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ABSTRACT

Recently, learned image compression algorithms have shown incredible performance compared to classic
hand-crafted image codecs. Despite its considerable achievements, the fundamental disadvantage is not
optimized for retaining local redundancies, particularly non-repetitive patterns, which have a detrimental
influence on the reconstruction quality. This paper introduces the autoencoder-style network-based efficient
image compression method, which contains three novel blocks, i.e., adjacent attention block, Gaussian
merge block, and decoded image refinement block, to improve the overall image compression performance.
The adjacent attention block allocates the additional bits required to capture spatial correlations (both
vertical and horizontal) and effectively remove worthless information. The Gaussian merge block assists the
rate-distortion optimization performance, while the decoded image refinement block improves the defects in
low-resolution reconstructed images. A comprehensive ablation study analyzes and evaluates the qualitative
and quantitative capabilities of the proposed model. Experimental results on two publicly available datasets
reveal that our method outperforms the state-of-the-art methods on the KODAK dataset (by around 4dB and
5dB) and CLIC dataset (by about 4dB and 3dB) in terms of PSNR and MS-SSIM.

INDEX TERMS Image Compression, Attention Mechanisms, Gaussian Merge Block, Refinement Block,
Autoencoder.

l. INTRODUCTION

(Revision) Image compression reduces spatial redundancy in
images and optimizes bandwidth and storage space in various
applications, including video compression, online advertis-
ing, professional photographic exchange, etc. Traditional im-
age compression algorithms [[1]-[4]] depend on hand-crafted
processes with intricate dependencies to increase compres-
sion efficiency. For example, JPEG [1]] employs the discrete
cosine transform (DCT). On the other hand, JPEG2000 [?2]
uses discrete wavelet transforms (DWT) to transfer an image
pixel to the frequency domain and decompose multi-scale
decomposition into spectral bands, respectively. However,
they cause artifacts along the image borders, invisible at high
bit rates. Recent video codecs, such as VVC [3] incorporate
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intra prediction and an in-loop filter for intra-frame coding.
It is also utilized in BPG [4]], an image codec, to minimize
redundant and irrelevant features to improve the quality of the
reconstruction frame. However, traditional compression tech-
niques cannot be optimized end-to-end, limiting their overall
rate-distortion (RD) optimization performance (particularly
in similarity index) and learning ability.

Nowadays, deep learning-based image compression meth-
ods [5]-[10] outperform traditional algorithms in terms of
rate-distortion (RD) performance. For example, Balle et al.
[S] provide an end-to-end image compression using a con-
volutional neural network (CNN) based autoencoder. In par-
ticular, context-adaptive entropy models for learned image
compression are renowned for achieving higher performance
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across traditional codecs. The study [6] introduced a hyper-
prior to add more bits to the entropy model to describe it
more accurately. Minnen et al. [8]] used the auto-regressive
previous information to build an accurate entropy model and
achieve equivalent or even higher compression efficiency
performance than the conventional codec [4f]. The work in
[1O] introduced a very similar notion by taking into account
two sorts of contexts, bit consuming contexts (that is, hyper-
prior) and bit-free contexts (that is, auto-regressive model),
achieving a context-adaptive entropy model. Although these
methods enhance the compression performance, they also
greatly raise the compression artifacts [[11]] due to the quan-
tization process during the entropy coding and have stacked
by limited respective fields in latent space.

To boost the overall image compression performance,
the attention mechanism is being utilized to gather more
details from the latent space while suppressing irrelevant
information to allocate more bits [12]-[14]. The non-local
attention mechanism [[15] is effective in many visual tasks
(i.e., semantic segmentation). Liu et al. [[12]] use the non-local
attention to build implicit significance masks for leading the
adaptive processing of latent features. On the other hand,
Cheng et al. [13] remove the non-local block to make it
easier to learn image compression. The most recent research
in [14] also employed the non-local attention processes to
enhance the adaptive processing of latent features. It helps
the compression algorithm allocate additional bits to com-
plicated areas (e.g., edges and textures). However, this work
suffers some drawbacks. Firstly, their non-local attention
(working in a single direction) has no impact on the vertical
and horizontal weights to produce the respective wide field
and acquire valuable features to improve RD performance.
Secondly, a single mask in entropy coding will not be able
to eliminate latent feature data redundancy. Thirdly, the com-
pression artifacts are dramatically increased due to assigning
bits to non-essential areas, resulting in poor reconstructed
images. Motivated by it, we propose an efficient end-to-end
image compression method that significantly improves the
overall RD performance. Our contributions to this paper are
summarized as follows:

e We present an end-to-end autoencoder-based image
compression model to improve the overall image com-
pression performance. Three new blocks, i.e., an adja-
cent attention block (AAB), a Gaussian merge block
(GMB), and a decoded image refinement block (DIRB),
are included in this model.

e A plug-and-play AAB is applied to capture spatial
correlations (both vertically and horizontally), suppress
unnecessary information, and boost entropy coding ef-
ficiency with more crucial features by allocating addi-
tional bits.

« The GMB simulates the distribution of the latent repre-
sentation in a precise manner to boost the rate-distortion
optimization performance.

« Compression artifacts are inevitable on the final recon-

structed images since our approach is lossy image com-
pression. A DIRB is used to leverage global information
with rich texture information and vibrant features to
improve the reconstructed image quality.

« An extensive experiment is conducted on two publicly
available datasets. Our method shows state-of-the-art
performance in both datasets and reduces the compu-
tational complexity simultaneously.

The remainder of the paper is arranged in the following
manner. In Section [[I} traditional and existing deep learning
based works are reviewed. The proposed architecture for
image compression with three new blocks, e.g., AAB, GMB,
and DIRB are described in detail in Section [[TIl Section [V]
represents the dataset, training details, and the evaluation
metrics. The qualitative and quantitative results with some
ablation studies are presented in section [V] Finally, section
[VI|concludes the paper with our future research works.

Il. RELATED WORKS
In this section, we briefly discuss the classical and deep
learning-based image compression methods.

A. CLASSICAL METHODS
Image compression techniques are primarily concerned with
reducing the levels of spatial redundancies present in images.
For example, converting photos from the pixel domain to
the frequency domain is simpler to compress. For instance,
JPEG [1] applies the discrete cosine transform. In contrast,
JPEG2000 [_2] applies the discrete wavelet transform, which
is handcrafted. To reduce data redundancy, high-frequency
information is separated from low-frequency information,
and bits are allocated according to the signal significance.
Entropy coding such as Huffman [|16]], [[17], hashing [18]],
and arithmetic coding [19], [20] is also utilized to increase
the lossless compression performance of the image.
Currently, the intra-prediction approach [3]], [4]], which
is often used in video compression, has been employed
for image compression as well. The BPG [4] standard, for
example, is based on the HEVC/H.265 [21]] image com-
pression standard, which delivers the highest possible image
compression results in comparison to prior methods, such
as JPEG and JPEG2000. The prediction-transform approach
is used in the BPG standard [4]], and 35 encoding options
are utilized to create the reconstructed image, which also
decreases redundant data. Then, bigger computing units,
more forecast methods, more transform varieties, and more
coding facilities are all supported by VVC [3|]. Furthermore,
the hybrid techniques employ both conventional compression
techniques and the most current learning super-resolution
strategies, such as [22], to achieve higher compression ratios.
However, traditional algorithms are created by hand-crafted
components (such as entropy coding).

B. DEEP LEARNING-BASED METHODS
Deep neural networks (DNNs) have shown to be useful for
various computer vision applications in recent years, namely
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super-resolution, denoising, and object recognition. Some
recent studies have attempted to conduct neural networks’
excellent representation capabilities to improve the perfor-
mance of image compression [5[], [6], [8], [10], [13]], [23]-
[32]]. Toderici et al. [23]] developed the first learning-based
image compression framework, which was based on a recur-
rent neural network (RNN). Various bitrates may be gener-
ated using a single model in their method. When compared
to BPG, [28] introduces more complex RNN components and
efficient reconstruction approaches to obtain equivalent or
even superior MS-SSIM [33] results. Although some of these
approaches [23]], [25], [28]] are aimed to reduce the bitrates,
the rate-distortion (RD) trade-off is not considered.

By improving the RD performance, Balle’ et al. [24]]
introduced a CNN-based framework with the generalized
divisive normalization (GDN) layer, which is effective for
simulating nonlinear transformations that have been fre-
quently employed in subsequent approaches [5[, [6], [S],
[LO], [13], [14], [34]. However, to improve the RD perfor-
mance, these methods conduct the Gaussian Model (GM)
distribution that is still short of encoding latent features by
effectively estimating the conditional statistics. According to
Rippel et al., [35], a feature pyramid network (FPN) was
introduced to obtain more valuable features. However, this
would also lead to redundant information since convolutional
methods exchange features. Li et al. [29] suggested the use
of a significance map to alter the bit allocation of images,
which they found to be effective. To create the significance
map, a branch of a three-layer convolutional neural network
was trained. However, the explicit learning material requires
weight, which raises the computing cost. It is also tricky to
adaptively assign bits for in-depth features, as described in
[29].

In the training process, some methods [27]], [32] employed
an adversarial network (GAN) as a distortion assessment to
lead the decoder to create more feasible pattern structures,
which tends to result in reconstructed images of decent visual
quality. But the pattern structures obtained in this way are not
actual textures and lack fidelity. Recent studies on adaptive
learning of feature significance have shown that attention
strategies are quite effective. Considerable progress has been
achieved in areas like as natural language processing [30]
and semantic segmentation [[15]. Moreover, the efficiency
of noise removal and super-resolution can be dramatically
improved by incorporating non-local block (NLB) into neural
networks [37]], [38]]. In image compression, some methods
[12]-{14]], [39] employ attention mechanisms that allow spa-
tially adaptive feature response for more difficult locations
(i.e., patterns, saliency) in order to allocate more bits. For
example, [39] introduced an improvement unit that functions
on full-resolution photos to eliminate compression artifacts
by filtering the reconstructed images using a simple neural
network. [12-[[14] employed residual non-local attention
mechanisms to improve the RD performance and compres-
sion artifacts due to the quantization procedure. However,
these proposed attention mechanisms can’t be exploited fea-
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tures in both directions (vertical and horizontal) because of
their one-way weight allocation. Therefore, allocating more
bits in complex regions (i.e., patterns, edges) is not fully
explored to improve the final reconstructed image.

In contrast, we propose an adjacent attention block that
uses distinct weights in the horizontal and vertical direc-
tions for feature maps to maintain only the most relevant
information while eliminating unnecessary information, such
as a complicated natural background, which has a signif-
icant impact on the performance of RD. Furthermore, in
order to decrease compression artifacts, we have included
a refinement block, which is capable of smoothing out and
improving the visualization of the reconstructed image.

lll. METHODOLOGY
This section presents the proposed deep image compression
framework in detail. In Figure (1} the architecture is shown.
Typically, well-known autoencoders are used in CNN-based
compression techniques [5], [6], [8], [12], [29], [30], [32],
[35]. Among them, variational autoencoder (VAE) has been
shown to be a successful architecture for compression as first
described in [6]. In this network [6], to successfully capture
spatial relationships while boosting the compression perfor-
mance by the entropy model efficiently, the hyper-encoder
and the hyper-decoder network are employed with two times
quantization. Therefore, motivated by [6], we adopt the
network of the autoencoder type for learning-based image
compression with three new blocks to improve the overall
performance. In particular, four modules are employed in the
proposed system, which are the main encoder and decoder,
as well as the hyper-encoder and the hyper-decoder network,
respectively. The proposed attention mechanism, referred to
as the adjacent attention block (AAB), is included in each
architecture module. Two additional blocks, the Gaussian
merge block (GMB) and decoded image refinement block
(DIRB) are introduced to increase the overall performance
of the RD and improve the reconstructed image, respectively.
At first, the original image [ is taken through the main
encoder network and creates the corresponding latent rep-
resentations [, by employing four convolutional layers with
non-linear functions (e.g., GDN). After that [, is quantized to
l;. The quantized latent forms Z; are delivered to the decoder
network to generate the final reconstructed image I after
arithmetic encoding (AE) and decoding (AD) [[19]. Similarly,
we utilize the same quantization method as [6] [8]] with some
modifications in the latent state (i.e., added the GMB block)
in a precious way. When it comes to image compression,
the goal is to obtain high-quality reconstructed images at a
certain bitrate, and the entropy model is utilized to predict the
bitrate target. The entropy model uses the hyperprior module
in conjunction with the factorized module. This method of
entropy coding uses a hyperprior network to produce an
estimate of latent forms before quantizing and encoding the
output of the hyperprior encoder into the bitstream. It will be
encoded into the bitstream since this information is necessary
for decoding, and the proper entropy model will increase

3
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FIGURE1: The proposed architecture. The AAB, GMB, and DIRB represent the adjacent attention block, Gaussian merge block,
and decoded image refinement block. Q, AE, and AD correspondingly indicate the quantization, arithmetic encoder, and
arithmetic decoder. The parameters of Conv (convolution) layers indicate the number of filters x (kernel height) x (kernel
width) x stride (up or downsampling). Here, upsampling and downsampling are represented by 1 and |, respectively. For the
feature map values of N and M, we employ 192 and 320, respectively.

compression effectiveness. In this work, the hyper-encoder
module received the hyper-prior information from the latent
forms [, and encoded them into latent representations [;,. Af-
ter that, it is quantized to [, and passed to the hyper-decoder
after AE and AD process. The hyper-decoder module again
retrieves the hyper-prior information from [, and estimates
the relevant entropy model parameters (¢, ) accordingly.
In the following three subsections, we will go through our
proposed three blocks, i.e., AAB, GMB, and DIRB of the
framework.

The below loss function (T) is employed to optimize the
whole training process of the compression technique:

T:/\D+R:>\d(I,I)+H(iG) +H([b) (D)

The D and R are the distortion and bitrate, respectively, in
this equation. The amount of distortion and the bit rate are
both taken into consideration by A. The distortion measure
(MS-SSIM [33])) is denoted by d(.). H is the bitrate utilizing
for encoding the latent visualization I, and [y, respectively.

During the training phase, we use an entropy estimation
method that is presented in [8]], and we represent the latent
features in the following way:

PO , . 11\ /-
P, (fa 1) = [TV (1,070 st (‘27 2) (ier).

) b))
Every latent portrayal [, is represented as a Gaussian distri-
bution with its parameters ¢’ and 9 which are predicted by
the probability of the hidden element ly. Iy is referred to as
the hyperprior, ¢/ stands for a uniform distribution, and * is
the convolution process. The hyperprior Iy is represented as
below:

4

pige(it) =TT, (5000 st 5.)) o) @)
where every univariate’s distribution is represented by
Pt i) and its parameters are represented by (). The bit
rate in our technique is made up of the bit rates for the hidden
variable fb and the latent representations ia. However, the bit
rates of Equation (1) are indicated as:

Z —log, (P)i“ilibi (Zai | Zbi)>

32— 1ogs (P o (1 1 6)).

)

“

&)

A. ADJACENT ATTENTION BLOCK

In deep neural networks, the attention mechanism is an effort
to emulate the similar behavior of deliberately focusing on a
few significant elements while disregarding the rest. Nowa-
days, there are now three primary techniques to include atten-
tion mechanisms: spatial , channel , and Convolution
Block Attention Module (CBAM) [42]. In the meanwhile,
several researchers have adapted spatial attention processes
by non-local blocks to image compression and
[12], intending to reduce spatial redundancy. Furthermore,
to construct an image generation model, employed a
transformer-based self-attention block which increased the
size of the images. However, these methods concentrate only
on building deep networks to increase the models’ repre-
sentation capability, which results in high computation and
memory demands. Besides, in most cases, the conventional
spatial attention mechanism only provides one-direction
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FIGURE2: The proposed architecture of AAB. VWF and HWF
represent the coefficients of the feature maps (size 320 for en-
coder and 192 for hyper encoder-decoder and decoder): verti-
cal weight features (VWF) coefficients and horizontal weight
features (HWF) coefficients, respectively. The softmax func-
tion recognizes the weight coefficients, then extended by the
weight multiplication block, and the maximum weight block
selects the most significant weight coefficients. After that, the
weight coefficients are passed to the convolution layer (Conv)
and average pooling layer (AP) to produce deep features.

weight allocation [|12[|—[|14]], which results in the loss of vital
information up to a specific level.

We propose a spatial adjacent attention mechanism,
namely, AAB, which allocates weights coefficients based
on distinct methods from both the vertical and horizontal
directions. In addition to successfully suppressing irrelevant
information, it may also ensure that the loss of critical
information is kept to an absolute minimum. Besides, it
concentrates the texture on the edges of the image with much
contrast and allocates additional bits to them. Figure[2]depicts
the proposed structure of AAB. Three parts are included in
the structure.

o First, the coefficients of weight features are selected
by the vertical weight features (VWF) and horizontal
weight features (HWF) blocks. It works crosswise to
obtain more stable features for allocating more bits in
edge areas.

« Second, the two types of weight features are multiplied
through the structure’s weight multiplication (WM)
module to increase the weight coefficients (for example,
a tiny weight could be 0.1 x 0.2, while the highest
weight could be 0.9 x 0.7).

o Third, the softmax function recognizes the weight co-
efficients, then extended by the weight multiplication
block, and the maximum weight (MW) block selects the
most significant weight coefficients [for instance, max
(0.1, 0.9)].

To connect and concatenate the weights coefficients of the

three parts of the model are arranged as follows:

@il

2 a
w; = Z nia_dl (6)
=1 Zq:l a=a

wm = concat ([ws, w,, (ws * w;.) , (s, wy)]) 7
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The weights (w;) of VWF and HWF allocated by the at-
tention process are denoted by a®#!:, pixel i and I denote
the feature at a specific instant and the sequential feature,
and the hidden layer characteristics of the feature sequence
I are indicated by d;. In equation 2, m indicates the weight
multiplication, and w; represents the weight coefficient of
VWF in the feature space (ws = [wy,wa,.... wi—1,w;]).
Then the weight operation of WM and MW is denoted by
(ws * wy), and (ws, w,), respectively. After completing all
the weight operations of VWF and HWF, one convolutional
layer (Conv) and average pooling (AP) layer produce the
deep feature.

According to Figure [I] for high-quality compression, the
suggested AAB is incorporated into the encoding, decoding,
hyper-encoding, and hyper encoding networks for leveraging
the channel relationship. The re-weighted feature map from
AAB is included in the subsequent quantization and entropy
coding components.

A ~— A =~
~ - ~ -~
— ~— — o
X | D ix |D|lx || x
FER
X X

= = =z prd
AREEHEE
QoY T|L T L
> 0|5 > 0=
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o] (@) o (]
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FIGURE3: The architecture of GMB. For each layer, N speci-
fies the hyper-parameter that determines how many channels
will be available, and C indicates how many different Gaus-
sian models will be available.

B. GAUSSIAN MERGE BLOCK

Estimating bit rates is critical in learning-based image com-
pression techniques. [8]] and [[L0] demonstrate learning-based
systems in which the hyper-prior compression technique is
employed and a Gaussian Model (GM) distribution is used to

represent the latent representations (la) in the model.

Ep i, (Ia 1) ~ 0(¢,9) ®)

where Ej (I,) denotes the quantized entropy model [5]. The
purpose of the hyper-encoder and hyper-decoder is to predict
the parameters (p,d) of the GM. Though the single GM-
based entropy model has significantly improved over prior
work [5], the representation capabilities of single GM are
still inadequate, particularly for complicated components. As
a result, we conduct the Gaussian Merge Block (GMB) to
boost the image compression performance. In our proposed
GMB, the Za is expressed as below:

e
B i, (ia | Zb) ~ ZWia(%,ﬁi) ©)
i=1
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where W; and G denote the weights assigned to various
GMs and the number of GMs, respectively. To estimate the
parameters (1) of the GMB, we generate three convolutional
layers with three LeakyReL U layers, as illustrated in Figure
In our proposed GMB, the value of G is set to three. A total
of 6 x N output channels are employed, with the first 5 x N
channels being used for predicting the mean and variance of
three GMs. A sigmoid layer is included in the output of the
final NV channels in estimating the weights of every GM. For
example, the weight of the first GM is denoted by W, and the
next one will be (1-W), respectively. Furthermore, by creat-
ing G(G > 4) GMs, we may increase the number of output
channels on the GMB blockto 4 X Gx N (C = 4x G). For G
of GMs, the mean and variance parameters are estimated by
the first 3 x G x N channels in the same manner. The softmax
layer is utilized after the final G x N channels to figure out
each GM weight.
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FIGURE4: The architecture of DIRB. Conv indicates the convo-
lution layer and RC means residual connection. See Section
III (C) for more details.

C. DECODED IMAGE REFINEMENT BLOCK

The proposed compression approach for the entropy model
employs a quantization procedure. As a result, compression
artifacts may appear in the reconstructed image. Thus, a
proposed DIRB, at the decoder side, is adjoined after im-
age reconstruction, which significantly improves the perfor-
mance of the decoded image. To improve the representations
of feature maps, the proposed refinement block uses a self-
similarity measures and inter-spatial relationship informa-
tion. The following is a concept of a deep neural network
process:

1

I = W;F(Oiﬂmwﬂ (10)
£(0) =) _F(0;,0;) (11)

Where ¢ is the position reference of the feature reaction await-
ing to be computed, and j is the counted position reference of
input features. The input and output signals are represented
by I and O, respectively, with the same area and channel
number. At the input feature map, F'(.) calculates the similar
reaction between i and all j. The response is multiplied
by the matching features representation calculated by v (.)
after normalizing with a coefficient f(O). Refinement block
can extract the long-distance dependency between multiple
places by calculating the reaction matrix, which may effi-
ciently enlarge the receptive fields of deep convolution layers.
It solves the shortcomings of traditional standard convolution
operations, which can only gather minimal data from nearby
regions. Figure [ depicts our proposed DIRB for obtaining
spatial relevant information in a feature space.

F(04,05) = a(Xo)' B(Xo) (12)

where X represents the input features and F' (O;, O;) rep-
resents the reaction weight vector for every position. Con-
volution operations («(.) and (3(.)) are used to produce
the features descriptions, which are multiplied to create the
matching matrix.

Xrr = softmax (a (Xo)t B (XO)) ®'y (Xo) (13)

where softmax (.) and X7 denote the normalized operation
and improved features, respectively. Improved features X;r
are calculated by multiplying the reaction weight vector for
the feature representations, produced by the 1 x 1 convolution
operation ~(.).

Xour = Xo P Xir (14)

In the refinement block, we included a residual connection
that constructs similar to a residual learning network by com-
bining input feature Xy and improved feature X;r. It enables
the component to concentrate on improving high-frequency
information rather than low-frequency information.

Comparing the ways of gradually expanding the receptive
fields in typical regular convolution procedures, our proposed
refinement block can acquire the spatial dependency between
any two locations for the purpose of further refining and
improving the flow of gradients and information. Our DIRB
can also add global information to the features that allow our
network to utilize better the promising information contained
within the low-resolution reconstructed images.

IV. EXPERIMENTS

A. DATASET

The experimental datasets are primarily separated into two
types: training data and test data. We randomly select 300k
images from the Open Images dataset [46]] and crop them to
a 256 x 256 pixel size for training. For testing, the KODAK
image dataset [47] and CLIC professional validation dataset
[48] are employed, including high-resolution natural images.
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The KODAK dataset comprises 24 photos with a resolution
of 512 x 768 pixels and a broad range of contents and
patterns, which are artifact-sensitive (restricted color gradi-
ents). As a result, it’s frequently been employed to test image
compression techniques. The CLIC dataset [48]] includes 41
pictures acquired by mobile phones and professional cam-
eras. The images have greater resolutions, with an average
size of 1913 x 1361 pixels for mobile shots and 1803 x 1175
pixels for professional photos.

B. TRAINING DETAILS

All experiments are carried out on a Windows 10 workstation
with an Intel Core i7 processor, 32GB of RAM, and a single
NVIDIA GeForce RTX 2070 GPU with 8GB of memory
running under the CUDA 10.0. To finish the experiment’s
code, we used Python 3.7.0 with Conda environment. Py-
torch 1.0.0 is used as the deep learning framework. For the
model implementation process, the Adam optimizer [49] is
conducted to train all models for 1.8M steps with a batch
size of 8. For the first 110k iterations, the learning rate
is determined to 0.0003, then reduces to 0.00003 for the
other 35k iterations, and finally to 0.00001 for the final 35k
iterations. The channel numbers of the latent and hyper latent
variables are set in the proposed model at 320 and 192,
respectively.

C. EVALUATION METRICS

This article evaluates the rate-distortion in bits per pixel (bpp)
while the model is optimized by employing the PSNR [50]
and MS-SSIM [33]. To show their coding efficiency, rate-
distortion (RD) curves are generated. We followed the same
setting of [51]], and for MS-SSIM, the A values are fixed to
2.41,5.24,8.31, 15.65, 30.43, and 60.56.

V. RESULTS AND DISCUSSIONS
A. QUALITATIVE RESULTS
We present some visualization outcomes to make the effi-
ciency of our approach more apparent. Figure [5|and Figure[6]
demonstrate the qualitative comparisons (final reconstructed
images) of some images from KODAK dataset [47] dataset.
In Figure [5] we compare our results with existing methods
[[21-[5]]. To illustrate the efficiency of our proposed technique,
we highlight a few specific areas of the reconstructed images
for a more in-depth examination. Our reconstructed images
have a higher PSNR, i.e., 37.9dB (Kodim 23.png), 34.21dB
(Kodim 24.png), and 30.01dB (Kodim 19.png), and maintain
around the same bit rates as other methods. Besides, the
texture of the images is more vibrant (especially the patterns
around the eyes of the birds (row 1), the drawing (row 2),
and the window (row 3), allowing us to preserve the finer
feature pleasingly. In Figure [6] we show the comparison of
the reconstructed images with original images in different
zoom-in ways for better qualitative visualization.

Usually, textured areas (high contrast) are often allocated
more bits than non-textured areas (low contrast), resulting
in better visual quality at the same bit rate. To display
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the efficiency of the proposed AAB, the visualizations of
kodim23.png, kodim19.png, and kodim24.png from the KO-
DAK [47] dataset are depicted in Figure [7} From Figure
(b and c), it can be shown that AAB distributes weights
vertically and horizontally to suppress irrelevant information
effectively. As a result, in latent (Figure [7(b)), it assigns
more bits to regions of high contrast (objects) while assigning
fewer bits to regions of low contrast (background). However,
Figures [/| (b and c) are expressed for 1.19 Bpp and 0.17
Bpp, respectively. It can be clearly said that by AAB, we
can allocate more bits not only at higher bit rates Figure
(b) but also at lower bit rates Figure [/| (c). Even we keep
both kernels and feature maps maintain a virtually identical
pattern, although each element’s intensity is adjusted differ-
ently. In summary, our proposed AAB is very effective in the
latent representations because it can provide the almost same
pattern at lower bit rates.

In order to demonstrate the efficiency of our proposed
DIRB, the visualizations are portrayed in Figure of
kodim23.png, kodim19.png, and kodim24.png from KODAK
[47] dataset. The result after the last convolution layer is
shown in Figurd§] (b), and after applying the DIRB, the final
reconstructed images are shown in Figure B] (c). We can see
that the learned residual images (Figure [§| (b)) include a
disproportionate amount of high-frequency information. On
the other hand, the final reconstructed images (Figure [§](c))
also aid in perfectly predicting the spectral analysis of the
images with a better display.

B. QUANTITATIVE RESULTS

To evaluate our proposed model, the RD performance is
computed. We employ the PSNR as the quality measure, as
illustrated in Figure[9] (a). Our technique is evaluated against
a variety of well-known image compression algorithms (both
classical and deep learning-based), including [3[-[5], [8],
[1O0], [13], [[14]]. When compared to [4], [5], [S], 18], [10],
[13]], our method outperforms them by a large margin, spe-
cially from the most popular methods Chen et al. [[14] (around
41.12 vs. 37.4), and Cheng et al. [13]] (around 41.12 vs. 37.1).
However, the bit rates are slightly lower (about 0.7%) when
comparing our approach to the traditional method [3] (around
41.4 vs. 41.12).

The experiments are also carried out using the MS-SSIM
quality measure, as seen in Figure 0] (b). We provide MS-
SSIM values in decibels (i.e., —10log10(1 — M.S — SSTM))
to better illustrate the progress. It is clearly said that our
method shows state-of-the-art performance against both the
traditional methods, including [4]], and [3[], and deep learning-
based methods, including, [5], [8], [10], [13]], [14]. There-
fore, we can say that the AAB, GMB, and DIRB we have
presented have a significant influence on showing higher RD
performance and improving the reconstructed image’s simi-
larity. Please refer the ablation study (in next sub-section) to
get a better idea of the modules’ efficacy.

We employ another CLIC [48] professional validation
dataset to confirm the robustness of our technique, and the

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

I E E E A content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195295

Jeny et al.: Improving Image Compression with Adjacent Attention and Refinement Block

Original

VTM 8.0
PSNR=37.9, bpp=0.263 PSNR=35.59, bpp=0.234 PSNR=33.49, bpp=0.198

- Balle's JPEG
Original PSNR=30.01, bpp=0.332  PSNR=30.98, bpp=0.311
Ours BPG444 VTM 8.0

PSNR=34.21, bpp=0.201 PSNR=32.42, bpp=0.298 PSNR=33.06, bpp=0.276

|

JPEG
PSNR=27.09, bpp=0.099 PSNR=26.32,bpp=0.987

& : ‘ ‘
o . ]
BPG444

PSNR=30.01, bpp=0.102 PSNR=28.11, bpp=0.103 PSNR=28.45, bpp=0.111

FIGURE5: The qualitative performance comparison of the our reconstructed images with existing methods, such as Balle et al.
|E]], BPG444 [E]], JPEG , and VTM 8.0 . These images are taken from KODAK dataset.

results are shown in Table [I] It is noteworthy that our ap- SSIM)). However, regarding PSNR, our method achieves

proach also yields state-of-the-art results in terms of MS- the second-highest result (underline results in Table[T)), which
SSIM which we express in decibels (i.e., —10log1o(1—M S— is approximately 4% less than the traditional method [3]
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FIGURE6: The qualitative comparison of the reconstructed images (row 2, 4) with the ground truth (row 1, 3) images from
KODAK [47] dataset (Kodim 07.png and Kodim 20.png). The highlighted rectangular area zoom-in by x2 (in row 1, 2) and
x 3 (in row 3, 4) for better visualization.
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FIGURE7: The visualization result of AAB regarding
kodim23.png, kodim19.png, and kodim24.png from KODAK
dataset. (a) original image, (b) Latent, and (c) Allocated
bits (see the edges of the objects).

@ (b) ()

FIGURES: The visualization result of DIRB in terms of
kodim23.png, kodim19.png, and kodim24.png from KODAK
dataset. (a) original image, (b) the reconstructed image
without applying DIRB, and (c) the reconstructed image after
applying DIRB.

(around 42.5 vs. 40.8) at lower bit rates (0.58). However, it
outperforms all existing deep learning approaches.

C. ABLATION STUDY
We perform some ablation studies on the KODAK dataset
[47] to further illustrate the robustness and effectiveness of
our proposed approach.

In Table[2] we provide an investigation by adopting current
attention modules replacing our suggested attention module
in our proposed approach for two kinds of A\ values. PSNR
performance is relatively poor (27.23) for A = 2.41 and 8.31

10

TABLE1: The RD performance (MS-SSIM and PSNR) of the
CLIC Professional Validation dataset. Bold indicates
the highest performance and underline indicates the second
highest.

Approaches MS-SSIM | PSNR | bpp
JPEG [2] 17.6 354 0.80
BPG44 [4] 22.3 41.2 0.75
VTM 8.0 3 22.6 42.5 0.70
Lee et al. [10 26.6 40.4 0.74
Balle et al. [|6 22.5 40.1 0.89
Minnen et al. [8 27.1 40.0 0.88
Cheng et al. [13 24.1 36.4 0.63
Ours 274 40.8 0.58

TABLE2: The performance comparison of different prior at-
tention blocks with our AAB in terms of PSNR with bit rates
(bpp) on KODAK dataset [47].

Approaches A PSNR bpp

Proposed method 241 | 27.23 | 0.201

Proposed method + attention module [[13] | 2.41 [ 31.89 [ 0.211
Proposed method + NLAM []14[] 241 32.21 0.202
Proposed method + AAB 241 | 3298 | 0.208
Proposed method 831 | 27.51 | 0.657
Proposed method + attention module [[13] | 8.31 [ 33.87 | 0.678
Proposed method + NLAM [14] 8.31 | 34.01 | 0.651
Proposed method + AAB 8.31 | 35.67 | 0.591

at low and high bit rates when the attention module is not
included in the baseline model. When the attention modules
of Cheng et al. [13]], Chen et al. [14]}, and ours are utilized, the
PSNR values improve by around 15% (31.89 vs. 27.23 and
32.21 vs. 27.23) for and [[14]], and by about 17% (32.98
vs. 27.23) for ours at low bit rates, respectively. The PSNR
improves significantly when A= 8.31, for example, for our
suggested adjacent attention module, the PSNR is improved
by roughly 23% (35.67 vs. 27.51) and even by around 5%
(35.67 vs. 33.87 and 35.67 vs. 34.01) over the prior modules
of [13], [14].

To further verify the effectiveness of our proposed three
modules in the main architecture, we have carried out another
experiment in terms of PSNR, MS-SSIM, and Inference Time
by replacing and adding the modules to bring the bpp close
to 1 in Table[3] The PSNR and MS-SSIM performance of the
baseline model are 26.27 and 18.71, respectively, when the
three modules are not included as well as the inference time
of 522ms. The value of PSNR and MS-SSIM dramatically
increases with the inference time of 1067ms when all compo-
nents are taken into account. For example, the improvement
in PSNR and MS-SSIM is roughly 27% (35.89 vs. 26.27) and
28% (26.01 vs. 18.71). Among them, the proposed adjacent
attention module and refinement block are able to boost
the RD performance more, for instance, approximately 23%
(33.96 vs. 26.27) in PSNR and 23% (24.45 vs. 18.71) in
MS-SSIM. Eventually, it can be concluded that our proposed
modules are very effective in boosting the state-of-the-art RD
performance.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3195295

Jeny et al.: Improving Image Compression with Adjacent Attention and Refinement Block

IEEE Access

28

~
el
-
26 ,/ "7 |
- o
it -
e vl
o e
e o
L4 e
24 o
o -
/¢, - -
o P
yd " ,f' o - __—“'
/ {”/ r g e
A d—
0 o -
z o
@ L
o F ol
@ |
2 o
= === Minnen et al.
—-#---Chenetal.
BPG444
——#——-Chengetal.
== ==\TM 8.0
Lee et al.
=—=#-==-Balle etal.
— === Ours
0.8 1 12 14 16 1
Bit-rate (bpp)
(a)

FIGURES: The RD performance assessment on the KODAK dataset . (a) the performance of MS-SSIM

42

.
e
» e
P pr
w© // o
rd g »
&’ '/, o —"’
A 2
”'/ s
38 = IS
o ’
"’- P
-~ e
d ¢""”:é’
3 7 > 'I 27
g ’, "’ o
@ 4 B
./ 4 4"’ l’l
o’ [',/‘; "
34 4 s
J rg s :
4 Ve " —-#—--Minnen et al.
/ l//, 7 | — - Chen etal.
.:’ /! A ’ BPGA44
32 ’,’f ‘4‘" ’,' —-g~--Chengetal. 1
7
‘f'/' = VTM 8.0
7 ¥ i Lee et al.
/ { j I’ —~g~-- Balle etal.
." " ——g—=-Ours
30 T :
0.0 0.2 04 0.6 0.8 1 1.2 14 1.6 18
Bit-rate (bpp)

—10log10(1 — MS — SSIM)), and (b) the performance of PSNR.

in decibels (i.e.,

TABLE3: The performance measurement of the proposed modules in trems of PSNR, MS-SSIM, and Inference Time on KODAK
dataset . The AAB, GMB and DIRB indicate Adjacent Attention Block, Gaussian Merge Block, and Decoded Image

Refinement Block, respectively.

S.N. | Baseline | AAM | GMB | DIRB | PSNR | MS-SSIM | Inference Time (ms)
1 v X X X 26.27 18.71 522
2 v v X X 27.95 19.95 734
3 v X v X 26.89 18.78 591
4 v X X v 30.33 20.32 822
5 v v v X 32.51 23.41 883
6 v X v v 31.23 21.87 861
7 v v X v 33.96 24.45 901
8 v v v v 35.89 26.01 1067
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