

“blobs”, which can be additionally grouped into higher-level blobs and so on (Harel, 1988).

Thus, these blobs can be sets of variables, sets of sets of variables etc., where edges connect

3.0 Graph-based systems modelling

38

one blob to another blob. Higraph is a useful and flexible graphical structure but requires much

more difficult mathematical concepts to represent it, therefore metagraphs are found to be

more adequate for systems engineering purposes. Nevertheless, one cannot forget about the

higraph existence and its capabilities.

Higraph and directed hypergraph capabilities in comparison with metagraphs are shown in

Table 3-1.

Figure 3-5: (a) Metagraph, (b) directed hypergraph and (c) hierarchical graph

representation of the same system (Basu and Blanning, 2007)

3.3.4 Metagraph applicability

According to Basu, a number of features are needed in representing interactions among

multiple models such as directionality representation, visualisation capabilities,

understanding sets of variables involved in each relationship and formalised algebraic

representation (Basu and Blanning, 2007). Thus, metagraphs support all these features and

prove to be applicable for the purposes of the current research.

It was identified from the literature that metagraphs can be applied to data and rule

management, where rule bases can be represented as metagraphs and integrated into

3.0 Graph-based systems modelling

39

models. Moreover, workflows and processes can be modelled with the use of metagraphs.

Metagraphs are considered to be a powerful method for decision support systems as they can

be utilised for interaction between components analysis no matter what these components

are, models, relationships or rules (Skvortsova and Grout, 2018).

The other application of metagraphs is in the field of complex systems and software

engineering and deals with the semantic complex event processing (Gapanyuk, 2019). The

goal is to develop an engine to distinguish meaningful events in the form of complex

situations. Metagraph model is used as a single model for describing semantic events, complex

situations and global ontologies, and makes it possible to construct hierarchy of dynamic

metagraph agents.

Also, metagraphs are successfully used in machine learning applications and neural networks

(Sankar et al., 2019). Metagraph approach is utilised to extract features from local

metagraph-structured neighbourhoods and to capture semantic higher-order relationships in

attributed heterogeneous information networks. These networks consist of multiple nodes of

different types interconnected through various semantic relationships. That shows how

metagraphs are applicable in the systems with multiple interacting components.

Main advantage of a metagraph is a general, non-procedural formalism that defines all

properties such as reachability, connectivity and transitive closure. This formalism can be

utilised to distinguish coinputs, cooutputs of any path or metapath. Also, metagraphs provide

convenient mathematical way of defining metapaths with the use of an adjacency matrix as

discussed earlier.

3.0 Graph-based systems modelling

40

Thus, this research identifies metagraphs as a basis upon which the desired framework can be

most reasonably developed. Graphs extensions, such as hypergraphs and metagraphs,

provide all sorts of potential to be applied for modelling systems interaction.

3.4 Design structure matrix

3.4.1 Decomposition principle

According to “decomposition” principle of concurrent engineering, complex systems often can

be divided into a number of more simple subsystems that are utilised to correspond to one or

several tasks (Yassine and Braha, 2003). Then subsystems can be decomposed into completely

independent components for further simplification of the main system model. All the

subsystems and components are maintained independently, therefore modelling of individual

submodels is done simultaneously. Yassine implies that proper decomposition of a complex

system into simple manageable parts allows to boost product development efficiency by

making engineering concurrent and easier maintainable on all phases of a life cycle.

3.4.2 General concept

There is another concept applicable to managing complexity in SE - Design Structure Matrix

(DSM), which became a popular representation and dependency analysis tool. Browning

identified growing popularity of this technique (Browning, 2015). DSM represents the

interactions between different components of a system in a matrix form, advantageous for

logic analysis in SE. DSM itself is a square matrix, as shown in Figure 3-6. Rows, columns and

diagonal elements are identical and stand for different system components. Each non-

diagonal mark represents dependency existence between two components in one way or

another. Going across a row reveals what other elements this component affects (output

3.0 Graph-based systems modelling

41

sinks), while going down a column shows what other elements this component depends on

(input sources).

 A B C D E F G H I

Element

A

Element

B

● ● ● ● ● ●
Element

C

● ● ● ● ● ●
Element

D

● ● ● ● ● ●
Element E ● ● ● ● ● ●
Element F ● ●
Element

G

 ● ●
Element

H

 ● ● ● ●
Element I ● ● ●

Figure 3-6: Example DSM

Zhang identifies that DSM approach helps to manage complexity in projects (Zhang et al.,

2019). DSM itself is a useful matrix representation of a directed graphs that can be integrated

in the development process. Author implies that for better system structure transparency and

understanding DSM matrix can be partitioned, which includes identification of tasks series

that can be executed sequentially.

Although partitioning is an effective way for organising DSM matrix, and therefore managing

complexity, it is useful mostly when the elements are direct tasks. When these elements are

people controlling the tasks or subsystems of a larger complex system, the process called

clustering is utilised. Clusters are special combinations of elements, where all the interaction

is done inside of a cluster, minimising links to other clusters. An example of clustering is shown

in Figure 3-7.

3.0 Graph-based systems modelling

42

 A B C D E F G A F E D B C G A F E D B C G

A A ● ● ● A A ● ● A A ● ●
B B ● ● F ● F ● F ● F ●

C ● C ● ● E ● E ● E ● E ●
D ● ● D ● ● D ● D ● ● ● D ● D ● ● ●
E ● E ● B ● B ● B ● B ●
F ● ● F C ● ● C ● C ● ● C ●
G ● ● ● G G ● ● ● G G ● ● ● G

(a) (b) (c)

Figure 3-7: Example DSM:

(a) Base DSM; (b) Clustered DSM; (c) Alternative Clustering DSM

Overall Yassine implies that DSM method helps to control complexity and makes a better

formal representation of the interactions among different subsystems. Clustering and

partitioning allow to minimise needed quantity of iterations, which as well leads to reducing

complexity.

Tang identifies that DSM approach is able to help knowledge based engineering by utilising

DSM-based change propagation analysis (Tang et al., 2010). This analysis can distinguish all

possible indirect dependencies or interactions among system sub models with the help of

DSM matrix. With all possible change options identified the knowledge about corresponding

changes can be brought in advance, which is useful for design automation and prevents

mistakes and inconsistencies in the design process. Although DSM approach is helpful for

redesign process, only structured design knowledge can be addressed in the matrix, while

unstructured knowledge must be organised at first.

3.4.3 DSM applicability and connection with graph theory

DSM offers a good way of models interaction representation in matrix form, which is

comfortable and applicable for programming. It is worth noting that there is a strong

connection between DSM and a graph, which is shown in Figure 3-8. Therefore, utilising DSM

in combination with metagraphs will provide further benefits for systems modelling.

3.0 Graph-based systems modelling

43

Figure 3-8: Example DSM (Yassine and Braha, 2003):

(a) Directed graph; (b) Base DSM; (c) Partitioned DSM

3.5 Graph-based design languages

Complexity in spacecraft design is identified through the discussion of graph-based design

languages and the requirement of new ways for solving complexity problems are distinguished

(Gross and Rudolph, 2016a). In addition to that, designing modern complex systems includes

solving a huge amount of problems among different interacting engineering domains (Gross

and Rudolph, 2016b). Thus, it is significant to construct proper data exchange mechanism

between different engineering models to allow easy and convenient way of propagating

changes in one model to all other models and track these changes beginning in early stages

with conceptual modelling. Data exchange process general view is shown in Figure 3-9.

Figure 3-9: Data exchange process (Gross and Rudolph, 2016b)

One way of solving this problem is the use of a central model to govern all interactions and

data exchange among different models, which is shown in Figure 3-10.

3.0 Graph-based systems modelling

44

Figure 3-10: Central data model (Gross and Rudolph, 2016b)

Design graph approach is introduced in application to open FireSat example and provides

design graph generation for FireSat example, where nodes are instances specifications (UML

Classes) and edges are links between those instances (Gross and Rudolph, 2016c). Required

equations for conceptual design of a satellite are provided by Wertz, where in graph-based

design languages they are defined by edges of the design graph (Larson and Wertz, 2008).

Design graph itself represents an analytical model and it is possible to analyse it in several

ways, one of them being graphical representation of the solution sequence for the whole

equation system.

Another application of the design graph approach is enhancing the maintenance capabilities

of virtual commissioning digital models (Kiesel et al., 2017). An example design graph of a

robot cell is shown in Figure 3-11. In this case a robot cell consists of 6 axis robots and only

needs the functionality to manage the connections among the inputs and outputs of the

robots. The example design graph is a fragment of a larger graph as indicated by dashed

elements.

3.0 Graph-based systems modelling

45

Figure 3-11: Robot Cell example design graph (Kiesel et al., 2017)

Overall graph-based design language has been demonstrated as a useful way of representing

entire design by a complex equation system revealing all the design dependencies along the

design process. Keeping large and complex system manageable by assembling all its parts by

rules and dependencies is an important process (Gitelman et al., 2017). Graph view of

variables involved in the development process and interactions among them provides a

comfortable way of analysing systems in their current state.

Although even one missing constraint or rule can lead to the entire equation system being

unsolvable with no way of searching for the error, where one minor change in one subsystem

can lead to an uncontrollable chain of changes. The same is applicable to inconsistencies in

the design process, which often exist on different stages of a lifecycle. Therefore, in our study

we aim to utilise such graph-based approaches that can not only represent the design in every

moment but also be reliable and help design engineers to keep track of all the changes on

every stage of a lifecycle automatically.

3.0 Graph-based systems modelling

46

3.6 Summary

This chapter introduced graph theory concepts and provided the general understanding of

their utilisation in the systems engineering field. Based on the graph theory methods review

the current chapter discussed the potential use of the graphical structures for achieving the

aim of the research. The chapter explained the various graph constructs, their advantages and

disadvantages and potential utilisation in systems engineering for systems modelling. The

selection process of the most applicable graphical construct for this research purposes is

provided. The chapter shows the understanding of metagraphs as the best suitable approach

for modelling interactions in systems engineering. Metagraphs provide all necessary

functionality for modelling interactions automatically based on the current research purposes.

Moreover, it further highlighted the need for the systems interaction automation in

engineering with links to the related research in the field based on graph-based design

languages. Two previous chapters cover all aspects of the current methodologies used in

MBSE and how they deal with interaction modelling. Also, findings from the current chapter

clearly show the applicability of metagraphs for the purpose of this research. The outcomes

of Chapters 1-3 are reflected in the papers from the list of publications (Filimonov et al., 2020),

(Filimonov et al., 2016). The next chapter extends the findings and formulate the actual

methodology framework based on the use of metagraphs and systems engineering

methodologies.

4.0 Interaction Modelling Framework

47

4.0 Interaction Modelling Framework

4.1 Introduction

Previous chapters have provided an overview of current systems engineering methodologies,

their comparison and applicability to the purpose of this research. It was identified that

currently there is no appropriate methodology to automate the interaction process. From

Chapter 3 it was concluded that graph theory helps modelling interactions in model-based

systems engineering environment. It was further shown that metagraph is the most applicable

concept to cover the research gaps. Hence, there is a need to develop a framework or method

that helps to model interactions among different models. First, this chapter presents the

research methodology and research plan. Then it proceeds with an interaction modelling

framework, its requirements, and other infrastructural aspects. It discusses all phases of the

methodology based on conclusions drawn from previous chapters.

4.2 Research methodology

The aim of this research is to identify and develop methods and tools for creating dynamic

ways of modelling logic in form of systems interaction for reducing complexity in MBSE

environment. The purpose of this research is to address both practical and theoretical issues

of the interaction modelling in the existing MBSE methodologies. It is required to identify

overall approach of the research based on the most applicable methods (Flick, 2015). This

involves the ability to improve quantitative parameters of systems engineering, such as time

needed on each stage of the development life cycle. Moreover, quality of life improvements

are required for making development process easier by reducing its complexity and providing

systems engineers a framework for being able to observe the system behaviour when various

changes occur in one of the system model sub models. Therefore, for the purpose of this

4.0 Interaction Modelling Framework

48

research a combined method utilising both qualitative and quantitative information and

techniques is adopted. It is known as “mixed method” and according to Creswell, “a mixed

methods approach is one in which the researcher tends to base knowledge claims on

pragmatic ground” (Creswell, 2013).

This research includes two use cases, which are examples of development of real-life industry

objects gathered from the literature. One is the general automobile acceleration analysis and

the other is the standard CubeSat systems development example. They are represented by

their project description and SysML diagrams with all the necessary parameters, relationships,

interactions, and logic. The research utilises the use case approach. Even though case studies

have been criticised in the past as lacking scientific robustness and not addressing general

outcomes of the research, it has been reiterated and noted by many authors as appropriate

technique when dealing with evaluation within the complex research (Noor, 2008).

The qualitative and quantitative data from these use cases is then utilised for the verification

and evaluation purposes. Modern systems engineering models are becoming more complex

with appearance of a large amount of sub models showcasing smallest details of the

development process. These systems are the subject of this research and it has been

acknowledged that complex models are difficult to analyse so there is a need to create an

appropriate amount of test cases that interpret sufficient behavioural aspects of the systems

(Zhu et al., 2018).

Use cases data is used to develop five unique scenarios for each use case that results in the

comprehensive analysis based on essentially 10 different scenarios for the parametric and

qualitative evaluation. According to the fundamentals of the research design (Ramdhani and

Ramdhani, 2014), the amount of data needed for an effective evaluation depends on the

systems being researched, their parameters, possible behaviour and the expected evaluation

4.0 Interaction Modelling Framework

49

outcome. Even though mixed method research is essentially more complicated than a single

qualitative or quantitative method, it is supposed to drastically improve the results’ validity

and reliability. Also, it presents means to observe data convergence or divergence in

hypothesis testing (Abowitz and Toole, 2010). Therefore, the author implies that having 10

different scenarios provides sufficient data for verification and evaluation purposes. It covers

all possible and necessary types of changes in system models and accommodates enough

information for the data convergence. Ultimately it is expected to fully justify framework

effectiveness based on the evaluation outcome.

4.3 Research plan

Figure 4-1: Current thesis research design

Identify research methodology, leads to the formulation of the research plan, and Figure 4-1

shows the research plan adopted for this research. The whole process is broken down into

three stages starting with literature review, proceeding to the methodology framework

Literature Review

Review of Systems
Engineering state

Graph theory
concept selection

Interaction modelling
in the current

methodologies

Implementation and development

Methods selection Software tools
selection

Technology
application

Evaluation of the framework

Test scenarios
identification

Workability evaluation
in use cases

Effectiveness evaluation
against requirements

4.0 Interaction Modelling Framework

50

development, and then finishing up with the evaluation of the framework. To be able to

construct a well-designed framework that fulfils the aim of this research, detailed literature

review was necessary and was carried out, presented and discussed in chapters 2 and 3.

Thorough analysis of various model-based systems engineering methodologies was

performed to fully understand the field of systems engineering and its current status. Based

on these findings the research aim and objectives were outlined. The detailed review of the

current graph theory methods was then performed. The comparison of different graph

structures showed that metagraph is the most suitable method for interaction modelling in

application to the research aim. The applications of metagraph methods in decision support

systems further demonstrated its potential for utilisation in model-based systems engineering

environment. The proposed framework based on metagraph theory and its different aspects

are explained in the next sections of this chapter. The developed framework will be evaluated

using two use cases and findings will be discussed in chapter 6. These findings account for the

workability of the framework while measuring framework against distinguished requirement

will show the effectiveness of the framework. The final outcome from the evaluation will be

utilised to measure final potential and limitations of the proposed framework.

4.4 Requirements

To develop the framework, first it is needed to identify the requirements for how it should

operate. The requirements for the methodology being developed are subdivided into two

categories as functional and design. Functional requirements are responsible for the correct

practical implementation of the developed methodology. These requirements are as follows:

• Correctness – this requirement states that the developed method will allow effective

modelling of systems interaction in MBSE environment. Correctness is defined and

measured in a series of scenarios during the verification and validation stage.

4.0 Interaction Modelling Framework

51

• Automatic control over interactions – this is important so that modelling logic in the form

of subsystems interaction is dynamic and allows systems engineer to automatically track

the changes through the relationships according to certain rules. This helps to diminish the

time needed for the development of products.

• Systems interaction representation – requirement related to correct and simple

representation of needed relationships from different points of view.

Design requirements provides the methodology from the developer’s point of view and its

other users. These requirements are as follows:

• Special knowledge – there is a need for a special systems interaction engineer who will

have knowledge of the composition of the interaction module and will be able to control

this module in case there is a need for it.

• Relationships models – it is necessary to provide systems interaction engineer full

capabilities and a range of building blocks/models to be able to control automatically built

interaction module.

• Applicability for multiple users – this requirement states that different users should be

able to utilise the developed methodology. These users involve engineers of different

expertise involved in various stages of the development process. Not all of these engineers

have adequate knowledge on how the actual system’s interaction is modelled inside the

interaction module of the main system model but still, they have to be able to define

relationships between their work and other engineers.

• Friendly user experience – this requirement related to both users and the systems

interaction engineer as they should be able to seamlessly utilise developed framework

with the help of software with friendly and simple user interface. Also, the framework

4.0 Interaction Modelling Framework

52

should provide simple ways of representing certain relationships from different points of

view, which is set to be achieved with the help of special graphical representation

software.

All design requirements are related to certain functional requirements as the developed

method is set to be fully capable of simultaneously modelling interactions among models and

providing means and tools to control and utilise the interaction model by all its users.

4.5 The interaction modelling framework

A framework for developing interaction mechanism, shown in Figure 4-2, consists of five

phases, namely

1. System definition

2. System Modelling

3. Interaction Modelling

4. Validation and verification

5. Visualisation.

The framework provides a set of activities for MBSE experts to employ in order to implement

graph-based systems interaction technique in the development process.

4.0 Interaction Modelling Framework

53

S
T
A
G
E

I

System Definition

S
T
A
G
E

II

System Modelling

S
T
A
G
E

III

Interaction Modelling

S
T
A
G
E

IV

Validation and Verification

S
T
A
G
E

V

Visualisation

Figure 4-2: The framework for interaction modelling

Key system design concepts,
design rules and parameters

Define use case scenarios
and system functionalities

Identify system and
form its description

Decompose main system
into subsystems and

components

Distinguish interaction
interfaces of subsystems and

components

Organise interactions among
subsystems and external

influence

Identify types of SysML
diagrams for every sub system Construct main

system model and
its sub models

with SysML

Comprehensive
SysML model

Transfer data
from SysML to

object-oriented
modelling
software

Metagraph
approach

Develop object-oriented
metagraph model of logic -

interactions among subsystems

Formalised object-oriented
metagraph-based logic
model of MBSE system

Identify list of classes in
the model

Identify list of properties
in the model

Identify relationships
among sub models

SWRL for
interactions

Check for
inconsistencies using

object approach

Validate interactions
through use case

scenarios

 Test logic model
efficiency against

chosen set of metrics

Use case
scenarios

Propagate
changes to all
subsystems

Transfer resulting
data from object-
oriented model
back to MBSE
SysML model

Update
SysML

model with
new data

Finalised system
and interaction

model at current
moment of time

Identify point
of view

Distinguish data and
variables needed

Visualise parts of the
systems using

visualisation software

Graphical
interaction

model
visualisation

Graph visualisation
techniques

More
analysis
required

Yes

No

4.0 Interaction Modelling Framework

54

4.5.1 System definition

The first phase of the methodology framework is to define the system - this includes

identifying its key aspects and decomposing main system into subsystems and components

while defining corresponding interaction interfaces and system functionalities. It is essential

for correct system modelling to adequately distinguish key design concepts, rules, and

parameters.

Figure 4-3: System definition process to acquire key system design concepts,

design rules and parameters

It has been identified from the literature that the main principle of making the development

process simpler is to decompose the main system into subsystems and as independent

components as possible (Browning, 2001). Decomposition principle is the most important

concept for correctly performing that task.

The process of system definition is shown in Figure 4-3. It shows the tasks needed for the

correct model representation. These tasks include the following:

4. Define main system functionalities

Phase 1. System definition

1. Create thorough system
description

2. Decomposition of the main system model
according to decomposition principle

3. Distinguish interaction interfaces of
individual component

4.0 Interaction Modelling Framework

55

1. Identify the system being developed and form its general description

2. Decompose main system into sub systems and components that are as independent as

possible. This complies with the decomposition principle.

3. Distinguish system functionality and real-life scenarios for better understanding of the

system.

4. Identify interaction interfaces of all individual components based on their functional roles.

Then system engineer can then model the relationships between these components.

Following these tasks allows system engineer to create a comprehensive system design that

is well decomposed and represented for further modelling and analysis with the use of

software tools, modelling and programming languages. The result is shown in the same Figure

4-3 – key systems design concepts, design rules and parameters.

4.5.2 Systems Modelling

The second phase is the systems modelling, where all sub systems identified in the previous

sections are modelled with the use of systems modelling methods and techniques resulting in

the creation of a comprehensive representation of the system model.

4.0 Interaction Modelling Framework

56

Figure 4-4: Systems modelling process to create the comprehensive SysML system model

The tasks performed in that stage are shown in Figure 4-4. These tasks include the following:

1. Based on the systems and components defined in the previous phase, distinguish types of

diagrams and objects needed for modelling each sub system of the main system model.

2. Based on the interaction interfaces of components and their relationships, organize the

interactions between the components and identify their types.

3. Model all the sub systems and components with relevant constructs and generate the final

system model.

The result of performing these tasks is the comprehensive main system model with all its sub

systems, components and interactions among them modelled with help of SysML.

Systems Modelling Language is used since it allows systems engineers to model all aspects of

systems engineering such as requirements, behaviour and structure. Literature review

showed that SysML is recognised by one of the most essential tools in the current MBSE

methodologies, where Estefan in his review of these methodologies confirms the growing

Phase 2. Systems Modelling

1. Identify types of diagrams and objects

2. Organisation of interactions among
different sub systems

3. Model all the sub systems and
components with systems modelling

techniques

4.0 Interaction Modelling Framework

57

significance of one common language and argues that additional diagrams used in SysML allow

engineer to model more complex systems, which is the main subject of the current research

(Estefan, 2008). As SysML is not a methodology itself and is entirely independent it can be

used by any systems engineer and is used for the current research purposes.

The major advantage of using SysML is the possibility of modelling complex systems in a simple

manner and demonstrated in examples such as automated vehicle controllers (Ferreira and

Gorlach, 2016).

4.5.3 Interaction Modelling

The third and the most significant part of the framework is metagraph construction, which

automatically governs the interactions among different components. This is the phase where

the interaction modelling happens. Data is set to be transferred from SysML to object-oriented

modelling software, where metagraph approach is utilised to successfully model the

interaction mechanism in the system being developed. The data from SysML is exported into

XML-file and parsed using the object-oriented approach. XML has been widely adopted as a

universal way to format data. Object-oriented approach grants capabilities to enhance

knowledge categorisation and to model relationships among systems in a simple object-

oriented graph-based manner.

The tasks for this phase have been distinguished as follows:

1. Export system model data from SysML with all its modelling artefacts relevant for analysis.

This is done with the use of XML format.

2. Analyse the acquired data using object-oriented approach while distinguishing necessary

objects, classes, properties and relationships among them.

4.0 Interaction Modelling Framework

58

3. Based on the metagraph concepts and parsed data, generate the object-oriented

metagraph model of systems interaction for the current system.

Figure 4-5: Interaction modelling process to construct the formalised object-oriented

metagraph-based logic model of MBSE system

The tasks are summarised in Figure 4-5. Successfully performing these tasks generates the

metagraph of interactions among sub systems and components of the main system model.

This is the common interaction module that was discussed in the introduction and literature

review section of this research.

4.5.4 Validation and Verification

The fourth phase is the validation and verification phase, where the developed model is

checked for consistency and correct representation of the initial model. As discussed in section

4.2, the mixed qualitative and quantitative method is utilised for the verification purposes,

where both parametric evaluation and qualitative analysis is performed for identifying

Phase 3. Interaction Modelling

1. Transfer data from SysML to object-oriented
modelling software

3. Using metagraph concepts, develop object-oriented
metagraph model of logic - interactions among

subsystems

2a. Identify list of classes in the model

2b. Identify list of properties in the model

2c. Identify relationships between sub
systems and components

4.0 Interaction Modelling Framework

59

effectiveness of the proposed framework. If something changes in one of the subsystems of

the initial model and its SysML representation the object-oriented metagraph interaction

model checks the updates for consistencies and propagates changes to other sub systems and

ultimately transferring data back to SysML and updating the corresponding diagrams. Systems

engineer on all the stages of the lifecycle can check what will be affected if variables are to be

changed in one model or another. That allows to vastly increase the predictability of the

development process and avoid unnecessary complications in the later stages that, as

discussed in the literature review, can result in practically developing the system from scratch.

Figure 4-6: Steps to validate and verify the system and interaction model at the current

moment of time

Phase 4. Validation and Verification

1a. Check for inconsistencies using object approach

3. Propagate changes to all subsystems

2. Test logic model efficiency against requirements

1b. Validate interactions through use
case scenarios

4. Transfer resulting data from object-oriented model back to
MBSE SysML model

5. Update SysML model with new data

4.0 Interaction Modelling Framework

60

Literature review of the related research showed the evaluation principles utilised in the

similar research based on graph-based design languages (Gross and Rudolph, 2016a). It has

been noted that even though parametric quantitative evaluation is the key to measure the

effectiveness of the method being developed, there is a need to weigh the quality of the

proposed framework by developing proper tasks and criteria in order to prove the

effectiveness and enhancements over existing MBSE methodologies. Based on these idea the

tasks for the verification and validation were developed and are presented in Figure 4-6 and

are summarised as follows:

1. First the use case scenarios for the system are distinguished based on the system

functionalities defined during the first phase of the methodology framework.

2. The defined scenarios are used for validating interactions and making sure they comply

with the system actual purpose. At the same time existence of inconsistencies can be

checked based on changes made to the same components of the original model.

Metagraph approach automatically takes into account the ambiguous definition of

parameters and models resulting in not getting errors due to inconsistencies in the main

system model.

3. Find the parameters and models that will be affected by changes in other models and

parameters based on the scenarios results defined from the previous tasks.

4. Transfer the resulting data back from object-oriented view to the SysML diagrams and

update the original system model accordingly.

Following up on that, the evaluation criteria were developed and are set to be utilised in the

use case and results analysis. These criteria are as follows:

• The framework capabilities to propagate changes in one model to the other models.

4.0 Interaction Modelling Framework

61

• Correctness of the affected model identification based on manual check-up of the

affected parameters.

• The framework capability to diminish time needed to track the changes and ultimately

develop products.

• The framework potential to allow systems engineers identify the expected changes on

all the stages of the development lifecycle and adjust the development process

accordingly.

• The framework potential to visualise the changes and provide systems engineers ways

to easily observe the affected system components.

Executing this sequence of tasks allows system engineer to verify that the object-oriented

model complies with the actual system functionality by performing pre-defined use case test

scenarios. Then after the metagraph model shows full functionality without errors, systems

engineer can test any changes and see, which parameters are going to be affected in the

original SysML system model on any stage of the development process. Then the acquired

results are measured against the evaluation criteria.

4.5.5 Visualisation

The final visualisation phase is to provide a method to represent the model at any moment

from different points of view with the help of graph visualisation techniques.

From the methodology framework perspective, the visualisation highlights the ability to

represent the parameters and models affected by changes made anywhere in the original

model. This is done both in text and graphical ways (Abad et al., 2016). Going through different

papers and books on metagraph theory revealed that currently there is no automatic

metagraph visualisation techniques fully developed and adopted (Basu and Blanning, 2007).

4.0 Interaction Modelling Framework

62

But there is a promising method that was not fully developed yet but will be used for the

implementation purposes. That method is based on the principles of force algorithms and is

proposed by (Globa et al., 2015). It defines the set of rules for forces between metagraph

nodes depending on the types of the nodes between which the forces act. It allows the

visualisation of medium size metagraph but still has many issues exist such as the intersection

between the edges.

Visualisation is an important aspect of the proposed framework as it provides means for

effective quality of life improvements for systems engineers. According to the literature on

visualisation techniques, the engineering data is becoming more complex and that leads to

the fact that it is getting more difficult to visualise relevant data from the necessary point of

view (Pathak and Pathak, 2020). Effective visualisation improves the decision makers with an

opportunity to observe the parametric data visually and make more quality decisions in less

time. This helps systems engineers to better understand complex systems and find trends and

correlations that might lead to a certain design mistake being unnoticed (Hariharan et al.,

2016).

Being able to automatically visualise the changes and to compare the original and modified

system models, results in easier development process, and ultimately leads to development

of the product in less time with fewer resources spent. Overall, metagraph visualisation issue

is one of the existing research problems that is currently being solved by graph theory experts,

and poses interest for the future research, which will be discussed in the conclusion chapters.

4.6 Summary

This chapter provided the full overview of the interaction modelling framework. The initial

sections of the chapter discussed the distinguished requirements that are later going to be

4.0 Interaction Modelling Framework

63

utilised for evaluation. Then the key elements that form the framework are described.

Furthermore, each phase depicted in the framework is provided a detailed explanation to help

determine the exact process of modelling interaction in model-based systems engineering

environment. Later sub-sections explain how different phases of the framework work. First,

the main system is decomposed into the as independent as possible components to allow

system engineers model each component separately and define the interaction. This allows

to simplify the process of development and avoid inconsistencies by multiple definition of the

same thing. Then, the system is modelled with the use of Systems Modelling Language that is

the common tool for most of current MBSE methodologies. After that, the model is exported

and the metagraph of interactions is constructed that is then utilised to compare the initial

and the changed systems and define, which components have been affected by the changes.

This chapter has managed to identify all the aspects of the interaction modelling framework.

The outcome of this chapter is reflected in the journal paper (Filimonov et al., 2020). Results

from this chapter will be utilised in Chapter 5 describing the development and implementation

of the framework and tools used for that.

5.0 Development and Implementation

64

5.0 Development and Implementation

5.1 Introduction

This chapter focuses on the further description of the interaction modelling framework and

its proof of concept implementation. Selection of tools is presented to demonstrate how the

methodology is implemented in real life use cases. It presents how and why particular

software tools and packages are used for the purposes of this research. The next chapter

provides the use case evaluation and shows the effectiveness of the framework based on the

tools selected and described in this chapter.

5.2 Interaction Modelling Framework

5.2.1 Framework outline

As discussed in the previous chapter interaction modelling framework consists of five phases:

1. System definition

2. System Modelling

3. Interaction Modelling

4. Validation and verification

5. Visualisation.

This chapter will go through each phase of the methodology and discuss the tools that are

possible to utilise in each case and then describe, which tool is utilised for the proof of concept

implementation in the current research.

5.0 Development and Implementation

65

5.2.2 System definition

System definition is the first phase of the methodology for interaction modelling framework.

In this stage the main system model’s components are being described in detail. Then the

main system model is decomposed into as independent as possible subsystems and

components with interaction interfaces of these components distinguished and used for

further organisation of interactions and relationships among the components. In order to do

so the concepts described in the previous literature review chapters are utilised such as the

design structure matrix and decomposition principle. This phase is one of the most important

stages of the framework as the correctness of model definition is essential for further

modelling of all its aspects using modelling languages.

Figure 5-1: Example DSM with external input/output regions (Eppinger and Browning, 2012)

5.0 Development and Implementation

66

Figure 5-1 shows the example Design Structure Matrix that has augmented external input and

output regions that allow the model to account for any external interactions. This illustrates

how the DSM can be utilised for model organisation in the system definition phase to define

all the interactions and have a better understanding of the system and its components.

5.2.3 Systems modelling

Next phase in the interaction modelling framework is systems modelling. During this stage the

chosen systems modelling technique is utilised to model all the aspects of the system model

from the previous stage. As discussed in chapter 2 many Model-Based Systems Engineering

methodologies utilise Systems Modelling Language for representing its components through

various diagrams. SysML is a general-purpose graphical modelling language that supports all

aspects of the general design process – the analysis, specification, design, verification and

validation of complex systems. These systems can potentially include anything that is being

under consideration including hardware, data, personnel, procedures, facilities, and other

elements of man-made and natural systems (Friedenthal et al., 2014).

As the research is focusing on developing general methodology that can be utilised to enhance

the existing MBSE methodologies, the most important requirement for the tools being used

for that is being methodology independent. SysML is the perfect example of that and it is

emphasised that it is entirely methodology independent while being an essential part of most

of the MBSE methodologies (Holt et al., 2016). SysML can create the cohesive and consistent

model of the system that represents the following aspects of systems, sub systems and

components:

• Structural composition, interconnection, and classification

• Function-based, message-based, and state-based behaviour

5.0 Development and Implementation

67

• Constraints on the physical and performance properties

• Allocations between behaviour, structure, and constraints

• Requirements and their relationship to other requirements, design elements, and test

cases

There are many software packages that provide capabilities for systems modelling with SysML.

The next step is to find the tool that is perfectly suitable for the purpose of the research. The

following requirements on the systems modelling tool have been identified:

• For the proof of concept implementation, the tool needs to be free of charge.

• Even though the tool is free to use, it still needs to contain the full functionality of SysML

modelling capabilities.

• The chosen SysML tool should be able to specify the parametric modelling artefacts with

defining relationships and interactions among different components.

• The tool needs to contain export features to the XML format as that is the format that is

used for further metagraph modelling in the next phase of the framework.

For the selection process a thorough research of all current SysML tools have been conducted

using the official SysML Open Source Project web platform (“How to Select a SysML Modeling

Tool for MBSE,” n.d.) and official OMG Group SysML web site (“The Official OMG SysML site,”

n.d.). These web platforms contain the process of how to choose the correct SysML modelling

tool and provide and comprehensive list of the current tools. Originally IBM Rational Rhapsody

software package was chosen as it contains evaluation version that can be used to model most

of the systems artefacts while being free of charge. But as a matter of fact, the free version

turned out to be limited in its modelling and export capabilities at the moment of technology

5.0 Development and Implementation

68

selection therefore the selection process continued and stopped at Visual Paradigm software

package with its SysML plugin for Model-Based Systems Engineering Applications.

The review of Visual Paradigm SysML modelling capabilities was performed by experts from

SysML Open Source Project web platform (“How to Select a SysML Modeling Tool for MBSE,”

n.d.) using the following weighted evaluation criteria: usability, major functions (drawing,

simulation and execution), standards and interoperability, team modelling and tech support,

and value. The results show that Visual Paradigm is a reasonable choice as MBSE tool that

draws SysML-complaint notation and offers basic support for requirements traceability and

basic model simulation. Also, Visual Paradigm has fully functional free of charge Community

Edition version for non-commercial such as the current research. Moreover, Visual Paradigm

has rich exporting capabilities and allows to easily export the whole system model to readable

XML file.

Figure 5-2 provides an example of an essential block definition diagram modelled with Visual

Paradigm.

5.0 Development and Implementation

69

Figure 5-2: SysML Block Definition diagram modelled with Visual Paradigm SysML modelling

tool (“Visual Paradigm Web Site,” n.d.)

Therefore, for the implementation and development in the current research Visual Paradigm

is utilised for the systems modelling of all subsystems and components distinguished in the

previous section. Visual Paradigm fully satisfies all the distinguished requirements for the

SysML modelling tool.

5.2.4 Interaction modelling

Next phase of the interaction modelling framework is the interaction modelling itself. This is

the stage, where SysML main systems model with all its artefacts is being exported to XML file

and then the acquired data is used to create a metagraph of the system model for further

analysis.

To achieve the goal of using all XML model data for the metagraph generation and analysis

the object-oriented approach has been selected since it has all the capabilities necessary for

the current research objectives. Object-oriented programming is widely utilised in multiple

5.0 Development and Implementation

70

fields of engineering and it is emphasised that it is the best possible solution to model many

aspects in MBSE (Fusaro et al., 2016).

As a competition to object-oriented approach the ontological modelling approach has been

considered. In the recent years increased interest has been growing in the development and

utilisation of engineering ontologies to support systems engineering [Sanya and Shehab,

2014]. Ontology is a formal specification of a domain, which seeks to classify entities and

relations that tie them together [Davies et al., 2003]. Ontological approach grants capabilities

to enhance knowledge categorisation and to model relationships among systems in a simple

object-oriented graph-based manner. Ontology modelling software such as Protégé provides

graphic user interface to define ontologies and includes ways to validate model consistency

through reasoning. The main drawback of using ontology modelling software is the fact that

it does not have pre-existing reusable libraries for parsing XML data and creating certain

objects required for the research such as metagraph. Ontological modelling focuses on using

directed and undirected graphs but does not provide any functionality to create metagraph

objects such as metapath or metavertex.

Therefore, object-oriented programming is shown to be the most applicable in the current

research as many programming languages contain existing libraries that can be used at certain

stages of the data parsing and transforming it into a metagraph of the system model.

The selection of the best object-oriented programming language lies beyond the scope of the

research, so it has been decided to choose the language that I am most experienced with and

that provides all necessary libraries for making coding implementation easier. Therefore, C#

has been distinguished as object-oriented programming language backbone of the research.

C# is a general-purpose multi-paradigm object-oriented programming language that is

5.0 Development and Implementation

71

developed by Microsoft and has many pre-existing libraries that can be used for various tasks

during the implementation process.

Not to develop XML parsing technique from scratch, the LINQ to XML parsing technique is

utilised to analyse and parse XML data. This technique is a fast, forward-only, non-caching

parser with a lot of useful built-in programming functions and guides. It is well documented

by Microsoft and is easy to use. The software tool to parse XML data has been developed with

the use of object-oriented programming in C# language and allows selection of the XML file

created in the Systems Modelling phase of the interaction modelling language and automatic

analysis of the entire system model. The overall tool interface is represented in Figure 5-3.

Figure 5-3: Developed object-oriented tool example screenshot

All the acquired data is stored in the separate lists of objects inside the tool. These lists include

the objects – all the individual components from system model, and relationships – all the

interactions defined during the systems modelling phase. Corresponding example data for

objects and relationships is presented in Figure 5-4 and Figure 5-5.

5.0 Development and Implementation

72

Figure 5-4: Example data for parsed objects

Figure 5-5: Example data for parsed relationships and interactions

Then the data is used to generate the metagraph of the system model. This process is

performed within the same tool with the entirely self-written code that automatically analyses

all the objects and relationships and then generate the nodes and metapaths based on the

acquired knowledge.

The developed metagraph generation algorithm is performed by following these steps:

5.0 Development and Implementation

73

1) Search for the nodes involved in the interaction links alongside the identified relationships

from SysML parametric diagram information stored in the XML file and sort them with the

help of DSM and adjacency graph matrices.

This is performed by automatically searching through the XML tags and collecting those

relevant to the system model such as Package, SysMLBlock, Class, Attribute, Association

and Generalization. That results in the formation of the Objects list in the tool.

2) Identify the relationship directions and multiplicativity of the nodes in case they are

involved in several relationships simultaneously. That means that these nodes will be part

of several metanodes at the same time.

The XML data contains the SysMLBindingConnector tag that stores the information on

related nodes and the relationship direction. This data is utilised to form the list of

Relationships objects in the tool.

3) Based on the acquired relationship and nodes information, form the metanodes and

distinguish interactions among these metanodes.

4) Add the metanodes interaction in the same object as the metanode. In the code, that

forms the Meta Objects that are shown later in the pictures. These Meta Objects are then

utilised to compare original and modified system models by direct comparison between

the objects and relationships these Meta Objects consists of.

The list of Meta Objects is also shown in the tool under “Meta Objects” block and represented

in Figure 5-6. Other software functionality will be explained later during the use case

evaluation.

5.0 Development and Implementation

74

Figure 5-6: Metagraph objects data after original data analysis

5.2.5 Validation and verification

After automatic metagraph generation comes the next phase of the interaction modelling

framework. During this phase verification scenarios need to be identified and then

implemented to be able to show that metagraph is fully representing the real behaviour of

the system model. These scenarios strongly depend on the certain use case aspects and the

systems engineer needs. They might include the following:

• Changing parameter values and seeing other parameters affected by the changes

• Adding or removing parameters and seeing other values affected by the changes

• Adding or removing models and see the affected parts of the original system model

To analysis each scenario following steps should be followed:

• Export original system model into XML format

5.0 Development and Implementation

75

• Perform the desired changes in original system model and export the changed model into

XML format

• Run the developed software tool and select both original system model and changed

model as shown in the screenshot of the tool inputs in Figure 5-7.

Figure 5-7: Input for the developed tool

These inputs include paths to the original and modified files, path to the output file, names of

the SysML objects and relationships involved in the system model.

• Click “Start” in the tool to automatically generate original system model metagraph and

the changed system model metagraph. This results into the generation of two metagraphs

– of the original system model and of the modified system model. The example metagraph

objects data for both cases is shown in Figure 5-8.

Figure 5-8: Metagraph objects example data of the original and modified system models

5.0 Development and Implementation

76

• Click “Compare metagraphs” button in the tool to automatically detect the changes

between the original and modified models. The list of changes then represented in the

“Changes” window of the tool. The results for the example used in this section is presented

in Figure 5-9.

Figure 5-9: Example data for changes after metagraph comparison

This developed process will automatically detect all the changes that was caused by the

systems engineer in the o-riginal model. Then, it will perform the comparative analysis

between the original and modified metagraph to determine the parameters and models that

will be affected by the changes. This allows systems engineer to check and validate the model

on every stage of the development lifecycle without a need to manually track every

relationship, which turns out to be too complicated with the growing systems.

5.2.6 Visualisation

Next phase in the interaction modelling framework is the visualisation of the changes or, in

other words, ability to see the changes that will happen in the original system model.

5.0 Development and Implementation

77

Visualisation can be of different types as discussed by (Abad et al., 2016) and that includes

text and graphical representation of data.

First type of visualisation is shown in the tool itself in the special block “Affected parameters”

and provides the list of models that will be affected by performing changes to the original

system model.

Graphical representation is a much broader topic that requires the visualisation of the

automatically generated metagraphs. Literature review of papers on metagraphs show that

there is no unified developed algorithm to automatically represent any metagraph that meets

the requirements of aesthetics criteria that are defined across the literature and were

summarised by (Beck et al., 2009). The use of the same algorithm on small and much larger

metagraphs will violate these criteria. That includes positioning inner vertices of metavertex

at a significant distance from each other leading to the loss of the metavertex form. The other

issues might be positioning wrong inner vertices in metavertex or not being able to determine

the metavertex edges.

(Globa et al., 2015) proposes modified metagraph visualisation layout criteria as follows:

• Metavertices coordinates can be equal in the presence of common inner vertices.

• Metavertex figure contains the only inner vertices of the corresponding metavertex.

• Metavertices figures without the common vertices do not intersect.

Based on these criteria a modified algorithm for metagraph is proposed based on the

Fruchterman and Reingold visualisation technique (Fruchterman and Reingold, 1991).

Metagraph is defined as a system of objects, related by springs based on pre-defined rules.

Each spring affects pair of nodes with the force of attraction or repulsion. Then vertices

5.0 Development and Implementation

78

position is transformed under the influence of the sum of these forces. The representation is

considered complete as soon as a point of equilibrium is reached in the system.

Visualisation result examples are shown in Figure 5-10 and Figure 5-11 as adopted from (Globa

et al., 2015).

Figure 5-10: Force-Directed Algorithms Method metagraph visualisation example for 50

vertices, 20 metaobjects and 34 edges (Globa et al., 2015)

Figure 5-11: Force-Directed Algorithms Method metagraph visualisation example

for 20 vertices, 10 metaobjects and 13 edges (Globa et al., 2015)

This showcases the use of the proposed visualisation technique on a random metagraph with

50 vertices, 20 metaobjects and 34 edges, and a random metagraph with 20 vertices, 10

metaobjects and 13 edges. According to the authors’ findings, the pictures were automatically

5.0 Development and Implementation

79

generated in 10.3 seconds and 1.0 seconds. It is worth noting that result varies depending on

the initial nodes location, and the time required to get the satisfactory image is highly

dependent on the user needs.

Table 5-1: Time required for random metagraph representation

Metagraph composition Time needed

10 vertices, 5 metaobjects 0.41 sec

20 vertices, 10 metaobjects 1.91 sec

30 vertices, 15 metaobjects 5.39 sec

40 vertices, 20 metaobjects 9.98 sec

50 vertices, 20 metaobjects 14.81 sec

60 vertices, 25 metaobjects 15.49 sec

The Table 5-1 presents the time needed for random metagraph representation. The

developed method allows visualising medium size metagraphs with a limit on the number of

metavertices intersections.

Despite the fact that this method is successful in visualising metagraphs to some extent, there

are still a number of issues preventing fully automatic metagraph representation. It could be

difficult to distinguish metavertices if some of them are included in other and intersect. Still

this method has proven to be the applicable for the research and is utilised for automatic

metagraph representation in the use cases.

The C# code has been written that follows all the steps of this algorithm and it has been proven

that is effective in visualising small-scale metagraphs used for the proof-of-concept

verification and evaluation in this research. The code generates a high number of possible

options of metagraph representation based on the mentioned force-based algorithm. Then it

5.0 Development and Implementation

80

checks for possible intersection between metanodes and metapaths in those options and

produces one final variant with least amount of inconsistencies. As there is no ideal automatic

algorithm for metagraph visualisation, the picture remains imperfect and there is still room

for improvement. Overall, the metagraph visualisation problem is a separate large area that

will be further discussed in the next chapters.

5.3 Summary

Based on the outline of the interaction modelling framework this chapter presented and

discussed each phase of the methodology with regards to implementation and development,

and specific techniques and software tools were discussed. The chapter provides

understanding of the tool variety. The selection process of the most applicable tools was

provided based on the specified requirements and research needs. Some limitations were

derived from visualisation point of view and will be further discussed in the next chapters. The

selected tools provide the basis for the actual implementation in real-life use cases and

evaluation. These software packages and languages were used for the development of the

proof-of-concept tool. The following chapter presents use case evaluation of the interaction

modelling framework based on the findings of this and previous chapters.

6.0 Evaluation. Effectiveness of the framework

81

6.0 Evaluation and Effectiveness of the framework

6.1 Introduction

The focus of this chapter is to present test application of the interaction modelling framework,

and to validate the research hypotheses. In this chapter, use cases are presented to

demonstrate all aspects of the proposed methodology. Use case evaluation is an important

part of the research and that is based on both the existing information and actual results from

the research (Yue et al., 2009). The critical analysis and comparison between current MBSE

methodologies and interaction modelling framework are provided. Both use cases show the

workability of the framework and then its limitations and advantages are discussed based on

the requirements distinguished in the previous chapter.

6.2 Evaluation objectives

The objectives of the evaluation process are identified as follows:

• Perform different scenarios in the use cases to compare the actual results from applying

the interaction modelling frameworks against the functional and design requirements

defined in the previous chapter.

• Analyse the interaction modelling framework results and compare and contrast the

application of the interaction modelling technique to the manual tracking of the changes

• Critically analyse the difference in interaction modelling between current MBSE

methodologies and interaction modelling methodology evaluation results in this thesis

based on the evaluation criteria and findings from the literature review of existing

methodologies.

6.0 Evaluation. Effectiveness of the framework

82

The criteria for the evaluation have been defined in Section 4.5.4. The evaluation through use

cases is based on the data collected from the literature during the literature review. The use

case 1 is based on the acceleration analysis example for the automobile development. This

use case is selected due to its general nature that showcases the application of Systems

Modelling Language in actual real-life scenario of automobile development. The second use

case is the CubeSat development example from literature. The CubeSat mission describes a

nanosatellite flying in low earth orbit for earth observation or other research purposes. The

model of the satellite is supposed to enable the layout of most of the subsystems on a

conceptual level. In the following sections, a selection of some class diagrams from the model

are presented along with short descriptions of their purpose (Groß and Rudolph, 2012).

6.3 USE CASE 1: Acceleration Analysis of Automobile Development

6.3.1 Use case overview

The first use case is the Automobile Example from literature (Friedenthal et al., 2014). In this

use case the model-based systems approach is applied to design an automobile system, where

the final is set to match the acceleration and fuel efficiency requirements. The full range of

Automobile design systems is modelled in SysML and the full list of models is shown

in Table 6-1.

6.0 Evaluation. Effectiveness of the framework

83

Table 6-1: Full list of models in the Automobile Example

Diagram name/System Diagram Type
Model Organisation Package diagram
Automobile System Requirements Requirement diagram
Automobile Domain Block definition diagram
Operate Vehicle Use case diagram
Drive Vehicle Sequence diagram
Turn On Vehicle Sequence diagram
Control Power Activity diagram
Drive Vehicle States State machine diagram
Vehicle Context Internal block diagram
Vehicle Hierarchy Block definition diagram
Provide Power Activity diagram
Power Subsystem Internal block diagram
Analysis Context Block definition diagram
Vehicle Acceleration Analysis Parametric diagram
Vehicle Performance Timeline Timing diagram (not SysML)
Engine Specification Block definition diagram
Max Acceleration Requirement Traceability Requirement diagram
Architect and Regulator Viewpoints Package diagram

That example showcases the use of SysML in actual model-bases systems engineering

modelling example. It also defines at least one diagram for each SysML diagram kind and most

of the SysML feature set is illustrated. There are even some extensions beyond the basic set,

including continuous flows and generalisation sets. Modelling artefacts that are included in

this example are representative of the types of modelling artefacts that are generated from a

typical MBSE method. So that shows the general nature of the use case that can be applied in

any of the possible MBSE methodologies mentioned in the literature review.

A multidisciplinary team is responsible for designing an automobile with multiple participants

and roles that constantly share information and adjust their own parts of the development

process according to the changes made by the other engineers. First, the team needs to

identify the needs of the stakeholders and distinguish their individual needs to form system

requirements. In the Automobile example the main stakeholders include both purchaser and

user of the car being developed. In addition to those, systems engineering key feature is to

6.0 Evaluation. Effectiveness of the framework

84

address the requirements of all the other stakeholders who may be impacted during the

product life cycle. That includes the manufacturers, maintenance engineers and governments

that express their needs through driving laws and restrictions. Even though it is necessary that

the analysis takes each stakeholder requirements into account, clearly their concerns have

different importance. Therefore, in this example the main effectiveness measures are primary

transportation needs such as comfort, performance, fuel economy etc. The functional

requirements for the automobile system are selected by analysing what the system must do

to achieve its original goals. The early and correct identification of the requirements is crucial

to the success of the development process. Overall system design also distinguishes

components involved in the system-level requirements. This research works with the

acceleration analysis of the automobile system in order to be able to meet functional

requirements to achieve certain speed in less than certain period of time. The selected aspects

of the system design are appropriate to support an initial trade-off analysis. In order to satisfy

the acceleration requirement, many parameters need to be changed and their effect on the

other parameters needs to be determined.

The later sections will focus on each phase of the proposed interaction modelling framework

in application to the use case.

6.3.2 Current interaction modelling state

As mentioned in the previous section, the Automobile Acceleration Analysis example is

modelled using various SysML diagrams showcasing their capabilities. Block definition

diagrams present the overall structure of the project with the break-down of the Automobile

Domain and Vehicle Hierarchy. Internal block diagrams highlight the more detailed structure

of the Vehicle Context, which is the system of interest in this example.

6.0 Evaluation. Effectiveness of the framework

85

Vehicle acceleration analysis itself is represented with the use of another block definition

diagram – Analysis Context, and a parametric diagram – Vehicle Acceleration Analysis. While

Analysis Context diagram presents the parameters and the equations used for the analysis,

the Vehicle Acceleration Analysis parametric diagram showcases how these parameters and

equations are utilised for the purpose of this example.

Despite the fact that all the aforementioned diagrams provide the comprehensive picture of

the automobile system being developed, the author of the example implies that these

diagrams remain only the representation of the system without the capabilities to track the

relationships between the models (Friedenthal et al., 2014). Therefore, interactions are

entirely static in the existing implementation. That results in a complete redevelopment of the

model whenever changes are needed to be made in the system model and the increased

unpredictability of the system in question, as currently there is no way to automatically find

the affected parameters.

Even though SysML allows representation of the system model from various perspectives,

each of these perspectives is a complex sub system on its own. Making the model consistent

across all the different perspectives showcases more challenges for the current

implementation of MBSE methodologies. The limitations of the current implementation state

will be further discussed during the critical analysis of the results of the interaction modelling

framework application in this use case.

6.3.3 Systems modelling

As shown in Table 6-1, the automobile example consists of 18 different diagrams and

modelling artefacts. These diagrams cover all different aspects of the automobile

development process including the ones that are not relevant for the research such as state

6.0 Evaluation. Effectiveness of the framework

86

modelling of how the vehicle is being used by the driver and the occupant. Therefore, for the

actual research purposes the simplification is needed. Relevant list of model components has

been distinguished from the full list of models and is show in Table 6-2. Also, the diagrams

were modified to better comply with the decomposition principle making components more

independent from each other to better be able to model interactions among them.

Table 6-2: List of models in the Automobile Example relevant for the use case

implementation

Diagram name/System Diagram Type
Model Organisation Package diagram
Automobile System Requirements Requirement diagram
Automobile Domain Block definition diagram
Vehicle Hierarchy Block definition diagram
Analysis Context Block definition diagram
Vehicle Acceleration Analysis Parametric diagram

The distinguished diagrams fully model the acceleration analysis in the automobile example.

Next stage of the interaction modelling framework methodology application is to model the

system using Systems Modelling Language. This example was modelled with the use of Visual

Paradigm software tool for SysML modelling. The overall model organisation is shown in

Figure 6-1 and that is the package diagram representing overall model structure and its

underlying systems.

6.0 Evaluation. Effectiveness of the framework

87

Figure 6-1: Model organisation package diagram

From the overall structure, automobile domain represents the more detailed composition of

the test case as an internal diagram. Automobile domain block definition diagram is shown in

Figure 6-2. It represents the blocks that are contained in the Structure package of the original

model organisation and specifies their interrelationships. Although these diagrams contain all

the modelling aspects of the main system model, the system of interest for the use case is the

vehicle itself. Thus, the vehicle block is expanded with another block definition diagram

showing all the components of the vehicle – system of interest.

6.0 Evaluation. Effectiveness of the framework

88

Figure 6-2: Automobile Domain block definition diagram

The vehicle block definition is shown in and provides the decomposition of the Vehicle block

that was previously shown in components. The Vehicle is composed of the Body, Chassis,

Interior, Power Train, and other components, while some of these blocks are further

decomposed into more independent components. This completely complies with the

decomposition principle discussed in the previous chapters and allows systems engineers to

control the complexity level of the system from the start. The vehicle hierarchy block

definition diagram is shown in Figure 6-3.

6.0 Evaluation. Effectiveness of the framework

89

Figure 6-3: Vehicle Hierarchy block definition diagram

Previous diagrams provided the comprehensive picture of the main system model and of all

its modelling artefacts. In the current work, the focus is on the interaction modelling,

therefore before the use case can be applied to the framework, there is a need to model the

relevant interaction diagrams in SysML to get enough data for further analysis and changes

propagation. The specification for the given problem is to analyse the vehicle acceleration

based on the input parameters and requirements. The vehicle acceleration analysis in SysML

is first modelled as another block definition diagram to provide the necessary models involved

in the analysis process. This diagram is shown in Figure 6-4 and showcases the usability of the

constraint block, that defines constraints in terms of equations and their parameters. That

diagram is situated in the Parametrics package of the original model organisations and is

composed of several blocks that are used to analyse vehicle acceleration.

6.0 Evaluation. Effectiveness of the framework

90

Figure 6-4: Vehicle Acceleration Analysis (Analysis Context) block definition diagram

The next and the most important diagram is a parametric diagram expanding the vehicle

acceleration analysis block and showing how the distinguished parameters are used to analyse

the system. It shows a network of constraints that use previously defined constraint blocks

from the Analysis Context diagram. The parametric diagram is represented in Figure 6-5.

Figure 6-5: Vehicle Acceleration Analysis parametric diagram

6.0 Evaluation. Effectiveness of the framework

91

The parametric diagram and related modelling information can be used in the simulation

and/or analysis tools to support analysis execution. However, SysML does not provide

simulation capabilities on its own. This is the relevant information that is further used for the

automated metagraph generation.

6.3.4 Interaction modelling framework application

Once the system is defined and built, the next stage is to utilise the system model data to be

able to analyse the changes occurring in sub systems and components. A proof-of-concept

tool is developed for the task and used for analysing systems modelling information with help

of the tools discussed in the previous chapter.

First, the expected metagraph was defined in theory and on paper. That is presented in Figure

6-6 and shows the overall picture of what is expected to be achieved in the next stage of the

interaction modelling framework application.

Figure 6-6: Metagraph for the Automobile Acceleration Example

Acceleration, 𝑎

Eng torque, 𝑇𝑒𝑛𝑔

Trans torque, 𝑇𝑟𝑎𝑛𝑠

Diff torque, 𝑇𝑑𝑖𝑓𝑓

Wheel torque, 𝑇𝑤

Drag coef, 𝑐𝑑

Air density, 𝜌

Grav force, 𝑓𝑔

Power train
force, 𝑓𝑝

Drag force, 𝑓𝑑

Incline, 𝜃 Weight, 𝑤

Total force, 𝑓

𝑒3(𝑓𝑔 =
𝑤

𝑔
∙ sin(𝜃ሻሻ

𝑒2(𝑓𝑑 =
1

2
𝜌𝑣2𝑐𝑑ሻ

𝑒1(𝑓𝑝 = 𝑓𝑝(𝑇𝑒𝑛𝑔, 𝑇𝑟𝑎𝑛𝑠, 𝑇𝑑𝑖𝑓𝑓 , 𝑇𝑤ሻ

𝑒4(𝑓 = 𝑓𝑔 + 𝑓𝑑 + 𝑓𝑝ሻ

𝑒5(𝑎 =
𝑔𝑓

𝑤
ሻ

6.0 Evaluation. Effectiveness of the framework

92

To generate the similar metagraph automatically the SysML model is exported to XML format

and then the XML file is taken as the original data for the developed tool. The tool

automatically parses the data and generates the metagraph of the original system model. In

the current use case, the result is shown in Figure 6-7. In the tool the user selects the path to

the original XML file and then program automatically acquires all the necessary data for the

objects and relationships among the objects. These objects and relationships are shown in the

corresponding Objects and Relationships windows. After the process is done, the metagraph

is automatically generated and the results can be seen in the Meta Objects window of the

tool.

Figure 6-7: The proof-of-concept tool interface representing the metagraph objects

automatically generated from the system model data

The metagraph objects automatically acquired by the tool execution completely comply with

the theoretical use case metagraph discussed previously. The more detailed metagraph

objects, of the original and modified system models, are presented in Figure 6-8 as shown in

the tool.

6.0 Evaluation. Effectiveness of the framework

93

Figure 6-8: Metagraph objects of the original and modified system models

Next, the scenarios for verifying the tool effectiveness are distinguished. This involves

changing parameter values, removing existing and adding new components to the vehicle

acceleration analysis. Five scenarios are identified:

• Single parameter changed – incline.

• Three parameters changed – weight, incline, drag coefficient.

• Two torque components removed.

• Two parameters changed and one component added – additional torque.

• One model added – additional torque, one model removed – wheel torque, three

parameters changed.

After systems engineer changes something in the original system model, the resulting SysML

is being exported to XML file again. Then, the path to both the original and changed system

models are selected in the proof-of-concept tool, which results in the automatic construction

of two metagraphs – based on the original SysML data and based on the modified SysML data.

Figure 6-8 already shows the metagraph objects for both cases in Meta Objects and Meta

Objects Changed windows.

6.0 Evaluation. Effectiveness of the framework

94

The interaction modelling framework continues to analyse the data by comparing both

metagraphs and searching for the affected parameters based on the results of this

comparison. In the main tool window this is done by clicking the buttons “Compare

metagraphs” and “Find affected attributes”. The results for the scenario with two torque

models removed are provided in Figure 6-9.

Figure 6-9: The proof-of-concept tool interface representing the automatically tracked

changes from the SysML data

The changes are showcased in the Changes window and the affected components are shown

in the Affected attributes window. The changes for the scenario in question are showcased in

Figure 6-10.

6.0 Evaluation. Effectiveness of the framework

95

Figure 6-10: Automatically detected changes between the original and modified system

models and list of affected parameters, as shown in the tool

These changes clearly show the two models removal and are presented in Table 6-3.

Table 6-3: Results. Automatically detected changes for scenario 3, use case 1

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Model Removal N/A Object name = Ttrans
Id = a_O1n1aGAqAACw61

Metaobject ID = e7bb86cc-dd93-
47da-974e-de70130bebc8
Metaobject name = Power Train
Force

Model Removal N/A Object name = Twheel
Id = Rdh1n1aGAqAACw7c

Metaobject ID = e7bb86cc-dd93-
47da-974e-de70130bebc8
Metaobject name = Power Train
Force

Affected attributes after these changes – fp, ft, a.

This completely complies with the manual tracking of the system model.

The visualisation of the results is performed both in text and graph visualisation. The text

changes and affected parameters are shown in the tool as mentioned before. That provides

systems engineer a clear picture of what is going to be affected by certain changes that might

have been done in the original system model.

6.0 Evaluation. Effectiveness of the framework

96

Figure 6-11: Metagraphs of the Automobile Example, Use Case 1, Scenario 3

(a) Original System Model (b) Modified System Model

The metagraph visualisation technique results discussed in the implementation chapter are

shown in Figure 6-11. This represents the automatically generated metagraphs using force-

based algorithm of the original (a) and modified (b) system models. As can be seen the

metagraph is fully representing the one that was drawn in theory before the modelling and

represented in Figure 6-6. The colours in the metagraph automatically highlight the changes

occurring in the system and the parameters affected by these changes. The colours are further

explained in Table 6-4.

(a) (b)

6.0 Evaluation. Effectiveness of the framework

97

Table 6-4: Colour in metagraphs visualisation

Colour Hex colour code RGB colour code Meaning

Blue #075DDD RGB (7, 93, 221) Parameter modified

Green #10C100 RGB (16, 193, 0) Model addition

Red #CD2507 RGB (205, 37, 7) Model removal

Purple #B213D1 RGB (178, 19, 209) Parameter affected

The results for the other scenarios are provided below.

• Scenario 1. Single parameter changed – incline.

Changes are presented in Table 6-5.

Table 6-5: Results. Automatically detected changes for scenario 1, use case 1

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = incline
Id = cCo6EOaAUIW69Ax0

Metaobject ID = c54571b4-9940-
49ca-bc36-9535fa3a5c8b
Metaobject name = Gravitational
Force

Affected attributes after the changes – fg, ft, a.

The metagraphs for that scenario are shown in Figure 6-12.

6.0 Evaluation. Effectiveness of the framework

98

Figure 6-12: Metagraphs of the Automobile Example, Use Case 1, Scenario 1

(a) Original System Model (b) Modified System Model

• Scenario 2. Three parameters changes – weight, incline, drag coefficient.

Changes are presented in Table 6-6.

Affected attributes after the changes – fg, ft, fd, a. The metagraphs for that scenario are

shown in Figure 6-13.

(a) (b)

6.0 Evaluation. Effectiveness of the framework

99

Table 6-6: Results. Automatically detected changes for scenario 2, use case 1

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = weight
Id = YQ5BEOaAUIW69A1u

Metaobject ID = d51376ac-9386-
4257-abf8-9af26708a363
Metaobject name = Gravitational
Force

Parameter InitialValue Object name = incline
Id = cCo6EOaAUIW69Ax0

Metaobject ID = d51376ac-9386-
4257-abf8-9af26708a363
Metaobject name = Gravitational
Force

Parameter InitialValue Object name = drag coef
Id = EqTBEOaAUIW69A2j

Metaobject ID = 739fc973-f291-
4b0a-a9c5-2461a79f947d
Metaobject name = Drag Force

Figure 6-13: Metagraphs of the Automobile Example, Use Case 1, Scenario 2

(a) Original System Model (b) Modified System Model

(a) (b)

6.0 Evaluation. Effectiveness of the framework

100

• Scenario 4. Two parameters changed and one component added – additional torque.

Changes are presented in Table 6-7.

Table 6-7: Results. Automatically detected changes for scenario 4, use case 1

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = weight
Id = YQ5BEOaAUIW69A1u

Metaobject ID = 6c95ead1-0b6f-
489a-912f-3becd42e4770
Metaobject name = Gravitational
Force

Parameter InitialValue Object name = incline
Id = cCo6EOaAUIW69Ax0

Metaobject ID = 6c95ead1-0b6f-
489a-912f-3becd42e4770
Metaobject name = Gravitational
Force

Model Addition N/A Object name = Tadd
Id = 073ccdaAUIVuwAwy

Metaobject ID = 16c3ef47-1e25-
4ad0-9d82-caebb8a3d662
Metaobject name = Power Train
Force

Affected attributes after the changes – fg, ft, fp, a. The metagraphs for that scenario are

shown in Figure 6-14.

6.0 Evaluation. Effectiveness of the framework

101

Figure 6-14: Metagraphs of the Automobile Example, Use Case 1, Scenario 4

(a) Original System Model (b) Modified System Model

• Scenario 5. One model added – additional torque, one model removed – wheel torque,

three parameters changed.

Changes are presented in Table 6-8.

(a) (b)

6.0 Evaluation. Effectiveness of the framework

102

Table 6-8: Results. Automatically detected changes for scenario 5, use case 1

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = weight
Id = YQ5BEOaAUIW69A1u

Metaobject ID = 7e5eab3c-e2ef-
481d-b071-52a2fa102c66
Metaobject name = Gravitational
Force

Parameter InitialValue Object name = incline
Id = cCo6EOaAUIW69Ax0

Metaobject ID = 7e5eab3c-e2ef-
481d-b071-52a2fa102c66
Metaobject name = Gravitational
Force

Parameter InitialValue Object name = drag coef
Id = EqTBEOaAUIW69A2j

Metaobject ID = 7f960cb6-7b5d-
46f0-9ab1-e36b9fd48239
Metaobject name = Drag Force

Model Addition N/A Object name = Tadd
Id = 073ccdaAUIVuwAwy

Metaobject ID = f24d19f8-a240-
42e4-b378-b6358235b43f
Metaobject name = Power Train
Force

Model Removal N/A Object name = air density
Id = 073ccdaAUIVuwAwy

Metaobject ID = f7a6bb85-7541-
48f5-bac4-80061cfa7338
Metaobject name = Drag Force

Affected attributes after the changes – fg, ft, fd, fp, a.

The metagraphs for that scenario are shown in Figure 6-15.

6.0 Evaluation. Effectiveness of the framework

103

Figure 6-15: Metagraphs of the Automobile Example, Use Case 1, Scenario 5

(a) Original System Model (b) Modified System Model

The results after performing all the identified scenarios and manually tracking the changes,

clearly show that the tool is successful in analysing the SysML system model data, generating

both original and modified metagraphs, comparing them and finding the affected parameters.

Also, it is proven to show both textual and graphical visualisation capabilities. The next section

focuses on critically analysing the differences in interaction modelling between the existing

MBSE implementation in this use case and the results obtained from the interaction modelling

framework application.

(a) (b)

6.0 Evaluation. Effectiveness of the framework

104

6.3.5 Critical analysis

After performing the full cycle of the interaction modelling framework methodology

application for the Automobile Example use case, the next evaluation objective is to critically

analyse the differences between interaction modelling in the existing MBSE methodologies

and the proposed framework. This is done based on the results of the use case

implementation.

Going back to the evaluation criteria identified before, the author concurs that the framework

satisfies all of them in this use case. First, the Interaction Modelling methodology is successful

in propagating changes from one model to the other models. Also, the correctness of the

affected model identification is proven based on the manual check-up of the system model.

Next, framework indeed provides potential for systems engineers to identify the expected

changes on every stage of the development lifecycle and adjust the model accordingly in less

time without the need to redevelop many aspects from scratch based on the feedback and

changes in the later stages of the development process. Moreover, the metagraph

visualisation technique chosen and discussed in the development and implementation

sections is fully successful in representing the metagraphs of the system models, changes and

the affected parameters.

The comparison between the interaction modelling in the existing MBSE methodology

implementation for the current use case and the results of the interaction modelling

framework is summarised in Table 6-9. This comparison is based on the evaluation criteria

identified in the beginning of this chapter.

6.0 Evaluation. Effectiveness of the framework

105

Table 6-9: Critical analysis of the Use Case 1 Interaction Modelling Framework

implementation results

Evaluation Criteria
Existing MBSE methodology

implementation

Interaction modelling

framework implementation

Capabilities to propagate

changes in one model to

the other models

Manual tracking of the

changes required along the

relationships in SysML

diagrams of the Automobile

Example systems.

Automatic detection of the

changes between the original

system model and the

modified one, based on the

scenarios outcome.

Correctness of the affected

parameters identification

Manual check-up of the

model required.

Framework application

correctness proven during

the implementation and

validation stage.

Capabilities to diminish

time needed to track the

changes

Manual tracking of changes

takes times depending on the

number of the components in

the system model. For the

Automobile Example it takes

between minutes to hours to

propagate the changes

manually and adjust the

system model.

Automatic tracking of

changes allows systems

engineer to instantly identify

the affected parameters after

performing any changes in

the system model and then

adjust the system model

accordingly.

The software tool performs

the changes detection in

seconds for the Automobile

Example.

Potential to allow systems

engineers to identify the

expected changes on all

stages of the development

lifecycle

Manual tracking of the

changes results in the

possible redevelopments of

the whole model in the later

stages of the development

lifecycle due to unexpected

changes occurring.

Performed scenarios for the

Automobile Example clearly

show that the interaction

modelling framework

provides the capability to

probe any kind of changes in

the main system model and

6.0 Evaluation. Effectiveness of the framework

106

That results in inconsistencies

and unpredictability of the

model.

being able to automatically

identify the affected parts of

the system model.

That results in increase of the

predictability of the

development process and

capability to deal with

inconsistencies in due course.

Potential to visualise the

changes and provide

systems engineers ways to

easily observer the

affected system

components

The visualisation in the

existing MBSE methodologies

stops at the SysML diagrams

for the Automobile Example.

There are a lot of interacting

components in the use case

with various forces and

torque models. That results in

the increasingly difficult

process of the models

tracking performed by

manual navigation through

the model.

The text visualisation of the

changes between the original

and modified system models

with the affected parameters

in the proof-of-concept tool

allows systems engineers to

automatically track the

affected parameters.

Metagraph visualisation

technique provided further

graphical capabilities to

observe the changes based on

colours of the certain nodes

of the metagraph. Metagraph

visualisation completely

complies with the initial

theoretically constructed

metagraph.

The comparison between the interaction modelling in the existing MBSE methodology and the

interaction modelling framework implementation further proves the effectiveness of the

proposed framework in the chosen Automobile Example use case.

6.0 Evaluation. Effectiveness of the framework

107

6.4 USE CASE 2: Standard CubeSat example

6.4.1 Use case overview

The second use case is the standard CubeSat systems development example. CubeSats are

low-cost, standardised nanosatellites that a typically launched as secondary payloads during

space launches. It is recognised that CubeSat standard is widely utilised as a means of

performing scientific research, technology findings or surveillance missions (Spangelo et al.,

2012). Small spacecraft are more constrained in the development process by cost, mass,

volume, power etc., and become increasingly complex with many sub systems functions being

interconnected to overcome these constraints. Model-based systems engineering is an

emerging approach and its applicability for describing small space systems have been

evaluated on example of the FireSat satellite system, which was used in the book by (Larson

and Wertz, 2008). Unfortunately, due to the hypothetical nature of the FireSat system, use of

the model could not be properly shown and validated.

The CubeSat modelling framework utilises Systems Modelling Language to model each aspect

of its design process. That includes modelling sub systems, components, parameters,

describing scenarios and functions of the spacecraft, and the interaction among these sub

systems and components. It has been shown that SysML provides a comprehensive design

capabilities to model every CubeSat system (Spangelo et al., 2012).

The most basic CubeSat consists of both Space System and Ground System, which further

consists of its subsystems serving various mission functionalities. One of those systems is the

communication subsystem that passes the data from the spacecraft to the ground station. The

main measure to evaluate effectiveness of this communication is signal-to-noise (SNR) ratio

that must exceed certain minimum level in order for the ground team to be able to utilise the

6.0 Evaluation. Effectiveness of the framework

108

data and get meaningful readings from the spacecraft. The SNR analysis depends on many

external and internal influences such as atmosphere parameters, spacecraft trajectory, space

loss, propagation path distance etc. The intent of the analysis is to optimise the download rate

of the data that can be achieved under certain conditions. Due to the sheer number of

parameters involved in the SNR calculations, it is crucial to establish fast and reliable means

to find the affected parameters if some other parts of the systems are modified. Increasing

the predictability of the CubeSat mission on each of its stages remains one of the most

desirable improvements. Applying the interaction modelling approach to one of the CubeSat

subsystems is expected to showcase the advantages that can be achieved for the system

design. Therefore, this research interaction modelling framework is applied for the signal-to-

noise ratio analysis and tackles the issues of mission predictability and design optimisation.

The CubeSat modelling example showcases the use of SysML and the interaction modelling

framework in a real-life example that is currently being researched and utilised in the actual

development of the CubeSats. The SysML reference models are currently being developed for

the CubeSat standard that can be openly used as a backbone for the real CubeSat

development as well as the proof-of-concept implementation in this research (Kaslow et al.,

2018). That shows that the Interaction Modelling Framework can also be applied to enhance

the process of development of the most current systems.

6.4.2 Current interaction modelling state

As mentioned in the previous section, the main issue with the development of small spacecraft

arises from the fact that it is more constrained in terms of mass, cost, volume and power. That

results in many intersections between different systems and the reuse of various components

for different purposes (Kaslow et al., 2018). The CubeSat reference model combines

advantages of both MBSE methodologies and SysML method-independent techniques.

6.0 Evaluation. Effectiveness of the framework

109

Even though the CubeSat Reference Model contains a lot of reusable knowledge, it is implied

that the complete manual filling up of the model is required for each CubeSats system in

question, as every system is different and a lot of changes are involved in the development

process (Kaslow and Madni, 2018). The CubeSat communication sub system and signal-to-

noise ratio analysis that are going to be used later in this use case evaluation, further highlight

the representative nature of SysML and current MBSE implementation. Stand-alone tools for

the analysis and changes tracking are used to supplement the existing MBSE methodologies

and they all require separate licenses and do not solve the issue of interaction modelling to

full extent (Spangelo et al., 2013). It is further discussed that a lot of improvements are

required for the simulations and analysis of CubeSat sub systems based on the limitations of

SysML such as being static and representative in nature (Akyildiz et al., 2019).

6.4.3 Systems modelling

First, the overall structure and organisation of the CubeSat needs to be modelled. For that

purpose, the decomposition principle is utilised, and the key aspects of the main system model

are distinguished and decomposed into sub systems and components. Overall structure of the

CubeSat system is shown in Figure 6-16.

Figure 6-16: CubeSat overall system structure

6.0 Evaluation. Effectiveness of the framework

110

This example focuses on the Communication sub system of the main system model. Therefore,

Communication block is marked as the system of interest. Developing an effective

communication sub system for a small spacecraft is a challenging process due to constraints

mentioned before (Spangelo et al., 2013). The purpose of the sub system is to download data

from the satellite to the ground systems for further analysis. In order to correctly evaluate the

communication system functionality on the spacecraft, the signal-to-noise ratio (SNR) is

calculated and measured against the requirements, where SNR should be higher than certain

minimum threshold to achieve the given error rate.

SNR analysis is modelled with help of SysML block definition diagram and represents the

communication link that is being measured. The parameters used for the evaluation include

design variables of the Communication block itself as well as parameters of Ground Network,

Atmosphere and the spacecraft trajectory modelled by Orbital Elements block. The SNR

analysis structure is represented in Figure 6-17, where everything is connected to SNR Analysis

block.

Figure 6-17: Signal-to-noise ratio analysis block definition diagram

6.0 Evaluation. Effectiveness of the framework

111

The previous diagrams showed the composition of the main system model, communication

sub systems and parameters involved in the SNR analysis that all belong to their own

components. Next, there is a need to define how these components interact with each other.

For that purpose, the parametric diagram is again utilized and shows the comprehensive

picture of all the models and parameters involved in the analysis. This parametric diagram is

shown in Figure 6-18.

Figure 6-18: Signal-to-noise ratio analysis parametric diagram

Overall system model definition and relevant SNR analysis information provides enough data

to move on to the next stage of the interaction modelling framework application, that is the

object-oriented automated metagraph modelling.

6.4.4 Interaction modelling framework application

Similar to the Use Case 1, since the system is defined and modelled with SysML, the next stage

is to utilise the acquired modelling data to analyse the changes that might happen in sub

systems or components on different stages of the development lifecycle. Same proof-of-

concept tool is used for the task of analysing systems modelling information.

6.0 Evaluation. Effectiveness of the framework

112

The SysML is again exported to XML format and then the XML file is used as the original data

for the analysis tool. The data is parsed using the object-oriented techniques, and then the

metagraph interaction model is automatically generated for the system model. The result

To generate the similar metagraph automatically the SysML model is exported to XML format

and then the XML file is taken as the original data for the developed tool. The tool

automatically parses the data and generates the metagraph of the original system model. In

the current use case, the original XML file is named cubesat_originalModel.xml, and the result

is shown in Figure 6-19 and Figure 6-20. The interaction model metagraph is automatically

generated and the results can be seen in the Meta Objects window of the tool.

Same as in the previous use case, the generated metagraph complies with theoretical

metagraph representation for the CubeSat example.

Figure 6-19: The proof-of-concept tool interface for CubeSat example

6.0 Evaluation. Effectiveness of the framework

113

Figure 6-20: The proof-of-concept tool interface representing the metagraph objects

automatically generated from the system model data for CubeSat example

After the automated metagraph generation process is complete, the scenarios for verifying

the tool effectiveness are distinguished. Same as in the previous use case, this involves

changing parameter values, removing existing and adding new components to the SNR

analysis. Five scenarios are identified:

• Single parameter changed – propagation path distance L_p.

• Four parameters changed – propagation path distance L_p, data download rate r_dl,

antenna gain G_t and frequency f.

• One component added – additional influence and one component removed – atmosphere

influence.

• Two parameters changed (frequency f, data download rate r_dl) and one component

removed – atmosphere influence.

• One model added – additional influence in the CubeSat Ground Network, one model

removed – frequency, three parameters changed (data download rate r_dl, available

power p_dl and antenna gain G_t).

6.0 Evaluation. Effectiveness of the framework

114

After systems engineers change variables in the original system model, the resulting SysML

model is being exported to new modified XML file. Then, the path to both the original and

changed system models are selected in the proof-of-concept tool, which results in the

automatic construction of two metagraphs – based on the original SysML data and based on

the modified SysML data. Figure 6-20 already shows the metagraph objects for both cases in

Meta Objects and Meta Objects Changed windows.

The interaction modelling framework technique continues to analyse the data by comparing

both metagraphs and searching for the affected parameters based on the results of this

comparison.

The results for performing distinguished scenarios are provided below.

• Scenario 1. Single parameter changed – propagation path distance L_p.

Changes for this scenario are presented in Table 6-10.

Table 6-10: Results. Automatically detected changes for scenario 1, use case 2

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = L_p
Id = g5qCi3aGAqAAC06o

Metaobject ID = 90af3040-f7aa-
4c26-b631-aac5d500d112
Metaobject name = Calculate SNR

Parameter InitialValue Object name = L_p
Id = g5qCi3aGAqAAC06o

Metaobject ID = e4177191-ab0a-
4d7a-a6a5-7b29e1441e47
Metaobject name = Calculate L_s

Even though there is only change in the original system model, the tool automatically detected

that it affects two metagraph objects as L_p is included in both.

Automatically found affected attributes after the changes: L_s, SNR.

The same visualisation force-based graph visualisation technique is used for this use case and

the results are shown in Figure 6-21 with metagraphs of both original and modified system

6.0 Evaluation. Effectiveness of the framework

115

models presented. Colours highlight the changes and the affected parameters. The

visualisation complies with the theoretical metagraph for the CubeSat example while the

textual visualisation in the tool interface allows engineer to see the simple list of the affected

parameters.

Figure 6-21: Metagraphs of the CubeSat Example, Use Case 2, Scenario 1

(a) Original System Model (b) Modified System Model

• Scenario 2. Four parameters changed – propagation path distance L_p, data download rate

r_dl, antenna gain G_t and frequency f.

Changes for this scenario are presented in Table 6-11.

(a) (b)

6.0 Evaluation. Effectiveness of the framework

116

Table 6-11: Results. Automatically detected changes for scenario 2, use case 2

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = L_p
Id = g5qCi3aGAqAAC06o

Metaobject ID = e498f9af-48a5-
4c49-baec-b850c08005b2
Metaobject name = Calculate SNR

Parameter InitialValue Object name = G_t
Id = gSXSi3aGAqAAC0_V

Metaobject ID = 697074bf-ab7c-
4906-b9ac-db3baacba502
Metaobject name = Antenna

Parameter InitialValue Object name = r_dl
Id = svsYi3aGAqAAC0as

Metaobject ID = e498f9af-48a5-
4c49-baec-b850c08005b2
Metaobject name = Calculate SNR

Parameter InitialValue Object name = f
Id = 3g2Ui3aGAqAAC0t3

Metaobject ID = 10b73339-2b17-
4dbf-bc3a-74e54b9aa97e
Metaobject name = Calculate L_s

Parameter InitialValue Object name = L_p
Id = g5qCi3aGAqAAC06o

Metaobject ID = 10b73339-2b17-
4dbf-bc3a-74e54b9aa97e
Metaobject name = Calculate L_s

Automatically found affected attributes after the changes: G_t, L_s, SNR.

In this scenario system model is shown to be able to track multiple changes at the same time,

detecting everything correctly and tracking the changes further down the model metagraph.

The metagraphs of the original and modified system models are shown in Figure 6-22.

6.0 Evaluation. Effectiveness of the framework

117

Figure 6-22: Metagraphs of the CubeSat Example, Use Case 2, Scenario 2

(a) Original System Model (b) Modified System Model

• Scenario 3. One component added – additional influence for calculating parameter L_s and

one component removed – atmosphere influence.

Changes for this scenario are presented in Table 6-12.

Table 6-12: Results. Automatically detected changes for scenario 3, use case 2

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Model Addition N/A Object name = Add_infl
Id = rnnMa3aGAqAACxCJ

Metaobject ID = 05be7338-639f-
43de-87e5-099ceb39fc46
Metaobject name = Calculate L_s

Model Removal N/A Object name = L_a
Id = UtNCi3aGAqAAC07P

Metaobject ID = e376c478-6f22-
4611-a333-9e0a1867a96c
Metaobject name = Atmosphere

Automatically found affected attributes after the changes: L_a, L_s, SNR.

It is seen from that scenario that as we remove the value property for atmosphere L_a it

effects the L_a_out parameter. Also, additional influence is correctly added to the Calculate

(a) (b

6.0 Evaluation. Effectiveness of the framework

118

L_s constraint block and shows that it affects the result of L_s calculation and further

calculations of SNR.

The metagraphs of the original and modified system models are shown in Figure 6-23.

Figure 6-23: Metagraphs of the CubeSat Example, Use Case 2, Scenario 3

(a) Original System Model (b) Modified System Model

• Scenario 4. Two parameters changed (frequency f, data download rate r_dl) and one

component removed – atmosphere influence.

Changes for this scenario are presented in Table 6-13.

(a) (b)

6.0 Evaluation. Effectiveness of the framework

119

Table 6-13: Results. Automatically detected changes for scenario 4, use case 2

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = r_dl
Id = svsYi3aGAqAAC0as

Metaobject ID = d69bafe3-2390-
4046-ad54-03b033175dcd
Metaobject name = Calculate SNR

Parameter InitialValue Object name = f
Id = 3g2Ui3aGAqAAC0t3

Metaobject ID = f9e1994e-67d1-
49db-bca5-ba76b22de5c3
Metaobject name = Calculate L_s

Model Removal N/A Object name = L_a
Id = UtNCi3aGAqAAC07P

Metaobject ID = 1108e6b1-7996-
4285-a345-b26513dce9cc
Metaobject name = Atmosphere

Automatically found affected attributes after the changes: L_a, L_s, SNR.

This scenario showcases the correctness of how both changing parameters and removing

models affect the system model. Atmosphere influence parameter L_a is removed from the

system as well as two parameters in the entirely different sub systems.

The metagraphs of the original and modified system models are shown in Figure 6-24.

Figure 6-24: Metagraphs of the CubeSat Example, Use Case 2, Scenario 4

(a) Original System Model (b) Modified System Model

(a) (b)

6.0 Evaluation. Effectiveness of the framework

120

• Scenario 5. One model added – additional influence in the CubeSat Ground Network, one

model removed – frequency, three parameters changed (data download rate r_dl,

available power p_dl and antenna gain G_t).

The changed parametric diagram for this scenario is represented in Figure 6-25.

Figure 6-25: Signal-to-noise ratio analysis parametric diagram for scenario 5

The automatically detected changes for this scenario are presented in Table 6-14.

Table 6-14: Results. Automatically detected changes for scenario 5, use case 2

Change type
Attribute

Affected

Object name and

information
Metagraph object information

Parameter InitialValue Object name = G_t
Id = gSXSi3aGAqAAC0_V

Metaobject ID = ffa660d6-5949-
4d6a-887f-2074fe62291a
Metaobject name = Antenna

Parameter InitialValue Object name = p_dl
Id = sZKoi3aGAqAAC0YO

Metaobject ID = a9fb28cf-80f6-
4338-97fc-999f0e66fb90
Metaobject name = Calculate SNR

Parameter InitialValue Object name = r_dl
Id = svsYi3aGAqAAC0as

Metaobject ID = a9fb28cf-80f6-
4338-97fc-999f0e66fb90
Metaobject name = Calculate SNR

6.0 Evaluation. Effectiveness of the framework

121

Model Addition N/A Object name = Add_infl
Id = rnnMa3aGAqAACxCJ

Metaobject ID = d36b1998-9639-
49cb-8939-b72fca4e3b24
Metaobject name = CubeSat
Ground Network

Model Removal N/A Object name = f
Id = 3g2Ui3aGAqAAC0t3

Metaobject ID = dca45999-d290-
400b-bcaa-246d86f11e35
Metaobject name = Calculate L_s

Automatically found affected attributes after the changes: G_t, L_s, T_s, SNR.

The metagraphs of the original and modified system models are shown in Figure 6-26.

Figure 6-26: Metagraphs of the CubeSat Example, Use Case 2, Scenario 5

(a) Original System Model (b) Modified System Model

The multiple changes in this scenario as well as the different types of changes at the same

time showcases flexibility of the method to automatically generate metagraphs, comparing

them and then tracking the affected attributes and models based on the changes occurred in

the system model. The results for that scenario are shown in Figure 6-27 with the screenshot

of the proof-of-concept tool.

(a) (b)

6.0 Evaluation. Effectiveness of the framework

122

Figure 6-27: The proof-of-concept tool interface representing the metagraph objects and

results for scenario 5 of CubeSat example

The results after performing all the identified scenarios and manually tracking the changes,

clearly show that the tool is successful in parsing the SysML system model data, generating

both original and modified metagraphs, comparing them and finding the affected parameters.

6.4.5 Critical analysis

The advantages of the CubeSat example is that the interaction modelling framework is applied

to the real-life example that is currently being researched by various teams and considered to

be one of the most applicable for the use of MBSE and more specifically Systems Modelling

Language (Cipera et al., 2019).

Similar to Use Case 1, the next evaluation objective is to critically analyse the difference

between the interaction modelling in the current MBSE implementation in CubeSat

communication system analysis and interaction modelling framework application results. This

is done based on the evaluation criteria identified in the beginning of this chapter and the use

case implementation results.

The interaction modelling framework implementation in CubeSat example further proves that

the framework satisfied all the evaluation criteria identified before. The proposed

methodology is successful in tracking changes between models, which is proven by the manual

6.0 Evaluation. Effectiveness of the framework

123

check-up of the system models in all of the five performed scenarios. Next, framework shows

full potential for systems engineers to automatically identify changes that would happen if

some variables and models are modified in the main system model. The most important result

of this is the increase in systems modelling predictability and decrease in the time needed for

the development of the systems. By probing various changes on any stage of the development

lifecycle, systems engineer is able to automatically find the affected parts of the system,

identify potential inconsistencies and then adjust the system model accordingly. Both

visualisation techniques – textual and graphical – are proven to be effective and correct. The

textual representation of the changes and affected parameters completely matches the

manual check-up of the system model based on the finding from the performed evaluation

scenarios. The metagraph visualisation technique is successful in graphical representation of

the changes and checked against graph theory and design requirements of the framework.

That provides systems engineer a clear picture of what is going to be affected by certain

changes that might have been done in the original system model.

The comparison between the interaction modelling in the existing MBSE methodology

implementation for the CubeSat example and the results of the interaction modelling

framework is summarised in Table 6-15. This comparison is based on the evaluation criteria

identified in the beginning of this chapter.

6.0 Evaluation. Effectiveness of the framework

124

Table 6-15: Critical analysis of the Use Case 2 Interaction Modelling Framework

implementation results

Evaluation Criteria
Existing MBSE methodology

implementation

Interaction modelling

framework

implementation

Capabilities to propagate

changes in one model to

the other models

Manual tracking of the changes

along the relationships in

SysML parametric and block

definition diagrams of the

CubeSat systems.

Automatic detection of the

changes between the

original system model and

the modified one, based on

the scenarios outcome.

Correctness of the affected

parameters identification

Manual check-up of the model

required.

Check-up of the framework

application correctness

during the implementation

and validation stage.

Capabilities to diminish

time needed to track the

changes

Manual tracking of changes

takes between minutes to

hours to propagate the

changes manually with many

interacting variables involves in

the signal-to-noise ratio

analysis in the CubeSat

Communication sub system.

Then it also takes hours to

adjust the system model

accordingly.

Automatic tracking of

changes allows systems

engineer to instantly

identify the affected

parameters after

performing any changes in

the CubeSat

Communication sub system.

The software tool performs

the changes detection in

seconds for the Automobile

Example.

Then methodology provides

capabilities to automatically

update the SysML models.

6.0 Evaluation. Effectiveness of the framework

125

Evaluation Criteria
Existing MBSE methodology

implementation

Interaction modelling

framework implementation

Potential to allow

systems engineers to

identify the expected

changes on all stages of

the development

lifecycle

The increased number of the

variable involved in the SNR

analysis results in the

increasingly difficult process of

manual tracking of the changes

and possible redevelopments

of the whole model in the later

stages of the development

lifecycle due to unexpected

changes occurring.

The SysML model remains

representative and static in

nature.

Performed scenarios for the

CubeSat SNR analysis

showcase that the interaction

modelling framework

provides the capability to

probe any kind of changes in

the Communication sub

system.

Even though a lot of variable

are involved in the analysis,

the result is the increase in

the predictability of the

development process and

fewer inconsistencies.

Potential to visualise the

changes and provide

systems engineers ways

to easily observer the

affected system

components

The visualisation in the existing

MBSE methodologies stops at

the SysML diagrams for the

SNR Analysis and the

involvement of external

commercial tools that need to

be adjusted each time they are

applied. There are a lot of

interacting components in the

use case. That results in the

increasingly difficult process of

the models tracking.

The text visualisation of the

changes between the original

and modified system model

with the affected parameters

in the proof-of-concept tool

was proven to be correct in

the performed scenarios.

Metagraph visualisation

technique provided further

graphical capabilities to

observe the changes based on

colours of the certain nodes

of the metagraph. Metagraph

visualisation completely

complies with the graph

theory.

6.0 Evaluation. Effectiveness of the framework

126

The critical comparison between the interaction modelling in the existing MBSE methodology

and the interaction modelling framework implementation for the SNR analysis in CubeSat

Communication sub system shows the effectiveness of the interaction modelling framework

implementation in real-life industrial example. The proposed framework provides clear

enhancements to the existing MBSE and SysML implementation techniques.

6.5 Discussion and findings

To perform the effectiveness assessment of the framework, a use case evaluation was utilised.

It was shown how all the stages of the Interaction Modelling Framework are applied in the

real-life examples. It was seen that the proof-of-concept implementation tool correctly

interprets the SysML data and analyses it for searching the changes occurring in the model,

propagates them to other models and finds all the affected components of the main system

model. It was demonstrated in a series of scenarios that the framework was able to handle

multiple changes and identify the affected parameters fully automatically and correctly. This

showcases the technique’s capability of allowing systems engineers to be able to monitor

changes happening on different changes of the development lifecycle and making necessary

adjustments by seeing, which parts of the system model are being impacted by certain

changes. Also, the developed proof-of-concept software tool showed the visualisation

capabilities with both textual representation of the changes in the system model and affected

components of other subsystems, and visual representation with the automatic picture

generation of the metagraph of the system model.

In comparison to the existing model-based systems engineering methodologies, it is evident

that the proposed interaction modelling framework provides extended capabilities and

enhancements to the development process. Based on the survey of existing MBSE

methodologies (Weilkiens et al., 2016) and literature review conducted in Chapters 2 and 3,

6.0 Evaluation. Effectiveness of the framework

127

legacy MBSE techniques do not provide means to automatically track. As discussed by (Zhang

et al., 2015) the MBSE methodologies are successful in providing ways to reduce complexity

of the system model but still require a lot of manual tracking of the changes that might lead

to inconsistencies (Herzig et al., 2014) and whole redevelopment of large parts of the

products. Interaction Modelling Framework is methodology independent and is shown to fill

these gaps by providing automatic change propagation. Therefore, it can be used to enhance

existing MBSE methodologies and provide improvements for the development process where

necessary. Critical analysis of the differences between the interaction modelling in the existing

MBSE methodologies and the proposed framework application proved the advantages of this

research and highlighted the potential enhancements to the legacy MBSE techniques. These

improvements include the following:

• Automatic changes propagation when some parts of the main system model are modified.

• Increase of the predictability of the development process by allowing systems engineers

to probe the changes and identify the potential changes needed in every stage of the

development lifecycle.

• Decrease of the time needed for the changes propagation and ultimately the product

development.

• Potential for the textual and graphical visualisation of both the changes found in the

system model and the affected components by these modifications.

• Reduce the complexity in model-based systems engineering environment.

To ensure that the Interaction Modelling Framework shows full effectiveness, it was essential

to compare it against the framework requirements and evaluation goals identified in Chapter

4 and earlier in the current Chapter. First, the requirements are going to be assessed. There

6.0 Evaluation. Effectiveness of the framework

128

requirements were subdivided into two categories – functional and design. Functional

requirements are responsible for the correct practical implementation of the developed

methodology. These requirements are as follows:

• Correctness – this requirement states that the developed method will allow effective

modelling of systems interaction in MBSE environment.

This requirement was achieved through the use case evaluation with series of scenarios

involving multiple kinds of changes in the main system model and then propagating of these

changes and being able to identify the parameters and models affected.

• Automatic control over interactions – this is important so that modelling logic in the form

of subsystems interaction is dynamic and allows systems engineer to automatically track

the changes through the relationships according to certain rules.

It was shown that the changes propagation happens in a fully automatic manner and systems

engineers can probe any possible changes, observe the affected parameters and make

necessary adjustments on each stage of the development lifecycle.

• Systems interaction representation – requirement related to correct and simple

representation of needed relationships from different points of view.

The proof-of-concept tool has been proven to contain the necessary capabilities to

automatically represent the changes and affected parameters in all the tested scenarios

during the use case evaluation. It is done both textually and graphically with metagraph

visualisation technique implementation.

The design requirements that were distinguished for the framework were as follows:

6.0 Evaluation. Effectiveness of the framework

129

• Special knowledge – there is a need for a special systems interaction engineer who will

have knowledge of the composition of the interaction module and will be able to control

this module in case there is a need for it.

The one engineer responsible for the application of the interaction modelling framework in a

real-life example should have the knowledge of how the framework works and thus, being

able to correctly implement it for the specific development process. In case of proof-of-

concept implementation in this research, this is achieved by the authors having done thorough

research of metagraph theory.

• Relationships models – it is necessary to provide systems interaction engineer full

capabilities and a range of building blocks/models to be able to control automatically built

interaction module.

Systems Modelling Language was used as the systems modelling foundation of the

methodology framework. It is a MBSE methodology independent framework that provides full

modelling capabilities.

• Applicability for multiple users – this requirement states that different users should be

able to utilise the developed methodology.

Proof-of-concept was shown to be completely independent. The utilisation of the interaction

modelling framework does not require specific graph theory knowledge from systems

engineers to be able to use the methodology to track the affected parameters.

• Friendly user experience – this requirement related to both users and the systems

interaction engineer as they should be able to seamlessly utilise developed framework

with the help of software with friendly and simple user interface.

6.0 Evaluation. Effectiveness of the framework

130

This requirement was achieved through developing the software tool that can is user friendly

and provides good visualisation capabilities. Even though proof-of-concept is successful in that

to some extent, there is still a lot of room for improvement in that regard and will be further

discussed in the limitations of this research and recommendations for future work.

Therefore, it has been proven that all the requirements are achieved based on the results from

use case evaluation. The objectives and the criteria of the evaluation process were identified

earlier in this chapter and it is needed to check if they were achieved as well. The objectives

included performing full cycle of the interaction modelling framework implementation in the

use cases, validating the implementation through scenarios and then comparing the results

with the existing MBSE methodologies. As shown in this Chapter, the use case evaluation was

successful in achieving all these objectives.

All the evaluation criteria defined in Section 4.5.4 have been matched to full extent based on

the evaluation process through the use cases and the critical comparative analysis between

the existing MBSE methodologies and the proposed framework results outcome provided in

Section 6.3.5 and 6.4.5. The evaluation also demonstrated that the framework provided

consistent results in all the tested scenarios in both use cases. Based on these findings, it can

be concluded that the results of the interaction modelling framework application are

adequate and viable.

6.6 Validation of Research Hypotheses

In this section, both research hypotheses are validated using results obtained from the use

case evaluation. The research questions and hypotheses are discussed. Capabilities of the

interaction modelling framework in the context of each hypothesis are highlighted. Then, the

description of the methodology effectiveness is presented.

6.0 Evaluation. Effectiveness of the framework

131

6.6.1 Research question 1 and Hypothesis 1

Research question 1: How can the organisation of the interactions among the sub systems be

analysed in MBSE for the purpose of solving complexity issues such as lack of communication

and lack of understanding?

Research hypothesis 1: The new methods and tools for modelling interactions in MBSE can

improve the effectiveness of interactions analysis MBSE by:

• Creating the common interaction module storing all information on interactions and

relationships among the sub systems.

• Formalising the interactions definitions and generating new dynamic ways of tracking the

relationships among system model components.

Interactions management in MBSE environment was modelled with help of a common

interaction module based on object-oriented metagraph approach. Metagraph of the original

system model and a metagraph of the modified are automatically and independently

constructed and then compared to be able to track the changes in the system model and find

the affected parameters. This way is dynamic in nature as it provides systems’ engineers

capabilities to constantly monitor the affected sub systems and parameters by any changes

happening in the main system model. Thus, the first research question had been fully

answered and the research hypothesis appears to be correctly stated in the early stages of

this research.

6.0 Evaluation. Effectiveness of the framework

132

6.6.2 Research question 2 and Hypothesis 2

Research question 2: How can the new dynamic ways of interactions modelling improve and

enhance the existing MBSE methods and static ways – hard-coded rules, pre-defined rules,

relationship and mathematical expressions?

Research hypothesis 2: The new methods and tools for modelling interactions can improve the

existing MBSE techniques in such a way that the interaction model can be reused at any stage

of the development process by:

• Using a general formalism to describe the concept and the interaction knowledge storage.

• Automatically tracking changes in the main system model and its sub systems and

propagating changes to the other model components.

• Providing capabilities to track interactions and relationships when performing various

changes on all stages of the development lifecycle.

Interaction modelling framework was based on the graph theory, which is a general formal

mathematical theory widely utilised in all aspects of engineering and sciences. It is completely

methodology independent and is applied to specific tasks with necessary adjustments based

on tasks needs. A novel approach used in this research was based on a more sophisticated

concept such as a metagraph that provides full general formalise and is being able to store

interaction knowledge in a general formalised manner. Utilising the proposed methodology,

systems engineer is able to probe various changes occurring on any stage of the development

process. Then based on the automatically generated metagraphs, systems engineer can

monitor the affected parameters and sub systems. Therefore, it allows to track interactions

and relationships and adjust the development process where necessary, avoiding mistakes,

inconsistencies and ambiguous definitions of parameters.

6.0 Evaluation. Effectiveness of the framework

133

6.7 Summary

The developed interaction modelling framework was applied to two different use cases and

the use cases worked through the framework. Series of scenarios were distinguished, and the

use cases were verified through their application. This chapter presented the evaluation of

the framework with regards to its effectiveness. First, it started with the evaluation objectives

and criteria that all have been met during the process. Next, it was shown that the framework

is successful in achieving all the functional and design requirements distinguished in previous

chapters. The chapter concludes with revising research questions and hypotheses and

showing that both hypotheses were correct as an answer to the research questions. Based on

the evaluation results, next chapter discusses the research outcomes in more details,

discusses the limitation of the current work, provides recommendations to future research

and draws overall conclusions.

7.0 Discussion, conclusion, and recommendations for future work

134

7.0 Discussion, conclusion, and recommendations for future work

7.1 Introduction

The research has been successful in its development of the interaction modelling framework

for reducing complexity in model-based systems engineering environment. The current

chapter goes back to the foundations of the research, summarises the work done and

discusses the findings of the use case implementation. The purpose of the research is further

discussed, the aim and objectives of the research are restated, and it is shown how they are

achieved by the work performed in this research. This chapter outlines the contributions to

knowledge and defines limitations of the research. Furthermore, this chapter provides

identified directions for future work such as automation of the full interaction cycle of the

development process and virtual engineering. This chapter serves as the closure to the

research and completes the thesis.

7.2 Discussion

The study aim was to identify and develop methods and tools for creating dynamic ways of

modelling logic in form of systems interaction for reducing complexity in MBSE environment.

To achieve that, this research has introduced a novel graph-based modelling approach. In

Chapter 1 it was shown that aim of this work was derived from the general limitations of

systems engineering and model-based systems engineering with regards to increasingly

growing complexity of the modern systems. The review of the current state of systems

engineering provided the basis and formed the understanding of how the SE methodologies

have been evolving since first introduction of its principles in 1970s.

It was identified that MBSE has emerged as a powerful technique to make the product

development lifecycle simpler and more robust. The key challenge was to thoroughly

7.0 Discussion, conclusion, and recommendations for future work

135

understand the design process in model-based systems engineering environment, find its

limitations with regards to interactions automation and then to identify appropriate

techniques and tools for improving the interaction modelling. These limitations include

inconsistencies and lack of overall dynamism of the modelling process. Design inconsistencies

arise on every stage of the lifecycle and need to be considered (Friedenthal et al., 2014).

Even though model-based systems engineering has been successful in its attempt to allow

engineers to reduce systems complexity and to improve systems engineering process to some

extent, significant research gaps were identified that interactions among subsystems are

modelled manually in the form of hard-coded rules and pre-defined relationships. It has been

concluded from the literature that all the MBSE methodologies do not provide suitable ways

to automatically track interactions among sub systems and components. Based on the type of

relationships all the methodologies propose different ways of representation of the system,

but ultimately tracking the interactions is left for a systems engineer to perform manually.

Systems Modelling Language is a methodology independent technique to create

comprehensive system model representation with the help of diagrams. Even though it

provides a convenient way of representing systems interactions it still does not provide the

capabilities to propagate the changes from one model to the others. SysML is widely utilised

in most of the MBSE methodologies and remains methodology independent.

Knowledge Based Engineering was discussed as another modern approach for developing

more quality cost-effective products in less time. KBE methodologies also deal with multiple

interacting systems on every stage on the lifecycle and at the same time provide capacity to

automate the development process by reusing the existing knowledge from the previously

developed product while working on something new. Nevertheless, work carried out by

researchers recognised the scarcity of dynamic specific KBE methodologies with “blind spots”

7.0 Discussion, conclusion, and recommendations for future work

136

in logic as pre-described rules cannot be useful in every situation (Lolli et al., 2014). This

research results can also be applied to KBE applications.

Since the focus of this research is graph-based modelling methods in application to systems

engineering field, distinguishing graph theory functionalities and performing the comparative

analysis of graph structures allowed the author to find the most applicable concept for

interaction modelling – metagraph. Metagraph is an emerging and mostly theoretical graph

theory approach that has not been applied to many engineering problems yet and is being

researched mostly from academia point of view. It is seen that metagraph theory provides

wide range of capabilities that can be successfully utilised in engineering, decision support

systems and systems with multiple interacting components. A detailed literature review was

conducted for graph modelling approaches and it was proven that graph-based modelling

perfectly fits the research purpose.

The selected graph theory constructs have the following capabilities:

• Ability to visualise the model.

• Provide information on model composition.

• Show the relationships directionality.

• Possess multiple inputs/outputs for the system.

• Have mathematical form for representation.

• Ability to model multiple components at the same time.

The related research - graph-based design languages - focuses on the similar problem of

connecting various models involved in the development process and dealing with complexity

issues (Gross and Rudolph, 2016a). Overall, the concept of graph-based languages has been

7.0 Discussion, conclusion, and recommendations for future work

137

proven to be a useful way of representing the entire design by a complex equation system

showing all design dependencies. Although, this interaction representation remains static and

even one missing rules definition can lead to the entire equation system being unmanageable

and unsolvable with no appropriate way of searching for the actual error due to the system

being too complex and the sheer number of components.

In order to address the need for automatic changes propagation in MBSE environment, this

research proposed an interaction modelling framework. As shown in Chapters 4 and 5, it was

developed through the selection of appropriate tools and technique and was based on initially

distinguished functional and design requirements and all the underlying concepts of MBSE

and metagraph theory. Finding ways to connect the metagraph modelling with MBSE proved

to be the main difficulty of this research. In the end the object-oriented programming solution

was identified as the most suitable, while proof-of-concept showed the effectiveness of the

developed framework.

With the support of the framework, the thesis answered the research questions and showed

how the interactions among the sub systems in the form of models could be analysed in MBSE

for solving complexity problems such as lack of communication and lack of understanding.

Through the framework, this research proposes an automatic object-oriented approach by

storing all interaction in the common object-oriented metagraph-based module. This

approach combines the advantages of the existing MBSE methodologies and expands it with

the ability to dynamically track the relationships and changes that will be caused by

modifications in other models on every stage of the development lifecycle. Systems engineer

can always observe the parameters that will be affected by certain changes and make

necessary adjustments to the model, and also can validate the model being developed by

probing different solutions. In contrast to existing methodologies, this reduces the

7.0 Discussion, conclusion, and recommendations for future work

138

unpredictability of the development process and eliminates the need to make last minute

changes to design. Ultimately it leads to a dynamic evolutionary approach for product

development. In comparison to legacy MBSE methodologies, that allows the creation of more

quality cost-effective products in less time while also helping with tracking the inconsistencies

and errors in the design process.

The major difference between current work and these methods are that, in the interaction

modelling method the changes traceability is done automatically and does not require

systems engineer manual attention every time there is a need to adjust the model based on

the changes done in individual components. Secondly, generated interaction data can be

reused for multiple changes tracking, which allows for a much greater level of reusability and

sharing of knowledge. The current approach utilises the more sophisticated concepts for

modelling interactions such as metagraph. But at the same time systems engineer does not

require to have underlying knowledge of such an academic centric graph theory method and

still can utilise the methodology. That is programmed using object-oriented approach and

remains methodology independent and allows for flexibility in modelling generic relationship

types coming from SysML.

The proposed method also allows for simultaneous identification of multiple parameters and

values affected by certain model modifications as the process is ultimately automatic and has

capabilities to analyse the data coming from SysML without a need to pre-define any rules

and manually track the changes.

Through the use case evaluation, the framework showed potential regarding effectiveness

and workability. In order to measure the effectiveness of the framework evaluation objectives

and criteria were derived. These included performing different scenarios in the use cases to

7.0 Discussion, conclusion, and recommendations for future work

139

compare the actual results from applying the interaction modelling frameworks against the

functional and design requirements and then critically analysing the evaluation outcome.

The verification and validation through use cases is based on the data collected from the

literature. The first use case is the acceleration analysis example for the automobile

development. This use case is selected due to its general nature that showcases the

application of Systems Modelling Language in actual real-life scenario of automobile

development. The second use case is the CubeSat development example from literature. The

CubeSat mission describes a nanosatellite flying in low earth orbit for earth observation or

other research purposes. The model of the satellite is supposed to enable the layout of most

of the subsystems on a conceptual level. For the purpose of this research communication

subsystem was used and signal-to-noise ratio was analysed.

The critical analysis was performed based on the differences between the legacy MBSE

methodologies implementation and the interaction modelling framework application results.

The results are provided in the form of table comparisons in Chapter 6 and clearly showed the

effectiveness of the developed method. The advantages are as follows:

• Automatic changes propagation when some parts of the main system model are modified.

• Increase of the predictability of the development process by allowing systems engineers

to probe the changes and identify the potential changes needed in every stage of the

development lifecycle.

• Decrease of the time needed for the changes propagation and ultimately the product

development.

• Potential for the textual and graphical visualisation of both the changes found in the

system model and the affected components by these modifications.

7.0 Discussion, conclusion, and recommendations for future work

140

• Reduce of the complexity in model-based systems engineering environment.

This analysis shows the effectiveness of the framework and that it fully fills the research gaps

identified in this research. The findings from the evaluation were presented and further

discussed against the distinguished framework requirements. As opposed to spending

resources and time on manual interaction tracking, it is proven that the interaction modelling

framework methodology shall provide the foundation to bridge the gap between interaction

automation and MBSE tools and techniques. As a result, applying the developed framework

will provide systems engineers an easier way to focus on the design process and increase the

predictability of the systems being developed.

The proposed methodology has successfully answered the research questions showing that

the research hypotheses were correctly stated. The interaction modelling framework matches

all the requirements distinguished before the proof-of-concept implementation and

development stage. Also, the defined evaluation objectives have been reached to fully prove

the usefulness of the developed method. Overall, the proposed interaction modelling

framework successfully manages to achieve the aim of the research and ultimately allows to

enhance existing MBSE methodologies by providing new ways of modelling logic in the form

of interaction among sub systems and components of the main system model.

As the developed framework is methodology independent, it remains flexible and leaves space

for necessary adjustments that might need to occur due to specific requirements of individual

development process.

7.0 Discussion, conclusion, and recommendations for future work

141

7.3 Contribution to knowledge

In this section a summary of research contributions is presented. This research proposed the

interaction modelling framework for the distinguished requirements. The contributions to

knowledge are summarised below:

• Modern model-based systems engineering methodologies are limited with regards to

modelling interactions among sub systems and components. A novel interaction modelling

framework is proposed that would provide an approach for tracking the changes in the

system that might occur on any stage of the development lifecycle. This provides systems

engineers capabilities to automatically observe the changes and adjust the system model

where necessary. The predictability of the development is increased and prevents

engineers from making errors in the development process.

• The proposed methodology automatically generates the object-oriented metagraph-

based interaction model. This results in the simplification of the process of modelling the

main system model. The proposed algorithm is capable of automatically showing all the

models and values being affected by certain changes made in any other model. Systems

engineers have more time to spend on the actual development and being able to see the

possible development options that might need to be closely followed.

• The framework is methodology independent and works as a possible enhancement of

existing MBSE methodologies. This approach allows the framework to be flexible so that

systems engineers can make necessary adjustments to it based on their own specific

development needs. Making the adjustments would not cause any disruption in the

functioning of the original main system model.

7.0 Discussion, conclusion, and recommendations for future work

142

• The presented framework for graph-based modelling of systems interaction in MBSE

environment is set to help systems engineers to develop better quality cost-effective

products in less time. This work may be viewed as a step forward toward more consistent

and automatic modelling of interactions among subsystems and components in MBSE.

7.4 Limitations of research

This research addresses the aim and objectives, and answers research questions that are set

in Chapters 1 and 2 of this thesis. Still, there are limitations to this work that are not

considered.

Even though framework is completely methodology independent and generic, this research

utilises specific system models for its proof-of-concept implementation in the use cases. The

software tool needs to be further developed to become more generic regarding the data that

can be analysed.

Secondly, the framework provides automatic way of generating object-oriented metagraph

interaction model of the system model coming from SysML. Then this model is used to analyse

the changes and find the affected models and values. However, it proposes the process for

exporting resulting data back to XML and automatically updating the original SysML. This

research focused on proving capabilities to track the changes and find affected parameters

while automatic update of the SysML model is going to be recommended for the future work.

Lastly, the framework visualisation is currently limited due to the fact that metagraphs remain

a highly academic concept that is not being widely researched for engineering purposes. The

potential force-based algorithm for visualisation is utilised in this research but there is much

room for improvement in that regard as visualisation is highly dependent on specific project

7.0 Discussion, conclusion, and recommendations for future work

143

needs. For some projects just text visualisation might be enough, while for some commercial

large products there is a need for high quality automatically generated picture.

Despite these limitations, this research has proven that the proposed framework provides all

the necessary capabilities, as indicated by the use case evaluation. Therefore, the aim and

objectives of this research are achieved. Also, it can be argued that covering all mentioned

limitations would require moving the product from research academia state to the

development of a much larger scale software tool, and that requires more people involved in

the development.

7.5 Recommendations for future work

Many potential research aims can be derived from this research for future work. This can be

summarised as follows.

As mentioned in the previous section, the software tool used for proof-of-concept

implementation is limited for specific use case scenarios. Therefore, one of the potential

future work directions is to further improve and develop the software tool and make it more

generic and being able to model any kind of a system model.

The other possible direction for future work is to make the automatic update of the original

SysML model based on the results acquired from changes tracking. That will further extend

the functional capabilities of the proposed framework and increases its effectiveness capacity.

Also, as mentioned in limitations sections, working on the ways of metagraph representation

is essential for providing much better-quality visualisation of the changes whenever required

based on the specific development needs. Therefore, improving the metagraph automatic

representation is another possible direction. This can be a completely new method, or an

improvement of the force-based algorithms proposed in this research.

7.0 Discussion, conclusion, and recommendations for future work

144

The potential applications of the interaction modelling framework include various fields of

engineering such as virtual engineering, additive manufacturing, or machine learning.

One of the modern technologies that is expected to become an integral part of MBSE in the

nearest future is the Digital Twin approach (Madni et al., 2019). Digital twin is a virtual

prototype – dynamic representation of a physical system. As mentioned in Chapter 1, even

though the applicability of such technology is extra promising, being a relatively new concept,

there is a number of issues that need to be resolved before it can be applied in MBSE to full

extent. These issues include defining and dynamically managing the interactions among

different subsystems and components within the virtual prototype. Therefore, one potential

direction for expanding this research outcomes usability into the field of virtual engineering is

developing methods and tools for applying the interaction modelling framework for

controlling the interactions in the model’s digital twin – its virtual prototype.

The other possible future work is connecting model-based systems engineering and additive

manufacturing with help of the developed interaction modelling framework. Leveraging

existing efforts in the fields of MBSE and rapid manufacturing, efforts were made to bring

together requirement analysis, automated design and rapid prototyping in order to verify and

validate the requirements (Justin et al., 2018). Interaction modelling framework can

potentially be applied as a central module for controlling interactions among different parts

of the system in order to provide a seamless way to verify and validate changes in the

requirements and/or system itself and enhance the process of rapid manufacturing.

As another future research direction, author suggests applying interaction modelling

framework in conjunction with machine learning algorithms. New advances in the field such

as natural language processing, deep learning, and overall interest in the big data analysis

provide more potential in the use of machine learning techniques in the field of systems

7.0 Discussion, conclusion, and recommendations for future work

145

engineering (Lee et al., 2018). MBSE tools can be used to define complex adaptive system

architecture in multiple contexts and capture interrelationships in the system at different

levels. That provides structured data format standards to integrate natural language

processing techniques and thus, research behaviour of a system. Example of such systems can

be complex natural gas systems with the examination of geographical, physical and

commercial value streams through the machine learning analysis (McDermott et al., 2016).

Interaction modelling framework can be applied for similar cases and improve overall

predictability of the model with many interacting and changing components.

Appendix A. Publications

146

References

Abad, Z.S.H., Noaeen, M., Ruhe, G., 2016. Requirements engineering visualization: a

systematic literature review, in: 2016 IEEE 24th International Requirements Engineering

Conference (RE). pp. 6–15.

Abowitz, D.A., Toole, T.M., 2010. Mixed method research: Fundamental issues of design,

validity, and reliability in construction research. J. Constr. Eng. Manag. 136, 108–116.

Akundi, A., Smith, E., Tseng, T.-L., Rubio, I., 2018. Quantifying system structural complexity

using design structure matrices, in: 2018 Annual IEEE International Systems Conference

(SysCon). pp. 1–8.

Akyildiz, I.F., Jornet, J.M., Nie, S., 2019. A new CubeSat design with reconfigurable multi-band

radios for dynamic spectrum satellite communication networks. Ad Hoc Networks 86,

166–178.

Albers, A., Zingel, C., 2013. Challenges of model-based systems engineering: A study towards

unified term understanding and the state of usage of SysML, in: Smart Product

Engineering. Springer, pp. 83–92.

Bahill, T., Botta, R., 2008. Fundamental Principles of Good System Design. Eng. Manag. J. 20,

9–17.

Bajaj, M., Backhaus, J., Walden, T., Waikar, M., Zwemer, D., Schreiber, C., Issa, G., Intercax,

Martin, L., 2017. Graph-Based Digital Blueprint for Model Based Engineering of Complex

Systems, in: INCOSE International Symposium. pp. 151–169.

Basu, A., Blanning, R.W., 2007. Metagraphs and their applications. Springer Science & Business

Media.

Appendix A. Publications

147

Basu, A., Blanning, R.W., 1999. Metagraphs in workflow support systems. Decis. Support Syst.

25, 199–208.

Basu, A., Blanning, R.W., 1995. Metagraphs. Omega 23, 13–25.

Beck, F., Burch, M., Diehl, S., 2009. Towards an aesthetic dimensions framework for dynamic

graph visualisations, in: 2009 13th International Conference Information Visualisation.

pp. 592–597.

Browning, T.R., 2015. Design structure matrix extensions and innovations: a survey and new

opportunities. IEEE Trans. Eng. Manag. 63, 27–52.

Browning, T.R., 2001. Applying the design structure matrix to system decomposition and

integration problems: a review and new directions. Eng. Manag. IEEE Trans. 48, 292–306.

Bruza, P.D., 2018. Modelling contextuality by probabilistic programs with hypergraph

semantics. Theor. Comput. Sci. 752, 56–70.

Chapman, C., Preston, S., Pinfold, M., Smith, G., 2007. Utilising enterprise knowledge with

knowledge-based engineering. Int. J. Comput. Appl. Technol. 28, 169.

https://doi.org/10.1504/IJCAT.2007.013354

Chapman, C.B., Pinfold, M., 2001. The application of a knowledge based engineering approach

to the rapid design and analysis of an automotive structure. Adv. Eng. Softw. 32, 903–

912.

Chapman, C.B., Pinfold, M., 1999. Design engineering - a need to rethink the solution using

knowledge based engineering. Knowledge-based Syst. 12, 257–267.

Chase, W.P., 1974. Management of system engineering. John Wiley & Sons.

Cipera, D., Jacques, D., Ford, T., 2019. Using MBSE in Satellite Architecture Trade Studies: A

Appendix A. Publications

148

Practical Example, in: Systems Engineering in Context. Springer, pp. 543–552.

Creswell, J.W., 2013. Research design: Qualitative, quantitative, and mixed methods

approaches. Sage publications.

Curran, R., Verhagen, W.J.C., Van Tooren, M.J.L., Van Der Laan, T.H., 2010. A multidisciplinary

implementation methodology for knowledge based engineering: KNOMAD. Expert Syst.

Appl. 37, 7336–7350. https://doi.org/10.1016/j.eswa.2010.04.027

Deo, N., 2017. Graph theory with applications to engineering and computer science. Courier

Dover Publications.

Dickerson, C.E., Mavris, D., 2013. A brief history of models and model based systems

engineering and the case for relational orientation. IEEE Syst. J. 7, 581–592.

Eisner, H., 2008. Essentials of project and systems engineering management. John Wiley &

Sons.

Eppinger, S.D., Browning, T.R., 2012. Design structure matrix methods and applications. MIT

press.

Estefan, J.A., 2008. Survey of Model-Based Systems Engineering (MBSE) Methodologies.

Farnell, G.P., Saddington, A.J., Lacey, L.J., 2019. A new systems engineering structured

assurance methodology for complex systems. Reliab. Eng. Syst. Saf. 183, 298–310.

Feldmann, S., Kernschmidt, K., Wimmer, M., Vogel-Heuser, B., 2019. Managing inter-model

inconsistencies in model-based systems engineering: application in automated

production systems engineering. J. Syst. Softw. 153, 105–134.

Ferreira, T., Gorlach, I.A., 2016. Development of an automated guided vehicle controller using

a model-based systems engineering approach. South African J. Ind. Eng. 27, 206–217.

Appendix A. Publications

149

Filimonov, M., Oraifige, I., Vijay, V., 2020. A novel graph-based modelling approach for

reducing complexity in model-based systems engineering environment. Int. J. Syst. Syst.

Eng. Vol. 10, 143–163.

Filimonov, M., Raju, P., Chapman, C.B., 2016. Graph-based modelling of systems interaction

in model-based systems engineering environment, in: 7th International Systems &

Concurrent Engineering for Space Applications Conference. Madrid, Spain, pp. 45–62.

Finkelstein, A., 2000. A foolish consistency: Technical challenges in consistency management,

in: Database and Expert Systems Applications. pp. 1–5.

Flick, U., 2015. Introducing research methodology: A beginner’s guide to doing a research

project. Sage.

Friedenthal, S., Moore, A., Steiner, R., 2014. A practical guide to SysML: the systems modeling

language. Morgan Kaufmann.

Fruchterman, T.M.J., Reingold, E.M., 1991. Graph drawing by force-directed placement. Softw.

Pract. Exp. 21, 1129–1164.

Fusaro, R., Ferretto, D., Viola, N., 2016. Model-Based Object-Oriented systems engineering

methodology for the conceptual design of a hypersonic transportation system, in: 2016

IEEE International Symposium on Systems Engineering (ISSE). pp. 1–8.

Gapanyuk, Y.E., 2019. The Semantic Complex Event Processing Based on Metagraph

Approach, in: Biologically Inspired Cognitive Architectures Meeting. pp. 99–104.

Gazdík, I., 2006. Modelling systems by hypergraphs. Kybernetes 35, 1369–1381.

Giarratano, J.C., Riley, G., 1998. Expert systems. PWS Publishing Co.

Gitelman, L.D., Sandler, D.G., Gavrilova, T.B., Kozhevnikov, M. V, 2017. Complex systems

Appendix A. Publications

150

management competency for technology modernization.

Globa, L., Ternovoy, M., Shtogrina, O., Kryvenko, O., 2015. Based on force-directed algorithms

method for metagraph visualization, in: Soft Computing in Computer and Information

Science. Springer, pp. 359–369.

Goossens, P., 2016. Model-Driven Innovation in Machine Design [WWW Document]. Eng.

Solut. Maplesoft. URL https://www.theengineer.co.uk/supplier-

network/product/model-driven-innovation-in-machine-design/ (accessed 5.10.20).

Górski, F., Zawadzki, P., Hamrol, A., 2016. Knowledge based engineering as a condition of

effective mass production of configurable products by design automation. J. Mach. Eng.

16.

Graignic, P., Vosgien, T., Jankovic, M., Tuloup, V., Berquet, J., Troussier, N., 2013. Complex

system simulation: proposition of a MBSE framework for design-analysis integration.

Procedia Comput. Sci. 16, 59–68.

Gross, J., Rudolph, S., 2016a. Modeling graph-based satellite design languages. Aerosp. Sci.

Technol. 49, 63–72.

Gross, J., Rudolph, S., 2016b. Geometry and simulation modeling in design languages. Aerosp.

Sci. Technol. 54, 183–191.

Gross, J., Rudolph, S., 2016c. Rule-based spacecraft design space exploration and sensitivity

analysis. Aerosp. Sci. Technol. 59, 162–171.

Groß, J., Rudolph, S., 2012. Generating simulation models from UML-A FireSat example, in:

Proceedings of the 2012 Symposium on Theory of Modeling and Simulation-DEVS

Integrative M&S Symposium. p. 25.

Appendix A. Publications

151

Harel, D., 1988. On visual formalisms. Commun. ACM 31, 514–530.

Hariharan, B., Krithivasan, R., others, 2016. Data Visualization tools-A case study. Int. J.

Comput. Sci. Inf. Secur. 14, 834.

Haskins, C., 2006. INCOSE Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities, v. 3. John Wiley & Sons.

Heckmann, T., Schwanghart, W., Phillips, J.D., 2015. Graph theory - Recent developments of

its application in geomorphology. Geomorphology 243, 130–146.

Herzig, S.J.I., Paredis, C.J.J., 2014. A conceptual basis for inconsistency management in model-

based systems engineering. Procedia CIRP 21, 52–57.

Herzig, S.J.I., Qamar, A., Paredis, C.J.J., 2014. An approach to identifying inconsistencies in

model-based systems engineering. Procedia Comput. Sci. 28, 354–362.

Holt, J., 2004. UML for Systems Engineering: watching the wheels. IET.

Holt, J., Perry, S., 2008. SysML for systems engineering. IET.

Holt, J., Perry, S., Brownsword, M., 2016. Foundations for Model-based Systems Engineering:

From Patterns to Models. IET.

How to Select a SysML Modeling Tool for MBSE [WWW Document], n.d. URL

https://sysmltools.com/select-sysml-modeling-tool/ (accessed 4.10.20).

Hybertson, D., Sheard, S., 2008. Integrating and Unifying Old and New SE Elements. INSIGHT

11, 13–16.

INCOSE Model-Based Systems Engineering (MBSE) initiative [WWW Document], n.d. URL

http://www.omgwiki.org/MBSE/doku.php (accessed 8.15.20).

Appendix A. Publications

152

Integrated Model-Centric Engineering (IMCE) Workshop for JEO, 2011.

Justin, C.Y., Ramamurthy, A., Beals, N., Spero, E., Mavris, D.N., 2018. On-Demand Small UAS

Architecture Selection and Rapid Manufacturing using a Model-Based Systems

Engineering Approach, in: 31st Congress of the International Council of the Aeronautical

Sciences, 2018.(ICAS 2018_0851).

Karban, R., Andolfato, L., Bristow, P., Chiozzi, G., Esselborn, M., Schilling, M., Schmid, C.,

Sommer, H., Zamparelli, M., 2014. Model based systems engineering for astronomical

projects, in: SPIE Astronomical Telescopes+ Instrumentation. pp. 91500L--91500L.

Kaslow, D., Ayres, B., Cahill, P.T., Hart, L., Levi, A.G., Croney, C., 2018. Developing an MBSE

CubeSat Reference Model--Interim Status# 4, in: 2018 AIAA SPACE and Astronautics

Forum and Exposition. p. 5328.

Kaslow, D., Madni, A.M., 2018. Validation and Verification of MBSE-Compliant CubeSat

Reference Model, in: Disciplinary Convergence in Systems Engineering Research.

Springer, pp. 381–393.

Kenett, R.S., Swarz, R.S., Zonnenshain, A., 2019. Systems engineering in the fourth industrial

revolution: Big data, novel technologies, and modern systems engineering. John Wiley &

Sons.

Kiesel, M., Klimant, P., Beisheim, N., Rudolph, S., Putz, M., 2017. Using graph-based design

languages to enhance the creation of virtual commissioning models. Procedia CIRP 60,

279–283.

Larson, W.J., Wertz, J.R., 2008. Space mission analysis and design.

Lee, J.H., Shin, J., Realff, M.J., 2018. Machine learning: Overview of the recent progresses and

Appendix A. Publications

153

implications for the process systems engineering field. Comput. Chem. Eng. 114, 111–

121.

Li, L., Soskin, N.L., Jbara, A., Karpel, M., Dori, D., 2019. Model-based systems engineering for

aircraft design with dynamic landing constraints using object-process methodology. IEEE

Access 7, 61494–61511.

Lindholm, J., Johansen, K., 2018. Is Design Automation a Feasible Tool for Improving Efficiency

in Production Planning and Manufacturing Processes?, in: 8th Swedish Production

Symposium (SPS 2018), 16-18 May Stockholm, Sweden. pp. 194–201.

Lolli, G., Panza, M., Venturi, G., 2014. From Logic to Practice: Italian Studies in the Philosophy

of Mathematics. Springer.

Madni, A.M., Madni, C.C., Lucero, S.D., 2019. Leveraging digital twin technology in model-

based systems engineering. Systems 7, 7.

Madni, A.M., Sievers, M., 2018a. Model-based systems engineering: motivation, current

status, and needed advances, in: Disciplinary Convergence in Systems Engineering

Research. Springer, pp. 311–325.

Madni, A.M., Sievers, M., 2018b. Model-based systems engineering: Motivation, current

status, and research opportunities. Syst. Eng. 21, 172–190.

Martelo Gomez, A., Jahnke, S.S., Fischer, P.M., Romberg, O., 2018. Considerations and first

steps towards the implementation of Concurrent Engineering in later project phases.

Mayfield, M., Punzo, G., Beasley, R., Clarke, G., Holt, N., Jobbins, S., 2018. Challenges of

complexity and resilience in complex engineering systems. ENCORE Network+ White Pap.

McDermott, T., Nadolski, M., Stulberg, A., Basole, R.C., 2016. Analysis of political and trade

Appendix A. Publications

154

decisions in international gas markets: a model-based systems engineering framework,

in: 2016 Annual IEEE Systems Conference (SysCon). pp. 1–8.

Morkevicius, A., Aleksandraviciene, A., Mazeika, D., Bisikirskiene, L., Strolia, Z., 2017. MBSE

Grid: A simplified SysML-based approach for modeling complex systems, in: INCOSE

International Symposium. pp. 136–150.

Motamedian, B., 2013. MBSE applicability analysis. Int. J. Sci. Eng. Res. 4, 7.

Nikolaidou, M., Kapos, G.-D., Tsadimas, A., Dalakas, V., Anagnostopoulos, D., 2015. Simulating

SysML models: Overview and challenges, in: 2015 10th System of Systems Engineering

Conference (SoSE). pp. 328–333.

Noor, K.B.M., 2008. Case study: A strategic research methodology. Am. J. Appl. Sci. 5, 1602–

1604.

Pathak, Shreyans, Pathak, Shashwat, 2020. Data Visualization Techniques, Model and

Taxonomy, in: Data Visualization and Knowledge Engineering. Springer, pp. 249–271.

Perry, N., Ammar-Khodja, S., 2010. A Knowledge Engineering Method for New Product

Development. J. Decis. Syst. 19, 117–133. https://doi.org/10.3166/jds.19.117-133

Potts, M., Sartor, P., Johnson, A., Bullock, S., 2017. Hidden structures: using graph theory to

explore complex system of systems architectures, in: International Conference on

Complex Systems Design & Management. CSD & M.

Ramdhani, M.A., Ramdhani, A., 2014. Verification of research logical framework based on

literature review. Int. J. Basic Appl. Sci. 3, 1–9.

Reddy, E.J., Sridhar, C.N. V, Rangadu, V.P., 2015. Knowledge based engineering: notion,

approaches and future trends. Am. J. Intell. Syst. 5, 1–17.

Appendix A. Publications

155

Rhodes, D., 2008. Addressing systems engineering challenges through collaborative research.

SEARI-Systems Eng. Adv. Res. Initiat. Massachusetts Inst. Technol.

Rhodes, D., Hastings, D., 2004. The Case for Evolving Systems Engineering as a Field within

Engineering Systems, in: MIT Engineering Systems Symposium. pp. 1–10.

Rocca, G. La, Tooren, M.J.L. Van, 2007. Enabling distributed multi-disciplinary design of

complex products: a knowledge based engineering approach. J. Des. Res. 5, 333–352.

https://doi.org/10.1504/JDR.2007.014880

Rosenfeld, L.W., 1989. Using Knowledge-Based Engineering.

Rousseau, D., 2018. A framework for understanding systems principles and methods. Insight

21, 9–18.

Rumbaugh, J., Jacobson, I., Booch, G., 2004. Unified Modeling Language Reference Manual,

Object Technology Series. Pearson Higher Education.

Sandberg, M., 2003. Knowledge based engineering-in product development. Lulea Univ.

Technol. Sweden 5.

Sandhu, R., 2015. Model-Based Software Engineering (MBSE) and Its Various Approaches and

Challenges. Compusoft 4, 1841.

Sankar, A., Zhang, X., Chang, K.C.-C., 2019. Meta-GNN: Metagraph neural network for semi-

supervised learning in attributed heterogeneous information networks, in: Proceedings

of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining. pp. 137–144.

Sheard, S., 2007. Principles of complex systems for systems engineering. INCOSE Symp. 12,

24–28.

Appendix A. Publications

156

Shekar, B., Venkataram, R., Satish, B.M., 2011. Managing complexity in aircraft design using

design structure matrix. Concurr. Eng. 19, 283–294.

Sillitto, H., Griego, R., Arnold, E., Dori, D., Martin, J., McKinney, D., Godfrey, P., Krob, D.,

Jackson, S., 2018. What do we mean by system?--System Beliefs and Worldviews in the

INCOSE Community, in: INCOSE International Symposium. pp. 1190–1206.

Skvortsova, M., Grout, V., 2018. Basic approaches to assessing risks and threats in decision

support systems, in: 2018 IEEE Conference of Russian Young Researchers in Electrical and

Electronic Engineering (EIConRus). pp. 1563–1566.

Spangelo, S.C., Cutler, J., Anderson, L., Fosse, E., Cheng, L., Yntema, R., Bajaj, M., Delp, C., Cole,

B., Soremekum, G., others, 2013. Model based systems engineering (MBSE) applied to

Radio Aurora Explorer (RAX) CubeSat mission operational scenarios, in: 2013 IEEE

Aerospace Conference. pp. 1–18.

Spangelo, S.C., Kaslow, D., Delp, C., Cole, B., Anderson, L., Fosse, E., Gilbert, B.S., Hartman, L.,

Kahn, T., Cutler, J., 2012. Applying model based systems engineering (MBSE) to a

standard CubeSat, in: 2012 IEEE Aerospace Conference. pp. 1–20.

Stachowiak, H., 1973. General Model Theory [Allgemeine Modelltheorie] 494.

Stjepandić, J., Verhagen, W.J.C., Liese, H., Bermell-Garcia, P., 2015. Knowledge-based

engineering, in: Concurrent Engineering in the 21st Century. Springer, pp. 255–286.

Stokes, M., 2001. Managing Engineering Knowledge; MOKA: Methodology for Knowledge

Based Engineering Applications, Moka Methodology for Knowledge. Professional

Engineering Publishing, London.

Systems Engineering Vision 2020, 2007. . INCOSE-TP-2004-004-02, Version 2.03.

Appendix A. Publications

157

Tang, D., Zhu, R., Tang, J., Xu, R., He, R., 2010. Product design knowledge management based

on design structure matrix. Adv. Eng. Informatics 24, 159–166.

Technosoft Inc. The Adaptive Modelling Language. A Technical Perspective [WWW

Document], n.d. URL http://www.technosoft.com/docs/AML-Technical-Perspective.pdf

(accessed 2.10.18).

The Official OMG SysML site [WWW Document], n.d. URL http://www.omgsysml.org/

(accessed 5.10.20).

Tien, J.M., 2008. On integration and adaptation in complex service systems. J. Syst. Sci. Syst.

Eng. 17, 385–415. https://doi.org/10.1007/s11518-008-5087-5

Tutte, W.T., 1984. Graph Theory. Springer.

Vatchova, B., Sanders, D., Adda, M., Gegov, A., 2019. Knowledge based modelling of complex

interconnected systems, in: 2019 Big Data, Knowledge and Control Systems Engineering

(BdKCSE). pp. 1–4.

Visual Paradigm Web Site [WWW Document], n.d. URL https://www.visual-

paradigm.com/features/sysml-diagram-tool/ (accessed 4.15.20).

Walter, B., Kaiser, D., Rudolph, S., 2019. From Manual to Machine-executable Model-based

Systems Engineering via Graph-based Design Languages., in: MODELSWARD. pp. 201–

208.

Wang, T., Truptil, S., Benaben, F., 2017. An automatic model-to-model mapping and

transformation methodology to serve model-based systems engineering. Inf. Syst. E-bus.

Manag. 15, 323–376.

Weilkiens, T., Scheithauer, A., Di Maio, M., Klusmann, N., 2016. Evaluating and comparing

Appendix A. Publications

158

MBSE methodologies for practitioners, in: 2016 IEEE International Symposium on

Systems Engineering (ISSE). pp. 1–8.

Willard, B., 2007. UML for systems engineering. Comput. Stand. Interfaces 29, 69–81.

Wymore, A.W., 2018. Model-based systems engineering. CRC press.

Wymore, A.W., 1993. Model-based systems engineering. CRC Press.

Yassine, A., Braha, D., 2003. Complex concurrent engineering and the design structure matrix

method. Concurr. Eng. 11, 165–176.

Yue, T., Briand, L.C., Labiche, Y., 2009. A use case modeling approach to facilitate the transition

towards analysis models: Concepts and empirical evaluation, in: International

Conference on Model Driven Engineering Languages and Systems. pp. 484–498.

Zhang, D., Lu, J., Wang, L., Li, J., 2015. Research of model-based aeroengine control system

design structure and workflow. Procedia Eng. 99, 788–794.

Zhang, X., Ma, S., Chen, S., 2019. Healthcare process modularization using design structure

matrix. Adv. Eng. Informatics 39, 320–330.

Zhou, L.Z., Gu, Q., Li, Q.Z., 2015. Research and Development of Rapid Design System for

Modular Machine Tool Based on KBE, in: Advanced Materials Research. pp. 822–828.

Zhu, H., Moulin, M., Murray, B., Fonoberov, V., Mezic, I., 2018. System Analysis and

Verification: A Comprehensive Approach and Case Study, in: Disciplinary Convergence in

Systems Engineering Research. Springer, pp. 215–230.

