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Abstract
The field of medical image analysis is concerned with the extraction of salient information
from complex digital imagery. Developments in image acquisition tools has given rise to
a number of 2-D and 3-D digital image domains that are capable of mapping the anatomy
and internal structures of a patient in an non-invasive fashion. The data produced by
these tools is inherently complex, and a number of image processing techniques are
commonly applied to simplify the images in order to extract the information deemed
most relevant. Image segmentation is one commonly applied process which partitions
a digital image into multiple segments that correspond to various structures within
the data. The goal of segmentation is to change the representation of an image into
something that is easier to visualise and analyse in complex tasks (i.e. targeted clinical
treatment planning). Often these segmentation tasks are performed manually by an
expert clinician, however the task of drawing object contours is a time consuming
process subject to human biases and interpretation. Automated and semi-automated
segmentation is a complex, non-trivial process reliant on a number of pre-processing
stages which first extract the spatial structural information contained within the image.
For 2-D images, the structural information is contained within edge features and there
are a number of edge detection algorithms in the literature which have been extensively
appraised. For 3-D images this structural information is contained within the surface
features, and while surface detection algorithms exist, their development is immature
compared to edge detection and formal evaluation in the literature is largely absent.
Furthermore, recent developments in statistical methods for 2-D edge feature extraction
have showed promise in resolving 2-D structural information in medical data, however
no work has yet explored these approaches in 3-D.

In this thesis two novel methods of statistical surface detection are presented, which
contribute to the field by transferring approaches of 2-D statistical edge detection into
3-D. The proposed methods optimise the resolving power of the 2-D statistical methods
while providing accurate surface detection in the x, y and z dimensions of images.
The methods are presented with a range of parametric and non-parametric statistical
tests which were extensively analysed using both qualitative and objective methods. In
addition, the framework for evaluation is an additional novel contribution in this work,
which considers individual aspects of surface detection performance, such as the effects of
the statistical properties of the regions within the image, the impact of surface topology,
and the response to multiple distinct regions present within the image. A comprehensive
dataset of controlled interfaces is developed, and performance of the surface detection
algorithms were judged using a novel fast implementation of F-measure analysis against
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ground truth solutions which is new to this work. The surface detection methods are
also analysed on real MRI data, and their performance was qualitatively assessed on
the ability to detect brain tumour boundaries and structural pathologies in paediatric
patient data. For a comparison against the state of art in surface detection, the methods
evaluated in the thesis were compared against two existing baseline approaches, namely
the 3-D Canny method, and 3-D Steerable filters.

The results of the evaluations reveal that the proposed 3-D statistical method for surface
detection offers improved detection of surfaces on synthetic data with varying interface
and topology considerations. Furthermore, the proposed methods improve detection of
surfaces when the variability in image intensity high, such as within regions of texture,
which is suitable for delineating regions of complex structure in MRI data. Additionally,
the statistical methods were able to match the performance of the baseline methods
under conditions considered optimal for the baseline approaches, such as the detection
of surfaces with a strong intensity differential. Furthermore, the proposed methods of
surface detection are shown to be suitable for real 3-D data which is anisotropic in
resolution, namely on MRI imagery where the z-spacing within the dataset is often of
poor resolution. Provided as a recommendation for further work, the best performing
techniques are presented, notably these were the χ2 and Student t-test statistical
methods. Characteristically these methods produced strong magnitude surfaces with
good connectivity on real and synthetic data, with the χ2 test also achieving a good
suppression of image noise. Therefore, illustrating the potential of this novel method
of 3-D surface detection for medical image analysis applications.
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Chapter 1

Introduction

Advances in computational power over recent decades have resulted in more applications
for the acquisition, manipulation, and processing of digital image data. Commonly this
data represents a two dimensional (2-D) array which consists of two finite dimensions
(x,y) of pixel values. However, more recent developments in both consumer and com-
mercial acquisition systems have resulted in an uprise in three-dimensional (3-D) digital
image data which extends the number of finite dimensions of pixel information into
three dimensions (x,y,z).

Figure 1.1: Example of a medical image software package, Synopsys’s Simpleware™,
with powerful 3-D visualisation and segmentation capabilities (Synopsys, 2021)

While many commercial software applications aim to exploit this 3-D data, commonly to
improve visualisation and manipulation, for example Synopsys’s Simpleware™ package
and RadiAnt™ DICOM Viewer (Fig 1.1), the underlying digital processing of this
information is commonly still applied in 2-D, thus not exploiting the information fully
present in the third (or z) dimension. Thus, these applications while suitable for
visualising an extrapolated form of 3-D visualisation, they do not truly represent the full
structural information offered within the 3-D datasets. Furthermore, when visualising
structures that exist in 3-D, processing on 2-D data alone may miss salient information
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within the plane of processing and therefore structures of interest that exist within the
z plane of the data may be lost or misinterpreted with errors.

One feature of interest to many image analysis tasks such as segmentation, region
profiling, and visualisation are surfaces. Surfaces being analogous to edges in 2-D data
are highly sought after 3-D image features which separate two or more distinct regions
of information. Intrinsic to the feature, surfaces provide information regarding the
structure contained within 3-D image data. Surfaces are therefore vital in providing
routes towards a clearer understanding of 3-D structures and offer potential methods
for providing a truer and more accurate visualisation of often complex image data.

With current advances in image technology, surface information can support many
applications in the medical visualisation, processing, and treatment planning domains.
Often these advances are to automate or semi-automate manual tasks and improve
efficiency, reliability, and accuracy of results. Commonly these methods rely on novel
techniques and processes embedded into software packages that while partially automate
processes, still require guidance by a human operator to achieve the desired result.
Once such technique in medical analysis, visualisation and anatomical evaluations is
contouring. Contouring is the highlighting and labelling of a boundary to a region of
interest. This is a classical problem for 2-D image data and although some advances have
been explored to semi automate this process, it is still largely a manual task. Thus, the
de facto standard approach, whereby a human operator draws contours around required
structures in 2-D, is time consuming and open to errors in interpretation. Furthermore,
even though recent advances in 3-D acquisition and visualisation processes have resulted
in improved clarity in complex 3-D image data, the contouring process for many medical
applications is still applied in 2-D, therefore may not be fully representative of the true
3-D structures or reflecting the potential accuracy. One such example amongst many is
in the contouring of Pilocytic Astrocytoma (PA) brain tumours in paediatric patients.

The 3-D structure of PA pathologies is complex and contouring is currently reliant on
an interpretative, time consuming process performed by viewing the 2-D layers within
the 3-D data in an axial view, and manually drawing a contour around the object of
interest. Because of the rapid development of these pathologies in paediatric cases,
this task often needs to be repeated throughout the diagnosis and treatment phases
of a patients care multiple times to track the progression and to assess the impact of
treatment. Further compounding these challenges are the limited availability of high
resolution, isotropic, complete datasets. This is due to Magnetic resonance imaging
(MRI) machines being a scarce resource, and image quality is often compromised by
reducing the acquisition time to minimize patient discomfort. Furthermore, images
are acquired using different MRI imaging modalities, which reveal different structures
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within the data, while contrast agents can be added prior to acquisition of images to
further increase the distinction between different image structures. The three primary
modalities for magnetic resonance imaging of brain tumours are T1 weighted, T2
weighted, and T1-weighted with a contrast agent. Clinicians are then able to infer
structures invisible in one domain, by their presence in a scan from an alternate modality.
However, not all modalities are always available, and often images from the different
modalities have different dimensional and resolution properties, thereby making image
registration and contour assisted processing a non-trivial task for software applications.

Current machine learning methods offer some routes forward towards region segmenta-
tion, but the problems associated with limited datasets and lack of generalisability in
the use case is apparent. Classical approaches, as opposed to more complex modern
computer vision ‘task-oriented’ approaches such as those in the field of deep learning
possess a number of useful advantages, chiefly amongst these are the fact Classical meth-
ods do not demand complex, lengthy training stages, which may also require extensive
and sometimes unavailable datasets and powerful GPU processing. Classical approaches
can avoid these difficult problems since they require no training, can be applied to all
images without prior knowledge of the image content, and require comparatively less
computational power.

While a number of classical approaches exist for 3-D surface segmentation in end ap-
plications like MRI contouring, their evaluation and formal exploration has not been
conducted either objectively or against practical segmentation tasks. Furthermore, po-
tential improvements 3-D surface segmentation can offer over 2-D counterpart techniques
has not been appraised.

1.0.1 Motivation
The motivation behind this work is to explore methods for providing a reliable and
fast method for 3-D surface detection which can be applied on common 3-D datasets.
While 2-D edge detection methods for 2-D data have been extensively explored in the
literature, 3-D surface detection methods lack the same level of maturity. Therefore,
the potential advantages these methods can offer over their 2-D counterparts remains
largely unexplored. Furthermore, the availability of 3-D imagery in the medical field
has increased greatly in recent decades, and scanning techniques such as magnetic res-
onance imaging (MRI), computed tomography (CT), single photon emission computed
tomography (SPECT), positron emission tomography (PET) and other 3D imaging
modalities are now more prevalent (MRI scanners in the UK 2000-2014 | Statistic n.d.).
However, the potential impact of 3-D surface detection on this data over 2-D edge
detection has not been fully acknowledged. In recent times a large effort has been made
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to utilise deep learning techniques to further assist in medical image analysis tasks (Ker
et al., 2018) with 3-D data, however, a number of factors are currently limiting the
potential of these approaches. Principally these include the sparsity and availability of
sufficiently large, curated, and representative training data that includes expert labelling
(Willemink et al., 2020). These limitations are compounded due to variations in image
acquisition protocols, imperfections of scanning methods, patient cohorts and sample
sizes, for example in paediatrics, where cases are of a lower frequency and patient data
can be less generalisable.

As 3-D medical images contain complex structural information which can be difficult
to visualise, typically classical image processing techniques are applied to simplify the
visual content in order to assist practitioners in viewing the salient information. This
can be as simple as viewing the image through a limited intensity (Brightness) range
to enhance certain features, or more complex, such as algorithms which can segment or
classify image structures. Powerful medical image analysis and visualisation software
packages contain highly sought after image processing tools that can assist the medical
practitioner with diagnosis and treatment planning tasks. These packages typically use
a range of approaches, including both classical and machine learning based methods.
Consequently, the performance of classical techniques is still relevant as they affect the
diagnostic usefulness of these non-invasive imagining tools, this remains a long-standing
computer vision problem having been expressed prior by (Zucker and Hummel, 1981). It
has been firmly established that low level processes such as edge or surface detection can
improve the performance of segmentation by removing the redundant information in the
image (Pavlidis and Liow, 1990), therefore improvements to the underlying processes
remain relevant.

Surface detection is a useful tool because it reduces the complexity of an image, while
retaining information corresponding to the structure of the image content. In a medical
context this structural information could the boundary of an organ, a skeletal object
or a pathology such as a tumour. The extracted surface data is simple relative to the
complexity of the unprocessed image data, affording other image processing techniques
the ability to process an image which would otherwise be too complex. For example
segmentation is a commonly applied computer vision process which can exploit surface
features in order to divide an image into a collection of semantically meaningful, homo-
geneous, non overlapping regions. This is a crucial tool for medical image analysis tasks
such as measuring and visualising anatomical structures, image guided interventions,
surgical planning, analysing brain development and delineating lesions, tumours and
other pathologies (Despotović et al., 2015).
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The requirement of extracting structural features for 3-D segmentation has largely
been left to 2-D edge detection methods (Lyra, 2012; Prakoonwit and Benjamin, 2012;
Simmons et al., 2013), which do not produce optimal results in 3-D data. The work of
Monga and Deriche (1989) presents the theoretical advantage in performance offered
by 3-D methods over comparable 2-D algorithms in the detection of surfaces, inferring
that fully 3-D methods should be employed over 2-D methods for the full performance
potential of the detection process to be realised.

A notable problem for surface detection performance occurs when the differences
between image regions are not clearly separable. For example, images obtained from
3-D scanning modalities often present with regions with non-homogeneous voxel intens-
ity, noise, and anatomical structures which are sometimes more clearly defined by their
texture profile than their intensity profile (Martin et al., 2004). Texture is therefore
another important image feature (Petrou and García Sevilla, 2006a), one which can
be used as a cue for medical image analysis tasks (Liyuan Li and Leung, 2002; Martin
et al., 2004; Huan and Hou, 2008). However, it is more common for surface detection
methods to detect the image structure by computing the intensity gradient function of
an image. Where this is the case, texture based interfaces are not readily resolved by
traditional gradient methods.

In 2-D data, statistical edge detection methods such as those evaluated in the work
of Williams et al. (2014) were shown to be more conducive to resolving a range of
interface types, including both intensity edges and texture based edges, yet evaluation
of 3-D statistical surface detection methods remain lacking in the literature. Traditional
methods of surface detection may therefore provide sub-optimal results when compared
with statistical approaches, likely in areas of noise and where interfaces are defined by
changes in a texture profile.

The motivation for this thesis was to develop and evaluate a statistical based surface
detection method, which utilises both the theoretical advantages offered by 3-D data,
described by Monga and Deriche (1989), in addition to the advantages offered by a
statistical approach, expressed by Williams et al. (2014), in order to improve the current
standard of surface detection.

1.1 Aims and Objectives of the Project
• To develop and evaluate the performance of a 3-D statistical filtering approach to

detecting surfaces, to improve the current standard of surface detection for 3-D
image data.
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1.1.1 Objectives
1. Establish strengths and weaknesses of current state of the art methods of surface

detection via literature, positioning the development of 3-D statistical methods.

2. Review, evaluate and develop robust quantitative performance measures for testing
3-D surface detection techniques.

3. Develop a protocol for creating synthetic data for objectively analysing surface
detection methods.

4. Evaluate performance of novel statistical surface detection method against current
state of the art systems using an objective analysis.

5. Identify trends between the results from synthetic data and that of tumour inter-
faces in real multi-modal MRI data.

6. Extrapolate findings to make recommendations for optimal application of tech-
niques.

1.2 Structure of the Thesis
Chapter 2 presents a review of the literature on existing surface detection methods.
However, to fully understand the development of surface detection algorithms, 2-D edge
detection methods first needed to be explored since the majority of 3-D surface detection
algorithms are derived from 2-D edge detection techniques. This chapter explains
functionality of the 2-D and 3-D techniques and demonstrates where these methods are
effective and where they are not. The shortcomings of these techniques are highlighted
to illustrate the historical need for improvements, and how these developments were
driven for improved performance. Furthermore, Chapter 2 defines the properties of
images both in 2-D and 3-D formats and defines what role those properties play in
accurate detection. Chapter 2 also describes what constitutes an image region, defining
both edge and surface features and their utility.

Chapter 3 details the design and implementation of two novel approaches to stat-
istical surface detection. Detailed are two unique configurations of the method, these
variants are called the maximum response (MR) and vector magnitude (VM) meth-
ods. A computational cost analysis is undertaken for the newly introduced methods,
which evaluate the completion times of each statistical test across a range of suitable
neighbourhood scales. The analysis underpins the advantages offered by the Vector
Magnitude method with respect to reducing the number of redundant calculations for
a faster, scale invariant approach to statistical surface detection. The VM approach
also newly introduces an option to reduce the surface map distortion which occurs
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when applied to data which is not isotropic in its resolution. A further contribution
presented in this chapter is a novel 3-D orientation filtering technique, which allows
for 3-D non-maximal suppression to be applied when surface orientation is not known
a-priori. The chapter discusses the effect of adjusting neighbourhood scale and choice
of statistical test in a 3-D context which has yet to be explored outside of this work.

Chapter 4 provides an overview and analysis of a number of different performance
measure techniques which are used for the evaluation of edge and surface detection
results. This work shows that there are a number of flaws with the accuracy of perform-
ance metrics that have been used prolifically in objective evaluations. Existing metrics
which are accurate and robust against the issues discussed in this chapter are typically
computationally expensive, rendering these techniques impractical when required for
substantially large datasets. The problem of efficiency is further exacerbated where
analysis of 3-D results are required, since the added dimension to the data effectively
makes the analysis is more computationally complex while simultaneously increasing
the size of the dataset images. This chapter introduces an improvement in accuracy of
the closest distance match (CDM) of Bowyer et al. (2001), using a novel one to one cor-
respondence matching procedure to produce an efficient paring strategy (EPS) (Smith.
and Williams., 2020) which offers robust accurate performance analysis of edge and
surface results compared to ground truth datasets.

Chapter 5 provides a comprehensive analysis of the statistical surface detection
models. The statistical methods are compared against the 3-D Canny operator which
is a 3-D extension of the 2-D benchmark operator and prolifically used Canny (1986)
edge detection technique. The statistical surface detection model is also compared
against an oriented filter method, the 3-D steerable filter method of Aguet et al. (2005).
The analysis uses a comprehensive dataset of synthetically created images where the
interfaces are mathematically defined such that a ground truth reference solution can
be used for comparison in objectively analysing the results. The criteria by which the
methods are assessed are the resolving power of the detection algorithms against a single
flat interface. A topological analysis where the surfaces are not uniform in structure.
Finally on images which combine a wide variety of region types present in the same
image volume.

Chapter 6 introduces a real world application case study to verify whether the
synthetic evaluation can be relied up on and has generalisability and transferability,
here a qualitative approach is undertaken analysing surface detection filtering of real
Multi-Model MRI data. The dataset is comprised of real MRI brain scans of paediatric
patients with Pilocytic Astrocytoma (PA) pathologies present in the brain. The effect-
iveness of the different surface detection methods are analysed for their suitability of
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locating the interfaces between healthy brain tissue and PA tumour pathologies across
independent T1-weighted, T2-weighted and contrast enhanced T1-weighted MRI brain
scans. As access to full 3-D isotropic scans for each modality is not always available
in a clinical setting, these evaluations allow for independent assessment of the surface
detection methods across individual modalities, and as such identify a preference for
each modality. The statistical methods are again compared against the baseline 3-D
Canny and Steerable methods.

Chapter 7 explores the results, identifying the key characteristics of each filtering
method, and discusses the correlation between the synthetic and real data results.
Noting where the methods are effective and where they are not, identifying the problems
and limitations. Finally discussing where improvements over the current standard in
surface detection are achieved.

Chapters 8 presents an overall conclusion of the findings in this body of work.
Exploring the key contributions.

1.2.1 Contributions
• Development of two architectures for 3-D statistical methods of surface detection.

• Development of a novel 3-D orientation filtering method for 3-D Non-maximum
Suppression.

• An evaluation of statistical surface detection methods against a baseline of existing
gradient techniques.

• Development of a framework for evaluating surface detection methods using syn-
thetic 3-D data.

• Development of an Efficient Pairing Strategy(EPS) for one to one correspondence
matching between surface maps and reference images, which uniquely allows for
computationally efficient and accurate performance metrics to be applied to large
3-D datasets.

• Qualitative analysis of statistical methods for tumour boundary delineation, in
Multi-modal MRI data.

• Application of a confirmation and validation framework which assess correlation
between synthetic and real image testing domains.

• Recommendations for the application of statistical surface detection

The following papers have been published as part of this work:
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• S. Smith and I. Williams, "A Statistical Method for Improved 3D Surface De-
tection," in IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1045-1049, Aug.
2015. (Chapter 3 and 5)

• S. Smith and I. Williams. 2015. A statistical method for surface detection. In
Proceedings of the Eurographics Workshop on Visual Computing for Biology and
Medicine (VCBM ’15). Eurographics Association, Goslar, DEU, 217. (Chapter 3)

• S. Smith and I. Williams. 2020. Efficient One-to-One Pair Matching for 2-D and
3-D Edge Detection Evaluation. In Proceedings of the 15th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 4: VISAPP, (Chapter 4)

1.3 Summary
Surface detection is a classical process which requires no prior knowledge of a 3-D
image. These processes extract surface information from volumetric image data, which
can be further utilised by medical image analysis tasks. Optimal performance for the
detection of surfaces is desirable, however statistical surface detection methods which
could potentially offer superior performance over traditional surface detection methods
have not yet been evaluated. This thesis presents a model for statistical surface detection
and an evaluation framework for robustly analysing surface detection methods.





Chapter 2

Image Filtering in 2-D and 3-D

2.1 Introduction
Vision is one of the major resources humans possess in order to perceive and under-
stand their environment and computer vision is a field of study that aims to imitate
aspects of the human vision system in order to electronically perceive images. Not all
processes need a complex understanding of the image content, a number of computer
vision processes include tasks such as noise filtering, image sharpening, contrast en-
hancement, thresholding, edge filtering and surface filtering. Typically, no information
other than the magnitude (intensity) of the image pixels or voxels are required to
complete these tasks. These are considered to be ‘low-level’ processing operations, and
often the output can be used to aid more complex ‘high-level’ operations which require
some understanding of the image content, such as segmentation, object detection and
classification.

Edge filtering is a widely utilised ‘low-level’ image processing task applied to 2-D data,
this process extracts edge features from an image which describe the interfaces between
different image regions. Thus, edges provide information on the structure contained in
2-D images and this information has been utilised for a number of tasks such as finding
objects (Biederman, 1987), separating the foreground from background (Gruenwedel
et al., 2011), and segmenting regions of interest in an image (Jamil et al., 2011).

Computer vision tasks are not only applied to 2-D digital images, they can also be
applied to image data with three spatial dimensions. Edge filtering in 3-D images is
not the same as 2-D. If edges describe the interfaces between two or more distinct
regions in 2-D data, it is a surface feature which describes an interface in 3-D data, and
it is therefore surfaces, not edges which provide information about the 3-D structure
contained within the data.

11
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Many surface filtering algorithms are in fact extrapolations of 2-D edge filtering methods
which have been converted to perform the task in 3-D and these include techniques
such as the 3-D Sobel Operator, the 3-D Canny Surface detection algorithm derived
from the Canny (1986) edge detection algorithm, and 3-D Steerable filters (Aguet et al.,
2005) which were developed from 2-D Steerable filters (Freeman and Adelson, 1991).

While a number of surface filtering techniques exist, the literature regarding edge
filtering is more rich. Since many of the surface filtering algorithms are extensions of
2-D edge filtering methods, the problems and developments which have driven surface
detection design are largely based on the issues which affect edge detection, therefore
to understand the developments made in detecting surfaces, edge detection methods
also require discussion.

Section 2.2 of this chapter describes the fundamentals of digital images, defining various
features such as edges and surfaces. Section 2.3 then identifies the key problems
associated with extracting accurate edge information, while section 2.4 and 2.5 tracks the
major developments in 2-D edge detection technology, describing how the advancements
overcome some of these limitations. Section 2.6 introduces a statistical approach to
2-D edge detection, discussing the various advantages and disadvantages offered by this
approach. Section 2.7 then introduces surface detection for 3-D data, highlighting the
parallels with the design challenges faced by 2-D operators, and finally providing a
rationale for the development of 3-D statistical surface detection.

2.2 2-D Digital Image Fundamentals
A digital image is a grid of numbers which can be used by an electronic display to create
a visual picture. More specifically a digital image is the visual manifestation of a digitally
encoded representation of the visual characteristics of an object or scene (FADGI 2018).
Thus, an image is a discrete multidimensional signal that conveys spatial information
corresponding to specific measurements or values, such as photons collected by a camera
sensor. Images predominately contain two spatial dimensions displayed on an x and
y-axis, two dimensions is typical since display technologies are usually a flat 2-D space,
these image modalities include digital photography, ultrasound and x-ray photography
amongst others.

A picture element (pixel) is defined as a value associated with the Cartesian coordinates
(x, y) in a 2-D grid. Each pixel possesses a numeric or binary value specific to that
spatial location. The pixels are positioned in a grid structure that preserves the spatial
relationship of the acquired measurements or values (Fig. 2.1). For example, neighbour-
ing light measurements from a camera sensor will be positioned as neighbouring pixels
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(a) 2-D image Structure

Figure 2.1: Illustration of grid layout for 2-D images

in a digital image. The number of pixels in the grid structure determines the image
resolution.

2.2.1 Edge Feature
A number of different features or properties can be obtained by processing digital images,
one highly sought after feature is an edge. An edge describes the interface which exists
between different regions within the image. Visually, an abrupt change in pixel intensity
can be recognised as a discontinuity in image brightness, these discontinuities are typic-
ally interpreted as edges by humans. When the image intensity gradient is steep, there
is an abrupt change in intensity, and is recognised as an edge, whereas a more gradual
change in intensity not recognised as having a defining edge, this is illustrated in Fig. 2.2.

‘Edges’ are always a line or curve of single pixel width and can be of arbitrary length
subject to the restraints of the image resolution. The most prevalent edge detection
techniques are those which target the detection of abrupt changes in luminosity.

In order to identify what could constitute as an edge, the definition of an image region
should first be established. A region describes a collection of pixels where image prop-
erties or features are homogeneous, such as the aforementioned properties of luminance,
colour and texture. Fig 2.3 displays examples of these region profile types and the
corresponding edge interface that exists between them. The edge therefore describes
the spatial position in an image where these properties change.
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(a) Step change in intensity (b) Gradual change in intensity

0 100 200 300 400 500

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Step Interface

X−axis Location

P
ix

el
 I

n
te

n
si

ty

(c) Step Edge profile
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(d) Gradual Edge Profile

Figure 2.2: The intensity edge profiles of a step edge and gradual edge interface. The
red line indicates location of pixel values evaluated. Edges formed from abrupt
changes in intensity are easily defined, however when the change is gradual the
position of the edge becomes less clear.
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(a) Intensity (b) RGB Colour

(c) Stochastic texture (d) Regular texture

(e) Edge Location

Figure 2.3: Different types of interfaces, each image contains 2 adjacent regions with
properties defined by a) Intensity, b) Colour, c) Stochastic texture, d) Regular texture,
e) Location of edge
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2.3 Filtering Processes
In isolation, only a single feature describes a pixel, its intensity value at a single
position in space. Operations which do not take into the context the surrounding
pixels are known as point operators and these techniques perform vital tasks such
as thresholding, contrast adjustment, scaling and histogram equalisation (Nixon and
Aguado, 2012). Other filtering processes, such as image sharpening, smoothing and
edge filtering require a different approach that accounts for the spatial relationship of
the pixel intensities. Since edges are a structural feature assessing local changes, a
point operator is unsuitable as the pixel neighbourhood must be evaluated in order to
examine local features.

2.3.1 Edge Filtering Processes
Edge features are obtained using edge detection algorithms, which are a class of al-
gorithms which resolve local changes in image properties. The resultant output of an
edge detection algorithm is known as an edge map, an example of which is shown in
Fig 2.4e. The edge map is a 2-D array which provides information about the position
and magnitude of the edges within the image. The degree of change between region
profiles is typically represented by the magnitude of the edge, this is illustrated in
Fig 2.4. The magnitude of an edge is an important property of the edge feature since
it is common practice to apply post processing techniques or higher level processes to
edge map data, and the magnitude of edges can greatly effect the outcome and success
of these processes.
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(a) Left 10, middle 140, right 180 (b) Edge Strength (c) Edge Thresholded

Figure 2.4: Gradient operators resolve edges by approximating the 2-D intensity
gradient function of an image. The steepness of the gradient relates to the edge
strength, a greater intensity differential will result in an edge with a larger magnitude.
In this example the left edge is resolved with an intensity difference of 130, while the
right edge is resolved with an intensity difference of 40. The result is a relatively
“stronger” edge on the left, and a “weaker” edge on the right. The strength of edges is
important when classification of edge and non edge points is taken into consideration,
here the weaker edges are discarded during a thresholding process

2.4 2-D Neighbourhood Operators for Edge Detection
Neighbourhood operators process pixel values in a local neighbourhood that surrounds
a point in an image. They can be classified according to type of domain, whether
or not they are recursive and the type of neighbourhood (Haralick, 1981). Edges are
a type of spatial feature, they provide information about the structure of an image,
therefore in order to determine whether an edge exists or not, the spatial properties
of surrounding pixels require examination. This can be achieved using a 2-D neigh-
bourhood operator(Nixon and Aguado, 2012). Neighbourhood operators are known
for various filtering capabilities, such as image smoothing, sharpening and edge filtering.

For 2-D neighbourhood operators, neighbourhood windows (masks) typically come in 2
spatial configurations of varying sizes, those with 4 pixel connectivity and those with 8
pixel connectivity. Fig 2.5 and Eq 2.1 identifies each of the spatial configurations for
a 3�3 local neighbourhood window. 4-pixel connectivity selects the 4 adjacent pixels
above, below and to each side of the pixel being evaluated, while 8-pixel connectivity
includes all the surrounding pixels in the 3�3 space.
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(a) 4 Pixel Window (b) 8 Pixel Window

Figure 2.5: Illustration of the two basic types of 2-D neighbourhood operators. Those
with 4-connectivity are formed from pixels adjacent to the central pixel, and those
with 8-connectivity, with both adjacent and orthogonal pixels.

h �

�
�hi�1,j�1 hi,j�1 hi�1,j�1
hi�1,j hi,j hi�1,j

hi�1,j�1 hi,j�1 hi�1,j�1

�
� (2.1)

When processing 2-D images, h is the index locations which define an 8-connectivity
mask.

2.5 2-D Classical Methods
The principal development in edge detection involved the introduction of a first order
derivative operator (Roberts, 1963). First order derivative operators attempt to ap-
proximate the image intensity gradient function. Since an abrupt change in relative
pixel intensity between neighbouring pixels can be thought of as an edge, computing
the image intensity gradient corresponds to resolving edge features in the image. This
process produces a high value output when the rate of change of pixel intensity is high,
and a low value when the rate of change is small (Fig. 2.2).

For the purpose of edge detection, it is typical for a convolution based mathematical
framework to be used in order to approximate the image intensity gradient. Edge
detection using convolution is non-recursive and requires two components, an image
(I), and a filter kernel (h). The filter kernel is a 2-D array of coefficients mapped to
a neighbourhood operator which has been specifically designed to output a high value
when situated on an edge, and a low value when not at an edge location after the kernel
is convolved with an image. The kernel traverses all legal pixel neighbourhood positions
and in each location the resulting value is written back to the centre position of the
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neighbourhood. The overall result is an edge map, which gives information to both the
location and magnitude of edges within an image.

Gpi, jq �
¸
k,l

Ipk, lqhpi� k, j � lq

G � I � h (2.2)

Where Gpi, jq is the edge map, I is the input image signal and h is the edge filter
kernel.

Various digital kernels (also known as a filter mask) have been proposed to approximate
the image intensity gradient function. Computation of gradients involves a non-linear
combination of approximations to the partial derivatives in orthogonal directions (Pre-
witt, 1970). The convolution process determines an output pixel value to be a weighted
sum of input pixel values (Eq. 2.2), this is an arithmetic process, and it requires an
arithmetic non-recursive neighbourhood operator, typically the 8-pixel connectivity
variety is used, however these can be expanded to larger neighbourhood scales and the
first edge operator used only 2�2 kernels (Roberts, 1963) .

2.5.1 Roberts Cross Operator
The first method and one of the simplest implementations of edge detection using a con-
volution framework was the introduction of the Robert’s Cross edge operator (Roberts,
1963). This method uses two 2 � 2 directional filter kernels. Whereby the sum of the
squares of the differences between diagonally adjacent pixels is calculated. To achieve
this the image is convolved with two mirrored kernels which are the smallest possible
difference filters to compute the gradients with a shared centre point (Eq. 2.3).

hx :
�

1 0
0 �1

�
and hy :

�
0 1

�1 0

�
(2.3)

If Gx is an image formed from convolving I with hx, and Gy is an image formed from
convolving I with hy (Fig. 2.6). These can be considered directional edge maps or
vectors which provide information on the direction and magnitude of an image intensity
gradient. The overall edge map Gpi,jq is calculated as the square root of the sum of the
squared vector values (Eq 2.4):
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∇Gpi,jq �
a
Gx �Gy (2.4)

Since direction of the image gradient is perpendicular to the direction of an edge
interface, directional information can be used to assist with a number of post processing
techniques aimed at improving edge classification. It is therefore common for the
direction of the gradient to also be calculated during this operation. The direction of
the gradient is defined in Eq 2.5:

θpx,yq � arctan
�
Gy

Gx



�

3π
4 (2.5)

Due to the small kernel size, the Roberts cross method is highly sensitive to image noise.
This is due to the fact that fluctuations in image intensity are assessed at a scale of
4 pixels (2�2) where small variations in pixel intensity influence the output result by
a greater amount than if the pixels were assessed over a larger spatial region, where
typically image properties are more uniform. Since image noise is often present in real
images, the Roberts operator may be rendered unsuitable for many image processing
tasks.

Since the introduction of the Roberts operator, it is more common for edge detection
methods to use larger neighbourhood masks. Additionally, these operators are typically
of odd integer size, providing a discrete central pixel in the kernel which corresponds
to the neighbourhood in the image being convolved. This fundamentally differs with
Roberts cross operator, since it is of even size (Eq. 2.3), therefore the Roberts result is
an approximation of the gradient between two pixels instead of at a pixel.

2.5.2 Prewitt Operator
The sensitivity of the Roberts Cross operator to noise led to the development of the
Prewitt edge detection filter (Prewitt, 1970). Prewitt found that a more precise estimate
of the gradient is obtained by fitting a quadratic surface over a 3�3 neighbourhood by
least squares, and then computing the gradient for the fitted surface. The filter kernels
of the Prewitt operator are defined in Eq.2.6.

The procedure of the Prewitt edge filter is comparable to the Roberts operator, both
methods employ 2-D convolution with filter kernels which approximate the image
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(a) Test image (b) Gx (c) Gy (d) ∇Ipi,jq

Figure 2.6: Computation of the gradient using the Roberts operator involves the
non-linear combination of the approximations Gx and Gy to the partial derivatives in
orthogonal directions. Gx is the approximated gradient in the x-dimension and Gy is
the approximated gradient in the y-direction, while the output is the combination of
the two, which provides a 2-D gradient map, revealing image edges.

Gx :

�
� 1 0 �1

1 0 �1
1 0 �1

�
� Gy :

�
� 1 1 1

0 0 0
�1 �1 �1

�
� (2.6)

gradient. The Prewitt method differs from the Roberts cross operator in that it uses
two 3x3 kernels (Eq. 2.6), one for approximating the gradient in the x dimension and
one for the y dimension. These kernels are designed to respond maximally to edges
running vertically and horizontally relative to the pixel grid. The image is convolved
with each of the filter kernels and the two filter responses are combined using Eq. 2.4
to form an edge map.

With 9 positions per filter kernel instead of 4, it is less sensitive to image noise when
compared with the Roberts Cross operator. However, as a consequence this results
in detected edges with greater variation in edge magnitude (Fig 2.4). The relative
strengths of edges is an important consideration. There is typically a trade off in the
performance of edge filters regarding sensitivity. The greater the sensitivity, the greater
the ability of the filter to resolve weaker boundaries. However, typically there will be
a higher propensity to produce spurious or unwanted edge points, often characterised
as “noise”. In images where weaker boundaries are sought after, a more sensitive
filter is required, if strong edges and spurious edge points are also present, it is a non
trivial process to isolate the weaker edge information. Typical post processing edge
classification techniques such as thresholding may deem weaker edges as unimportant,
thus classify them as ‘non-edge’ points. However, weaker edges can be indicative of
some underlying structure or detail that could be of importance, so should not always
be discarded without consideration.
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(a) Test image (b) Gx (c) Gy (d) Output

Figure 2.7: Computation of the gradient using Prewitt algorithm. Gx is the
approximated gradient in the x-dimension and Gy is the approximated gradient in the
y-direction, while the output is the combination of the two, which provides a 2-D
gradient map revealing image edges.

(a) Test image (b) Gx (c) Gy (d) Output

Figure 2.8: Computation of the gradient using Sobel-Feldman algorithm. Gx is the
approximated gradient in the x-dimension and Gy is the approximated gradient in the
y-direction, while the output is the combination of the two, which provides a 2-D
gradient map revealing image edges.

2.5.3 Sobel-Feldman and Scharr Operators
The Sobel-Feldman operator (Sobel and Feldman, 1968) was developed with the in-
tention of creating an efficient computable gradient estimate which would be more
isotropic than the then popular "Roberts Cross" operator. More commonly known as
a Sobel filter it was the most popular edge detection operator until the development
of edge detection techniques with a theoretical basis, proving popular because overall
it achieved better performance than other contemporaneous edge detection operators,
such as the Prewitt operator, making it the preferential choice (Nixon and Aguado,
2012). The advantages are it offers a similar level of noise suppression as the Pre-
witt operator, but the added emphasis to the central row and columns provides more
strongly defined edges. Again, this operator utilises isotropic 3�3 filter kernels (Eq. 2.7).
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Gx :

�
���

1 0 �1
2 0 �2
1 0 �1

�
��� Gy :

�
���

1 2 1
0 0 0

�1 �2 �1

�
��� (2.7)

For the previously defined operators the approximation of the image gradient remains
crude and inaccurate (Jähne et al., 1999). However due to their simplicity and speed,
they remain prevalent in the field of image processing. There have been many attempts
to improve upon the Sobel filter using a number of refinements. Scharr (2000) realised
that the pure central difference operator from Sobel does not have perfect rotational
symmetry, by optimising the kernels Scharr was able to minimise the weighted mean
squared angular error. The result are filter kernels with even more emphasis to the
central row and column, and an operator that more accurately resembles a first order
derivative by 3 orders of magnitude (Eq. 2.8), providing edges of greater strength and
noise rejection.

(a) Test image (b) Gx (c) Gy (d) Output

Figure 2.9: Computation of the gradient using Scharr algorithm. Gx is the
approximated gradient in the x-dimension and Gy is the approximated gradient in the
y-direction, while the output is the combination of the two, which provides a 2-D
gradient map revealing image edges.

Gx :

�
���

3 0 �3
10 0 �10
3 0 �3

�
��� Gy :

�
���

3 10 3
0 0 0

�3 �10� �3

�
��� (2.8)
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(a) Noisy Interface (b) Sobel filter response
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(c) Edge profile

Figure 2.10: Gradient method limitations, here it can be seen that the abrupt changes
in intensities across the image space results in erroneous responses in addition to the
central edge, which are not considered the edges of interest for this interface type.

2.5.4 Limitations
There exists a number of issues with first order derivative methods. Namely the effect
of non-homogeneous regions within an image such as noise (Fig 2.10). Noise in an
image resembles abrupt changes in pixel intensity, since gradient operators resolve
edges using this principle, image noise results in spurious results in the edge map (Bovik
and Munson, 1985; Bovik, 1987). If the steepness of the gradient of resolved edge is
greater than the gradient of noise resolved in the image, the spurious points can be
eliminated using a thresholding technique. However, if the noise response is equivalent
in magnitude to that of the edges, removing the spurious responses and retaining the
edge is a non-trivial task, since the simple thresholding technique is no longer suitable
under these conditions.
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(a) Test Image (b) Ground Truth

(c) Roberts (d) Prewitt (e) Sobel (f) Scharr

Figure 2.11: Presented here are some of the typical shortcomings of the
aforementioned gradient based edge detection techniques. The results indicate a
number of missed edge points, signified by discontinuities in the edges which should be
continuous in this example, and the production of spurious responses, which occurred
due to the high intensity variance properties in regions of the image.

Fig. 2.11 shows the responses of the gradient operators discussed thus far. Here the
filters are presented with a test image which exposes the limitations that affect the
performance of the edge detection filters. The image is a 2-D composition of several
regions with distinct mean and standard deviation properties.

Fig 2.11 illustrates several missed or unconnected edge interfaces in the various filter
responses. The high variance nature of some of the regions also simulates an image with
noise leading to spurious responses in the edge map. The fact that there are several
interfaces of varying edge strengths reveals another limitation of gradient operators.
Since the output is an overall measurement of edge strength and not a relative one,
this manifests itself as an embedded bias of the operator to emphasise interfaces such
that a step change profile takes precedence. While this is sufficient for a number of
tasks, when more poorly defined edges need to be detected, they are often lost during
post processing such as thresholding methods, which classify edge maps into edge and
non edge points. A visual inspection of these results show missing boundaries for all
operators in addition to unconnected edge interfaces, notably from the Roberts operator
as well as further spurious edge points (Fig. 2.11).
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2.5.5 Canny Edge Detector
The Canny edge detector (Canny, 1986) is the perhaps the most rigorously defined
operator and is the most widely used (Ding and Goshtasby, 2001). While incremental
improvements were made by the likes of Prewitt, Sobel-Feldman and Scharr, derivative
based operators generally do not perform well on images where noise is present (Suzuki
et al., 2003), this problem is also presented in Fig 2.10. Key improvements in edge
detection were achieved when Canny (1986) introduced an analytically optimal edge
detector. Canny defined three criteria which an optimal edge detector must satisfy and
these criteria were used to develop a total error cost function, Canny applied variational
calculus to the cost function to determine the optimal linear operator for convolution
with the image. The optimal solution was shown to be a very close approximation
of the first derivative of a Gaussian. The method also introduces additional stages of
processing to the edge detection process. First a pre-processing Gaussian smoothing
stage is applied, followed by the edge gradient filtering stage. Non-maximum suppression
in a direction perpendicular to the edge direction is then applied, the effect of this is
to produce an edge of single pixel thickness. Finally a two level hysteresis thresholding
stage is applied to remove weaker edges. Since its introduction, Canny’s (1986) edge
detection method has been extensively utilised. The precise criterion which Canny
(1986) laid out for optimal edge detection are as follows:

1. Detection of the edge point.

2. Accurate positioning of the edge point

3. No duplicate or spurious edge points.

2.5.5.1 First criterion
Detection of edge points: The amplitude signal to noise ratio (SNR) of the edge gradient
has to be maximised in order to obtain a low probability of missed edge points, while
simultaneously achieving a low probability of incorrectly marked edge points. These
probabilities are monotonically decreasing functions of the output signal to noise ratio,
thus maximising the SNR achieves this. This criterion is characterised by the sensitivity
of the filter. Increased sensitivity allows for improved detection, however, it increases
the propensity of falsely detected edge points, or spurious responses.

2.5.5.2 Second criterion
Accurate positioning of edge points: The edge points should be as true to the centre
of the edge interface as possible. Edges should be the local maxima of the gradient
function of an edge. To achieve this, the Canny method of edge detection applies extra
stages pre and post the edge filtering stage. Firstly a Gaussian convolution filter is used
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to smooth the image(Eq. 2.9), removing unwanted noise. The standard deviation of
the filter can be manipulated to remove more noise, at the expense of image detail, or
contrarily remove less noise to spare image detail. Following the smoothing stage, an
approximation of gradient of the intensity function is computed. This can be any 2-D
gradient filter, such as the Sobel, Prewitt or Scharr Filters. Thirdly an edge thinning
stage known as non maximum suppression is applied. This technique suppresses all
gradient values to zero with the exception of the local maxima, which corresponds to
the position with the most abrupt change in intensity. The result is an edge map image
consisting of edges interfaces of single pixel thickness.

Gpx, yq �
1

2πσ2 � e�
x2�y2

2σ2 (2.9)

Where x is the distance from the origin in the horizontal axis, y is the distance from
the origin in the vertical axis, and σ is the standard deviation of the Gaussian
distribution.

2.5.5.3 Third criterion
Canny’s third criteria states that an optimal detector does not produce duplicate edges
and spurious responses. Gaussian smoothing assists in this by removing the higher
frequency information likely to produce a spurious response or duplicated edge. The
final stage of the Canny edge operator uses thresholding with hysteresis to classify
edge and non edge points. Spurious edge points, tend to be unconnected, hysteresis
thresholding prioritises connected edge points while removing weaker unconnected edge
points.

Classifying an edge point when an abrupt change in luminosity occurs is straightforward,
however with a more gradual shift in luminosity, the position of the interface between
the light and dark regions is not as easily defined (Fig. 2.2b). By increasing the standard
deviation and kernel size of the smoothing filter prior to computing the gradient, one
can resolve edges that occur over a larger scale. This scale parameter also has the
advantage of suppressing image noise and unwanted texture, however as can be seen in
Fig. 2.12, this leads to other details which may be of importance being suppressed.

Due to the mathematical rigour in defining an optimal edge detection technique, the
Canny method is widely adopted and is highly represented in the literature for a range
of different applications (Ali and Clausi, 2001; Liu and Jezek, 2004; Chang et al., 2008;
Punarselvam and Suresh, 2011; Ramya and Babu, 2015; Kaur and Kaur, 2016; Nikolic
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(a) original (b) σ0.5 (c) σ1 (d) σ1.5 (e) σ2

Figure 2.12: Gaussian smoothing is the first stage of the Canny edge detection process,
the standard deviation(σ) of the Gaussian filter determines the amount of smoothing,
by increasing σ the amount of noise in the output can be reduced, however as a
consequence finer image details are also lost in the edge map.

et al., 2016; Selvakumar and Ganesh, 2017; Tahmid and Hossain, 2017) and at the time
of writing has 493 patent citations, making it the ideal reference technique for which
all novel edge detection approaches should be evaluated against.

2.5.6 Limitations
While the Canny edge detection method offered strong improvements over the previous
derivative based methods, there remains some limitations. Image noise and texture
still negatively affects the performance of the Canny method (Wang Xiao and Xue Hui,
2010; Rong et al., 2014). This was also shown by Williams et al. (2014), here non linear
methods of edge detection, such as statistical edge detection offered improvements over
the Canny method on images containing region profiles with a high variance component,
and on real histological images where image texture determines edge location.

The preprocessing Gaussian smoothing stage of the technique can remove small edge
details, this effect is proportional to the standard deviation of the Gaussian kernel. In
addition, applying a smoothing filter changes the location of an edge, thus can lead to
excessive localisation error. When images contain noise, or non uniform regions, a higher
degree of Gaussian filtering is typically required, compounding the issue (Smith and
Brady, 1995). The result of Canny Edge detection is binary, however processes which
utilise the results of edge detection such as segmentation, the magnitude of the edge is
often an important component used in the process (Sharma and Aggarwal, 2010), but
this component does not exist in a binary result. The method introduces parameters
such as the Gaussian kernel size, and two hysteresis thresholding levels which need to be
defined, this increases the degrees of freedom, and therefore the method requires either
human input or additional processes for parameter selection to produce an optimal
result. Due to the Gaussian smoothing stage blurring the image, the method often
fails to accurate resolve corners and junctions, leaving open ended edges and missing
junctions (Smith and Brady, 1995).
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2.5.7 Oriented Filters for Edge Detection
Edge detection methods are not limited to derivative based operators. Kirsch (1971)
developed a non linear edge detection method for the determination of constituent
structures in biomedical images. The Kirsch Compass operator finds the maximum
edge strength in a select few predetermined directions, at 45� intervals (N, NE, E, SE,
S, SW, W, NW), the magnitude of the edge is calculated as the maximum magnitude
difference across the different directions. While the edge direction is the ‘compass’ direc-
tion of the kernel which produced the greatest magnitude. This method was simplified
by Robinson (1977) for improved efficiency, by using symmetrical filter kernels, the
operation halves the number of directions required to determine the edge, since the
opposite filters produce the same magnitude result but in the reverse direction. One
of the issues with these methods is the poor connectivity of edges, Nevatia and Babu
(1980) later adopted an oriented filtered approach similar to the compass methods of
Kirsch (Kirsch, 1971) and Robinson (Robinson, 1977) proposing improvements. The
Nevatia-Babu (Nevatia and Babu, 1980) operator functions by convolving a given im-
age with masks corresponding to ideal step edges in a selected number of directions.
However, here the number of unique filter orientations was increased from 4 to 6. Again
the maximum magnitude output determines the edge strength and direction. However,
for further improvement over the previous compass methods, the resulting output is
thinned by identifying the local maxima, followed by a process of edge linking to form
boundary segments using the edge positions and their orientations. Each boundary
segment is approximated by a series of piecewise linear segments.

Developed by Freeman and Adelson (1991), Steerable filters further improved upon
existing oriented filter methods by presenting an efficient architecture to synthesise
filters of arbitrary orientations instead of a fixed number of predefined angles. This
allows for a filter to be adaptively ‘steered’ to any orientation, achieving superior per-
formance with more precise detection. The improvements achieved using this procedure
are particularly noticeable in response to line features, where edge detection methods
usually produce 2 parallel extrema displaced either side of the line in the output, as a
opposed to just one for the line in the correct position, the Steerable method addresses
this by being able to adaptively resolve edges and lines simultaneously in the same
image, essentially reducing the presence of duplicated edges.

Steerable filters are a combination of derivatives of Gaussian filters, this permits the
rapid computation of even and odd (symmetric and anti-symmetric) edge-like and
corner-like features at all possible orientations. As a result one of the advantages
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of steerable filters are that they are particularly good at accurately resolving curved
interfaces.

(a) Test image (b) 0/360� (c) 45� (d) 90� (e) 135�

(f) 180� (g) 225� (h) 270� (i) 315� (j) 2-D steerable
response

Figure 2.13: Computation of 2-D steerable edge filter. With response of the input to
rotated versions of the filter at different angles

Jacob and Unser (2004) further optimised steerable filters for edge detection, the up-
dated design of the filters were based on “Canny-like criteria” which give an optimal
response to edges, further suppressing noise and image texture. Jacob and Unser (2004)
was able to demonstrate a higher Signal-to-noise ratio than the optimal Canny edge
detector algorithm.

The filters are a 1st derivative of a Gaussian function and are rotated through different
intervals, an example of the basis filters for edge detection in a steerable filter design are
shown in Fig. 2.14. Work by Aguet et al. (2005) introduced the concept of optimising
3-D filters to respond to particular features within 3-D image sets building on the
2-D work of Jacob and Unser (2004), allowing steerable filters to be used for surface
detection in 3-D modalities.
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(a) 0/360� (b) 45� (c) 90� (d) 135�

(e) 180� (f) 225� (g) 270� (h) 315�

Figure 2.14: Steerable filters use oriented filters which are a 1st derivative of a
Gaussian function and are rotated through different intervals, for example 8 different
angles.

2.6 Statistical Approaches
Traditional methods commonly apply a first derivative computation of the image edge
to locally assess changes in the intensity profiles of neighbouring pixels such as the afore-
mentioned Roberts, Prewitt, Sobel, Scharr and Canny edge detection techniques. Since
it is the intensity function being calculated by these methods, other region properties are
not readily resolved using this approach, such as Texture. When textured interfaces are
present in an image, an alternative approach which considers the statistical distribution
of the data is better suited.

2.6.1 Texture Interfaces
Texture is one of the most prominent image attributes in image analysis (Jähne, 1997).
Broadly speaking, texture is a local image characteristic that changes according to the
scale at which it is observed, these texture regions can be characterised by a specific
intensity distribution of pixel values, or a specific spatial positioning of correlated pixels
(Fig 2.15a).

Formally defining texture is not straightforward, this is signified by the large number
of differing definitions contained within the literature, such as those which have been
catalogued by Coggins (1983). Haralick (1979) proposed a structural description of
texture, such that texture can be considered an “organised area phenomenon" that
can be broken down further into ‘primitives’ with specific spatial distributions. While
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(a) Stochastic texture interface (b) Filter response to stochastic

Figure 2.15: Traditional operators detect edges by measuring abrupt changes in
intensity profiles. Spatial statistics over a wide area, such as texture and variance
properties are not considered. This can result in edge maps with erroneous points.

Cross and Jain (1983) offered a stochastic approach, describing texture as a “stochastic,
possibly periodic, 2-D image field". However, one definition of texture proposed by
Petrou and García Sevilla (2006b) considered texture to be “The variation of data at
scales smaller than the scale of interest". This definition is particularly useful in an
edge detection context since the interfaces where the texture changes from one profile
to another is the target for an edge detection algorithm, and not the details smaller
than the scale of interest.

One approach to dealing with texture using traditional edge detection methods is to
first apply a low pass filter such as an averaging or Gaussian filter, these remove the
subtle changes in pixel intensity observed in a texture, however the act of applying
filters can shift boundaries and therefore can reduce accuracy in the determining the
position of an interface (Williams, 2008).

Real image data typically consists of regions with different texture profiles, images that
contain more than one type of texture are known as non-stationary texture images,
typically medical image datasets fall into this category (Petrou and García Sevilla,
2006c). Fig. 2.15 illustrates the typical responses to texture obtained when using an
intensity gradient based technique. The result can often be edge maps with erroneous
points, unconnected edges, and missed interfaces. (Khotanzad and Chen, 1989; Reyes-
Aldasoro and Bhalerao, 2006; Petrou and García Sevilla, 2006a; Mirmehdi et al., 2008).

2.6.2 2-D Statistical Edge Detection
Statistical edge detection applies a different approach, instead of approximating the in-
tensity function, statistical edge detection resolves interfaces between regions separated
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by various statistical properties, it is therefore not limited to resolving only changes in
intensity profiles, it can also resolve edges corresponding to changes in texture. This
is useful, since commonly in real image data texture is often the main differentiator of
image regions such as in CT (Liu et al., 2013), histology (Todman and Claridge, 1997),
and MRI (Clarke and Velthuizen, 1995; Bomans et al., 1990). Where this is the case
traditional gradient methods for edge detection can fail, resulting in missed edges and
spurious responses. Objective performance of gradient and statistical techniques have
illustrated how the statistical methods have an improved performance in images which
exhibit noise, notably in the work of Kundu and Mitra (1987), Hou and Wei (2002),
and Williams et al. (2014).

Statistical based analysis techniques similar to those surveyed by Williams et al. (2014),
can be effectively used for edge detection, particularly when applied to images corrupted
with noise. de Souza (1983) first described the comprehensive analysis of five statistical
parametric and non-parametric tests for the detection of edges, particularly those of
rib structures in x-ray imagery. Comparisons were presented using the parametric
students t test, fisher test, likelihood ratio test, the tau (τ) test and also the non-
parametric chi square (χ2) test. Although this work was limited to a single dimension
of the x-ray image data (1-D), the tests and methods are easily extended into 2-D and
3-D configurations. Further work reconfirmed the approach of using non-parametric
statistical tests for edges as appropriate, notably in 2-D images from Bovik and Mun-
son (1985). Bovik and Munson (1985) presented the successful use of non-parametric
ranking based statistical edge detectors using the Wilcoxon median rank tests and also
a novel implementation of the parametric difference of boxes (DoB) test for detecting
boundaries in speckle images. Subsequent work by Bovik et al. (1986) enhanced this
two sample statistical edge detection technique, presenting the ratio of averages (RoA)
detector to suppress image sensor based speckle noise.

Similar analysis of non-parametric statistical tests is further described by Beauchemin
et al. (1998), namely the Wilcoxon Mann-Whitney test (u-test), which was found to
be effective in negating the low signal to noise ratio of synthetic aperture radar (SAR)
images. Beauchemin’s work showed a robust response from the u-test, illustrating
the advantages of using ranking statistics owing to their reliability in the presence of
extreme observations (Beauchemin et al., 1998). However, the author did note that
the use of statistical rank based tests for edge detection will show a loss in the output
efficiency, because only the rank of the pixel distributions are used. Further applications
in 2-D edge detection using region statistics is given in the work of Guest (1994), this
work presents both the Student’s T -test and the Fisher test for edge detection in 2-D
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(a) 0�{180� (b) 22.5�{202.5� (c) 45�{225� (d) 67.5�{247.5�

(e) 90�{270� (f) 112.5�{292.5� (g) 135�{315� (h) 157.5�{337.5�

Figure 2.16: Example of a 2-D dual region mask applied to the grid structure of an
image in the different orientations. Region A is defined by the red pixels and region B
is defined by the blue pixels. The shaded grey pixels constitute the dividing line of the
mask

histological models. Fesharaki and Hellestrand (1994) used a similar technique, here
implementing the Student’s t- test only, to successfully detect edges in both noise-free
and noise-corrupted images.

A comprehensive analysis by Williams et al. (2014) on the performance of edge detection
methods in 2-D data, revealed that statistical oriented mask based methods for edge
detection consistently outperform traditional gradient detection, namely where excessive
texture is evident in the image or when the intensity profile of an edge is weaker, proving
to be an optimal form of edge detection under both general and specific conditions
(Williams et al., 2014). The method described by Williams (2008) and Williams et
al. (2014) employs an oriented 2-D dual region statistical filter similar to the compass
methods of Kirsch (1971) and of Nevatia and Babu (1980), however while those methods
use convolution to resolve edges based upon determining the maximum intensity gradient
in predetermined directions, statistical filters do not use convolution. Instead statistical
filters use a neighbourhood window which is divided into two distinct opposing regions
and applied in different orientations. Fig. 2.16 illustrates the various mask configurations
for dividing a 2-D neighbourhood.

Pixel values from each region are collected to form samples to be evaluated by a two-
sample statistical comparison test in order to apply some measure of dissimilarity
between samples. The orientation of the mask which produces the largest statistical
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(a) Test Image (b) χ2 test (c) Difference of
Boxes

(d) Fisher test (e) Kolmogorov-
Smirnov test

(f) Canny (g) Likelihood
test

(h) RRO (i) Student’s
t-test

(j) u-test

Figure 2.17: Comparison of 2-D statistical edge detection methods with the Canny
edge detection algorithm. The Canny result reveals a number of missed edges in
comparison to the non parametric statistical methods.

difference formulates the output measurement. The choice of statistical comparison test
allows for the detection of edge features in addition to the intensity gradient, including
higher order statistics which compare the sample distributions, such as variance and
spatial properties such as texture. This provides greater flexibility to resolve different
kinds of edge features (Williams et al., 2014).

The outputs of various parametric and non-parametric 2-D statistical tests can be
seen in Fig. 2.17, when visually inspected against the gradient methods presented in
Fig. 2.11 improvements from some statistical methods are observed, notably greater
noise suppression and fewer missed edge points.

2.7 3-D Digital Images
While 2-D images are the most common type of digital image, the prevalence of 3-D
imaging modalities in the medical field is increasing as 3-D imaging technologies become
more accessible. These include modalities such as Computed axial tomography (CAT),
Single-photon emission computed tomography (SPECT) and Magnetic resonance ima-
ging (MRI), all of which produce volumetric data with 3 spatial dimensions. MRI offers
the ability to provide further image modalities which reveal different structural prop-
erties through manipulation of the pulse sequencing, the two most common modalities
are T1-weighted and T2-weighted images. Additionally, a contrast agent is frequently
utilised to visually improve the images by enhancing vascular and tissue phases. This
makes MRI a very important tool for diagnosis and treatment planning for various
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(a) 3-D Visualisation

(b) 3-D image Structure

Figure 2.18: 3-D Images can be displayed on a 2-D screen using software packages
which apply, techniques such as pixel shading to render a 3-D image. The data that
forms 3-D images resembles a lattice structure and is illustrated here.

tumour pathologies, and one of the most sought after imaging tools in medicine and is
explored in further detail in Chapter 6.

While image displays are typically flat 2-D screens, 3-D visualisation software uses
various algorithmic techniques such a light shading, alpha transparency maps and
manipulation tools to allow for 3-D images to be visualised on a 2-D display and
therefore utilised (Fig 2.18a).

Theoretically, while there is no strict constraint to the number of possible dimensions
that can be used for a digital image, the trade off between utility and practicality offered
by more dimensions typically limits the number of dimensions to 3.

There are subtle differences between 2-D images and 3-D images. Instead of pixels
positioned in a grid structure. Volumetric picture elements (Voxels) are positioned in a
lattice structure that preserves the spatial relationship of the acquired measurements
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or values (Fig 2.18b). Voxels are defined as triples of Cartesian coordinates (x, y, z) in
a three-dimensional lattice structure (Morgenthaler and Rosenfeld, 1981). Similar to
photons collected by a camera sensor to form a spatially representative 2-D digital image,
voxel measurements can be acquired through a number of 3-D scanning techniques
to form spatially representative 3-D images. However, not all scanning techniques
provide isometric resolution in their lattice structure. Visualisation software usually
compensates for this by making adjustments to the display parameters. However, for
image processing applications that utilise spatial information, such as surface detection
algorithms, the anisotropic resolution is often overlooked resulting in unreliable detection
results (Brejl and Sonka, 2000).

2.8 Surface Filtering (Surface Detection)
A surface is a local spatial gradient in a sensory continuum, such as luminance, colour
and texture in a three dimensional space. Surfaces define the interface between volumet-
ric regions in 3-D image data, such as MRI, PET and SPECT. Like edges, surfaces also
have a magnitude which describes the degree of change between regions. If ‘Edges’ are
always a line or curve of single pixel width and can be of arbitrary length, a surface in
image data can therefore be defined as a curved plane of single voxel thickness passing
through a 3-D image which partitions two or more regions of voxels based on certain
classification criteria (Liu, 1977; Zucker and Hummel, 1981). Surfaces are detected
using surface detection algorithms, which are analogous to edge detection techniques,
however they operate in a 3-D space and resolve local changes in properties in all three
spatial dimensions. The result of surface detection is a surface map, which is a 3-D
array describing the position and magnitude of detected surfaces contained within the
image, and similar to edge detection further stages can be applied to classify surface
points and non-surface points.

A common approach to detecting surface features is to treat the 3-D data as if it were
a stack of 2-D image layers (Fig. 2.18b), processing each layer sequentially independent
from the last with a 2-D edge detection algorithm, such as in the work of Kennedy et al.
(1989), Tang et al. (2000), Braude (2005), Prakoonwit and Benjamin (2007), Lyra (2012),
Prakoonwit and Benjamin (2012) and Simmons et al. (2013). However, this approach
introduces some issues. The fundamental drawback of using a stacked 2-D approach,
is that this does not exploit the information available in 3-D data sets to the extent
‘true’ 3-D processes are able to, due to the fact information across layers (along the
z-dimension) is ignored. This can create circumstances where surfaces contained within
an image are not located, often leading to unconnected surfaces. Fig.2.19 highlights
this issue.
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(a) 3-D interface (b) Common 3-D Approach (c) True 3-D Approach

Figure 2.19: Difference between the common approach of applying edge detection
independently to each layer with that of a true 3-D approach. The former only
resolves edges which exist in the plane of application, surfaces from higher planes are
missed. This error is illustrated here with missing the top and bottom surfaces from
the layered approach.

Processing the data in this configuration ignores the spatial relationship between values
across image layers, thus by definition excludes interfaces between regions across image
layers. For some tasks this may be adequate, however spatial information across the im-
age layer can contain important structural information in MRI and and CT scans which
could otherwise be missed. Bomans et al. (1990) showed how a 3-D implementation
of the Marr-Hildreth edge operator can be used to resolve closed 3-D surface contours
overcoming the incomplete surface issues which arise from using 2-D operators on 3-D
data. While Monga et al. (1991) were investigating 3-D methods of recursive filters for
edge detection on magnetic resonance images, 3 key observations were made when com-
paring a dedicated 3-D operator with a 2-D operator applied to image layers separately.
Firstly the 3-D methods offered better immunity to noise when directly compared to a
2-D implementation of their recursive filters. Secondly, they noted that 3-D methods
offered a better estimation of the gradient magnitude. Thirdly; computation of the
3-D edge gradient (A surface gradient) is achievable. These three factors combined to
achieve better performance in 3-D.

The improved immunity to noise aspect from 3-D detection over 2-D was further
exploited by Wang et al. (2009) which showed 3-D surface methods improve over 2-D
methods by reducing the trade off which exists between the resolving power and the
noise reduction aspects of the edge operator. It has been shown that a greater number
of points in a neighbourhood can achieve greater noise suppression, but this comes at a
cost of localisation accuracy (Papari and Petkov, 2011). For 2-D neighbourhoods, the
number of pixels processed is proportional to the square of size of the neighbourhood
mask, while for 3-D neighbourhoods, the number of voxels processed is proportional
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(a) 6 Voxel Window (b) 18 Voxel Window (c) 26 Voxel Window

Figure 2.20: 3-D neighbourhood operator mask typically occur in 3 different formats.
26-connectivity is the most common surface operators, and in this configuration all
neighbouring voxels are included in the mask.

to the size of the neighbourhood mask cubed. This results in more sample values
processed in 3-D neighbourhoods of the same unit size as 2-D neighbourhoods. Thus,
reducing the cost of the trade-off by offering improved noise suppression at greater
accuracy. Results from Wang et al. (2009) show 3-D surface operators are superior to
2-D operators in terms of noise suppression and accuracy of surfaces. Therefore when
3-D data is available, a true 3-D approach which utilises a 3-D local neighbourhood
should be used.

2.8.1 3-D Neighbourhood Operators for Surface Detection
3-D neighbourhood windows come in 3 spatial configurations of varying sizes, those
with 6 voxel connectivity, 18 voxel connectivity and those with 26 voxel connectivity,
these configurations are illustrated in Fig 2.20). By applying a 3-D neighbourhood
operator, 3-D spatial properties of an image can be processed, allowing for a rich set of
features to be extracted, whereby uniform areas of grey levels, regions of texture and
surfaces can be distinguished.

As previously described, neighbourhood operators allow for filtering processes such as
smoothing and feature extraction. For surface detection, the process is in principle the
same as edge detection is for 2-D. The most common approaches to surface detection
therefore have been adaptations of optimal 2-D edge detection methods into 3-D formats.
Generally for surface detection the 26 pixel connectivity variety is used, for which the
voxel index locations are presented in Eq. 2.4.
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When processing 3-D images, h is the index locations which define an 26-connectivity
mask

2.9 3-D Classical Approaches
As with edges, surfaces are often interfaces between regions of high and low intensity.
Liu (1977) was the first to exploit this commonality by extending the Roberts operator
to work in resolving surfaces in three dimensions. Liu’s work defined the surface to
be the location of the gradient magnitude in multiple dimensions. In continuation
of this work, Zucker and Hummel (1981) generalised a 2-D Hueckel operator for 3-D,
offering improvements over Liu’s generalised Roberts operator in areas of image noise
and texture. In this process they consider a 3-D ‘edge’ (surface) as a plane passing
through the centre of a unit volume, approximating the optimal operator with three
basis functions:

ψ1px, y, zq �
xa

x2 � y2 � z2
(2.11)

ψ2px, y, zq �
ya

x2 � y2 � z2
(2.12)

ψ3px, y, zq �
za

x2 � y2 � z2
(2.13)

ψ1,ψ2 and ψ3 are the basis functions which correspond to the 3 Dimensions X,Y and Z
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3-D Zucker-Hummel 3�3�3 Filter kernel

Further to this work, Morgenthaler and Rosenfeld (1981) developed a multidimensional
edge detection operator through a process of “hypersurface” fitting. Leading to the
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development of a generalised Prewitt detector for three dimensional data sets. Although
the surfaces resolved using this manner were characteristically more ‘blurred’ than the
2-D counterpart, successful detection of the surfaces provided justification for using
generalized Prewitt operators to detect (hyper) surfaces of discontinuity in 3-D volumes,
and further justifying 3-D neighbourhood operator design for surface detection. The
3-D Prewitt filter is presented in Eq. 2.15.
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2 (2.15)

Later, Bhattacharya and Wild (1996) generalised the 2-D Sobel operator for use with
3-D modalities, Bhattecharya and Wild noted the versatility of a straightforward, 3-
D operator for producing 3-D greyscale surface maps. Using volumetric datasets of
biological data, they showed that the surface detection results were satisfactory, provid-
ing results comparable to the 2-D Sobel operator. A Generalised 3-D Sobel filter is
presented in Eq. 2.16,

2.9.1 Limitations
Since 3-D gradient operators function using the same fundamental process as 2-D edge
detection methods, the effect of non-homogeneous regions such as noise (Fig 2.10), still
produces erroneous surface points. This is because both 2-D and 3-D methods alike
interpret noise as local abrupt changes in image intensity and as such are consequently
interpreted as surface points by the 3-D gradient methods. However 3-D techniques
do offer some advantages in aspects of resolving power and noise suppression when
compared to 2-D gradient methods of edge detection (Monga and Deriche, 1989).
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Generalised 3-D Sobel 3�3�3 Filter kernel

Additionally the performance of gradient methods in texture rich, or noisy environments
continues to be an issue, even with the added noise suppression and resolving power
that arises from 3-D operators. Fig. 2.21 illustrate ’over-detection’ artefacts and missed
surfaces from the outputs of 3-D gradient based surface detection methods.

2.9.2 3-D Canny Method
The Canny edge detector, which is widely regarded as being the optimal 2-D edge
detection filter has also been adapted for multiple-dimensional data sets. Notably in
the work of Monga et al. (1991) the use of a kernel operator which corresponds the first
derivative of a 3-D Gaussian filter was proposed (2.17).

Gxpx, y, zq �
�x

σ2 � e
�px2�y2�z2q

2σ2 (2.17)

Gypx, y, zq �
�y

σ2 � e
�px2�y2�z2q

2σ2 (2.18)

Gzpx, y, zq �
�z

σ2 � e
�px2�y2�z2q

2σ2 (2.19)

Gx,Gy and Gz define the masks which correspond to the 3 Dimensions X,Y and Z,
while σ refers to the standard deviation of the Gaussian distribution

Monga et al. (1991) concentrated on the application of recursive filtering for multi-
dimensional edge detection and exposed the advantages that multi dimensional operators
have over the more traditional two dimensional approaches when used with 3-D image
volumes. The key benefits being improved noise immunity, improved estimation of the
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(a) 3-D Test Volume (b) 3-D Test Volume reference

(c) 3-D Prewitt Filter (d) 3-D Sobel filter

Figure 2.21: Example of intensity gradient based 3-D Prewitt and Sobel sobel methods
on complex data. High intensity variance and different region profiles cause traditional
methods to produce poor results, with missed surfaces and noisy responses.

edge (or gradient) magnitude and the computation of the accurate 3-D gradient, which
itself improves the noise immunity by allowing smoothing in the x, y and z directions.

However, there is a compromise between noise immunity and edge location accuracy
regarding the size of the convolution kernel applied. This effect is illustrated in Fig 2.22,
as the size is increased there is greater noise reduction, but some surface detail is lost,
and the position of the surface becomes less accurate. However the trade off in 3-D
has been shown to be not as costly as in 2-D (Monga et al., 1991). More recently
Bähnisch et al. (2009) further improved the adapted 3-D Canny method, omitting
the traditional non-maximum suppression and hysteresis stages and replacing it with
3-D morphological operations for surface thinning and segmentation achieving better
computational efficiency.

2.9.2.1 Limitations
Image noise and texture still negatively affects the performance of the 3-D Canny
method this can be seen in Fig 2.22c, here the regions with a strong variance component
producing noise. Where regions are separated by texture differences, the surfaces are
missed. In addition, the preprocessing Gaussian smoothing stage of the technique can
remove small surface details, this affects performance on surface corner and junction
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(a) 3-D Test Volume (b) 3-D Test Volume reference (c) σ1

(d) σ2 (e) σ3 (f) σ4

Figure 2.22: 3-D Canny Edge detection with different standard deviations of Gaussian
smoothing. Increased σ increases the suppression of noise and therefore improves
signal to noise ratio, however this is at the cost of detection accuracy.

regions. When compared to other 3-D gradient methods there is more variability
with parameter selection, increasing the degrees of freedom, which can make optimal
detection more complex of a task. Typically, prior knowledge of image content is
required for the user specified parameters in order to optimise performance.

2.9.3 3-D Statistical Approaches
Liu and Chen (2006) notes that medical imagery is inherently noisy and often in error,
which is why edge detection based on texture characteristics can be comparatively
effective on medical imagery when compared with intensity gradient based techniques
(Thangam et al., 2009). Interfaces governed by differences in texture are not limited to
images constrained to two dimensions, Maani et al. (2014) observed that 3-D texture
features are also a useful tool to define region boundaries in 3-D modalities such as
MRI. However, for 3-D data, the specific case of surface detection using statistical
measures has previously not been extensively explored. While the use of 3-D statistical
filters in the literature is sparse, a notable exception is the work of Petrou et al. (2006),
here spherical dual region statistical filters were utilised to resolve non-linear ‘invisible’
surfaces in MRI data. The statistical measures applied were limited to basic parametric
statistics, assessing only differences in mean, variance and skewness. However it was
shown that these invisible surfaces exist due to the differences in the skewness of the
distributions of the different regions, and a 3-D dual region statistical filter can be
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applied to resolve these boundaries. The authors recommended further work in this
area, however there remains a lack of further work relating to 3-D statistical filters
available in the literature.

Since 3-D techniques function using the same mathematical principles as their 2-D coun-
terparts, they also share similar performance characteristics. This appears to be the
case for gradient methods, Canny method, Steerable filters and other non-linear meth-
ods. Typically with added benefit of improved signal to noise ratio, and greater noise
suppression in the 3-D variant. It is therefore expected that 3-D statistical measures,
which use the same mathematical principles as 2-D statistical edge detection, would also
provide the same performance benefits as 2-D statistical methods. Notably on textured
interfaces and on surfaces in the presence of noisy regions, with the additional benefits
of 3-D processing. The following chapters look to explore the gap in the literature and
attempt to assess the characteristics of 3-D statistical filters and objectively quantify
how they perform when compared against the existing 3-D technique benchmarks.

2.10 Summary
Edge and surface features are used in a number of different computer vision techniques
such as segmentation, object recognition, image coding and robot vision. In the liter-
ature edge detection is underpinned by a comprehensive body of research. Traditional
methods of edge detection use neighbourhood convolution operators which approxim-
ate the intensity gradient function, which is a measurement of the change in image
brightness. A sharp shift in image brightness is an excellent visual cue for an edge, and
therefore operators which measure the brightness shift are also very effective at detecting
these types of edges. However, there are a large number of studies which indicate some
the issues with this approach, these include problems such as the detection of edges
described by other feature differences, such as texture, and the negative impact the
presence of noise imposes on the result. The literature shows that statistical methods
of edge detection provide an excellent alternative when these sub-optimal conditions
exist.

The growing availability of 3-D imaging modalities provides an incentive to investigate
surface detection methods in search of improved performance, but the availability of
surface detection research is limited in comparison. However, the majority of traditional
surface detection approaches are adaptations of their 2-D edge detection counterparts.
Improvements to edge detection performance has increased incrementally, and many of
the 3-D surface detection techniques mimic their 2-D counterparts in these incremental
developments.
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While there are extensive evaluations of edge detection methods, including 2-D statistical
approaches, evaluation of 3-D surface detection approaches is much less established.
Statistical edge detection has been shown to offer improved performance over traditional
edge detection methods, but there are very few examples of statistical based approaches
to surface detection in the literature and evaluation of statistical surface detection
methods against traditional methods is absent.

The following chapters present a novel model for statistical surface detection, and the
most comprehensive analysis to date of statistical surface detection is undertaken where
these methods are evaluated along side the 3-D Canny and Steerable filter methods.



Chapter 3

A Statistical Surface Detection
Model

The novel statistical surface detection methods detailed in this chapter were published
in IEEE Signal Processing Letters (Smith and Williams, 2015) and presented at the
Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM ’15).

3.1 Introduction
This chapter presents two models for surface detection using statistical features, in
order to determine where interfaces between different image regions exist. Different
image regions, by definition contain at least one statistical property which differentiates
a region from another, such as region brightness (intensity), texture features, or dis-
tribution properties. By using a statistical based surface detection method, properties
of a region in addition to brightness can be exploited in order to locate the interface
between regions. This chapter also discusses the various parameters available to stat-
istical surface detection, such as the types of two-sample statistical tests which can be
incorporated and the scale at which the tests are applied, indicating the likely effect
the parameters have on the characteristics of the result. Finally this chapter details
the post processing methods of non-maximum suppression and hysteresis thresholding,
and their usage with the statistical surface detection methods.

3.2 Statistical Surface Detection
Dual region statistical filters were initially described by Guest (1994) and Bowring et al.
(2004), and were comprehensively evaluated for 2-D images by Williams et al. (2014)
and these approaches to statistical detection have been shown to offer improvements
over derivative-based methods when texture is present within the image. In a general

47
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Figure 3.1: A 2-D example of an even integer sized neighbourhood, resulting in no
individual central pixel, whereas with an odd integer size, a central pixel is available.

case, the neighbourhood mask can simply be defined as the local region surrounding
a pixel/voxel in an image. This local neighbourhood can be of any size subject to
the constraints of the image resolution, however odd, integer x,y,z components to the
neighbourhood size ensures that a central pixel or voxel can be established in the centre
of the neighbourhood (Fig 3.1).

Similar to statistical edge detection, statistical surface detection also employs an ori-
entated non-linear dual region filter. In order to compute the statistical difference
using three dimensional data, introduced in this work is a 3-D neighbourhood mask
(Fig. 3.2). Here the mask is extended from the work of Guest (1994) and Bowring et al.
(2004) through the z-dimension to produce a mask capable of computing differences
between regions A and B across three dimensions. Instead of a central dividing line
commonplace in 2-D, the 3-D mask has a central dividing plane, and two volumetric
sample regions (also shaded red and blue). In the 3-D configuration, there are two
axis about which the mask can be orientated. Unlike the 2-D method, the scale of the
mask does not determine the number of intervals which the mask is rotated through.
Instead this mask is rotated through 13 uniquely orientated positions, derived from a
26-connectivity neighbourhood window (Fig.3.3).

If a single orientation is defined as the direction from the central neighbourhood voxel
to a neighbouring voxel, due to the rotational symmetry, half of the positions would
provide the same magnitude output, only in the opposite direction, and thus would
be redundant. Therefore, these 3-D methods can make use of 13 different orientations
which can resolve the 26 discrete surface directions at any given position within the
image set. The positions are composed of orientations which form a dividing plane
orthogonal to two voxels opposing the origin (centre mask voxel) of the mask, examples
of 5�5�5 implementations of the 3-D neighbourhood mask are shown in Figure 3.4.
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Figure 3.2: A 5�5�5 3-D dual region mask applied to the grid structure of an image.
Region A is defined by the red voxels and region B is defined by the blue voxels. The
shaded grey voxels constitute the dividing plane of the mask

Figure 3.3: A 3-D 3�3�3 local neighbourhood, illustrating the 26 directions from the
central voxel which can exist in the neighbourhood.

3.2.1 Surface Magnitude
The magnitude of a surface is calculated by comparing the two neighbourhood regions
using a statistical method, here a two sample Kolmogorov-Smirnov (KS) statistical test
has been applied to the neighbourhood regions in different positions and orientations
in the image, but this could be interchanged with a different two-sample test. In this
example the KS Statistic defines the magnitude of the surface map in those positions.
The greater the statistical difference in region distribution properties, the higher the
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Figure 3.4: The 13 unique mask orientations defined from a 26-neighbourhood window
applied to a 5�5�5 neighbourhood. Sample regions are colour coded as red and blue,
while the central dividing plane is shaded black. Each sample region (noted by red and
blue shading) are always of equal size

likelihood that the neighbourhood mask is situated on an surface and as such the
magnitude of the statistical difference measure in such a position would be expected
to be high (Fig. 3.5b). However, when the neighbourhood mask is not aligned on an
surface, it is expected that the difference in the distributions would be small since both
mask regions would lie in the same region (Fig. 3.5b,c,d).
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(a) Mask positioned in interface and non interface locations

(b) Location 2 ori 2 (c) Location 1 ori 1

(d) Location 1 ori 2 (e) Location 2 ori 1

Figure 3.5: Example of statistical detection principle using Kolmogorov-Smirnov test.
The neighbourhood mask situated in both an interface and non-interface location, and
resulting difference in the empirical distribution functions. A high KS statistic
indicates a strong candidate for an edge or surface. Notice position (b) where the mask
is both correctly located at an interface in the correct orientation. The resulting
output statistic is high magnitude, while other positions (c,d,e) produce a low
magnitude result.
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This contrast provides a way to discriminate between non-surface and surface pixels.
When a dual region mask is situated on an interface between different image regions,
and the central dividing line is aligned along the surface direction, the expected output
is a high magnitude result. A dual region mask can be situated on an interface but
not oriented along the surface direction. Under these conditions the expected result is
of a low magnitude (Fig. 3.5e). This means that in order to resolve surfaces through
360� the dual region mask needs to be able to shift its orientation. In the 2-D case
for statistical edge detection, this is achieved in a similar fashion to the Kirsch (1971)
compass operator, whereby the filter orientation is shifted through different positions,
such as in the case of the statistical methods evaluated by Williams et al. (2014). The
mask rotates through a fixed number of discrete positions dependent upon the size of the
mask, larger masks allow for a greater number of potential orientations, re-orientating
a dual region 2-D mask can be seen in the earlier example in Figure 2.16. For 3-D data,
the mask requires further orientations to satisfy the greater number of directions that
can exist in a three-dimensional space, there are two different approaches to this which
are further detailed in Section 3.3.

3.2.2 Global Processing of the Image
In order to produce a surface map of the entire image volume, every ’legal’ voxel within
the image is processed. In order for a voxel to be processed, the origin of the mask is
situated in each voxel location, and rotated through all mask orientations in order to
compute the statistical surface gradient of the image. The first location will be the first
position in which the dual region neighbourhood mask can be fit into the image, this
will be dependent upon the scale of the dual region mask, an example of a 5�5�5 dual
region mask initialised in the first legal position can be viewed in Figure 3.6a). After
the mask has been orientated through all the designated orientations, and the value
of the statistical difference has been evaluated, the dual region mask traverses the x,y
and z dimensions of the image voxel by voxel (Fig. 3.6b-d) until all available positions
have been evaluated. Not all locations in the image volume can be accurately evaluated,
this is a typical problem associated with all neighbourhood operators. Since the origin
of the mask is the central location of the neighbourhood, and needs to be situated on
the voxel to evaluate that position, there are a number of voxel positions along the
outer perimeter and layers where if the origin is situated on a voxel to be evaluated,
the local neighbourhood region is incomplete, or padded with arbitrary values. Since
these positions cannot be accurately processed, they are excluded, as a consequence
the output surface map matrix will be smaller than the original image matrix in each
dimension proportional to the scale of the mask.
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(a) Initialise dual
region mask position.

(b) Shift along x
dimension.

(c) Shift along y
dimension.

(d) Shift along z
dimension.

Figure 3.6: Statistical surface detection filtering procedure illustrating how the 3-D
mask traverses the image volume.

3.2.3 Mask Scale
Scale refers to the parameter which controls the spatial resolution specification of
the neighbourhood mask. As the scale parameter is increased, the dimensions of the
neighbourhood mask are increased accordingly. For 2-D detection, a common approach
to achieving greater noise suppression is to increase the scale of the mask, thus increasing
the number of elements processed by the filter. However, increasing the scale of the
mask generally comes at a cost in terms of accuracy, or localisation error (Ziou and
Mohr, 1992). The advantage in terms of noise suppression achieved by surface detection
filters over their edge detection counterparts are that surface detection filters resolve
interfaces across 3-dimensions, thus require n3 scale neighbourhood masks, while 2-D
edge detection filter are of order n2. Using three dimensions over two allows for a
smaller scale parameter to be applied, while maintaining resolving power equivalent to
larger 2-D mask sizes (Wang et al., 2009). For fixed resolution imagery, a larger mask
is required in two dimensions to have the same statistical significance as a mask making
use of three dimensions. For example a mask size of 5� 5� 5 processes 100 voxels from
a neighbourhood of 125, all of which are located no more than two voxels distance away
from the centre position being computed. For a two dimensional neighbourhood mask
to have similar statistical significance, it would need to be 11 � 11 pixels in size. This
covers a significantly larger image region (Up to 5 pixels away from the pixel being
processed). 3-D methods therefore allow for the use of a smaller scale parameter for
a given amount of noise suppression which minimises the localisation error but also
provides improved detection, this observation is a significant advantage and was first
published by Monga et al. (1991). However, since 3-D methods process more values at
an equivalent neighbourhood scale, 3-D methods are more computationally expensive
than their 2-D edge detection counterparts, particularly in the case of rank based non-
parametric tests which require sorting of the data. The scale parameter is a considerably
powerful parameter (Bergholm, 1987), which needs to be taken into consideration
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depending on the target edge and surfaces in the image. Fig 3.7 demonstrates the

(a) Step Intentsity
interface

(b) 5�5�5 (c) 11�11�11 (d) 19�19�19

(e) Mean and
variance interface
1

(f) 5�5�5 (g) 11�11�11 (h) 19�19�19

(i) Mean and
variance interface
2

(j) 5�5�5 (k) 11�11�11 (l) 19�19�19

Figure 3.7: 2-D layered view of surface detection at mask scales 5�5�5,11�11�11 and
19�19�19 on 3 test images. Surface detection at a fine resolution (small
neighbourhood mask) typically yields noise while detection at a coarse resolution
(large neighbourhood mask) while suppressing noise, typically distorts surface contours

trade off between noise suppression and detection accuracy with respect to the size
of the mask. As the mask scale is increased from 5�5�5 through to 19�19�19, the
level of noise suppression is increased, signified by fewer false positive (FP) edge points.
However, the true position of the boundary becomes more unclear, signified by the
increase in the degree of diffusion of the surface interface. One consequence of a larger
scale parameter is therefore the loss of detail finer than that of the scale of the mask.

Scale is a common parameter for many edge and surface detection methods, similarly
gradient based methods typically also control the scale by adjusting the size of the
filter kernel as is the case with Prewitt and Sobel operators in the same fashion as the
statistical surface model presented here. However, it should be noted that there alternate
techniques for addressing the scale parameter trade off between noise suppression and
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accuracy. For instance the Canny operator uses Gaussian filtering as a pre-processing
step, here the scale parameter is determined by changing the standard deviation (σ)
of the Gaussian filter (Canny, 1986). A large standard deviation will apply a greater
degree of image smoothing, this suppresses weaker interfaces, image noise, and resolves
surfaces which occur over a larger region (Ziou and Mohr, 1992). A small standard
deviation however results in a much more sensitive detector, able to resolve more image
detail, but with less noise suppression.

Work by Williams (2008) and Williams et al. (2014) has shown the impact scale has
on the performance of 2-D statistical edge detection methods. It was shown that non
parametric tests achieve optimum results when using large mask size, relative to the
scale which achieves optimal results for the parametric tests, for example the 2-D χ2

and Kolmogorov-Smirnov tests performed optimally at scales above 21�21. At scales
smaller than this, the sensitivity of the filters resulted in noisy results. This is because
non parametric tests that rank the sample data, effectively normalise the output locally
at the scale of the neighbourhood mask. As a result this makes non-parametric tests
sensitive. Increasing the scale of the neighbourhood mask can offset the sensitivity to
achieve better results.

Applying a larger scale parameter potentially removes finer details in 3-D data, as well
as increasing the uncertainty in surface location. But by using a 3-D mask, more sample
values are processed when compared with 2-D and this suppresses the noise. This has
the noticeable effect in the quality of the 3-D results in comparison to 2-D, this effect
is explored later in the Chapter 7 discussion.

3.2.4 Statistical Test Selection
In the work of Williams (2008) and Williams et al. (2014) different statistical measures
for dissimilarity were evaluated in the context of 2-D statistical edge detection, but not
3-D. The statistical measures employed in that work demonstrated various advantages
and disadvantages across different interface types, all methods were shown to be effective
under particular conditions, offering improvements over 2-D gradient methods, however
no single statistical measure produced the optimal result under all conditions. In order
to see if the advantages offered by the statistical edge detection are transferable to
3-D surface detection. The same statistical measures were employed as those evaluated
by Williams et al. (2014) in order to observe whether the characteristics of statistical
edge detection are transferable to surface detection. The addition of the Robust Rank
Order statistical test was also included, this method was not evaluated by Williams
et al. (2014). However, it is included here as it was shown in the work of Lim (2006) to
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be advantageous for edge detection over both the Students t-test and Mann-Whitney
Wilcoxon u-test in noisy imagery. The list of statistical measures assessed in this work
consists of 4 parametric (mean and variance based) and 4 non-parametric (distribution
or ranking based) measures, but the list is not exhaustive and scope remains for other
statistical comparison measures to be explored.

3.2.4.1 Difference of Boxes Test (DoB)
An adaptation of the Difference of Boxes test initially defined by Rosenfeld and Kak
(1982) and Bovik et al. (1986) was included in this work. The difference of boxes method
is typically a difference measure between the application of two different scaled mean
or averaging filters, which offers an approximation of a Laplacian of Gaussian filter.
Essentially a convolution based operator used to compute the second spatial derivative
of an image to resolve edges. Here the adaptation was further simplified by Williams
(2008) to compute a comparison of the mean between the two mask regions. The DoB
statistic is given using the equation 3.1.

D � |x̄A � x̄B| (3.1)

Where x̄A is the mean value of region A and x̄B is the mean value of region B.

As this method measures the difference in the average intensity between regions, it
is particularly suited for resolving step changes in image intensity, and is therefore
comparable to standard gradient based operators. In 2-D edge detection, the Difference
of Boxes method provided good detection of interfaces which features strong mean and
variance components and provided a response comparable to the derivative based Canny
Edge detector. However the DoB method was not ideal where a significant difference
in mean values between regions is not present, in line with the performance associated
with derivative based detectors. In 2-D this method did produce results with closed
contours, and at larger neighbourhood mask scales, offered good noise suppression
qualities. However its application into 3-D remains unexplored.

3.2.4.2 Student’s t-test (t-test)
The next mean based parametric test used is the Students’ t-test which compares the
location parameter of two independent data samples. The t-test is used to test the
null hypothesis that two independent sample distributions have the same or similar
mean values. Typically the t-test is applied to sample distributions with the same
population size and similar variance. However, it has been shown by Bovik et al. (1986)
to be effective even when the sample variance greatly differs. The test statistic for a
two-sample Student’s t-test for two equally sized regions, and is given here as Eq. 3.2.
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T � |x̄A � x̄B|

c
N � 1
sA � sB

(3.2)

Where x̄A and x̄B are the mean of mask region A and B, respectively. N is the
number of pixels in one region, with sA and sB being the variances of the two mask
regions A and B.

In the work of Williams et al. (2014) 2-D edge detection methods employing the Stu-
dent’s t-test successfully resolved interfaces where a prominent difference in the mean
intensity of regions existed. Furthermore, when there was a strong difference in vari-
ance between regions in addition to a mean difference, the Student’s t-test method also
proved to be successful. Similarly to derivative based methods, where interfaces are not
associated with a strong change in the mean intensity of a region, the Student’s t-test
was shown to not be the optimal method. Williams et al. (2014) also showed that the
Student’s t-test produced edges with good connectivity, and offered good suppression
of noise at larger mask scales.

3.2.4.3 Fisher Test (F -test)
If the means of the two mask regions does not differ significantly Williams et al. (2014)
demonstrated that a more suitable approach would be to analyse the variance of the
two regions. The Fisher test (F-Test) is the first variance based test to be used for this
situation. The F-Test is applied to check the hypothesis that two datasets will have
the same or a similar variance. The two-sample F-test is defined as the ratio of the
variances of region A and B using equation 3.3:

F � max
�
sA

sB
,
sB

sA



(3.3)

Where sA and sB are the variances of region A and B, respectively.

The work of Williams et al. (2014) indicates that the F-test provided successful de-
tection of variance interfaces, and interfaces with strong mean and variance difference
components. However, when a strong variance component was not present, the F-test is
less successful. One of the issues found with the F-test is that correctly detected edges
can be shifted, introducing localisation error. This shift was shown to proportional to
the scale of the neighbourhood region of the F test and can therefore be suppressed
with post processing. While these advantages and problems have been observed in 2-D
edge detection, it remains unknown whether or not these characteristics are transferable
for surface detection, and therefore analysis is required.
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3.2.4.4 Log-Likelihood Ratio Test (L)
A further test of variance is the Likelihood Ratio test. The test used here is based on
the work of de Souza (1983) and is defined in equation 3.4. In 2-D edge detection it
was shown that the maximum likelihood method offered successful detection of both
mean interfaces and combined mean and variance interfaces, however it failed with
on interfaces with no significant mean difference component, and was outperformed
by the Fisher test, as well as non parametric tests such as the Kolmogorov-Smirnov
and χ2 tests in 2-D. One notable feature was that when the method was applied to
2-D histological tissue images (which are typically highly textured) the Likelihood test
offered a strong suppression of unwanted texture even with small mask scales while
preserving connected contours of required segments. Analysis of the Likelihood-ratio
test for 3-D data sets is also previously unexplored and requiring analysis.

L � �N � loge λ (3.4)

Where N is the number of pixel points covered by both regions of the mask used in
the test, and λ is defined in Eq 3.5

λ �
4v2

Av
2
B

v4
AYB

(3.5)

Where N is the number of pixel points covered by both regions of the mask used in
the test. v2

A is the variance of region A, v2
B is the variance of region B and are defined

in Eq 3.6

With v2
A defined as: Set B of the mask and the combined sets of v2

B and v4
AYB are then

v2
A �

¸
xPA

x2 �
1
|A|

�¸
xPA

x

�2

(3.6)

where x is the pixel intensity value

defined analogously.

3.2.4.5 Kolmogorov-Smirnov Test (KS)
The two sample Kolmogorov-Smirnov (or KS-test) provides a statistic which quantifies
a distance between the empirical distribution functions of two samples. The Empirical
Cumulative Distribution Function (ECDF) of sorted ascending data points is defined
in equation 3.7. As this statistical method compares differences in the ECDF of the
neighbourhood region data, and not specifically the distribution values, the KS score
will always produce a score within the range of 0 - 1, where 0 indicates no difference
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between mask regions and 1, indicates a maximum difference between regions. This is
irrespective of the position of the neighbourhood within the image, therefore this has
the effect of normalising the output measurement within its local neighbourhood. The
effect of this on the on the result globally is that local differences between regions are
emphasised, this makes the filter very sensitive to small differences in image features
and the result of that is that “weak” edges are locally normalised and therefore resolved
to a similar level to what would be typically considered “strong” interfaces. In the
work of Williams et al. (2014) this was confirmed by results which show the KS-test
is very sensitive at smaller mask sizes to small changes in image features, while this
enables weak surfaces to be resolved, this also made the method sensitive to image noise.
However it was shown that the KS-test offers improved edge detection at larger mask
scales when compared against traditional gradient methods of edge detection. The use
of a 3-D neighbourhood, as opposed to a 2-D neighbourhood, for a given mask scale
results in 3-D sample regions which contain more sample values than a 2-D region of
a given scale, it is therefore expected that a 3-D adaptation using the KS-test should
improve upon its 2-D counterpart.

FApiq �
npiq

N
(3.7)

Where FA is the ECDF for data set A, npiq is the number of data points less than the
ith data point in ranked set A and N is the number of overall points contained in data
set A. The two-sample KS test checks for the maximum difference between the ECDFs
for both data sets. From this it returns the value of D given in Eq 3.8

D � max
iPt1,...,Nu

|FApiq � FBpiq| (3.8)

Where FA is the ECDF for data set A, and FB is the ECDF for data set B.

3.2.4.6 The χ2-test (χ2)
The χ2-test (χ2) is a rank based test which checks for the independence of the two
sorted data sets. This calculation is a comparison measure that takes the relative
difference in points at the same rank position for two binned data sets. Here the two
binned datasets are simply taken as region A and region B therefore giving two-sample
Chi Square test in equation 3.9. Two variants of the χ2-test were available for this
study. The standard local-χ2-test (lχ2-test) and the alternate global-χ2-test(gχ2-test).
The fundamental difference between these two configurations is the method used to
group the data into bins. The first method, the local-χ2 test, is the same process as
described by (Williams et al., 2014). Here pixel or voxel values are binned in local
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neighbourhoods at the neighbourhood mask level. For 2-D edge detection, the local
χ2-test variant is better suited to larger mask sizes due to the local normalisation
effects implicit in the fact that the data is organised in isolation. These effects were
shown to be similar to those exhibited by the KS and u-test methods, but this has
yet to be established for surface detection. The local χ2-test filter response exhibits a
high degree of sensitivity and is therefore likely to be better suited to targeting weaker
surface interfaces. The alternate method introduced here is the global-χ2 method,
which is the configuration used in Chapters 5 and 6. In this configuration, the χ2

method does not process the neighbourhood mask in isolation. Instead the values are
processed and organised in the context of the entire image volume, this is accomplished
by initially assigning all the voxels to predefined bins. In this configuration the method
is computationally less expensive, less sensitive to weak boundaries, and is hypothesised
to be better suited to resolving strong boundary interfaces, while suppressing image
noise. Unlike other traditional methods, this configuration tends to create a response
with a consistent strong magnitude which is not dispersed over a large area. Thereby
minimising fragmentation and missing boundaries. Evaluation of the local χ2-test
method undertaken byWilliams et al indicates that the χ2-test offers successful detection
of mean, variance and combined mean and variance interfaces. In addition the χ2-test
offers improved edge detection at larger mask scales than traditional methods of edge
detection. However, similar to the KS-test, it can fail in excessively noisy environments
with small mask scales due to over-detection. The evaluation of the χ2-test in 3-D data
is novel and all results were obtained using 4 data bins.

χ2 �
¸

i

pRi � Siq
2

Ri � Si
(3.9)

Here Ri is the number of values in bin i of region A, and Si is the number of values in
bin i of region B.

3.2.4.7 Wilcoxon Mann-Whitney (u-test)
The non-parametric Wilcoxon Mann–Whitney test is commonly used for detecting
differences in central tendency between two samples Again this rank based test checks
the hypothesis that two data sets under evaluation are taken from the same distribution.
Here the Mann-Whitney test statistical value U is defined in equation 3.10. 2-D
evaluation of the method indicates that the u-test also offers a local normalisation
of the edge detection results due to the ranking nature of the test, and therefore
provides a strong response for all edge types within the image (i.e. weak and strong
edges). However, in 2-D imagery, the u-test failed with zero mean interfaces and was
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outperformed by the Fisher, KS and χ2 tests. In the work of Williams et al. (2014),
the u-test was found to be the most successful statistical test for mean based interfaces.
It returned strongly connected contours and where mean interfaces are assumed it
outperformed all statistical tests and traditional derivative filters, but analysis for
surface detection is absent, and it is not yet known if the performance in 3-D data is
as effective.

U � minpRA, RBq (3.10)

RA �
¸
xPA

� ¸
yPB;y x

1
�

(3.11)

Where RA, and RB correspond to a ranking score calculated for both data sets (or
mask regions) A and B. The equation 3.11 refers to the rank calculation (RA) of data
set A with RB being defined analogously. Each rank (RA and RB) is calculated by
summing a rank score for the observed differences of current data points between both
sets.

3.2.4.8 Robust Rank Order Test (RRO)
The Robust Rank order (RRO) statistic was developed by Fligner and Policello (1981)
as an alternative to the Wilcoxon Mann–Whitney u-test, in order to create a statistic
which is more applicable across different distributions and sample sizes. Lim (2006)
describes a statistical edge detection method which incorporates the Robust Rank-order
statistic of Fligner and Policello (1981), in order to resolve edges in noisy images. In the
work of Lim (2006) it was shown that the RRO edge method outperformed the u-test,
Student’s t-test method and the Canny Edge detection method on both synthetic and
real images when in the presence of impulse and Gaussian noise, and was therefore
included for 3-D evaluation. Given that medical images are often noisy (Liu and Chen,
2006) and the RRO measure performs well in noisy imagery, the RRO test statistic
was included for this reason. While this method was analysed by Lim (2006) for noisy
2-D imagery, it was not subject to the comprehensive testing of the other 2-D methods
explored in the work of Williams et al. (2014). Evaluation of this statistical approach
in 3-D surface detection is completely novel.

3.3 3-D Statistical Model Variants
There are two variations in which the statistical masks can be applied. One approach
finds the maximum statistical difference through a range of different neighbourhood
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orientations, the other approach applies the statistical measure in 3 orthogonal planes,
and the L2-Norm is calculated to find the statistical difference gradient. The first variant
is named the ‘Maximum Response’ method (MR-method) and is a direct extension of
2-D statistical filtering evaluated by Williams et al. (2014) into a 3-D framework. The
second approach is novel in context of statistical surface detection, but shares similarities
with traditional gradient approaches in that it measures a statistical feature gradient
instead of an intensity gradient.

3.3.1 Maximum Response
The MR approach rotates the neighbourhood mask through 13 unique orientations,
Fig 3.4 illustrates how the neighbourhood can be positioned, such that the neighbour-
hood is oriented to find differences in the direction of all the voxels in a 26-connectivity
neighbourhood. From these positions the statistical measure is applied and the differ-
ences are recorded. The orientation which produces the maximum dissimilarity between
regions provides the statistical difference magnitude for that location in the image
volume. The stages of the approach are presented in Fig. 3.8. In addition, the mask
orientation for that location can also be stored, this allows for the surface direction
to be calculated. This data can be used to assist further post processing techniques
where the direction of a surface needs to be known a priori such as with non-maximum
suppression.

This method is not particularly efficient, since calculations need to be made in orient-
ations in which the statistical difference is small in order to find the position which
is the most statistically different. In addition, as the neighbourhood mask scale is
increased, the number of possible orientations can be further increased to account for
the smaller increments in rotation available with a larger mask size. However, in this
work a constrained case is used to limit the number of orientations to 13 irrespective
of mask size for practicality. In addition, when data is anisotropic in its resolution,
weighting the mask positions to compensate adds further complexity to the process.
This MR approach is included here as a basis for comparison to 2-D statistical edge
detection, which also utilises a maximum dissimilarity approach.

3.3.2 Vector Magnitude
To avoid the aforementioned problems of the MR method, a different approach to the
detection method is required. The second variant presented here, named the ’Vector
Magnitude’ method (VM-method) is a novel approach to both statistical edge detection
and statistical surface detection. In this configuration the 3-D algorithm applies the
dual region filter in 3 orthogonal orientations (Fig. 3.9) in order to form a vector which
contains 3 directional magnitude components ( Tx,Ty,Tz ) of dissimilarity (Eq. 3.12).
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Figure 3.8: Workflow of the Maximum Response procedure.

These statistical dissimilarity measures conform along the x,y and z planes of the image.
From this vector, a Euclidean Norm (L2-Norm) can be applied in order to compute
the statistical feature gradient (SFG or }x}) using Eq. 3.13. The procedure for the VM
method can be observed in Fig. 3.10.

V �a Txî�b Ty ĵ �a Tzk̂ (3.12)

}x} �
b
paTxq2 � pbTyq2 � pcTzq2 (3.13)

The primary advantage of this method is that it is more efficient for a number of
reasons. Firstly it is computationally less costly due to the fact that the statistical
difference calculation is only required for 3 mask positions, in contrast to a minimum
of 13 positions for the MR approach. The MR approach also retains only a single
difference measure from the 13 orientations which are calculated, and therefore the
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(a) x (b) y (c) z

Figure 3.9: The 3 mask configurations for the vector magnitude method. Each mask
enables a directional statistical differential to be determined, which are then combined
using a L2-norm to compute the output.

Figure 3.10: Workflow of the Vector Magnitude procedure.

redundancy of the MR approach is much greater. The VM approach is scale invariant,
as the mask size is increased, further mask orientations are not required, as accurate
measurement of the direction of the gradient can still be calculated from just 3 mask
positions, whereas the MR approach requires further mask orientations to maintain the
same single voxel resolution in calculation of the directional component.
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3.3.3 Comparison of Variants
To illustrate the difference in computational efficiency between the two approaches, the
computation time using different statistical measures is presented in Table 3.1. Even
when using a constrained MR method, limited to 13 orientations for each neighbourhood
scale, the computation time for the VM approach is significantly faster by at least a
factor of 3, and for some tests by as much as an order of magnitude.

Statistical method

MR time (s) VM time (s)

5�5�5 7�7�7 9�9�9 11�11�11 5�5�5 7�7�7 9�9�9 11�11�11

DoB 0.07 0.10 0.13 0.21 0.01 0.02 0.03 0.04

t-test 0.10 0.15 0.24 0.37 0.02 0.04 0.05 0.09

F -test 0.11 0.17 0.25 0.38 0.02 0.04 0.06 0.08

L 0.14 0.25 0.39 0.63 0.03 0.06 0.09 0.15

χ2t 6.03 13.74 25.58 38.65 1.35 3.25 5.85 8.92

KS 9.49 24.97 46.73 74.80 3.35 8.96 17.92 29.58

U-test 9.49 24.96 46.72 74.80 2.16 5.43 10.35 16.72

RRO 56.19 267.65 919.03 2443.08 9.49 44.29 148.82 398.05

Table 3.1: Computation time of different statistical methods, with the different model
variants. Average time was calculated using 10 synthetically created image volumes of
normally distributed random noise (entropy = 4.16) of size 120�120�25. Calculations
were performed using an Intel(R)Core(TM) i7-10750 2.59 GHz processor with 16GB of
RAM available, using MATLAB v2020a

3.3.3.1 Anisotropic Distortion of the Surface Map
Another issue which the VM approach can help alleviate, is the distortion which occurs
when the resolution of data is not isotropic. Often with 3-D medical data, such as MR
images, physicians view 2-D axial layers of the scan, rather than 3-D representations,
as a result of this the MRI machine is often calibrated such that the x and y-dimension
resolution is greater than that of the resolution in the z dimension for improved 2-D
resolution and shorter scan times(Brejl and Sonka, 2000; Du et al., 2020). This means
that each voxel within the scan will occupy more space in the z-plane than the x and
y planes. This means that surfaces orientated with a strong z-component dissimilarity
will appear more abrupt, thus produce stronger interfaces. Thus 2 issues can arise,
ambiguity in the accuracy of a surfaces’ location, and a bias toward producing stronger
interfaces with a large z-component. The effects of anisotropic image resolution on
surface detection can be pronounced, Fig. 3.11b demonstrates how z-plane surfaces are
emphasised when the resolution in the x and y dimensions exceed the z dimension by
a ratio of 8:1.
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The L2-Norm calculation of the Vector Magnitude method allows each individual dir-
ectional component to be weighted using a resolution coefficient (a, b, c) to account for
anisotropic resolution EQ. 3.12. While this does not solve the issue of localisation,
the weighting helps mitigate the biases associated with anisotropic resolution, enabling
surfaces to be resolved without the strong z-component surfaces emphasised to a greater
degree. This mitigation can be observed in the example case presented in Fig. 3.11c.

(a) Anisotropic MRI
Volume

(b) No dimensional
weighting

(c) With dimensional
weighting

Figure 3.11: Surface detection with and without dimensional weighting applied to MRI
volume with anisotropic resolution (x, y - z 8:1). The distortion occurs as strong
responses for surfaces with a high magnitude z component

This approach of weighting the directions is novel in both statistical edge detection
and statistical surface detection. Brejl and Sonka (2000) applied a similar modification
to the Canny surface detector, in their analysis of detectors in anisotropic data it was
shown to significantly improve over the standard Canny surface method.

3.3.3.2 Parametric test efficiency
Dual region statistical measures are fundamentally more computationally expensive
when compared to derivative based neighbourhood operators. However, parametric tests
can be applied in an efficient fashion also using convolution. However, non-parametric
tests cannot utilise convolution in the calculation process due to the ranking nature of
the techniques which are reliant on the use of sorting algorithms. In addition, as the
mask size increases, the cost of using a sorting algorithm to rank the data also increases.
Thus non-parametric techniques are more computationally costly than parametric tests
as represented in Table 3.1.

To utilise convolution for fast efficient processing of parametric tests, consider the
following vector magnitude example using a difference of boxes test:

1. Select a scale parameter and generate 6 directional convolution kernels as defined
in Fig 3.9. Eg. Mask scale of 5.
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2. Scale the kernel coefficients such that kernels become mask region averaging filters,
where ms = mask scale.

ms1 � pms3 �ms2q�1

H � h�ms1

3. Convolve the image (I) with each directional pair of filter kernels to create 6
output images. For example the x component is as follows:

Gx � I �Hx

Gx1 � I �Hx1

4. Since the difference of boxes is the difference between the two averages, determine
the absolute difference to establish the vector component for each direction
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GX � |Gx �Gx1 |

GY � |Gy �Gy1 |

GZ � |Gz �Gz1 |

5. Finally compute the vector norm of the 3 directional component images.

G �

b
GX

2 �GY
2 �GZ

2

This type of procedure can also be applied to the other parametric test methods
(Difference of boxes, Fisher test, Student’s t-test, Likelihood) resulting in efficient
application of these statistical measures. However, the non parametric methods cannot
be employed using this technique, thus are more computationally expensive.

3.4 Post Processing Stages
3.4.1 3-D Non-Maximum Suppression (NMS)
The surface map is considered the explicit separation measurement of region profiles
performed by the surface detection algorithm. It is the direct output of the dual
region statistical filtering. A surface map will highlight areas where interfaces between
differing region profiles exist. These interfaces can be instantaneous step changes
between profiles, or a more spread out gradual change. However, depending on the
scale of the neighbourhood mask, a surface interface may be resolved over several voxel
locations as the mask traverses the image. This will manifest itself in the surface map
as a diffused boundary rather than a single voxel thickness interface. This diffusion or
smoothing scales as a function of neighbourhood mask size, this effect is illustrated in
Fig 3.7. The larger the mask, the greater the uncertainty of the location of a surface. A
typical requirement for many computer vision tasks is to precisely measure the location
of a surface to single voxel accuracy. Thereby there is a need to determine the actual
position of the interface. In 2-D imagery, a method known as non maximum suppression,
a process to thin edges in an edge map to single pixel width was first achieved by Canny
(1986) for his stand out edge detection technique. Figure 3.12 shows the location of an
edge in the edge map. The single pixel interface location of the edge is not precisely
clear, as the magnitude of the edge is spread out along the gradient direction. After
the application of the NMS algorithm, all points adjacent to the edge direction which
are not the maximum intensity value are suppressed and given the value 0. Thereby
retaining the surface where the gradient is at its steepest and removing it elsewhere.
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While this process is primarily a 2-D technique, in this work the algorithm was modified
to work in a 3-D environment for surfaces (Fig 3.12c). Instead of a diffused edge being
thinned to a single pixel line. 3-D NMS converts a diffused surface to a single voxel
thickness line.

Figure 3.12: Non maximum suppression applied to an edge and surface map. Edge
and surface points which are not at the gradient peak are suppressed to zero.
Resulting in an edge and surface result that is unit pixel and voxel thickness
respectively at the position where the gradient magnitude is at its maximum

Non Maximum Suppression (NMS) is an intermediate step used in many computer
vision algorithms. Notably the Canny (1986) edge detection method. In terms of an
edge detection application, this method is applied post edge filter to the edge map
image. In reality an interface has no thickness at it is the location of where two or
more regions meet. However, an edge map does not directly show where the edge exists,
but rather a map of the rate of change of intensity, or texture, or region properties.
The effect of applying the NMS algorithm to the edge map is to thin edges to single
pixel thickness. This then allows for direct comparison between a ground truth solution
image, and the result image.
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In this work a 3-D non Maximum Suppression algorithm is presented which converts
surfaces in a surface map to single voxel thickness by utilising two distinct 3-D opera-
tions.

1. Orientation filtering

2. Suppression of non maxima points

3.4.1.1 Orientation filtering
In order to suppress surface voxels which are not the local maxima, the direction of
the statistical gradient first needs to be obtained. The maximum response method will
determine the gradient direction to be perpendicular to the mask orientation which
produced the maximum statistical difference. Because of the discrete arrangement of
voxels and limited orientations in the constrained MR approach, the gradient direction
will always lie in one of 13 specific directions. For the MR method this can be obtained
from the mask orientation resulting in the maximum statistical difference.

When utilising the Vector Magnitude approach, in order to maintain consistency in
a discrete system, the gradient direction requires truncation to one of the fixed ori-
entations defined earlier by the 26-connectivity neighbourhood for the 3-D region. To
determine the truncated gradient direction of the surface plane, an efficient orientation
filtering process using convolution can be applied. To achieve this a 3-D neighbourhood
convolution operator is applied to the surface map image. The filter kernel is divided
into 3 regions, a central divisive plane and 2 outer regions (An example of a 3�3�3 of
the filter kernel for a single orientation can be viewed in eq. 3.14). In order to confine
the number of orientations to 13 (those derived from a 26-connectivity neighbourhood)
The orientation filter neighbourhood is orientated through the same 13 orientations as
the maximum response method detailed prior. When the filter kernel is convolved with
the surface map, the output of the filter for a given location will be of a high intensity
when the central plane of the filter kernel is positioned and oriented along a surface
interface in the surface map. The direction which produces the maximum intensity
determines the surface direction, and each filter kernel orientation is assigned a label
corresponding to a direction perpendicular to the surface plane, providing the gradient
direction. This process is applied to all the voxels in the image to produce a gradient
direction map, which is an image which describes the truncated gradient direction for
every position in the image.
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One of 13 oriented 3 x 3 x 3 filter kernels for orientation filtering. All 13 masks
resemble MR masks, with both A and B regions represented with 0s and the central
dividing plane with 1s.

3.4.1.2 Suppression of Non-Maximum Points
Using the labelled orientation data from the above process, voxels in the surface map
along the gradient direction can be identified by selecting those voxels adjacent to
the surface plane which intersect the central voxel for given distance (dependent upon
the scale of the neighbourhood mask operator). The intensity of the voxels along the
gradient direction are compared in order to identify the local maxima. If the central
voxel in question is the peak value this would imply that the maximum amount of
dissimilarity is located in this position, and therefore this is the actual location of the
surface, thus this voxel value is retained. If the voxel in question is not the peak value,
this means it is not at the exact location of the interface, thus this voxel should be
excluded or suppressed, thus the value will be converted to zero. Figure 3.13a shows 2-D
implementation for edge detection. The red shaded squares show the approximated edge
direction, while the green squares signify pixels along the gradient direction. Values in
the green squares are compared, if the the central blue square is the maxima (Fig. 3.13b),
this pixel is retained, if it is not, its value is set to zero.
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Figure 3.13: Example of 2-D NMS procedure a) Edge direction approximated by red
pixels. Gradient direction is perpendicular to that of the edge (green). The pixel being
examined (blue) is compared with pixels along gradient direction (green) to see if it is
the local maximum. If it is that value is retained, if it is not, it is suppressed. b)
Values along the gradient direction are plotted, the evaluated pixel in position 5 is the
maximum (654), therefore this value is retained. The process is repeated for all
positions in the image.

Image Volume

Image Volume

Edge Map Surface Map

2D nms 3D nms

Figure 3.14: A comparison of 2-D and 3-D NMS. 2-D NMS does not determine
maxima across z-dimension. Therefore surfaces which are maximal across layers are
not returned resulting in a result which more closely represents a layered edge
detection approach rather than a true 3-D result.
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The results of 2-D and 3-D NMS can be viewed in Figure 3.14. Here the 2-D NMS
results show that diffused edges have been thinned to single pixel thickness. This is
essential for objective analysis when comparing to a ground truth interface which is
also single pixel thickness. The primary difference between the the 2-D results and 3-D
results in Figure 3.14 is that unlike the edge, the surface is not suppressed into a 1-D
line, but instead a 2-D plane of single voxel thickness in a 3-D environment.

3.4.2 3-D Hysteresis Thresholding
After the application of a NMS stage, the resultant output is a 3-D image volume
which possesses the local surface maxima information of the original image. For the
purpose of objective performance evaluation, it is important to classify the NMS result
into surface points and non surface points in order for a one to one correspondence
performance metric to be applied, where the resultant image can be objectively com-
pared against an ideal result (ground truth solution). There are a number of available
options for classification. The most straightforward method is a point operation known
as thresholding. Thresholding will classify a voxel as a surface point or non-surface
point, by comparing the magnitude of a voxel in the output against a threshold value.
Magnitudes above the threshold are classified as surface points, while magnitudes below
are deemed non-surface points eq 3.15. Threshold operations could also include a range
of magnitudes in which a voxel could be classed as a surface or non surfaces, with
voxels that fall outside the upper and lower thresholds being classified as non surface
points. These types of thresholding methods are considered to be uniform thresholding
methods (Nixon and Aguado, 2002).

gpx, y, zq �

#
�1 if fpx, y, zq ¡ T,

0, if fpx, y, zq ¤ T.
(3.15)

Where gpx, y, zq is the 3-D binary image classified into surface points (1) and
non-surface points (0), and fpx, y, xq is the NMS result, T is the threshold intensity
level specified by a user.

More advanced methods of thresholding known as ’optimal thresholding’ are not point
operators, but group operators, and take into consideration the range of magnitudes of
voxels, or the histogram distribution in order to set an optimal threshold level, one of
the most common optimal thresholding methods is the Otsu’s method (Otsu, 1979) A
method to select a threshold automatically from a grey-level histogram by maximising
the discriminant measure of separability of the resultant classes in grey levels. One of the
characteristics of local surface maxima information is that the surface magnitude values
are not consistent and are dependent on the dissimilarity of regions where the surface
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interface lies. Nixon and Aguado (2002) indicates that for edge data, the variance in
edge strength can lead to unconnected edges after a uniform method of thresholding is
applied. Since surface detection and 3-D non maximum suppression methods follow the
same principles for resolving interfaces, uniform methods of thresholding are also not
optimal for surface detection. An adaptive method of thresholding can overcome the
broken edge problem associated with uniform thresholding. One such method, and one
notably exploited by Canny (1986) is a method described as Hysteresis thresholding.

Hysteresis thresholding is a post processing segmentation technique that applies recur-
sion instead of being a simple point operator. Hysteresis thresholding assigns a positive
or null label to each image voxel. Where surface segmentation is concerned, voxel labels
are defined as surface and non surface points, and are represented by a logical True or
False (1 or 0) within the digital domain. The property of connectivity for surfaces can
be exploited using this thresholding method. Surfaces are not typically composed of
individual pixels or voxels, but rather a continuous connected plane of voxels. Hysteresis
thresholding requires two threshold values, an upper threshold limit (UT) and a lower
threshold limit (LT). These can be independently defined to maximise performance.
However in this work the lower threshold is set at 40% of the upper threshold to share
consistency with common implementations of the Canny Edge detector which uses this
ratio. When a surface point from the non maximum suppression out exceeds the mag-
nitude of the predefined upper threshold level, this voxel is assigned the label ’True’,
thus classing the voxel as a surface point. Voxels with a magnitude value smaller than
that of the lower threshold value are assigned the value ’False’ thereby classing that
voxel as a non surface point. This produces a third category of voxels, those that lie
between the upper and lower ranges defined by the threshold. These voxels are potential
surface candidates, the criteria for which defines their classification is the dependent
upon whether or not these points share a connected path to surface point above the
upper threshold limit. Through a process of recursion, voxels with a path connected to
an upper thresh surface point are classified as a surface, those that do not are classified
as non surface points.

The benefit of hysteresis thresholding over standard thresholding for surface segmenta-
tion is that since we know that surfaces are composed of connected pixels and voxels,
weaker surface points resolved by the filter can be retained, while image noise can
be greatly suppressed, preserving connectivity(Nixon and Aguado, 2002). Figure 3.15
presents examples of hysteresis thresholding set at different threshold levels, with the
lower threshold set to be 40% of the upper threshold. With hysteresis thresholding
there is a trade-off as T is manipulated. Higher thresholds preserve only the strongest
detected surfaces, this reduces the quantity of clutter in the results, however this comes
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at a cost of detection, typically surface points will be missing and the image will present
with connectivity issues. Selecting a low threshold should preserve most of the surface
points, however, noise and clutter are likely to be erroneously classified as surface points
leading to a sensitive result characterised by ’over-detection’ features.

Upper Thresh 0.14 Upper Thresh 0.29 Upper Thresh 0.43

Upper Thresh 0.57 Upper Thresh 0.71 Upper Thresh 0.86

Figure 3.15: Example of hysteresis thresholding with varying threshold levels. As the
threshold level is increased (lower thresh set at 40%), noise is reduced but at the cost
of detection.

3.5 Summary
Presented in this chapter are a number of novel contributions. Firstly, two novel
approaches of surface detection are introduced which exploit the statistical properties
of different 3-D image regions in order to resolve the surface interfaces. The former is a
3-D adaptation of the statistical edge detection methods comprehensively evaluated by
Williams et al. (2014). The latter method employs a method of computing a statistical
feature gradient, which is a superior technique in terms of computational efficiency,
due to reduced redundancy in the number of calculations required. Furthermore, it
utilises a scale invariant approach such that the computational complexity increases
proportionately when the size of the neighbourhood mask is increased, this is in contrast
to the 3-D maximum response and the 2-D method on which it is based, which are
required to process more orientations when the scale is increased.
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For some common types of 3-D image formats, the resolution of the data is anisotropic
(Du et al., 2020). This can be a problem for surface detection methods, in which the
surface map is distorted and biased towards surfaces which exist in particular directional
planes (Brejl and Sonka, 2000). A further contribution is the ability to apply coefficients
which weight the directional components of the L2-statistical gradient vector, mitigating
some of the distortion effects which arise in surface maps when the resolution of the
image is not isotropic.

While the statistical tests, and the impact of neighbourhood scale employed within the
statistical detections method have already been evaluated by Williams et al. (2014) for
2-D edge detection, they have been reintroduced here in a novel 3-D surface detection
context, including a 3-D implementation of the Robust Rank Order test which has yet
to be comprehensively evaluated in either 2-D or 3-D data.

In addition to the statistical detection methods, contributions were also made in the
form of a novel efficient 3-D orientation filtering method, the purpose of which is to
determine a surface gradient direction. This was created to be used in conjunction
with a new 3-D non-maximum suppression algorithm for when surface orientation is
not known a-priori.

This chapter also provides a computational cost analysis of the newly introduced Max-
imum Response and Vector Magnitude statistical detection techniques, across different
scales and statistical tests. Including discussion of how convolution can be utilised for
fast application of parametric statistical tests for surface detection. The next chapter
will explore methods for how to accurately assess the performance of surface detection
techniques.



Chapter 4

Objective Methods for Surface
Detection Performance
Evaluation

The primary findings of this chapter were published at the Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications (Smith. and
Williams., 2020)

4.1 Introduction
In Chapter 3 a novel method of statistical surface detection has been introduced, however
any new advancements in surface detectors irrespective of the approach (morphological,
topological, model based or machine learning) should be objectively evaluated to de-
termine the valued improvement over prior methods and thus determine the potential
contribution. Yet objective analysis of statistical surface detection techniques remains
mostly unexplored. A comparison between statistical surface detection and existing
classical methods is necessary in order to establish the performance limitations of each
surface detection algorithm under the various conditions which may be encountered.

Performance evaluation for edge detection has been a long-standing research topic,
for example as early as 1975, Fram and Deutsch (1975) introduced a requirement for
finding reliable metrics that correspond to parameters which accurately affect the edge
detection’s performance. However, this requirement is not always adhered to (Jain and
Binford, 1991; Papari and Petkov, 2011).

77
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Performance measures for edge or surface detection can be broadly broken down into two
categories, qualitative and objective. Qualitative measures are analytical and typically
consist of single or multiple human assessors grading the edge or surface detection
results subjectively against specific criteria. Objective performance measurements differ
in the fact that the analysis is not graded subjectively, but instead graded by a defined
mathematical calculation applied to the detection result. This allows for the systematic
comparison of different algorithms in a repeatable, quantifiable manner often to find
the optimal algorithm for a specific task (Lopez-Molina et al., 2013).

This chapter explores the methodologies available to evaluate the performance of surface
detection algorithms. Detailed are the limitations of available objective techniques,
which at present leaves 3-D performance evaluation largely unexplored.

A contribution to the body of knowledge in performance detection is also presented
in this chapter in the form of a novel approach for fast and accurate correspondence
matching. Accurate matching is necessary for the correct application of a number of
performance metrics, however current matching algorithms are very computationally
costly to when applied to 3-D data, the newly introduced Efficient Paring Strategy
(EPS) allows for accurate performance metrics to be applied to large 3-D datasets and
to be evaluated in a practical time frame.

4.2 General performance evaluation approaches
Qualitative methods of analysis typically consist of a visual inspection of results. How-
ever the fundamental issue with qualitative approaches is the inconsistency introduced
by subjective Human visual analysis. This limits the ability to make an accurate com-
parison with existing research since the grading criteria is subjective (Papari and Petkov,
2011). It is common practice in edge and surface detection research, as well as most
computer vision research to present the visual results with some degree of subjective
assessment that contextualises the results. This allows the reader to draw their own
conclusions(van Vliet et al., 1989). It should be noted that efforts have been made to
improve upon and standardise qualitative approaches, for example hybrid methods also
exist, which combine elements of both subjective and objective analysis such as in the
work of Heath et al. (1996). However, in order to make accurate consistent comparisons,
reduce biases and eliminate as much subjectivity as possible, objective performance
measures which provide a quantifiable metric score are required (Papari and Petkov,
2011).
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4.2.1 Quantitative analysis strategies
In general, quantitative, or objective performance measures can be further classified
into two types, reference based and non reference based (Nercessian et al., 2009). Non
reference based techniques grade the edge detection result based on known favourable
edge response properties such as connectivity or uniformity, while reference based
methods compare the edge or surface result against a reference (ground truth) solution.
A reference solution depicts the ideal response for a given image, and the objective
performance measure applies some method of calculation which measures the similarity
of the result against the reference.

Non reference based performance measures have the advantage of avoiding the need
for ground truth data, this is beneficial since acquisition of reference solutions for real
imagery is non-trivial. The primary barrier to the acquisition of accurate reference
solutions is that real images are complex and feature rich (Milan et al., 1993). This
makes the edges and surfaces in real or natural images highly subjective to an observer
due to the many possible interpretations of what constitutes a surface interface. In
addition, there can be ambiguity in the precise location of an interface where a change
in region properties are more gradual and the change between regions is less defined
(Nercessian et al., 2009). Furthermore, manual creation of reference data for real images
is typically performed using a 2-D display of the image data, with a single individual
layer view at a time, therefore any surfaces that exist between the layers are not be
observed by the person manually labelling the data and therefore can be missed.

4.2.2 Non reference based assessment.
Non reference based assessment methods are applied directly to the output of the edge
or surface filter, therefore only require a test images and the detection result with no
reference image. The test image is typically a real world or natural image, and can
be from a wide range of imaging modalities, such as a digital photograph, or an MR
image. The second image used is the edge or surface map response from a detection
algorithm. Non reference based techniques are able to assess aspects of edge quality,
through a process of analysing the structure of the output image properties irrespective
of the accuracy of the edges.

For example, the connectivity and uniformity of the edges can be assessed such as
in the work of Zhu (1996), additionally edge coherence can be used as a measure of
edge evaluation (Kitchen and Rosenfeld, 1981). Haralick (1994) uses a covariance
propagation technique to characterise the performance of an algorithm, this technique
was expanded upon to assess uncertainty in 2-D corner points (Yi et al., 1994) and
further used by Ramesh and Haralick (1994) to evaluate the performance of gradient-
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based edge detection methods. While Cho et al. (1995) used a method of bootstrapping
to evaluate edge detection.

Non reference methods provide a measure of edge or surface quality, which can be useful
for determining how fit for purpose the outputs are for higher level operations, such as
segmentation, since certain properties such as unconnected edges or duplicated edges
can impede the performance of the higher level operations. However, the fundamental
issue with non-reference based methods is that they do not measure the accuracy of a
detected surface or indicate how effective an algorithm is at resolving interfaces between
regions in the image.

Non reference based methods also suffer many biases and are restricted in their use due
to the difficulty in assigning metric scores to a subjective element such as edge quality
(Nercessian et al., 2009). Real images are complex and feature rich, thus the edges and
surfaces in real or natural images are highly subjective to an observer. This makes it
non-trivial to effectively incorporate the original test image in order to assist in the
evaluation.

4.2.3 Reference based assessment.
Reference based measures objectively compare the result image against a corresponding
ground truth (ideal) solution. This can be achieved through a variety of metrics and
performance evaluation methods which are widely represented in the literature in a
range of contexts (Savitzky and Golay, 1964; Abdou and Pratt, 1979; Cyganski et al.,
1995; Borra and Sarkar, 1997; Forbes and Draper, 2000; Bowyer et al., 2001; Prieto
and Allen, 2003; Martin et al., 2004).

Crucially, these kinds of processes allow for an accuracy measurement of the detected
surfaces, since every point in the surface detection result can be directly compared
against every point in the reference solution. Allowing for the number of correctly
detected surface points (True Positives, TPs), correctly determined non surface points
(True Negatives, TNs), missed surfaces (False Negatives, FNs), incorrect surfaces (False
positives, FPs), to be counted. The main advantage of reference approaches is that they
can be used to determine edge detector performance within a controlled environment
where edge pixel locations are known, and without subjective biases (Nercessian et al.,
2009).

These methods require two types of images for the assessment.

• Result Image

• Ground Truth Image
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The typical procedure for reference based analysis is as follows, firstly, a test image is
required. This can be a synthetically created image, or a real image. If synthetic, the
image is designed to possess features closely resembling interfaces in a real images that
match the context in which the detection method would be typically used. Applied to
the test image is the detection method being evaluated, producing the ‘result image’.
In its raw output form the result image is usually some variation of an edge or surface
map. Additional processing steps can be applied to classify edge and non edge points,
such as thresholding. Thus, the result image is simply the output from an edge or
surface filter. The result image is then assessed for accuracy with the ground truth
image using one or more of several objective performance algorithms such as the Pratt
figure of merit (PFOM)(Abdou and Pratt, 1979), Probabilistic Rand Index(PRI) of
Savitzky and Golay (1964), Pixel Correspondence Metric (PCM) of Prieto and Allen
(2003), Receiver Operating Characteristic (ROC) Curves of Bowyer et al. (2001), the
Precision (P), Recall (R) and F-measures of Martin et al. (2004), and also the Vari-
ation of Information (VI) measure by Meilă (2005). Each of these methods produce
an objective metric which grades how accurately the result image correlates to the the
ground truth image.

4.2.4 Limitations
The ground truth data used in objective frameworks with ‘real-world’ test images
are manually segmented boundaries of objects. This presents difficulties since the
acquisition of ground truth solutions for ‘natural’ or ‘real-world’ images is, as previously
stated, a non-trivial problem (Nercessian et al., 2009). Real images are complex, they
possess many details, artefacts and features that lead to inconsistent, time consuming
manual contouring. Attempts have been made to create robust real image datasets with
ground truth data to be used for performance analysis. For example the University of
South Florida dataset in the work of Heath et al. (1996) and Bowyer et al. (2001), also
the Berkeley segmentation dataset applied in the work of Martin et al. (2004). These
methods can offer a good objective evaluation framework for 2-D boundary detection
and object classification methods, however their application is limited to 2-D and the
subjective nature of how a boundary is defined in these types of dataset is not fully
mitigated.

An alternative approach is to use synthetically generated image volumes, whereby the
edge or surface location is predefined, then a simple image is constructed with carefully
controlled parameters to define the region profiles characteristics. This approach is not
without its problems, Forbes and Draper (2000) shows that synthetic data for testing
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purposes often does not correlate with real world performance, citing the manipulation
of the test image properties and parameter selection of the filters in order to manipulate
favourable results. Bowyer et al. (2001) further supports this and cites the reasoning
for poor correlation is due to synthetic data which is too simplistic, not accounting for
interface topology, noting the lack of interface curvature, interface strengths, and more
importantly the presence of multiple different interfaces of different strengths present
in the same image.

With edge and surface segmentation, there is typically a trade off in sensitivity and
noise suppression in respect to parameter selection. Filters can be made more sensitive,
allowing for weaker interfaces to be resolved, however this can also lead to over detection
of edge and surface points, alternatively, parameters can be selected which reduces over-
detection artefacts, either through increased pre-processing smoothing, or through a
larger scale parameter, in turn this makes weaker edges and surfaces more challenging to
resolve. For single interfaces, this trade-off can be mitigated through precise parameter
selection and a post processing thresholding procedure which differentiates between the
spurious responses and interface response. The introduction of multiple interfaces in a
synthetic image volume results in a more challenging thresholding scenario, since some
edge or surface interfaces will be weaker than some of the spurious voxels, thus the
spurious responses can no longer be removed through thresholding without removing
some of the detected weaker edges or surfaces.

The reduced complexity in synthetic image detail enables tests to be performed on
particular aspects of a filter in isolation. The effects of interface type can be examined by
resolving interfaces between differing statistical region profiles. The effects of interface
topology can be examined by changing the structure of the interface while controlling
for interface type and strength. The creation of synthetic data with multiple interfaces
also assesses the robustness of an edge or surface detection algorithm with respect to
resolving power (the ability to resolve interfaces while minimising over-detection).

4.3 Current Methods
Current reference methods are not limited to the calculation of TPs, FPs, TNs and
FNs in order to produce a performance metric. A surface detected in an incorrect
position would typically be a more useful result than a surface missed entirely. Fig 4.1
presents an example of a displaced edge in 2-D data, and the effect a displacement
of 1 pixel has on the metric score using a Pratt Figure of Merit analysis (Abdou and
Pratt, 1979). Here the displaced boundary still gets a good score (0.9). Metrics which
do not consider displacement, such as a Dice score or Jaccard index (Bertels et al.,
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2019), would observe all positive cases as spurious responses (False Positives or FPs),
and incorrectly determine a number of False Negatives (FNs) leading to a potentially
unreliable metric score of 0.

(a) Reference (b) Displaced boundary

Figure 4.1: Pratt figure of Merit. In this 11�11 example, a score of 0.9 is achieved for
a surface with a displacement of n=1 (one position to the right).

Metrics which do not consider displacement are better suited to evaluating region seg-
mentation tasks, since the omission of boundary displacement data does not significantly
effect the performance metric score in this context. A pixel shift of n � 1 of a large
region does not result in a significant change in the number of correctly determined
TPs and FNs. However for an edge or surface, a single pixel or voxel shift is enough to
miss the entire interface. Edge and surface images typically contain at least an order of
magnitude more true negative points compared with true positive points, and therefore
a metric which accounts for displacement is more appropriate. This is because a minor
displacement of an edge or surface in a detection result is often sufficiently fit for pur-
pose. This is a significant advantage of distance based metrics over other reference based
performance measures in the context of edge and surface evaluation, as distance metrics
provide a careful balanced appraisal of the detected interface (van Vliet et al., 1989).
There are a number of distance based metrics in the literature which employ the sample
principle of quantifying performance using a rudimentary measurement of distance (di)
including the commonly applied metrics defined in equations 4.1, 4.2 and 4.3.

MSD �
1
ID

IḐ

i�1
pdiq

2 (4.1)

Mean square deviation (MSD)

MAD �
1
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IḐ

i�1
|di|

2 (4.2)

Mean absolute deviation (MAD)
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PFOM �
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IḐ
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1
1 � αpdiq2

(4.3)

Pratt Figure of Merit (PFOM)

Figure 4.2: di is an array of values corresponding to the euclidean distances between
detected surface pixels (red) and reference surface pixels (blue). It represents the
amount of displacement between the detected edge, and the reference edge. This
examples shows one of many ways in which di is determined, here by the Euclidean
distance. However determining which pixels should be matched to form the
displacement measurement correctly requires a correspondence matching process.

Where ID is the number of detected surface points, II , the number of ideal surface
points (ground truth), α a scaling constant to ensure a score between 0 and 1, and di

the surface deviation for the i’th detected surface pixel and is measured as the Euclidean
distance between the corresponding pixels.

The Pratt figure of merit is a prominent metric for 2-D edge detector evaluation (Abdou
and Pratt, 1979; Peli and Malah, 1982; van Vliet et al., 1989). This is achieved by
utilising the distance measurement between the position of a detected surface point and
the corresponding surface point in the reference image as illustrated in Fig 4.2.

The main issue with this approach is determining which two positive points correspond
with each other between the reference and result image. The Pratt Figure of Merit
simplifies this by matching the closest positive pixel in the ideal and test images. This
presents a problem since the method does not factor in whether the pixel evaluated
for di has previously already been matched. As the metric also factors the disparity



4.3. CURRENT METHODS 85

between the total number of detected edge points in the image and the total number
in the reference, reusing previously matched edge and surface points does not always
produce a reliable score. Ideally a displaced edge is preferential over a fragmented edge,
however this is not reflected by a Pratt Metric score. Fig 4.3 presents a case where a
fragmented edge in 2-D data, provides a superior metric score than a displaced edge.

(a) Ground Truth (b) Fragmented edge
0.9545

(c) Displaced edge
0.9000

Figure 4.3: Pratt figure of Merit, in this 11�11 example, the PFOM does not penalise
fragmented edges, leading to preferential metric scores for fragmented interfaces over
displaced interfaces

Approaches which do not factor in previously assigned pixels are referred to as one to many
correspondence techniques and include the metrics defined in equations 4.1, 4.2 and 4.3.
This problem is further exacerbated when the number of ideal points in the reference and
the number of detected points are not equal. This is because it allows for multiple-to-
one and one-to-multiple correspondence between the reference image and the detection
result. Multiple to one correspondence matching can lead to inconsistencies in determ-
ining how di is defined. This is due to the fact that the previously matched pixels are
required multiple times in the assessment.

As a consequence, when the data is noisy, and more spurious responses exist in the edge
or surface image, or cases where interfaces are fragmented, the instability of these types
of metrics can lead to inflated performance scores which do not accurately reflect with
the visual assessment of the result, likely rendering the result invalid. Fig. 4.4 shows
how the discrepancy between the number of points in the reference and result image
can lead to inconstant measurements of di.

To further complicate matters regions can often transition from one region to another
over a gradient, where it is not clear where in the transition the exact location of the
interface exits. This ‘spreading-out’ or ‘smearing’ of the interface can be problematic
for surface detection algorithms, with unconnected, displaced or duplicated boundaries
being produced. It can also be problematic in defining where the interface actually
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Figure 4.4: Examples of the inconsistencies in defining di. In the first instance, the
detected points (red) are being used multiple times in the performance evaluation for
determining di from the reference interface (blue), inadequately penalising the
fragmented surface. In the second example, di is established by pairing the closest
detection to the reference, however this ignores many of the surface points

lies in a ground truth image. Therefore, when assessing the performance of a surface
detection algorithm an allowance for displacement should be available to account for
these localisation errors, since detected, connected boundaries even with a displacement
are of value.

4.3.1 Accounting for Localisation Error
Bowyer et al. (2001) recognised that image context is important when considering the
noise or spurious content in the result. False positive detection results in contextually
unimportant regions, such as those sufficiently distant from an ideal edge, can be
considered spurious. However, some detected points could be in close proximity to an
ideal edge or surface, and could be considered a correct detection, but with some degree
of localisation error.

Compensation or tolerance for displacement of boundaries is a consideration that cannot
be ignored since digital images are comprised of discrete data, thus the location of an
edge or surface point in a filter response is constrained by the pixel or voxel resolution of
the image (Fig 4.5). However, since an edge or surface is the interface between regions,
and different regions occupy adjacent voxels, this means the true position of a surface
cannot be accurately represented by a discrete pixel in an edge map or voxel in a surface
map. A surface detection algorithm must position a surface in accordance with the
discrete framework of the image and this introduces location error within a margin
of at least 1 voxel. Most objective measures do not account for a pixel or voxel shift
between the detected interface and the ideal interface (Fig 4.5) or do not account for
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Figure 4.5: Displacement of edge. True edge fits between the 2 rows of pixels, however
the edge must conform to the pixel grid, therefore when maintaining single pixel edge
thickness, this results in 2 potentially correct edge locations, which needs to be
accounted for during performance evaluation.

the fragmentation of the detected interfaces which can result in incorrect assumptions
about the quality of the detection Williams2008.

To account for localisation error introduced by the discrete nature of images, a tolerance
of at least one unit (pixel or voxel) should be required as minimum. However, this
window or tolerance zone (defined as Tmatch) can be increased to include a larger
area (Fig 4.6) to account for detection methods which introduce a shift in the surface
response. If a detected surface falls within this tolerance zone, the detection point
should be classified as correct. The fundamental problem with this approach is that it
increases the number of ideal points in the reference image, and then a one to many
correspondence imbalance can occur, where there are more true positive points in the
result image than the actual ideal points in the reference image.

Figure 4.6: Example of Tmatch = 2. Blue pixels indicate ideal response. Detection
points found in red zone are automatically determined as spurious, points detected in
Tmatch zone (green zone) are assessed for an assignment match

In order to avoid the instability in measuring di, a method of forcing one to one
correspondence between ground truth and result image is required (Liu and Haralick,
2000). Whereby each detected point in the result image corresponds to a detection point
in the reference image. It is important to compute the correspondence of the images in
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order to penalise multiple detections (Martin et al., 2004), since single detection is one
of the three important criteria of edge detection laid out by Canny (1986) for assessing
optimal detection.

Establishing one to one correspondence matching between reference ideal points and
detected points are not trivial problems (Liu and Haralick, 2000; Liu and Haralick, 2002).
Some detection points that fall in the tolerance zone and not in the ideal position should
be recategorised as True Positives. Some consideration of how this classification is made
is required, as there are a number of inefficient or sub-optimal ways to pair the detection
points.

Forbes and Draper (2000) paired farthest distance pixels in the tolerance zone with an
ideal edge pixel. Bowyer et al. (2001) instead opted for the closest distance matched
(CDM) pair, in both cases, the detection points in Tmatch region are ranked in order
of proximity to the correct detection location. Assignments are made based on based
upon the detections closest to the reference, once a match has been made, the pixel or
voxel cannot correspond with another point in the reference.

However, multiple missing points and multiple displaced points in the result image can
lead to a confusion of which correspondences should be made. Using the CDM approach
of Bowyer et al. (2001), correspondences are prioritised simply by the order in which
they are processed, but this does not always offer the most consistent approach.

4.3.2 Classical Assignment Problem.
Liu and Haralick (2000) addressed the inconsistencies with the CDM approach by
developing a strategy for creating optimal one to one correspondence, implementing
a process which treats di as a cost function which should be minimised. This was
achieved by framing the task as the classical mathematical assignment problem which
has already been optimally solved.

The assignment problem is a fundamental combinatorial optimization problem which
is well established in the field of mathematics, in which: ’The problem instance has a
number of agents and a number of tasks. Any agent can be assigned to perform any
task, incurring some cost that may vary depending on the agent-task assignment. It
is required to perform as many tasks as possible by assigning at most one agent to
each task and at most one task to each agent, in such a way that the total cost of the
assignment is minimized.’. The optimal solution to this problem can be solved using
the Kuhn-Hungarian algorithm (Kuhn, 1955).

In re-framing this problem for one to one correspondence matching for edge and surface
detection evaluation, an agent can be assumed to be a missing surface point, while a
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task can be a nearby spurious point in the test image. The cost function is the Euclidean
distance between the points. By framing it in this fashion the problem can be solved
using the Hungarian algorithm. It achieves this by finding minimum-weight matchings
in bipartite graphs. However, the main barrier of using the Hungarian algorithm
for providing one to one correspondence matching is that it is very computationally
expensive with a time complexity of (O

�
n4�), Munkres (1957) later reduced this to

O
�
|V |3

�
. The current most efficient method for solving the assignment problem is

the cost scaling algorithm (CSA) implementation of Goldberg and Kennedy (1995) at
O
�
|V |2

�
but these approaches remain very computationally expensive process when all

pixels and voxels are considered for a correspondence match.

Liu and Haralick (2002) using the Tmatch principle were able to constrain the number
of potential matches to a limited range and reduce the complexity of the problem,
producing an optimal method suitable for performance evaluation of small 2-D datasets
using the Hungarian algorithm that can be completed in a practical time-frame. However
for 3-D data and large evaluation datasets, a more practical approach is required.

Further attempts have been made to constrain the problem and simplify the task such
as in the work of Martin (2003) using an optimised BiPartite graph method, and Prieto
and Allen (2003) similarly used weighted matching in Bipartite graphs to create the 2-D
pixel correspondence metric (PCM) for one to one correspondence matching. However
these methods still remain computationally expensive when compared with one to many
correspondence metrics, and when dealing with large evaluation datasets or 3-D data,
analysis can be impractical.

Liu and Haralick (2002) made recommendations for enforcing a maximal one-to-one
correspondence between ground truth and result images as a general principle to follow
in evaluating edge detection performance. However, while the optimal strategy for
solving the assignment problem can be achieved using the aforementioned processes,
strategies to establish di is feasible for low resolution 2-D images or for small data sets
only. When considering the 3-D images of surface detection, the increased complexity
arising from more potential positions for a match only adds to the computational cost.
This complexity is compounded by the fact 3-D images typically contain a greater
amount of voxels than a 2-D image contains pixels, making this strategy at current
computational speeds resource intensive and often impractical for establishing di.

Additionally, a reliable comprehensive analysis require the performance metrics to be
applied to many thousands of results, for example datasets such as BRATS (Menze et al.,
2015) are large, and many thousands of results can be generated. In order to undertake
an evaluation in a reasonable time-frame and maintain the most representative objective
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accuracy, an efficient method of solving the assignment problem for this case is required.

4.4 Efficient Paring Strategy (EPS)
Presented here is a novel surface pairing strategy based on the work of Liu and Haralick
(2000) and Liu and Haralick (2002). The strategy was developed to assign displaced
detected surface points (False Positives) in the result image to missing surface point
locations (False Negatives) in order to achieve optimal one to one correspondence
matching efficiently.

The EPS procedure aims to closely replicate the accuracy of the Hungarian algorithm
(Munkres, 1957), creating a fast approximate solution to the assignment problem using
a novel inflationary zone method within a defined Tmatch region. This method is an
adaptation of the Closest Distance Match (CDM) method of Bowyer et al. (2001). The
adaptation allows for a more consistent metric, which more closely replicates the cor-
respondence matching of the optimal Hungarian method utilised by Liu and Haralick
(2002). However, unlike methods which try to solve the assignment problem, this tech-
nique is suitably fast for analysis of 3-D image volumes or fast computation of multiple
2-D images in large data sets.

4.4.1 Technique
The method utilises a concept of zones within a local neighbourhood window. Zones
are defined to be regions within a local Tmatch neighbourhood window, which occupy
the same Euclidean distance from the central pixel. Zones are ranked in levels from
closest to farthest from the central pixel. 2-D examples are presented in Fig 4.7, while
3-D examples are presented in Fig 4.8.

(a) Zone 1 (b) Zone 2 (c) Zone 3 (d) Zone 4 (e) Zone 5

Figure 4.7: Visual representation of 2-D Zones. Each zone, levels 1-5 in white,
possesses a cost function equal to the Euclidean distance to the centre of the missing
edge point. Locations from prior zones are shaded dark grey.
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(a) Zone 1 (b) Zone 2 (c) Zone 3 (d) Zone 4 (e) Zone 5

(f) Zone 6 (g) Zone 7 (h) Zone 8 (i) Zone 9

Figure 4.8: Visual representation of 3-D Zones. Each zone, levels 1-9 in white,
possesses a cost function equal to the Euclidean distance to the centre of the missing
edge point. Locations from prior zones are shaded dark grey.

In order to compute one-to-one correspondence, and avoid creating multiple partners
for each candidate, each match needs to be computed concurrently. For every false
negative (FN) in the result edge and surface image, a set of 2-D or 3-D zones derived
from a Tmatch scaled neighbourhood is established, centred on the FN location.

In each zone the number of potential voxel candidates for a match are counted. Then in
order to minimise the assignment cost, the closest match is preferential, thus pairings
made between voxels in the ideal and surface detected image are made in the lowest
level zone first. However, as some FNs share the same candidate match, FNs with the
fewest candidates are assigned a match first. This technique produces a closest distance
match correspondence, however, unlike the CDM method, the matches are optimised
such that the maximum number of correspondences are produced.

Once all candidates from the first zone are exhausted, if any FNs remain, the procedure
repeats with the next zone and so on until each zone in the Tmatch neighbourhood has
been checked in its entirety. Any missed responses in the result without a pairing are
classified as actual False Negatives, while any FPs in the result without a pairing are
determined to be correctly labelled false positives. From here a number of performance
methods can be applied. Either Precision recall based such as in the work of Bowyer
Bowyer et al., 2001 but also a distance metric score can be applied such as in the work
of Prieto Prieto and Allen, 2003, .

4.4.2 EPS Examples
A detailed step by step walk-through of the this procedure is given in the following
section. Presented for clarity is a 2-D example case for correspondence matching of FN
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and FP responses within a designated Tmatch neighbourhood. For 3-D examples, cubic
Tmatch regions and inflationary zones can be used (Fig. 4.10f-n).

(a) Example Image (b) Reference Image (c) Edge Map

(d) Binary map (e) Count and remove
TPs

(f) Locate FNs and
unmatched edges

Figure 4.9: Illustration of matching process. a) 2-D Example image. b) Reference
image. c) Edge map filter response. d) Sub optimal binary map from post processing
(e) An image showing the position of TPs (Labelled grey) which need to be counted
and then removed from the image. (f) The location of the missing edge points (FNs)
then need to be identified (white), in addition to the unmatched edge points (grey) .

1. First apply an edge detection algorithm to an image(Fig 4.9a) in order to obtain
an edge map (Fig 4.9c) For 3-D data this would be a surface detection algorithm.

2. The EPS requires both the reference image(Fig 4.9b) and filter response (Fig 4.9c)
to be binary data, therefore post the processing methods NMS and hysteresis
thresholding need to be applied to label edge and non-edge points, thereby creating
a binary edge or surface map (Fig 4.9d)

3. The result and reference images must then be compared using a Boolean "ADD"
operation in order label all the true positives (TP) in the result image. These are
counted and the total is stored (Fig 4.9e).

4. The TP points are no longer required for the correspondence matching and are
therefore removed from the result image such that they are not counted multiple
times (Fig 4.9e.)

5. Next the location of all False Negatives (FNs) in the result image are determined,
as these locations require a correspondence match. (Fig 4.9f)
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6. Then identify and label unmatched edges (Fig 4.9f)

7. In the FN locations, establish a set of zones designated by the Tmatch neighbour-
hood (here 5�5) in order to create a list of potential candidates for a correspond-
ence match.

8. The algorithm aims to produce optimal matching with a minimised di cost function.
In order to achieve this, FN locations which have the fewest number of candidate
matches need to be identified. Therefore for each zone, count the number potential
correspondences between the FN locations and FP responses. These candidates
are signified by blue points in Fig 4.10.

9. To minimise the cost of di, establishing closest distance matches should be pri-
oritised. This is achieved by pairing FN locations with FPs in the lowest level
available zone first.

10. In order to maximise the number of possible correspondence matches within the
zone, paring are to be made starting with FN locations with the fewest available
candidates. This is because candidates with more than one potential match have
more paring options, and as the number of correspondence matches increases, this
reduces the availability of remaining potential parings.

11. Once a paring has been made, remove the Tmatch neighbourhood from that location
and remove the FP response. (In this example, Zone 1 has no potential matches)

12. When all matches from the zone have been established, or all candidates from the
zone have been exhausted, repeat the process with the next zone

13. Continue this process through each zone until all FN locations have been assigned
a match or when the Tmatch neighbourhood has been exhausted.

14. Unmatched FNs are determined to be actual FNs, while unmatched FPs are
determined to be actual FPs and are counted as such.

15. Each pairing is assigned a cost which relates to the zone from which the paring
was made, the cost is therefore the Euclidean distance, thus producing a distance
function of the pairings. As 2 points have been matched from zone 2 and one
from zone 3, this provides a distance function of [1.41,1.41,2] which can be used
for a distance based metric.
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(a) Zone 1 (b) FN 1 (c) FN 2 (d) FN 3

(e) Zone 2 (f) FN 1 (g) FN 2 (h) FN 3

(i) Zone 3 (j) FN 1 (k) FN 2 (l) FN

Figure 4.10: An example case of one to one correspondence matching using a set of 2-D
zones. Here each zone is signified by a blue grid, unmatched FNs are red, unmatched
FPs are white. While matched FNs are green and matched FPs are shaded grey.
(Tmatch: 5�5). In the example case, Zone 1 has no candidates for a match. Zone 2 FN1
and FN2 locations each have candidate matches. (f) FN1 has 2, (g) FN2 has 1, (h)
while FN3 has zero. Since FN2 has the fewest potential candidates (1) it is assigned
first, then the remaining candidate FN1 is assigned. (i) Zone 3 is processed next,
where the final remaining FN is assigned a match and the pairing process is completed

By using one-to-one correspondence matching, a more reliable measure of performance
can be established. To highlight the difference in outcome between the one to many
PFOM and that of the EPS method, the earlier example is re-examined in Fig 4.11.
Here di is established using both EPS method and the traditional PFOM method in
the Pratt figure of merit calculation (Eq. 4.3). The difference in the metric score for a
fragmented edge is significant, while the advantages of accounting for displacement are
maintained.
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(a) Ground Truth (b) Fragmented
edge

(c) Displaced edge

Figure 4.11: Comparison of metric scores between the one to many Pratt Figure of
Merit and the one to one EPS on two types of incorrect edge results. Fragmented edge:
(PFOM 0.9545 EPS 0.5455). Displaced edge: (PFOM 0.900 EPS 0.900). The results
indicate that the EPS penalises a fragmented edge while the Pratt figure of Merit does
not leading to an unreliable objective performance score.

4.5 Evaluation of Correspondence Matching Techniques
4.5.1 Analysis of Accuracy
The EPS method presented is a fast alternative to the Hungarian algorithm for one to
one correspondence matching, this technique allows for the rapid evaluation of surface
detection algorithms for large 3-D datasets. The Hungarian algorithm is considered
optimal since it solves the assignment problem with the smallest possible aggregate cost
function di. Thus the accuracy of the EPS method and alternate methods for one to one
correspondence therefore require direct comparison against the Hungarian algorithm.

4.5.1.1 Accuracy Test Data
In order to assess the accuracy of the EPS technique and that of other performance
metrics, a large sample dataset of realistic edge results and reference images is preferred.
In order to create a large dataset of typical edge filter responses, an edge filter was first
applied, with NMS and hysteresis thresholding to a set of 5 MRI volumes for which
reference data was already available. The MRI volumes and reference images were
obtained from the BRATS data set (Menze et al., 2015).

To increase the number of example images in the dataset, small sample regions were
extracted from the reference data and the same corresponding sample location is also
extracted from the filter result to form a ‘sub image pair’. These sub-image pairs are
small 2-D neighbourhoods of varying sizes, extracted from every edge point location in
the reference data and paired with the same neighbourhood location in the filter result
(Fig 4.12).

The sub-image sizes range from 11�11 and increase in odd increments through to 29�29.
By varying the sub-image size, the complexity of performance measurement is altered,
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more edge points are introduced as the size of the sub-image increases. This provides
an indication of whether the complexity of the data affects the accuracy of the methods
being evaluated. The sub-images pairs are required to be 2-D as opposed to 3-D, as the
methods are to be compared against the Hungarian algorithm, which is only practical
for 2-D performance evaluation.

There are a total 12424 ideal points in the 5 MRI Volume reference images, therefore
12424 2-D sub-images pairs were created at each of the 10 aforementioned neighbourhood
sizes. Using 10 different sub-image sizes creates a total of 124240 reference sub-images
with corresponding filter result sub-images for the evaluation dataset.
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(a) MRI layer (b) Edge Filter Result (c) Ground Truth (GT)

(d) Filter sub-image (11�11) (e) GT sub-image (11�11) (f) Filter sub-image (29�29) (g) GT sub-image (29�29)

Figure 4.12: Examples of sub-image pairs extracted from MRI volume. Each sub-image is a small region extracted from the Edge Filter
result and reference image. Sub-images were extracted for every position in the image with a positive reference point in its central index
location. For a total of 12424 2-D sub-images pairs at each scale.
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4.5.1.2 Method
The evaluation of accuracy for correspondence matching, requires comparison against
the Hungarian algorithm, as this approach always produces the optimal cost function
di. The different approaches to correspondence matching are applied within a singular
performance metric such that the only variable assessed is the cost function di. The
performance metric selected is comparable to widely used Pratt Figure of Merit (Eq 4.4).

MetricScore �
1

maxtID, Iiu

IḐ

i�1

1
1 � αpdiq2

(4.4)

In the evaluation four different approaches to correspondence matching are assessed to
provide the di distance metric in their own form. Firstly One to many correspondence
matching is assessed relative to optimal one to one matching using the standard Pratt
Figure of Merit. Three one to one correspondence matching approaches are then
compared to the optimal Kuhn-Munkres Hungarian algorithm approach. These include
the Closest Distance Match of Bowyer et al. (2001), the CSA assignment method of
Goldberg and Kennedy (1995) and the novel Efficient Paring Strategy (EPS) presented
in this chapter.

The performance measures are applied to each of the sub-image pairs and the scores are
measured for accuracy by comparing against the optimal Hungarian algorithm using
Pearson’s pairwise correlation, the results of which are presented in table 4.1.

4.5.1.3 Results

Metric 11�11 13�13 15�15 17�17 19�19 21�21 23�23 25�25 27�27 29�29
PFOM 0.80 0.87 0.91 0.93 0.95 0.96 0.96 0.97 0.97 0.97
CDM 0.86 0.91 0.94 0.95 0.96 0.97 0.97 0.97 0.97 0.97
CSA 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
EPS 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 4.1: Pearson Pairwise Correlation of performance metric results obtained
through optimal Hungarian method calculation of di with that of results obtained
from sub-optimal correspondence matching methods. Including the standard Pratt
Figure of Merit, in addition the following one to one correspondence matching
techniques; Closest Distance Match, CSA Assignment and Efficient Paring Strategy
calculation. 12424 example images were used at odd sub-image sizes from 11�11 to
29�29. Pvals for all results were 0

The results of the comparison show that the presented EPS is strongly correlated to the
Hungarian algorithm solution over a range of different sub image sizes with a coefficient
of 0.99. The CSA method is also strongly correlated to the Hungarian solution achieving
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coefficient scores ranging from 0.99-1.00. This indicates that for optimal paring the CSA
or EPS method are highly preferred over the other methods, offering greater accuracy,
and therefore greater reliability when compared against the CDM and PFOM methods.

4.5.2 Analysis of Efficiency
While the Hungarian algorithm always provides an optimal cost function for corres-
pondence matching, it is very computationally expensive and not practical for large
datasets or complex 3-D performance analysis. The alternate methods assessed show
that CSA and EPS approaches both can achieve results very close to optimal. The
following analysis evaluates the computational cost in terms of completion time in order
to assess whether or not they are suitable for large data sets and 3-D data.

4.5.2.1 Efficiency Test Data
In order to assess edge and surface detection algorithms, the performance metrics again
needed to be applied to large datasets, and the computation time recorded. Since
the complexity of the data affects the computational efficiency of the methods in
question, the procedure for measuring the efficiency of the methods required running
the performance measures on images on controlled levels of complexity.

In this analysis, the complexity of the data is increased in a linear fashion, this requires
careful construction of the data such that the number of edge and surface points is
controlled. Increasing the complexity of the data is achieved by increasing the number
of potential correspondence matches in each 2-D and 3-D example case. This is achieved
by increasing the size of each image, and increasing the number of edge and surface
points linearly as the size of the images increases.

In the creation of the data, the number of edge points in the ideal image was made
to precisely match the number of edge points in the result image, this is to ensure
conditions which allow for precise one to one correspondence matching of all edge
points in 2-D and surface points in 3-D. The edge and surface points in the test images
were pseudo randomly generated and only existed within the tolerance zone (Tmatch)
of an ideal edge. An example of a reference image and test image pair is presented in
Fig. 4.13. Here Tmatch was set to accommodate a 5�5 window around the ideal points,
therefore all FP points are located within the tolerance governed by Tmatch and the
number of edge points in the reference is the same as the test image.
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(a) Reference Example (b) Test Image Example

Figure 4.13: Example of test images and ground truth images for time analysis with
100 potential correspondences. Edge points are created within Tmatch neighbourhood
such that the number of edge points in both ground truth and test image are equal in
order to allow for correspondence matching of all points.

An equivalent 3-D dataset was created in order to assess the efficiency of the corres-
pondence matching approaches for surface detection evaluation. Here Tmatch was set to
accommodate a 5�5�5 neighbourhood. Complexity was again increased by increasing
the number of potential correspondence matches within data by increasing the image
size and the number of surface points linearly.

4.5.2.2 Method
Again the correspondence matching approaches are evaluated using a singular per-
formance metric employing the different approaches to calculating di (Eq 4.4). The
performance metric is applied to the reference and test pairs, and the average calculation
time recorded across 20 examples, before the complexity of the test data is increased.
In the 2-D analysis, the number of edge correspondences ranges from 0 to 600, while
for 3-D the number of surface correspondences ranges from 0 to 10000, the discrepancy
between ranges is due to the fact that 3-D data will possess more surface points than
an equivalent 2-D image contains edge points.

4.5.2.3 Results
The CSA (Goldberg and Kennedy, 1995) and the EPS performance measures were
compared first in 2-D against the Munkres (1957) Hungarian algorithm. The results
are shown in Fig 4.14, here it can be seen that for 2-D performance measures the
Munkres Hungarian completion time increases exponentially as the complexity of the
data increases through broadening the number of potential correspondences. The
Munkres Hungarian algorithm is shown to be significantly slower than the alternate
accurate CSA and EPS methods.



4.5. EVALUATION OF CORRESPONDENCE MATCHING TECHNIQUES 101

50 100 150 200 250 300 350 400

Number of matched edge points

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
v
g

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

2-D Performance Evaluation time

CSA
Hungarian
EPS

Figure 4.14: (Computational time analysis of 2-D performance measures, including
Hungarian Kuhn, 1955, CSA Goldberg and Kennedy, 1995 and the EPS method.

However, it is not clear from this figure that the EPS method is efficient enough to
be a viable replacement for the Pratt Figure of Merit or the Closest Distance match.
Fig 4.15 shows a comparison of the EPS technique against the efficient sub optimal
PFOM and CDM techniques, revealing that the EPS is able to perform the task in
comparable time.
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Figure 4.15: Computational time analysis of alternative performance measures,
including CSA, EPS, CDM and PFOM.
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While the CSA method could be considered suitable for 2-D data sets (Fig 4.15), for
3-D data it is shown to be significantly more computationally expensive when compared
to the EPS method (Fig 4.16a). The additional computational complexity introduced
by 3-D data and surface information, leads to a significant increase in completion time
for the CSA method. However Fig 4.16b shows that in the context of 3-D, the time
complexity of the problem remains linear for the EPS, CDM and PFOM methods. This
means that the EPS is the only method which is both accurate and computationally
efficient.
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(a) 3-D CSA v EPS
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Figure 4.16: (a) Computational time analysis of optimal 3-D performance measures,
CSA Goldberg and Kennedy, 1995 and the proposed EPS method. (b) Computational
time analysis of fast sub-optimal 3-D performance measures, including EPS, CDM and
PFOM. The results of a) show the EPS to be significantly more efficient than the
Hungarian algorithm approach, while the results of b) show the EPS to be comparable
to the sub-optimal CDM and PFOM approaches

4.5.3 Summary
The Efficient Pairing Strategy assisted metric offers increased accuracy over a number of
classical performance metrics, notably the commonly applied one to many correspond-
ence PFOM technique, and reliably presents an objective measure that more closely
reflects the visual image results by adequately penalising fragmented edges and surfaces.

The EPS results are shown to be consistently accurate, with a 0.99 Pearson correlation
against test assignment cases solved by the Hungarian algorithm, improving over the
existing CDM and standard PFOM methods for correspondence matching (Table 4.1).
Furthermore the EPS method was shown to provide results comparable to the Hungarian
and CSA methods in terms of accuracy of one to one correspondence matching with
significantly less computational cost.
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Finally, it should be noted that the EPS in this form does not offer a general solution for
the assignment problem. However, the EPS does provide a fast and accurate alternative
to the Hungarian and CSA algorithms in the context of correspondence matching
reference solutions with edge and surface detection results, finally allowing for practical
fast one to one correspondence matching that is suitable for both large 2-D and 3-D
data sets.





Chapter 5

Objective Analysis of 3-D Surface
Detection

5.1 Introduction
Evaluation of 3-D statistical surface detection methods outside of this work has yet to be
undertaken. In this chapter, the performance of the Vector Magnitude statistical surface
detection method presented in Chapter 3, is evaluated across a range of experimental
tests. The novel statistical approach is compared against two baseline traditional
methods, the 3-D Canny surface detection algorithm, adapted from the groundbreaking
2-D Canny (1986) edge detection algorithm, and the optimal 3-D Steerable filter method
of Aguet et al. (2005) for detecting surface features.

This chapter provides an objective analysis across a range of evaluations that utilise
synthetic datasets with ground truth reference data. Objective assessments require a
performance metric which grades the quality of detection with a numerical value, thus
allowing for repeatability in the evaluation. In order to undertake a multi-variable
analysis, a large number of performance metric calculations need to be made, therefore
the Efficient Paring Strategy for one to one correspondence matching presented in
Chapter 4 is utilised to allow for a comprehensive analysis within a practical time
frame.

The design of the evaluations seek to address the common issue of a lack of correlation
between performance results obtained with synthetic datasets and that of performance
in a real application. The findings from these evaluations can be utilised to inform
appropriate application of the techniques in other contexts. Observed are the effects
of the statistical test selection (described in Chapter 3), the effects of scale, and the
preprocessing Gaussian filter stage in the case of the baseline techniques.

105



106 CHAPTER 5. OBJECTIVE ANALYSIS OF 3-D SURFACE DETECTION

A further contribution from this work is that the methodology adopted here can also
serve as a framework for the evaluation of novel surface detection techniques developed
in the future, allowing for a reliable comparison with newly developed methods.

5.2 Evaluation Methodology
As discussed in Chapter 4 there are various advantages and disadvantages to objective
analysis. The primary advantage is that an objective analysis provides a repeatable
result which allows for direct comparison across different bodies of work. The main
shortfall however is that objective analysis requires “ground truth" or “reference" data
in order to generate a reliable metric. This problem is two-fold, for evaluation with
synthetically created data, determination of the ground truth solution is trivial and
easily controlled, however the reliability of the synthetic data to simulate real application
data is a non trivial problem due to the complexity of real imagery. On the other hand
if real application data is used, obtaining reliable reference solutions is non-trivial since
subjective analysis of the imagery is required.

In order to objectively analyse the surface detection methods in a reliable fashion, careful
consideration was required in the design of the evaluations. This chapter provides an
objective analysis of surface detection with evaluations that utilise synthetic data for
repeatability in the analysis. Chapter 6 presents a subjective approach using a real
application case to assess whether the findings of the objective analysis give a reliable
indication of performance in real application data.

Bowyer et al. (2001) specified three conditions for why synthetic data does not always
translate accurately to real application performance, this chapter addresses the following
three conditions in the design of the methodology.

• The simplicity of the data.

• The lack of topological considerations of the interface, namely lack of curvature.

• The number of different types of interfaces with different relative strengths or
scales contained within the data.

5.2.1 Evaluation Aims
To address the correlation problem stated by Bowyer et al. (2001), this analysis is
broken down into 3 separate evaluations, in order to assess the independent effects of
the aforementioned issues. The evaluations are as follows:

1. Measurement of the resolving power of statistical surface detection on interfaces
between regions of different region profiles.
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2. Measurement of effects of surface topology on the detection performance.

3. Measurement of performance with data that possesses multiple distinct region
profiles with different strength interfaces.

5.2.1.1 Evaluation 1
Evaluation 1 is to act as a control, measuring the resolving power of surface detection
methods independent of the effects of topology and relative surface strength by using
a single uniform interface between two regions. The resolving power is the ability of a
filter to resolve an edge or surface between two or more regions of varying similarity.
Therefore resolving power is a measure of the signal to noise ratio of the surface to is
surroundings and the rest of the image. A high signal to noise ratio of correct surface
points to non surface points indicates good resolving power. Maximising resolving
power requires the filter to resolve the boundary with a high value output with respect
to background noise and clutter. For this evaluation, the surface interface topology is
structurally uniform in the spatial domain (flat) and invariant between 2-D and 3-D.
Thus, the topology of the surface in each layer is unchanging, as topology features
influence filter performance.

5.2.1.2 Evaluation 2
Evaluation 2 explores the impact of interface topology. While evaluation 1 uses scale
invariant image volumes with a surface structure that is uniform and invariant through
the layers, this is not typical of real imagery. In real imagery, interfaces exist with a
wide range of structures with varying degrees of complexity (Milan et al., 1993). The
topology of a surface introduces intricacies which affect the ability of a filter to resolve
a surface accurately, independent of the separation in terms of the statistical differen-
tial between region profiles. The variations in surface topology can exist at varying
scales, where details exist which are smaller in scale than the neighbourhood mask,
these cannot always be resolved, leading to a smooth surface with some loss of the finer
details Witkin (1984). In 2-D imagery, the topology can affect the performance of the
filter, notably the Canny edge detector can perform sub optimally in the vicinity of
corners and junctions (Rothwell et al., 1995; Ding and Goshtasby, 2001). This is an
inherent issue of measuring the intensity gradient where boundaries meet, and remains
true for 3-D imagery since the direction of the gradient at these locations is unclear.
Non maximum suppression is also negatively affected in these locations due to the
ambiguity of the gradient direction in these positions. While evaluation 1 utilises the
statistical properties of MRI data to establish the interface properties, the topological
considerations included in the evaluation were established through precedent and are
based on the criticisms made by Bowyer et al. (2001), these criticisms call for curvature
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to be assessed, as well as junction and corner interfaces in addition to the commonly
used test interfaces which typically only contain uniform flat structures.

Evaluation 2 therefore evaluates the effects of surface topology on filter performance,
and introduces four different scale variant surface topology image volumes each using
the same region profile distributions from evaluation one. 2-D synthetic shape images
are often used for evaluation methods, for example square edge interfaces (Lim, 2006)
and circles and triangles (Setayesh et al., 2011). While 3-D surface detection methods
can be tested using 3-D structures such as spherical synthetic interfaces such as in the
work of Meinhardt et al. (2008). Here four surface topologies are used in the assessment,
a cuboid structure for corner and junction features, a spherical structure for curved
interfaces, and two ‘staircase’ structures with different corner features at different step
scales. Each topology image is repeated four times with the same region profiles used
in Evaluation 1, and each volume has four versions for a Monte-Carlo style of analysis.

5.2.1.3 Evaluation 3
Evaluation 3 explores the impact on performance when multiple different interfaces
exist within a single image. In real application data, such as CT or MR, seldom is ever
only one interface present in the image. The complexity of real images mean there are
several different regions within an image with their own unique properties. Sometimes
these properties change abruptly enough to indicate the presence of an interface between
distinct regions. The abruptness of the change is often more significant in some parts
of an image than others. Often the types of image properties which change can differ,
such as a strong intensity shift from one region to another in one part of an image, or
a strong texture shift in another part of an image. The consequence of this are that
there are interfaces within an image that are resolved to different degrees by different
detection methods. A disparity arises in the strength of the interface, this creates a
potential problem for defining a threshold for what constitutes a surface and what does
not.

Defining parameters which are optimal for strong surfaces responses will typically
result in weaker surfaces being discarded. Since these algorithms are techniques which
do not utilise semantic information, the discarded interfaces could be of importance.
Conversely, optimising parameters which resolve the weaker interfaces can result in an
excess of spurious responses which will clutter the image and manifests as increased
noise in the output and thereby decreasing the signal to noise ratio of the detected
surfaces.
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Placing interfaces of different relative strengths in the same image volume will assess
local normalisation aspects of the statistical filters, which contribute to the overall “ro-
bustness” of the filter with respect to sensitivity and thresholding. This evaluation more
closely resembles real imagery since it is more typical for real images to possess more
than one region. However, as a synthetic image, it is highly simplified in comparison to
real image structure and texture properties, which maintains the ability to perform a
quantitative analysis of filter performance.

5.3 Evaluation Dataset
In the subsequent Chapter 6 a domain specific case study is presented which assesses
different surface detection responses to particular important interfaces that are present
in MRI datasets. The interfaces of interest in the case study are of various brain tumour
and cyst boundaries in different Magnetic Resonance Imaging modalities. Specifically
T1-weighted, T2-weighted and contrast enhanced T1-weighted images of paediatric pa-
tients with Pilocytic Astrocytoma (PA) tumour pathologies. However, first the general
characteristics of the surface detection methods need to be objectively established, this
requires synthetic data. A criticism of objective analysis with synthetic data is that
the data is not representative of real imagery, thus making synthetic data unreliable
predictors of success for real applications. For an objective analysis to predict the
success of surface detection in a real context, the datasets should be general enough
that characteristics of the results can be inferred for a wide range of applications, but
realistic enough that the results bear some resemblance to an actual real application. To
facilitate this, the creation of the data needs to be a compromise between realism and
universality (Fernandez et al., 2015). Outlined prior are 3 evaluations which have been
designed to improve correlation between objective performance analysis using synthetic
data and performance on real data. To facilitate the aims of each evaluation, careful
consideration is required in the generation of the datasets.

For creation of the synthetic datasets, some general image features and properties were
extracted from the case study data presented in chapter 6 to inform the development
of the synthetic datasets. Fig 5.1 illustrates regions in close proximity to an interface
from which the region properties were analysed. Two statistical features were extracted
from the regions. Firstly the arithmetic mean as defined in eq 5.1, where X is the
sample region comprised of voxel intensity values (x), n is the sample size and x̄ is the
arithmetic mean. Secondly the variance (σ) of the region was determined, as defined
in eq 5.2, these values were normalised to fall within an 8bit 0-255 range. Further
complex texture properties were not incorporated as these could result in test images
overly suited to a narrow purpose. This is inline with the data creation protocol used
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by Williams et al. (2014), where properties of histological images were used to inform
the creation of 2-D datasets.

x̄ �
1
n

ņ

i�1
xi (5.1)

Arithmetic Mean (x̄): Where xi is the intensity value of the voxels in the region, and n
is the size of the sample

σ �
1
n

ņ

i�1
pxi � x̄q2 (5.2)

Variance (σ): Where xi is the intensity value of the voxels in the region, and n is the
size of the sample and x̄ is the Arithmetic Mean of the region

5.3.1 Evaluation 1 Data
For 2-D edge detection evaluation, Williams et al. (2014) also utilised synthetic data
in the analysis, and set a precedence for how synthetic data should be generated. It
was established that multiple versions of each test image type should be introduced,
this ‘Monte-Carlo’ style of approach ensures that the results from a particular test
are consistent across multiple instances of the same test image type. This rules out
abnormal or peculiar responses which are not representative in a broader context.
The same general approach is utilised here for 3-D data, each test image volume is
generated 4 separate times using pseudo-randomly generated values, each with the same
general region properties, but are unique in their own right. For this 4 control interface
types were utilised, consisting of a predominantly intensity based interface derived
from Fig 5.1a (IntFl), a predominantly stochastic texture based interface derived from
Fig 5.1b (TexFl), and two combination interfaces which utilises different mean and
variance properties derived from Fig 5.1c (Com1Fl) and Fig 5.1d (Com2Fl).

IntFl (Fig. 5.2a): This test volume simulates a typical step-change in intensity with
a flat interface, 1st derivative methods of edge and surface detection are designed to
be optimal on this kind of boundary. Thus, indicating whether statistical methods
of surface detection can offer comparative results where traditional derivative based
methods of surface detection methods typically excel (Williams et al., 2014).

TexFl (Fig. 5.2b): This test volume presents a change in the variance property of the
regions, this aims to simulate the most simple kind of stochastic texture interface with
a single uniform flat interface. These types of boundaries are present in highly textured
and noisy images. 1st derivative methods are not specifically suited to resolve this
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(a) Intensity based (b) Texture based

(c) Combination with strong intensity
component

(d) Combination with weak intensity
component

Figure 5.1: Types of interfaces in real imagery. The following measurements are
properties of the regions of interest around the interface. Intensity based (x̄ 1420-1010.
σ 94-118). Texture based (x̄ 326-392 σ 122-30). Combination 1 (x̄ 230-751 σ 71-120).
Combination 2 (x̄ 387-545 σ 37-75)
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kind of interface and as such, typically produce less than optimal results (Williams
et al., 2014). This interface type examines which statistical methods, if any, can offer
improvements where derivative based methods typically fail.

Com1Fl (Fig. 5.2c): This test volume presents an interface combining both intensity
and texture which is more typical of surfaces in real imagery where simple textures are
present. Com2Fl (Fig. 5.2d): This test volume also presents an interface combining
intensity and texture differences. However with a smaller intensity change component.
Region properties are presented in Table. 5.1.

FlGT (Fig. 5.2e) Is the reference image generated which provides the exact location of
the surface, and is used as a basis for comparison in the performance metric.

Each region is created pseudo-randomly with controlled statistical distributions to
ensure there is no repeating pattern or noise. Each image volume is 100�40�30 voxels
in size and each region is 100�20�30 positioned adjacent to each other. The interfaces
properties are described in Table 5.1 and are illustrated in Fig 5.2 and 5.3.

Image Mean Variance Topology # of Regions Figure Reference
IntFl 6 249 9 9 Flat 2 Fig 5.2a FlGT
TexFl 125 125 1 11 Flat 2 Fig 5.2b Fig 5.2e
Com1Fl 125 50 1 11 Flat 2 Fig 5.2c
Com2Fl 75 54 1 11 Flat 2 Fig 5.2d

Table 5.1: Table containing information about the test images used in Evaluation 1.
The table provides the naming convention and region statistics of test interfaces. The
topological structure of the test image, The number of regions in the test image is
stated. In addition the figure number of the each test image volume is provided along
with the corresponding ground truth reference image name

(a) IntFl (b) TexFl (c) Com1Fl (d) Com2Fl (e) FlGT

Figure 5.2: Evaluation 1 dataset
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(a) IntFl (b) TexFl (c)
Com1Fl

(d)
Com2Fl

(e) FlGT

Figure 5.3: Evaluation 1 images cross section

5.3.2 Evaluation 2 Data
Evaluation 2 assesses the impact of interface topology. 4 unique topological interface
structures are utilised, each of these topological structures incorporate the previously
described region properties from evaluation 1 for a dataset containing 16 unique image
volumes. The topologies are as follows:

5.3.2.1 Topology 1:Cuboid (Cu)
The cuboid structure (Fig. 5.5a-e) introduces the effects of corners. In 2-D edge detection
methods, corners and junction are often not correctly resolved (Rothwell et al., 1995;
Ding and Goshtasby, 2001), this property of the edge detection filters continues to apply
with surface detection methods. Corners are locations of a structure where the edge
or surface gradient points in different directions, the gradient directions of the cuboid
corners are orthogonal, the opposing nature of the gradient directions often leads to a
surface measure which is relatively small. Low value points are considered non-surface
points, as a result the edges along the perimeter of the surface, as well as corners,
may not be resolved by the detection method. The cuboid structure is not invariant
throughout the volume, and it features flat surfaces, including those which exist only
in the z-plane, these regions of the surface interface will only be resolved by filters that
process the voxels between layers, thus 3-D specific filters are required (Fig. 2.19). The
image volumes are constructed with a cuboid structure of size 60�30�30 positioned
centrally in a image volume of size 80�50�50. The exterior of the cuboid interface was
generated with the mean and variance properties of region 1 in Table 5.2, while the
interior of the cuboid was constructed with region 2 properties.
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5.3.2.2 Topology 2: Spherical (Sp)
The second image type is a spherical interface (Fig. 5.5f-j). The sphere was produced
with a high degree of curvature in relation to the neighbourhood mask size. The high
degree of curvature therefore will be strongly affected by the scale parameter, penalising
larger mask sizes, thus the trade-off between resolving power and accuracy can be
analysed. The image volumes are constructed with a sphere of radii 30 voxels, and is
positioned centrally in an image volume of size 75�75�75. The exterior of the sphere
was generated with the mean and variance properties of region 1 in Table 5.2, while the
interior of the sphere was constructed with region 2 properties.

5.3.2.3 Topology 3 and 4: Coarse Staircase(CSt) and Fine Staircase (FSt)
The two remaining interface types both possess a ‘staircase’ structure (Fig. 5.5k-o, for
large steps and Fig 5.5p-t with small steps). The purpose of using steps with different
sizes relative to the neighbourhood mask is to assess the affect topology details smaller
than the neighbourhood mask have on performance. A staircase structure also possesses
a regular occurrence of corners, which should further highlight any corner feature
problems. Both the staircase volumes are constructed with a size of 60�60�30 voxels,
the ‘staircase’ structure runs diagonally throughout the volume. The large stepped
volume has steps that are 10 voxels tall, 10 voxels wide, and each step runs through
all 30 layers of the image volume. The small stepped volume has step dimensions of
3�3� 30. Resulting in an interface with details small than the smallest neighbourhood
window use by the surface detection methods (Fig 5.4). Each interface volume has two
regions, and the statistical properties of these regions are shown in table 5.2. This test
will identify the effect on resolving the boundary at different neighbourhood mask sizes
or with different amounts of smoothing in the case of Canny and Steerable.

(a) Large Step (b) Small Step

Figure 5.4: 2D representation of scale using an 11�11�11 neighbourhood mask in
relation to interface step size
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Image Mean Variance Topology # of Regions Figure Reference
IntCu 6 249 9 9 Cuboid 2 Fig 5.5a CuGT
TexCu 125 125 1 11 Cuboid 2 Fig 5.5b Fig 5.5e
Com1Cu 125 50 1 11 Cuboid 2 Fig 5.5c
Com2Cu 75 54 1 11 Cuboid 2 Fig 5.5d
IntSp 6 249 9 9 Spherical 2 Fig 5.5f SpGT
TexSp 125 125 1 11 Spherical 2 Fig 5.5g Fig 5.5j
Com1Sp 125 50 1 11 Spherical 2 Fig 5.5h
Com2Sp 75 54 1 11 Spherical 2 Fig 5.5i
IntCSt 6 249 9 9 Coarse Staircase 2 Fig 5.5k CStGT
TexCSt 125 125 1 11 Coarse Staircase 2 Fig 5.5l Fig 5.5o
Com1CSt 125 50 1 11 Coarse Staircase 2 Fig 5.5m
Com2CSt 75 54 1 11 Coarse Staircase 2 Fig 5.5n
IntFSt 6 249 9 9 Fine Staircase 2 Fig 5.5p FStGT
TexFSt 125 125 1 11 Fine Staircase 2 Fig 5.5q Fig 5.5t
Com1FSt 125 50 1 11 Fine Staircase 2 Fig 5.5r
Com2FSt 75 54 1 11 Fine Staircase 2 Fig 5.5s

Table 5.2: Table containing information about the test images used in Evaluation 2.
The table provides the naming convention and region statistics of test interfaces. The
topological structure of the test image, The number of regions in the test image is
stated. In addition the figure number of the each test image volume is provided along
with the corresponding ground truth reference image name
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(a) IntCu (b) TexCu (c) Com1Cu (d) Com2Cu (e) CuGT

(f) IntSp (g) TexSp (h) Com1Sp (i) Com2Sp (j) SpGT

(k) IntCSt (l) TexCSt (m) Com1CSt (n) Com2CSt (o) CStGT

(p) IntFSt (q) TexFSt (r) Com1FSt (s) Com2FSt (t) FStGT

Figure 5.5: Evaluation 2 test image volumes with different interface topologies and
region properties
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(a) IntCu (b) TexCu (c) Com1Cu (d) Com2Cu (e) CuGT

(f) IntSp (g) TexSp (h) Com1Sp (i) Com2Sp (j) SpGT

(k) IntCSt (l) TexCSt (m) Com1CSt (n) Com2CSt (o) CStGT

(p) IntFSt (q) TexFSt (r) Com1FSt (s) Com2FSt (t) FStGT

Figure 5.6: Evaluation 2: 2-D cross sections of test image volumes for additional
clarity on internal structure.

5.3.3 Evaluation 3: Test Images
One of the issues outlined by Bowyer et al. (2001) are the limited number of different
types of interfaces with different relative strengths or scales typically contained within
the data. In order to address this problem, this evaluation consists of two image volume
types labelled as MultiFlat and MultiCurve, which utilises multiple different region
profiles within the same image volume.
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5.3.3.1 MultiFlat
The MultiFlat image contains 23 different region profiles, the properties of which are
presented in Table. 5.3 and the arrangement of regions provide 33 unique flat interfaces
in total. Additional region profile properties were extracted using the same process and
dataset illustrated in Fig 5.1. However, the proximity of one region to another in the
synthetic volume is not based upon their proximity in the real data.

(a) 3-D Multiflat (b) 2-D Cross sectional
view

(c) 2-D Reference
(MultiFlatGT)

Figure 5.7: 3-D MultiFlat image volume containing multiple image regions.

mean 250 245 234 211 175 134 93 40
variance 8 12 10 8 12 10 5 10
mean 220 180 203 180 220 135 180 40
variance 17 24 14 14 7 5 0 15
mean 181 176 185 186 180 135 180 40
variance 14 14 15 15 10 15 0 15
mean 120 122 120 120 180 134 181 39
variance 1 1 15 40 40 15 60 60

Table 5.3: Region properties for for MultiFlat image volume. Cells represent spatial
locations of regions from top left to bottom right.

5.3.3.2 MultiCurve
Here the volume is comprised of a layered sphere divided up into four quadrants creating
a total of 24 regions. Since the interfaces in this image are different in size, 12 unique
region properties are used and are repeated in reversed order in an adjacent quadrant.
By repeating interfaces the size discrepancy of particular interface types is reduced.
This minimises, but does not eliminate, the biasing of the results toward a particular
interface type. The regions properties used in for the MultiCurve volume are presented
in Table 5.4.
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(a) 3-D (b) 2-D (c) 2-D Reference
(MultiCurveGT)

Figure 5.8: 3-D MultiCurve Image Volume. Containing multiple interfaces with curved
topology, the 3-D volume visually separated into two halves in order to reveal internal
structure.

mean 250 245 234 211 175 93 Upper left quadrant
variance 8 12 10 8 12 5
mean 93 175 211 234 245 250 Lower left quadrant
variance 5 12 8 10 12 8
mean 220 181 203 180 180 179 Upper right quadrant
variance 17 24 14 14 7 0
mean 179 180 180 203 181 220 Lower right quadrant
variance 0 7 14 14 24 17

Table 5.4: Region properties for MultiCurve image volume. Each row in the table
represents the properties of the regions in each quadrant. Columns from left to right
indicate from central to outer layers

5.4 Testing Methodology
A basic overview of each evaluation is as followed

Section 5.3 Generation of synthetic test image volumes with controlled interfaces

Section 5.4 Application of statistical surface detection filters, 3-D canny and Steerable
filters, at different scales

Section 5.4.2 Post processing preparation for quantitative analysis including linear
normalisation, 3-D NMS and hysteresis thresholding

Section 5.4.2 Apply objective performance measure.

Visual inspection of the 3-D surface maps to identify strengths and weaknesses and to
identify localised problems
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5.4.1 Filter Parameters
In the work of Williams et al. (2014), 2-D Statistical edge detection filters were evaluated
across a range of filter kernel sizes, from 5�5 through to 19�19 in odd incremental
steps. Comparisons were made against the baseline 2-D Canny edge detection method
at different scales (σ1-4 of the Gaussian Filter). Due to the computational cost of
processing data with 3-dimensions, a reduced range was applied. In this work 3-D
Statistical surface detection filters are applied through a range of scales from 5�5�5
to 11�11�11 in odd incremental steps. However, due to similarity of the results across
scales, for clarity only the 5�5�5 results are presented in chapters 5 and 6. In chapter 7
the characteristics of each filter method are explored at different scales, there the aspect
of scale is assessed with the MultiFlat image type from Evaluation 3.

The 3-D Canny detection and 3-D steerable filters were applied to each volume using a
scale parameter ranging from σ1-4. In the work of Williams et al. (2014) no significant
benefit was observed for σ values beyond this range for the Canny method, and therefore
the upper limit of σ �4 was maintained. In each evaluation, 8 different statistical filters
were evaluated, 4 parametric tests, the Difference of boxes (DoB), Log-Likelihood ratio
(L), Fisher test (F ) and Student’s t test (t-test). Also evaluated are 4 non parametric
tests, the local-χ2 test, Kolmogorov-Smirnov test(KS), Mann-Whitney test (u-test)
and Robust Rank Order test (RRO). Table 5.5 present an overview of the different
evaluations, the test images were used, the filters applied and the scales used.
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Aims Images 3-D
Filters

Normalised
Thresholds

Performance
measures

Evaluation 1
To evaluate
filter resolving
power

IntFl
TexFl
Com1Fl
Com2Fl

Evaluation 2
To evaluate
impact of
interface
topology

IntCu
TexCu
Com1Cu
Com2Cu
IntSp
TexSp
Com1Sp
Com2Sp
IntCSt
TexCSt
Com1CSt
Com2CSt
IntFSt
TexFSt
Com1FSt
Com2FSt

Canny
Steerable
DoB
t-test
F
L
χ2

KS
u-test
RRO

Hysteresis
UT 1-99
LT 40%
increment of 1

F1-score
using EPS

Evaluation 3
To evaluate
performance
with multiple
region profiles

MultiFlat
MultiCurv

Table 5.5: Evaluation 1-3 Test Parameters

5.4.2 Quantitative Evaluation
In order to apply an objective performance algorithm to assess the surface detection
methods, voxels within the output image surface map first need to be classified into
surface points and non surface points. This is achieved in a 3 stage process, normalisation
of the output such that all voxel values are 32bit double precision floating point numbers
scaled to the range 0-1. Application of 3-D Non-maximum suppression as described in
Chapter 3. 3-D Hysteresis thresholding is then applied across a range of 100 discrete
thresholds. The Upper threshold (UT) values ascend from 0 to 1 in increments of 0.01.
Canny (1986) recommends a threshold ratio between 3:1 and 2:1 between upper and
lower thresholds, this precedent was followed and the standard default lower threshold
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to be a value of 40% of the UT was implemented. This generates 100 separate images
for analysis for each test volume.

In an analysis of performance metrics used for evaluating edge detection methods, F-
measure (F1-score) was shown to be the most reliable (Pont-Tuset and Marques, 2016).
An optimal measure for 3-D surface detection has yet to be established, however char-
acteristics of the F-measure also apply to 3-D. The F-measure is the harmonic mean
of precision and recall and therefore first requires computation of precision and recall
statistics. F-measure (Eq 5.3) is defined as:

F1 �

�
2

recall�1 � precision�1



� 2 � precision � recall

precision � recall (5.3)

In order to accurately measure precision and recall, and therefore calculate the F-
measure, one to one correspondence matching should be undertaken to get a more
contextually applicable count of TP, FP, TN and FNs. The EPS technique discussed in
detail in chapter 4 is embedded in the F1 score to provide an accurate metric calculation
in each evaluation. F-measure is applied to each threshold output image. The F-measure
scores are then plotted across the threshold (upper) range of 0-1, such as in Fig 5.13.
A metric score value of 1 is indicates an accurate detection with no missed surfaces or
any spurious responses. A score of 1 across all threshold ranges would be considered
an ideal optimal filter response.

5.5 Evaluation 1: Results.
5.5.1 Evaluation 1: Aim
This test is to determine the resolving power of the filters on a controlled single interface
between two regions of defined distributions with a uniform topology. Due to the
simplified surface structure in comparison to the latter evaluations, and real imagery,
these volumes can provide a controlled analysis of whether the detection method is able
to successfully resolve the type of interface.

5.5.2 Evaluation 1: Visual Results
Presented in Figures 5.9,5.10,5.11 and5.12. are the surface map outputs from the 8
statistical surface detection methods and 2 baseline methods (3-D Canny and 3-D
Steerable). Presented here are the 3-D results of the detection methods. For visual
representation, the surface map outputs were normalised using a linear method to scale
the intensity values between 0 and 255 and each of the surface maps are presented with
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the same opacity. For added clarity in the visual assessment, a 2-D cross section is
presented from the central layer of the image volume. The cross sectional layer uses
Matlab’s Parula colour space for enhanced visual differentiation between the minimum
and maximum intensity levels.
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(a) IntFl (b) FlGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.9: Intensity based interface (IntFL) with corresponding surface map results from each statistical test method and control method.
In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) TexFl (b) FlGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.10: Texture based interface (TexFL) with corresponding surface map results from each statistical test method and control method.
In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) Com1Fl (b) FlGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.11: Combinational 1 interface (Com1FL) with corresponding surface map results from each statistical test method and control
method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) Com2Fl (b) FlGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.12: Combination 2 interface (Com2FL) with corresponding surface map results from each statistical test method and control
method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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5.5.3 F-Measure Results
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Figure 5.13: F-Measure analysis of Evaluation 1 tests. Results are gathered from a
F1-score comparison between a normalised NMS filter result at 100 different hysteresis
threshold values (lower threshold at 40% of upper) with that of the reference image.

5.5.4 Discussion
IntFl (Fig 5.2a) is primarily defined by a step change in average intensity between
the regions. Upon visual inspection of the surface maps in Fig 5.9, it can be seen
that all filter methods with an exception of the Fisher and likelihood tests successfully
resolved the interface in its entirety, with all methods presenting good visual surface
connectivity. The Canny operator, optimised for step changes in intensity performed
strongly, signified by a solid connected boundary at an intensity level greater than the
background noise (Fig. 5.9c). It should be noted that the t-test and DoB test resolved
the boundaries with the fewest spurious surface points, with the Canny method and
χ2 method closely following. After NMS and thresholding, results without spurious
responses were also achieved. The Likelihood method presented with good suppression
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of spurious responses elsewhere in the image, giving rise to the possibility of rectifying
the duplicate response in post processing.

The performance metric scores indicate optimal detection (F1-score of 1) for all tests
barring the F -test and the Steerable filter methods (Fig. 5.13)a. The F -test method
produced a duplicate boundary, either side of the ground truth interface location,
contributing to their poor metric score. The χ2 test achieved a F1-score of 1 over
the largest threshold range, followed closely by the Canny operator. From a visual
standpoint, an F1 score 0.8 or above typically represents a successful detection result.
Responses which produce a F1-score above 0.8 across a wide range of threshold values
strongly indicate that the filter response has a strong signal to noise ratio. This is either
due to a high magnitude detection of the surface in relation to any spurious responses,
or due to few spurious responses in the output. However it should be noted that a
wide threshold range was also achieved for the majority of the responses for the IntFl
dataset.

Visual inspection of the TexFl surface maps indicate this to be a difficult surface in-
terface to resolve (Fig. 5.10). There is a failure to resolve the interface on the part
of the Canny, Steerable, DoB, u-test and t-test methods. There is a clear increase in
over-detection across all filter methods indicated by a significant increase in the number
of spurious responses.

A high variance region contains voxels with significantly different intensity values in
relation to neighbouring values, intensity based operators produce high value outputs
where significant changes in intensity exist, since these changes in intensity populate
the entirety of the image volume, a high degree of spurious responses, or over-detection
is present when gradient methods of surface detection are applied.

The best performing methods for TexFl are the F , L,and χ2 methods indicated by
detection of the interface in Fig 5.10 whereas the other methods failed to detect the
surface, and produced significant noise, particularly within the high variance region.
The RRO and KS methods were able to resolve the interface, however a high degree of
spurious surface points were present. Visually the likelihood method appears the least
affected by over-detection, as well as presenting with good connectivity of the surface
interface.

The performance metric scores indicate a clear success rate for L,F ,χ2 and KS signified
by a peak F1 score of 0.9 or above (Fig. 5.13b). There was a clear failure to resolve
the interface with the Canny, Steerable, DoB, t-test, u-test, and RRO methods with
an F1-score of 0.2 or below across the threshold range. The L method performing best
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overall, as well as offering the most robust output with regard to threshold selection,
with the F -test also performing well.

Upon visual inspection of the Com1Fl surface maps, the t-test and DoB test present
fewer visible spurious surface points (Fig. 5.11) when compared against the other meth-
ods, as well as achieving good detection. The Canny and χ2 test also produce a strong
surface response with good connectivity and relatively weak strength spurious surface
points, which are removable through thresholding. The Steerable, u-test, RRO and
KS methods also achieved successful detection of the interface, however over-detection
artefacts are more prevalent. The F -test presented with over-detection artefacts to a
greater extent than the other methods, including a more diffused surface boundary,
existing over a larger voxel region. This is due to the aforementioned duplicated surface
artefact, however with this interface type, the variance shift between regions also pro-
duced a high output at the surface location, leading to the appearance of over-detection
at the surface interface. The likelihood method presented with a similarly displaced
surface, but with less visible over-detection throughout the rest of the image volume
when compared against the baseline methods and non parametric tests (Fig. 5.11g).

After thresholding, all methods including the likelihood method were able to obtain a
successful detection of the surface interface of Com1Fl with the exception of the F -test
which scored poorly (Fig. 5.13c). In terms of consistency, all the methods performed
adequately over a wide threshold range with the χ2 being the most optimal, and the
steerable having the narrowest threshold range. On this interface type it can be seen
that the t-test is more suited to a low threshold range, while the KS test is more
suited to a high threshold range, with considerable overlap between the two methods
(Fig. 5.13c).

The Com2Fl interface proved to be more challenging for the parametric and baseline
filters to produce a successful visual output compared with Com1Fl (Figures. 5.11 and
5.12). While both combination images possess the same variance statistic, Com2Fl has
a smaller average intensity difference (∆x̄75 in Com1Fl and 21 in Com2Fl), resulting in
an interface where a much greater overlap in the distribution of intensity values exist.
This disparity in the results suggests that there is a tolerable amount of variance in
the region properties for successful detection, providing the intensity difference between
regions is great enough. However, when the intensity difference is reduced the interface
is resolved at a weaker magnitude, effectively reducing the signal to noise ratio of the
surface. Even though the variance in the region profiles in Com2Fl is the same Com1Fl,
the fluctuations in the Com2Fl image causes an increased amount of relevant spurious
responses which negatively impacts performance. As a consequence, over-detection is
more significant. This is most noticeable in the steerable filter response which was
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successful with Com1Fl, but performed poorly on Com2Fl (Figures. 5.11d and 5.12d).
Here it can clearly be seen that the steerable filter suffered from a high degree of over-
detection in the high variance region of the image volume, leading to an unsuccessful
detection of the interface. The other statistical methods, and Canny method were still
able to successfully resolve the interface, but with a higher degree of spurious responses,
with the exception of the F test which experienced a duplication of the surface with a
large spatial displacement (Fig 5.12f). The χ2 method produced the clearest completion
of the surface interface, with good connectivity (Fig 5.12i).

The performance metric scores for Com2Fl (Fig. 5.13d) support the visual results with
successful completion for the majority of methods with a peak F1-score of 1, but this is
with a reduced threshold range compared to Com1Fl (Fig. 5.13c) due to the lower signal
to noise ratio of the filter responses. The most significant drop in performance between
the Com1Fl and Com2Fl interfaces is that of the Steerable filter, which achieved a peak
F1-score of 1 for the former and 0.68 for the latter.

5.5.5 Summary of Evaluation 1
Overall the χ2 test performed best, offering a combination of accurate detection across
all interface types, as well as producing moderate to low spurious surface points. The
surfaces were detected with good connectivity, and the performance metrics indicate
good localisation of the detection. The χ2 test also performed well over a wide range of
thresholds indicating a level of reliability as well as simplicity when setting parameters
for detection. The results of Evaluation 1 indicate resolving power equal or surpassing
the Canny and Steerable methods for the statistical methods, with the exception of
the F -test. However the F -test performed well on the texture based interface where
traditional gradient methods failed. The analysis showed that as the scale parameter is
increased, the resolving power of the filter increased, this effect was greater with the non
parametric KS and u-test methods. Table 5.6 presents a success or failure assessment
on each interface type, indicating that the χ2, KS and likelihood methods were the only
surface operators able to achieve successful detection across all single interface types.
The strong resolving power from the χ2 and KS methods, and success across the 4
interface types, indicate these to be preferential methods for most applications over the
benchmark 3-D Canny surface filter. However, the Canny and Steerable methods can be
applied using an effective small scale parameter (3�3�3), while the statistical methods
effective minimum scale is 5�5�5. Since a smaller scale parameter can resolve finer
details of a more complex surface topology, there is a need to test on image volumes
where the interface is not scale or layer invariant.
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Method IntFl TexFl Com1Fl Com2Fl
Canny Accurate detection, connected

surface, some over-detection
artefacts

Did not resolve surface,
over-detection artefacts

Accurate detection, connected
surface, localised over-detection

artefacts

Accurate detection, connected
surface, over-detection artefacts

Steerable connected surface, displaced,
some over-detection artefacts

Did not resolve surface,
over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

connected surface, displaced,
severe over-detection artefacts

χ2 Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, some
discontinuity, some

over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
DoB Accurate detection, connected

surface, no over-detection
artefacts

Did not resolve surface,
over-detection artefacts

Accurate detection, connected
surface, some localised
over-detection artefacts

Accurate detection, connected
surface, over-detection artefacts

F -test duplicated surfaces, some
additional over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Inaccurate surface, duplication,
some over-detection

Inaccurate, connected surface,
duplicated surface and
additional over-detection

artefacts
KS Accurate detection, connected

surface, some over-detection
artefacts

Accurate detection, connected
surface, over-detection artefacts

Accurate detection, connected
surface, over-detection artefacts

Accurate detection, connected
surface, over-detection artefacts

L connected surface, no
over-detection artefacts

Accurate detection, connected
surface, very few over-detection

artefacts

Accurate detection, duplicate
surfaces are present, some
localised over-detection

artefacts

connected surface, duplicated
surfaces, some over-detection

artefacts

u-test Accurate detection, connected
surface, some over-detection

artefacts

Did not resolve surface,
over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, over-detection artefacts

RRO Accurate detection, connected
surface, some over-detection

artefacts

Did not resolve surface,
over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, over-detection artefacts

t-test Accurate detection, connected
surface, no over-detection

artefacts

Did not resolve surface,
over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, over-detection artefacts

Table 5.6: Summary of evaluation 1 results
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5.6 Evaluation 2: Topology test with known distributions.
5.6.1 Evaluation 2: Aim
To fully exploit the capabilities of a true 3-D surface detection method, the topology or
structure of an interface should be reflective of three dimensional data, and possess a
surface interface that is not invariant throughout the layers. The statistical properties
of the regions in evaluation 1 are repeated with the different topological structures,
these structures are illustrated in Fig 5.5 and the properties are presented in Table 5.2.
Therefore any differences in the results of evaluation 2 are due to the topological
structure of the interface.

Evaluation 1 uses scale invariant image volumes in order to assess the resolving power of
the detection methods, a consequence of this is the ability to increase the scale parameter
of the detection method with minimal penalty in terms of inducing localisation error.

5.6.2 Topology 1: Cuboid (Cu)
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5.6.2.1 Visual Results (Cu)

(a) IntCu (b) CuGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.14: Intensity based cuboid interface (IntCu) with corresponding surface map results from each statistical test method and control
method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) TexCu (b) CuGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.15: Texture based cuboid interface (TexCu) with corresponding surface map results from each statistical test method and control
method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) Com1Cu (b) CuGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.16: Combinational 1 cuboid interface (Com1Cu) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) Com2Cu (b) CuGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.17: Combination 2 cuboid interface (Com2Cu) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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5.6.2.2 F-Measure Results (Cu)
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(d) Com2Cu

Figure 5.18: F-Measure analysis of Topology 1 (Cu) tests. Results are gathered from a
F1-score comparison between a normalised NMS filter result at 100 different hysteresis
threshold values (lower threshold at 40% of upper) with that of the reference image.

5.6.2.3 Discussion
Visually, the results from the IntCu interface are similar to the IntFl results from
evaluation 1 in terms of resolving power. With the DoB and t-test performing to a high
standard with complete detection and minimal spurious surface points. Additionally
the benchmark 3-D Canny operator also performed strongly. F-measure scores show
that the Canny filter operated successfully over the widest range of threshold values
(Fig.5.18a). The scores across all tests are lower than the single interface images
presented in evaluation 1. This is due to some roughness or inaccuracies along the
cuboid edges and corners of the surface interface. Upon further examination of the
individual 2-D layers of the volume, it can be seen that F -test fails due to a duplicated
surface response, and that the t-test is not optimal in areas where corners are situated
(Fig.5.14).
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The texture based interface again proves more challenging for a number of the filters.
A 3-D visual inspection of the results show that the t-test, u-test and RRO filters
were unable to differentiate between a surface region and non-surface region in its
entirety (Fig 5.15h,k,l). A 3-D inspection of the Canny, Steerable and DoB method
would indicate a successful detection of the boundary (Fig. 5.15c,d,e 3-D ). However,
further analysis reveals this not to be the case. Through examination of the individual
2-D layers of the image volume, it can be seen that these methods did not detect the
surface, and instead produced a high value output for the central high variance region
(Fig. 5.15c,d,e 2-D). It is clear that the most successful methods in this instance are
the L, F , χ2 and KS tests. With the L and F -tests producing very clear accurate
surfaces (Fig. 5.15f,g,i,j). However, while the KS-test accurately detects the complete
surface it does suffer from some over-detection artefacts. Contrastingly, the χ2 test
produces fewer noticeable spurious surface points, but does lack some connectivity in
the detection of the surface interface. These findings are supported by the objective
results with clear successes for the L, F , KS and χ2 tests, and failure for the remaining
filters (Fig 5.18b).

The 3-D visual results indicate all methods successfully detect the surface interface in a
similar fashion to Evaluation 1 (Fig. 5.16). Analysis of the individual layers reveal the
F -test produces a diffused boundary (Fig. 5.16). The 2-D layer results indicate that
the χ2 method achieves the best trade-off between detection and over-detection, which
is reflected the objective analysis results (Fig. 5.18c).

Figures 5.17 and 5.18d indicate that the Com2Cu interface also mimics the Com2Fl
results from evaluation 1, with all methods producing a successful detection of the
surface with the exception of the steerable filter. Visually the F -test appears to have
successfully detected the surface boundary, however a duplicated interface is also pro-
duced. This is not clear in the 3-D visualisation since the internal boundary in occluded
by the external outer boundary (Fig. 5.17e). Poor performance scores for the F -test
indicate this to be the case.

5.6.3 Topology 2: Spherical (Sp)
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5.6.3.1 Visual Results (Sp)

(a) IntSp (b) SpGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.19: Intensity based spherical interface (IntSp) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) TexSp (b) SpGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.20: Texture based spherical interface (TexSp) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) Com1Sp (b) SpGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.21: Combinational 1 spherical interface (Com1Sp) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) Com2Sp (b) SpGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.22: Combination 2 spherical interface (Com2Sp) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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5.6.3.2 F-Measure Results (Sp)
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(d) Com2Sp

Figure 5.23: F-Measure analysis of Topology 2 (Sp) tests. Results are gathered from a
F1-score comparison between a normalised NMS filter result at 100 different hysteresis
threshold values (lower threshold at 40% of upper) with that of the reference image.

5.6.3.3 Discussion (Sp)
The IntSp results are consistent with previous intensity based interface findings, with
strong performances from all methods with the exception of the F and L tests which
were less successful due to the duplicated surface responses, and a similar artefact
presents in the Steerable result (Fig 5.19d,f,g).

Visually this difficulty can be observed by surfaces which do not have uniform magnitude
and is most pronounced in Fig 5.19h, here the t-test produces very high magnitude
surface values in specific regions of the sphere, in the cross sectional result these high
magnitude responses are observed in the North, South, East and West surface locations,
whereas low magnitude surface responses are observed in the North East, North West,
South East and South West surface locations. This effect is lessened as variance increases
in the image (Figures 5.21h and 5.22h). This is due to the scale of the mask in relation
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to resolution of the image and the degree of curvature in the topology. It is a factor
because the local maxima of a surface is defined where the differential between two
neighbourhood mask regions is at its greatest. For this to occur, an equal number
of voxels from each region should be present in the neighbourhood mask in order
for that differential to be maximised. A discrepancy between the number of voxels
from each region in the neighbourhood mask would indicate that the mask is in close
proximity to a surface but not centred accurately on the interface. With a spherical
interface, an unequal number of voxels from each region are usually present in the
neighbourhood mask, but because the sphere is subject to the discrete resolution of the
image, it is not perfectly spherical, and therefore this disparity is not uniform along
the interface, and this leads to detection of a surface with an inconsistent magnitude.
This is why the effect is lessened in Com1Sp and Com2Sp as increased variance in the
region profiles of the datasets reduces the likelihood of ’spikes’ in surface magnitude to
occur. The Canny method overcomes this due to fact Gaussian filtering is utilised which
smooths the curvature for a more even response, leading to good detection (Fig 5.19c).
Performance measures indicate that curved surface topology of the spherical interface
did negatively affect the performance of the detection methods when compared with
the flat interfaces of the cuboid, and showed the Canny to be the least affected by the
issue. (Figures 5.18a and 5.23a).

Fig. 5.20f,g indicates that the parametric variance methods (F -test and L) to be the
strongest performing on the texture based interface (TexSp). Additionally, good detec-
tion of the interface was also achieved by the KS and χ2 test methods with moderate
over-detection and under-detection respectively, as can be seen by background noise
in the KS surface maps, and a surface with some discontinuities in the case of the χ2

test. Objective analysis places the KS and χ2 methods ahead of the L and F -tests
(Fig. 5.23b).

Figures 5.21 and 5.22 show the 3-D visual results from the combination interface types.
The visual results with a spherical topography concur with the previous findings for
this interface type. For Com1Sp, the DoB, t-test and Canny method are the preferred
filter methods, visually these methods provide complete detection some spurious sur-
face responses (Fig 5.21c,e,h). 3-D visualisation shows the DoB method resolves the
complete surface with the fewest spurious responses (Fig 5.21e). However all methods
appear to successfully resolve the surface. For Com2Sp, over-detection is more apparent,
with every filter method producing some spurious surface responses. The DoB method
offers the fewest noticeable spurious surface points, followed by the Canny method.
The L and F methods show good performance visually with good suppression of noise
(Figures 5.22f and 5.22g). However, not all findings from the visual analysis agree with
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the objective results. The F-measure analysis indicate the L test and F -test perform
poorly on both combination interfaces (Fig 5.23c,d). When looked at more closely, it
can be seen there is a duplication of the surface combined with a slight displacement of
the interface (Figures 5.21f,g). This is the cause of the low F1-score. For Com1Sp the
KS test and Canny methods achieve the highest peak score both at an upper threshold
of 0.79 (Fig 5.23c). For the Com2Sp interface type, the KS test again achieves the
highest peak score, however on this interface type a number of statistical methods score
marginally higher peak F1-scores then the baseline Canny method, including DoB,
RRO and u-test methods. In terms of robustness to threshold sensitivity, the DoB
method offers the widest threshold level range at optimal performance (Fig 5.23d).

5.6.4 Topologies 3 and 4: Staircases (CSt and FSt)
5.6.4.1 Visual Results (CSt and FSt)
Figures of the visual results are provided on the next page onwards.
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(a) IntCst (b) CStGT (c) Canny (d) Steerable 3D (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) u-test (l) RRO

(m) IntFSt (n) FStGT (o) Canny (p) Steerable 3D (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) u-test (x) RRO

Figure 5.24: Intensity based staircase interfaces (IntCSt, IntFST) with corresponding surface map results from each statistical test method
and control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) TexCSt (b) CStGT (c) Canny (d) Steerable 3D (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) u-test (l) RRO

(m) TexCSt (n) CStGT (o) Canny (p) Steerable 3D (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) u-test (x) RRO

Figure 5.25: Texture based staircase interfaces (TexCSt, TexFST) with corresponding surface map results from each statistical test method
and control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) Com1CSt (b) CStGT (c) Canny (d) Steerable 3D (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) u-test (l) RRO

(m) Com1FSt (n) FStGT (o) Canny (p) Steerable 3D (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) u-test (x) RRO

Figure 5.26: Combination 1 staircase interfaces (Com1CSt, Com1FST) with corresponding surface map results from each statistical test
method and control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the
result.
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(a) Com2CSt (b) CStGT (c) Canny (d) Steerable 3D (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) u-test (l) RRO

(m) Com2FSt (n) FStGT (o) Canny (p) Steerable 3D (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) u-test (x) RRO

Figure 5.27: Combination 2 staircase interfaces (Com2CSt, Com2FST) with corresponding surface map results from each statistical test
method and control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the
result.
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5.6.4.2 F-Measure Results (CSt and FSt)
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(c) Com1CSt

0 0.2 0.4 0.6 0.8 1

Threshold

0

0.2

0.4

0.6

0.8

1

F
1

 S
c
o

re

χ
2

Canny DoB F KS L T Utest RRO Steerable

(d) Com2CSt
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(e) IntFSt
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(f) TexFSt
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(g) Com1FSt
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Figure 5.28: F-Measure analysis of Topologies 3 and 4 (CSt and FSt). Results are gathered from a F1-score comparison between a
normalised NMS filter result at 100 different hysteresis threshold values (lower threshold at 40% of upper) with that of the reference image.
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5.6.4.3 Discussion (CSt and FSt)
Across the IntCSt and IntFSt images, the DoB test performed best, characteristically
only a minor amount of over-detection occurred while maintaining strong accurate
detection of the interface (Fig. 5.24e,q). Good detection is also achieved by the Canny
operator for the CSt image, however for the FSt volume, whilst noise in the output
remains low, and the surface magnitude is strong, there is some positional detail lost
in the result. This indicated by a smooth flat detected surface instead of a stepped
structure and this is likely apparent due to the Gaussian smoothing stage of the Canny
process which blurs finer details prior to detection (Fig. 5.24o). While this the Gaussian
stage proved to be beneficial for IntSp interface type (Fig 5.19c) where a uniformly
smooth curvature in the response was optimal, here it is shown to be detrimental in
preserving the finer details of the image. The χ2 method produced a successful output
but with more spurious responses than both the Canny and DoB methods, however
this is offset by accurate detection of the finer details of the interface and a strong
magnitude surface (Fig. 5.24i,u).

The t-test performed strongly from a visual perspective in the case of IntCSt image
volume, with fewer spurious responses compared to the IntFSt results (Fig 5.24h,t).
F-measure analysis suggests that the t-test achieves similar performance but at different
threshold ranges. The IntCSt results provided a peak F1-score of 0.9 for the t-test, but
in a narrow threshold range (Fig 5.28a), whereas the IntFSt results also achieves a peak
F1-score of 0.9 across a higher but with a wider threshold range. This discrepancy is due
to how the t-test performs in corner regions. For the IntFSt image the space between
corners in smaller, this results in an interface which is lower in magnitude relative to the
spurious responses, which is why the spurious responses appear with higher magnitude
in the normalised results when compared with IntCSt. However with the IntCSt image,
the surface interface between corners produces a very high magnitude response. As
a consequence the magnitude of the surface is less uniform when compared with the
IntCSt results. Due to this factor, lower hysteresis thresholds are required to preserve
the surface. The non uniformity of the response therefore limits the threshold range
where the t-test is optimal. The results of the t-test between the different staircase
topologies is more similar between Com1FSt and Com1CSt (Fig 5.26h,t), and between
Com2FSt and Com2CSt (Fig 5.27h,t). This is due to the fact increased variance in the
data nullifies the high magnitude ’spikes’ and as a consequence improves the uniformity
of the surface magnitude responses. This results in outputs which more closely resemble
that of IntFSt and therefore have a broader successful threshold range (Fig 5.28).

The L-test achieved good detection on the IntFl (Fig 5.24g) However, this is contrasted
with the IntFSt image in which the L-test performed poorly (Fig 5.24s). This is the
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result of duplicated surface points. The objective analysis also supports this with the
χ2, RRO and DoB methods performed strongly.

Fig 5.25f,g indicates that the L and F tests offer the best detection on the TexCSt
image, followed by the χ2 and KS methods (Fig 5.25i,j). The poorest performing are
the baseline methods and the statistical u-test, t-test and the RRO tests which were
unsuccessful at resolving the interface(Fig 5.25h,k,l). F-measure analysis indicates that
the KS and the χ2 outperform the F and L test methods, with the non-parametric tests
achieving higher peak F1-scores but with a narrower threshold range (Fig 5.28b). The
results for TexFSt were similar to TexCSt, but the gap in peak performance between
the non-parametric KS and χ2 is even greater (Fig 5.28f).

Visually, the strongest performing methods on the Com1CSt image were the χ2, Canny,
DoB and t-test methods (Fig. 5.26c,e,i,j). These accurately resolved the complete
surface, while producing very few spurious responses, in the case of the Canny and
Difference of boxes methods, these over-detection artefacts were confined to the region
with higher variance. While the Canny method and DoB method both resolved a
strong surface interface, some of the detail has been lost in the case of the Canny, which
presented with a ‘smoothed’ appearance, where as the DoB method despite having a
larger scale parameter (5�5�5 compared with 3�3�3) produced much sharper steps
in the case of Com1CSt (Fig 5.26c,e) and much clearer delineation of the steps in the
case of Com1FSt (Fig 5.26,o,q).

TheKS, u-test and RRO order methods also successfully resolved the complete interface
surface, however, these methods proved more sensitive, and more spurious surface
points were produced (Fig. 5.26j,k,l). The methods which performed weakest were
the Steerable filter method, and the F and L test methods. Here the steerable filter
produced a duplicated surface response with some inaccuracies, with further artefacts
present at the corners (edges) of the steps (Fig. 5.26d). Additional over-detection
artefacts were also present, this can be clearly seen in Fig. 5.26d in the high variance,
lower portion of the output. The F test method also produced a duplicated boundary,
both of which are displaced to either side of the correct surface location (Fig. 5.26f),
some spurious responses were also present throughout the surface map volume. The L
method did produce an output without general over-detection artefacts throughout the
image volume, however it did present with some detection artefacts at the corners of
the interface (Fig. 5.26g).

In the case of Com1FSt, visually the strongest performing methods were the statistical
χ2 and t-test methods. These methods were able to resolve the surface and maintain
some of the detail of the ‘small steps’ (Fig. 5.26t,u), while producing a complete con-
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nected surface. However, these methods did present with some over-detection artefacts.
The remaining non parametric statistical methods, all produced similar results on the
Com1FSt image type, each of the KS, u-test and RRO methods accurately detected
the complete interface, however, there were some spurious responses throughout the
image volume which can be categorised as over-detection artefacts (Fig 5.26v,w,x). The
L-test did not suffer from over-detection artefacts, however there were some inaccuracies
along the surface interface, including displacement of the surface and multiple duplic-
ated responses (Fig. 5.26s). The F -test method again also presented with a duplicated
surface (Fig. 5.26r).

The results of Com2CSt and Com2FSt are presented in Fig 5.27. Visually, the best
performing method on the Com2CSt interface is the χ2 statistical detection. This
detection method achieved an accurate detection of the complete boundary, with fewer
spurious responses compared with the other tests (Fig 5.27i,u). However the strength
of the surface did vary, this can be seen in Fig. 5.27i), which manifests itself as different
intensities along the surface. However, due to the high signal to noise ratio of the
surface interface to the background, the weaker parts of the surface are preserved
during hysteresis thresholding. This finding was supported by the F-measure analysis
with theχ2-test achieving the highest peak F1-score (0.95).

The KS, u-test and RRO methods accurately resolved the complete boundary however
more over-detection artefacts were present when compared against the χ2 and t-test
detection methods (Fig 5.27j,k,l). The Canny and DoB method also resolved the surface
accurately, but there was regional over-detection artefacts which can be seen in clearly
in the cross-sectional upper left regions of the images in Fig 5.27c,e. The Steerable filter
failed to differentiate the surface, from spurious responses (Fig. 5.27d), while the L-test
result presented with an incomplete surface at corner edges as did the F -test method
(Fig. 5.26f,g).

Visually the best performing method for Com2FSt is also the χ2 method. However
the loss of detail is more prevalent in Com2FSt, when compared against Com1FSt
(Fig 5.26i,u and 5.27i,u). This is due to the regions being more statistically similar,
thus a weaker surface response where the gradient orientation is not as well defined by
the filter. The Canny method resolved the surface, but with some loss of detail due
to Gaussian filtering. The Fisher method does appear to preserve the finer detail of
the interface in superior fashion when compared against the other methods, however
this surface is displaced, and there are some additional artefacts along the surface
perimeter (Fig. 5.27r). The remaining non parametric tests again produced similar
results, resolving the surface interface with some loss of detail, and some over-detection
artefacts. The steerable method failed to resolve the surface (Fig 5.26p)
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Objective results indicate that the best method for the large stepped image volume is
the χ2 method while the F -test and Steerable are the poorest performing. The KS
scored best for the small stepped volume and the F and L methods performed the
poorest (Fig. 5.28c,g).

5.6.5 Summary of Evaluation 2
Overall evaluation 2 aims to incorporate the effects of interface topology into the
assessment of the various filter methods, and evaluate the filters quantitatively against
ground truth solutions. Evaluation 2 reveals that the impact of topology is less compared
with the impact of the statistical properties of the distributions that define the regions.
However the topological differences are not inconsequential, a number of artefacts
were caused by the different topologies, Notably the t- test which performed to a
lower standard in localised areas such as at the corners and junctions of the interfaces,
however this was due to high magnitude spikes in regions of low variance when the
neighbourhood mask was completely aligned with the surface in one of the dimensional
planes. These ’spikes’ reduced the uniformity of the surface magnitude, which made
the results less reliable with respect to thresholding.

The results from the cuboid(Cu) interface indicate similar findings to Evaluation 1.
With the χ2 and KS filters being the most highly rated, due to their success on all
interface types and relatively wide threshold range for optimal performance. The cuboid
interface style was primarily used since it has a 3-D topology which is not adequately
resolved using 2-D filters and surfaces in the z-plane will be missed. The introduction
of interface edges and corners in contrast to Evaluation 1 did create some conditions
which proved to be more challenging for some of the filter methods. In general the KS
test achieved the best detection, however it was susceptible to over-detection, while
the χ2 method offered detection only slightly behind the KS method, while not quite
suffering to same degree in terms of the production of spurious responses. A cross
section examination of the surface maps indicate that the L and F tests can achieve
good detection on texture interfaces and achieve good noise suppression, however they
are susceptible to displacement issues as well as duplicated surface points.

The spherical interface volume introduces interfaces with a high degree of curvature in
relation the filter neighbourhood size, here Gaussian smoothing of the Canny method
was shown to be effective in improving the uniformity of the surface magnitude. But
with the Staircase volumes, Gaussian filtering had a negative impact, by removing or
smoothing the finer details of the topological structure.
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5.6.5.1 Characteristics (Cu, Sp, CSt, FSt)
Tables with summaries of the key characteristics are provided from page 157 to 160.
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Method IntCu TexCu Com1Cu Com2Cu
Canny Accurate detection, connected

surface, no over-detection
artefacts

No surface, over-detection
artefacts

Accurate detection, connected
surface, no over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
Steerable Displaced surface, connected

surface, localised inaccuracies at
corners, some over-detection

artefacts

No surface, over-detection
artefacts

Displaced surface, connected
surface, some over-detection

artefacts

No resolved surface,
over-detection artefacts

χ2 Accurate detection, connected
surface, no over-detection

artefacts

Accurate detection detection,
some discontinuities, some
over-detection artefacts

Accurate detection, connected
surface, some over-detection
artefacts, weaker corners

Accurate detection, connected
surface, some over-detection

artefacts
DoB Accurate detection, connected

surface, no over-detection
artefacts

No surface, over-detection
artefact

Accurate detection, connected
surface, no over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
F -test Missed surface, duplicated

boundary either side, no
over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Inaccurate surface position,
duplicated surface, no general

over-detection artefacts

Displaced graduated surface

KS Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
L Accurate detection, connected

surface, some localised corner
and edge artefacts, localised
over-detection near surface

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, duplicated surface, no
general over-detection artefacts

Displaced surface response,
connected surface, some
over-detection artefacts

u-test Accurate detection, connected
surface, some over-detection

artefacts

No surface, over-detection
artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
RRO Accurate detection, connected

surface, some over-detection
artefacts

No surface, over-detection
artefacts

Accurate detection, connected
surface, some over-detection
artefacts, weaker corners

Accurate detection, connected
surface, some over-detection

artefacts
t-test Accurate detection detection,

weak corner resolution, no
over-detection artefacts

No surface, over-detection
artefacts

Accurate detection, connected
surface, some over-detection
artefacts, weaker corners and

edges

Accurate detection, connected
surface, some over-detection

artefacts

Table 5.7: Evaluation 2, Topology 1. Summary of Characteristics for Cuboid (Cu) interfaces
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Method IntSp TexSp Com1Sp Com2Sp
Canny Accurate detection, connected

surface, some over-detection
artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface, no over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
Steerable Small displacement, connected

surface, some localised artefacts
near surface and some
over-detection artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface, poor surface resolution,

over-detection artefacts

poor differentiation between
surface and over-detection

artefacts

χ2 Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, some
discontinuities in surface

strength, some over-detection
artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts

DoB Accurate detection, connected
surface, no over-detection

artefacts

No surface resolved, some
over-detection artefacts

Accurate detection, connected
surface, no over-detection

artefacts

Accurate detection, connected
surface some over-detection

artefacts
F -test Duplicated surface either side of

interface, some over-detection
artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Duplication of boundary,
connected surface, some
over-detection artefacts

Displacement of boundary,
some over-detection artefacts

KS Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
L Duplicated surface, artefacts

near interface, no over-detection
artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Displacement of boundary,
connected surface, some
over-detection artefacts

Displacement of boundary,
some over-detection artefacts

u-test Accurate detection, connected
surface, some over-detection

artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
RRO Accurate detection, connected

surface, some over-detection
artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts
t-test Accurate detection,

unconnected surface, no
over-detection artefacts

No surface resolved,
over-detection artefacts

Accurate detection, some
varying of surface strength, no

over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Table 5.8: Evaluation 2, Topology 2. Summary of Characteristics for Spherical (Sp) interfaces



5.6.
EVA

LU
AT

IO
N

2
159

Method IntCSt TexCSt Com1CSt Com2CSt
Canny Accurate detection, connected

surface, some over-detection
artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface some regional
over-detection artefacts

Accurate detection,connected
surface. some over-detection

artefacts
Steerable Displaced surface, connected

surface, some over-detection
artefacts

No surface resolved,
over-detection artefacts

connected surface surface,but
some duplicates and positional
inaccuracies, over-detection

artefacts

Inaccurate surface, connected
surface, poor differentiation
from over-detection artefacts

χ2 Accurate detection, connected
surface some over-detection

artefacts

Accurate detection, some
discontinuities, some

over-detection artefacts

Accurate detection, connected
surface some over-detection

artefacts

Accurate detection,connected
surface. some over-detection
artefacts, weaker strength

corners
DoB Accurate detection, connected

surface, no over-detection
artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface some regional
over-detection artefacts

Accurate detection,connected
surface. some over-detection

artefacts
F -test Duplicated surface, some

over-detection artefacts
Accurate detection, connected
surface, some over-detection

artefacts

Incomplete detection, duplicate
responses, over-detection

artefacts

Disconnected surface surface
with single voxel displacement,
some over-detection artefacts

KS Accurate detection, connected
surface some over-detection

artefacts

Accurate detection, connected
surface, over-detection artefacts

Accurate detection, connected
surface some over-detection

artefacts

Accurate detection,connected
surface. some over-detection

artefacts
L Accurate detection, connected

surface some over-detection
artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Incomplete detection, duplicate
responses, over-detection

artefacts

Disconnected surface surface
with single voxel displacement,
some over-detection artefacts

u-test Accurate detection, connected
surface some over-detection

artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface some over-detection

artefacts

Accurate detection,connected
surface. some over-detection

artefacts
RRO Accurate detection, connected

surface some over-detection
artefacts

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface some over-detection
artefacts, weaker corner

strength

Accurate detection,connected
surface. some over-detection

artefacts

t-test Accurate detection, connected
surface, no over-detection
artefacts, weaker strength

corners

No surface resolved,
over-detection artefacts

Accurate detection, connected
surface some over-detection
artefacts, variable surface

strength

Accurate detection,connected
surface. some over-detection

artefacts

Table 5.9: Evaluation 2, Topology 3. Summary of Characteristics for Staircase (CSt) interfaces
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Method IntFSt TexFSt Com1FSt Com2FSt
Canny Surface resolved, connected

surface, some inaccuracies,
some over-detection artefacts

No surface resolved,
over-detection artefacts

Surface resolved with finer
detail lost, some over-detection

artefacts

Surface resolved with finer
detail lost, some over-detection

artefacts
Steerable Surface resolved, connected

surface, some inaccuracies,
some over-detection artefacts

No surface resolved,
over-detection artefacts

Surface resolved, inaccurate
location, duplicated surface
response, over-detection

artefacts

Surface resolved with finer
detail lost and slight

displacement, over-detection
artefacts

χ2 Accurate detection, connected
surface, some over-detection

artefacts

Surface detected with some
inaccuracies, surface
discontinuities, some

over-detection artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Surface resolved with finer
detail lost, some over-detection

artefacts

DoB Accurate detection, connected
surface, very few spurious

surfaces

No surface resolved,
over-detection artefacts

Surface resolved and connected
with some loss of detail,

regional over-detection artefacts

Surface resolved with finer
detail lost some regional
over-detection artefacts

F -test Duplicate inaccurate surfaces,
some over-detection artefacts

Surface resolved, localised
artefacts, some additional
over-detection artefacts

Inaccurate duplicated surfaces,
some over-detection artefacts

Surface accurately resolved with
small shift, some over-detection

artefacts
KS Accurate detection, connected

surface, some over-detection
artefacts

Surface detected with some
inaccuracies, over-detection

artefacts

Accurate detection, connected
surface, some over-detection

artefacts

Accurate detection, connected
surface, over-detection artefacts

L Duplicate inaccurate surfaces,
very few spurious surfaces

Surface resolved, localised
artefacts, some additional
over-detection artefacts

Surface resolved, some
displacement, very few spurious

surfaces

Surface resolves with
displacement, very few spurious

responses
u-test Accurate detection, connected

surface, some over-detection
artefacts

No surface resolved,
over-detection artefacts

Surface resolved and connected
with some loss of detail, some

over-detection artefacts

Surface resolved with finer
detail lost, some over-detection

artefacts
RRO Surface resolved, connected

surface, some inaccuracies,
some over-detection artefacts

No surface resolved,
over-detection artefacts

Surface resolved and connected
with some loss of detail, some

over-detection artefacts

Surface resolved with finer
detail lost, some over-detection

artefacts
t-test Accurate detection, connected

surface, localised artefacts
No surface resolved,

over-detection artefacts
Accurate detection, connected
surface, varied surface strength,
some over-detection artefacts

Surface resolved with finer
detail lost, some over-detection

artefacts

Table 5.10: Evaluation 2, Topology 3. Summary of Characteristics for Staircase (FSt) interfaces
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5.7 Evaluation 3: Multiple textured interfaces
5.7.1 valuation 3: Aim
Evaluation 1 and 2 revealed that the statistical properties of a region have a more
significant impact then the topological effects on the quality of the detected surface.
Evaluation 3 aims to explore the impact of different region properties further. Here
the filters are applied to data with a wide range of different regions which produce
interfaces of different strengths. This creates less than optimal conditions for complete
detection of a surface, and more closely approximates real image volume data which is
inherently complex (Milan et al., 1993).

Evaluations 1 and 2 image sets are designed to analyse the ability of the filters to
resolve a single surface between two controlled regions. However, real images seldom
contain one interface. Image artefacts and object variation leads to the existence of
multiple interfaces. Thus an image volume containing multiple region profiles, with
several different interface types in the same image is more representative of real world
imagery.

While many interfaces are present in an image volume, typically not all interfaces will
be of the same strength due to the complexity of the textures and features that define
particular regions. Thus, an effective synthetic test volume requires a multitude of
regions capable of producing a range of interfaces with differing strengths. Gradient
method operators and some parametric statistical tests are linear in their resolving
power, meaning the weaker interfaces, if detected, should produce low output values,
whereas stronger interfaces should result in higher outputs simultaneously in the same
surface map. This may be of preference if the prioritised surface segmentation is of
the stronger interface variety, however, if the weaker interfaces are critical surfaces
required for a higher level process such as segmentation, these may be lost during post
processing stages such as thresholding. Where this is the case, a method in which the
local maxima could be normalised would be preferential.

The non parametric statistical tests which employ ranking of the sample data in essence
locally normalise the output values while the image is processed. This local normalisa-
tion of output values has the effect of increasing the strength of weak surface responses
to levels more often associated with stronger interface allowing for the detection of
weaker boundaries. This aspect is referred to as sensitivity, and is assessed here.
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5.7.2 Evaluation 3: Visual Results (MultiFlat, MultiCurve)

(a) MultiFlat (b) MultiFlatGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.29: Multiple flat interfaces image (MultiFlat) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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(a) MultiCurve (b) MultiCurveGT (c) Canny (d) Steerable 3D

(e) DoB (f) F -test (g) L (h) t-test

(i) χ2 (j) KS (k) u-test (l) RRO

Figure 5.30: Multiple curved interfaces image (MultiCurve) with corresponding surface map results from each statistical test method and
control method. In addition the central layer from the surface map is presented to show a cross-sectional representation of the result.
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5.7.3 F-Measure Results (MultiFlat, MultiCurve)
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(a) MultiFlat
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Figure 5.31: F-Measure analysis of Multiple Interface (MultiFlat, MultiCurve) tests.
Results are gathered from a F1-score comparison between a normalised NMS filter
result at 100 different hysteresis threshold values (lower threshold at 40% of upper)
with that of the reference image.

5.7.4 Discussion
The 3-D surface map visualisations indicate that t-test is able to achieve good detection
with the fewest instances of spurious surface points (Fig. 5.29). However, examination
of the 2-D layers reveal that while the t-test is a good suppressor of image noise, it does
produce a surface map response with a high dynamic range across the different interfaces,
this is signified by certain resolved interface types possessing a significantly different
magnitude response to others, leading to some of the detected interfaces not being
visible. This can lead to a narrow operating window for optimal threshold selection,
this narrow effective threshold range is observed Fig 5.31, here it can be seen that the
t-test was effective only with a very low threshold.

The superior method is the χ2 method, offering good accurate detection across a wide
range of interface types with a moderately low number of spurious responses on both
MultiFlat and MultiCurve datasets. Further still, analysis of the individual 2-D layers
reveal that the relative magnitude between the resolved surface of the interface and
the magnitude of the spurious response is quite significant, allowing for more optimal
thresholding. The χ2 method also has a small dynamic range in its response across the
different interface locations. This is due to the nature of the test effectively offering local
normalisation and this results in surfaces which have a locally strong magnitude. This
makes the χ2 method not only suitable for resolving many different kinds of surfaces at
different interface strengths but is also able to achieve success across multiple interface
types concurrently in the same image volume. Visually the χ2 method is the most
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optimal, this is further supported by the quantitative analysis which shows the χ2

method to offer the best results, followed closely by the KS test (Fig. 5.31).

The KS-test performed to a similar standard as the χ2 method, however the magnitude
of the spurious responses relative to the surface interface in this instance is higher. The
next strongest performing filters were the RRO, t-test and u-tests. With the RRO
and u-test methods offering similar performance to the KS method in terms strong
accurate connected detection, and the presence of spurious surface points. The DoB
method offered a comparable response to the Canny method, but with marginally
improved noise suppression. While the poorest performing tests were the Steerable,
L and F test methods. Results from the MultiCurve test image offer a comparable
findings to the MultiFlat test. The χ2 method again produced the best visual surface
map results indicated by offering good detection of the surface at a lower noise cost
when compared with the other non parametric techniques. In addition, the χ2 method
detected the large exterior interface in the upper right quadrant of the image, which
all other methods failed to do (Fig. 5.30i). The effectiveness of the χ2 method was also
reflected in the F-Measure scores, however the objective results also indicate that KS
method performed strongly, but at a higher threshold level, where more of the noise is
reduced (Fig. 5.31b).

5.7.5 Summary of Evaluation 3
Evaluation 3 was designed to measure the performance of the filters in the presence of
multiple different regions with different relative interface strengths. The best performing
measures were the χ2 method and the KS methods, which significantly outperformed
the baseline Canny operator and 3-D steerable methods according to the F-measure
scores (Fig 5.31). This provides a strong rationale to use statistical methods in complex
data with multiple image regions. Since these methods use non-parametric statistical
means to measure dissimilarity, they are able to achieve a degree of local normalisation,
whereby a high output response for a local region, results in a high magnitude response
in the context of a whole image volume. This is desirable since weaker interfaces,
which may be indicative of a type of boundary being targeted, can be resolved without
the introduction of significant amounts of spurious responses. The remaining two non
parametric tests, RRO and u-test methods, also achieve good detection across the
MultiFlat and MultiCurve test images.

When preventing against over-detection is most significant, the t-test becomes a desirable
option since it does not produce as much noise as the other methods tested, however
this it at the expense of some undetected boundaries, namely in localised areas such
and corners and junctions. The DoB method is most comparable method to the Canny
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method, while offering slightly better noise suppression. The Steerable method, L and
F test methods did not perform well on the multiple interface volumes, the Steerable
method presented with noise and significant over-detection, while the L-test produced a
strong result for one interface type, and this led to the suppression of weaker interfaces
within the volume. The F -test detects the boundaries and suppresses noise, but the
results produced duplicated and displaced boundaries which violates one of Canny’s
criteria for optimal detection.

Method MuliFlat MultiCurve
Canny Missed surfaces, some noise, good

connectivity,
Missed surfaces, good noise

suppression, low magnitude surfaces

Steerable Missed surfaces, considerable noise,
low magnitude surfaces

Poor detection, considerable noise,
weak surfaces

χ2 Best detection, some noise, good
connectivity, strong magnitude

surfaces

Best detection, some noise, good
connectivity, strong surface

magnitudes

DoB Some missed surfaces, low levels of
noise, good connectivity

Missed surfaces, good noise
suppression, low magnitude surfaces

F -test Good detection, but duplicated
surfaces, some noise, good

connectivity

Good detection, but duplicated
surfaces, some noise, good

connectivity

KS Good detection, considerable noise,
good connectivity, strong magnitude

surface

Good detection, considerable noise,
good connectivity, strong magnitude

detection

L Good detection, but duplicated
surfaces, good noise suppression,

magnitude surfaces

moderate detection, but duplicated
surfaces, moderate noise suppression,

strong magnitude surfaces

u-test Good detection, moderate noise, good
connectivity, strong magnitude

surfaces

Good detection, moderate noise, good
connectivity, strong magnitude

surfaces

RRO Good detection, considerable noise,
good connectivity, strong magnitude

surfaces

Good detection, low-moderate noise,
good connectivity, strong magnitude

surfaces

t-test Good detection, good noise
suppression, good connectivity, mixed

magnitude surfaces

Good detection, good noise
suppression, good connectivity, low

magnitude surfaces

Table 5.11: Evaluation 3, Summary of Characteristics for MultiFlat and MultiCurve
interfaces
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5.8 Summary
In Chapter 5 an objective evaluation of statistical surface detection was presented using
synthetically created data. The development of accurate synthetic data introduces
many challenges due to the complexity of real images in terms of surface structure, and
the wide array of possible region profiles and textures which can exist in 3-D imagery
as noted by Bowyer et al. (2001). To address these challenges a multi-variable approach
was undertaken where resolving power, surface topology and multi-region detection
were assessed independently.

The objective analysis in Evaluation 1 indicated that the χ2 was the most reliable detec-
tion method, characterised by good detection across the most interface types, notably
best on the Com1 and Com2 interface types, with strong connected surface results. The
DoB and t-test performed well where there was a strong intensity component, and the
L and non-parametric test methods also performed relatively well where the variance
component was significant.

Evaluation 2 introduced topological differences in the interface to assess the impact
on surface detection methods. While topological differences were shown to be not as
pronounced in the results as the difference in interface types, the effect was not negligible.
The initial stage of the Canny surface detection process applies Gaussian filtering to
assist in the suppression of noise in the output, this had both positive and negative
influences on result based on the topology under assessment. The Gaussian filtering
on the IntSp interface improved the uniformity of the curvature, combined with the
small scale parameter of the method (3 � 3 � 3), the Canny surface filtering produced
a response which had uniform magnitude, in turn this improved the robustness of the
method with respect to hysteresis thresholding and allowed the Canny technique to
achieve the best performance score (Fig 5.23a) on the IntSp image. Conversely the
Gaussian filtering stage negatively affected the visual performance of the method on
the other topologies, this is most apparent on the FSt topologies where the finer details
of the interface structure were negated by the Gaussian filtering. This effect is apparent
in Fig 5.24o where the ’steps’ in the structure were effectively smoothed into a flat
surface plane. This was not the case for the DoB method which is the statistical
method that most closely resembles the Canny method in terms of its functionality. In
Fig 5.24q it can be seen that the topological details are preserved to a greater extent
than the Canny method. While these artefacts are clear in the visual results, the
Canny method maintained a strong performance F1-score on the FSt image type due
to proximity of the smoothed surface response to the reference ideal, falling within the
T -match allowance. Here the statistical methods which had better visual results, did
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not improve upon the Canny method performance (Fig 5.28e,g,h), this due to the fact
NMS has limitations on corners, which are commonly suppressed, therefore the benefits
of the superior filter responses of the statistical methods were not fully realised. This
explanation of the discrepancy is confirmed by the results from the CSt image type,
where the Canny method was outperformed by statistical methods, because the NMS
was not as significant of a limiting factor (Fig 5.28a-d).

Evaluation 3 addressed the issue of multiple strength interfaces present in the same
image which is more typical of real imagery. The MultiFlat and MultiCurve images
provided the results with the biggest performance gap between the baseline techniques
and the statistical techniques. Here statistical methods, particularly the non-parametric
tests with their greater sensitivity achieved improved detection, with more interfaces
detected, better connectivity of the interfaces and improved signal noise ratio (Fig 5.29
and 5.30). While the non parametric tests did produce more noise in the surface map,
the signal to noise ratio was great enough that hysteresis thresholding allowed for
successful results. The performance scores indicate that when multiple interfaces are
present, it is better to use a sensitive filter such as non-parametric test, which has better
detection at the cost of increased noise in order to detect the weaker interfaces in the
image, since the noise can be reduced through hysteresis thresholding. This can be
observed in Fig 5.31 where the sensitive non-parametric tests achieved the best scores,
but in the lower threshold range.

Generally, the non parametric tests achieved the best detection across the evaluations,
but at the cost of increased noise in the output. The parametricDoB and t-test achieved
better detection than the baseline methods, but with some topological limitations for
the t-test. The remaining L and F test improved over baseline methods on the Tex
interface type, however the L and F test did produce duplication artefacts and were
not as successful as other methods on the Int, Com1 and Com2 interface types.

While efforts were made to improve the reliability of an analysis using synthetic data,
it cannot be automatically assumed that a correlation exists between the results of
synthetic data testing and performance on real imagery as noted by Bowyer et al.
(2001). Following a confirmation and validation framework, the following chapter
introduces a qualitative approach to performance evaluation in order to assess if the
filter characteristics are transferable to a real data case.



Chapter 6

3-D Surface Detection in
Multi-Model MRI

6.1 Introduction
In Chapter 5, a supervised objective analysis using synthetically generated image data
was employed to provide an assessment of surface detection performance. However,
the complexity of real data contrasts that of synthetically generated images, implying
that optimal performance in one domain, may not directly translate to another. Chen
and Zhu (2019) states that both subjective and objective assessment are crucial for
evaluating the visual performance of algorithms.

To verify whether the synthetic evaluation can be relied up on and has generalisability
and transferability, a qualitative approach is undertaken analysing surface detection
filtering of real Multi-Model MRI data. This allows the investigation of whether trends
found with synthetic data apply to real data. The dataset consists of 5 paediatric
patients with Pilocytic Astrocytoma(PA) tumours in the posterior fossa region of the
brain. The analysis will examine how the surface detection methods respond to the
various interfaces which exist in this region, across 3 independent MRI modalities,
T1-weighted, T2-weighted and contrast enhanced T1-weighted data.

This case study will observe the characteristics of the filter results and compare the
findings with results generated through synthetic data. The purpose of this analysis
is to attempt to visually verify whether or not the characteristics of statistic surface
detection methods discovered in Chapter 5 are transferable in a real world application
case. The analysis informs which methods provide the best results, but also identify
characteristics from each filter type which are likely to present across a wider range
of applications. It will also give indication to what conclusions can be reliably be
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drawn from synthetic data testing while identifying the potential limitations of such an
approach.

6.2 Background
The World Health Organisation lists over 30 different classes of brain tumour, in
addition brain tumours are listed as the second most common kind of cancer found
in children. In the medical field there are a number of 3-D imaging techniques for
which surface detection algorithms are applicable, these include scanning techniques
such as magnetic resonance imaging (MRI), computed tomography (CT), single photon
emission computed tomography (SPECT) and positron emission tomography (PET).
Each of these methods provide their own unique utility and possess their own advantages
and challenging problem areas. The standard technique for brain tumour diagnosis is
to apply magnetic resonance imaging (DeAngelis, 2001; Wen et al., 2010).

A particular issue common to 3-D scanning methods is the ability to locate interfaces
in the image where the boundary is not clearly defined by intensity differences alone.
Frequently there is poor contrast between the tumour and its surroundings, this can
be due to noise (Abdel-Gawad et al., 2020), but the lack of contrast can also occur if
pathologies possess tissue properties similar to that of its surroundings.

6.2.1 Magnetic Resonance Imaging (MRI)
MRI is a non-invasive imaging technique that is able to produce a 3-D image volume
that can reveal various anatomical structures of a patient (Bauer et al., 2013). The
MRI process requires the patient to be placed in a strong magnetic field. This realigns
randomly orientated hydrogen atomic nuclei in water molecules present in the patient’s
tissue with that of the static magnetic field. A radio frequency pulse is emitted from the
scanner to excite the hydrogen nuclei, forcing some nuclei to be 180� out of alignment
with the static magnetic field and in phase with the surrounding hydrogen nuclei. To
obtain a signal for imaging, the magnetic field is disrupted through a specific sequence
of radio frequency pulses, causing the atomic nuclei to return or relax to their normal
state. Through this process of relaxation, the change in the local magnetic field induces
an electrical current in the receiver coils of the machine, for which the voltage can be
measured over time to produce a signal. This signal is then processed using a Fourier
transformation to evaluate the intensity of RF energy in a specific location. A map of
the processed RF energy is used to construct an image, bright regions equate to high
energy and dark regions correspond to low energy and these structures can correspond
to different tissue types within the image.
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6.2.2 Multi-Modal MRI
Adjustment of the pulse sequences allows for different imaging modalities, namely
T1-weighted and T2-weighted formats, this distinction allows for different structures
contained within the body to be revealed in a non-invasive fashion (Bauer et al., 2013).
Multi-modal techniques (MRI scans using multiple modalities T1, T2 and contrast
enhanced modalities) is the standard approach to a tumour diagnosis (Bauer et al.,
2013). However, MRI machines are not without their drawbacks, for instance, a patient
must remain still in an enclosed machine for an extended period of time which may be a
problem for claustrophobic patients (Murphy and Brunberg, 1997; Dewey et al., 2007).
As some patients find this experience stressful, the duration required of the patient
spent in the scanner is often minimised. As a consequence the patient data acquired
from MRI is not always the highest resolution achievable by the MRI scanner (Du et al.,
2020). Additionally, multi-modal scanning requires further time for the patient in the
scanning machine, therefore single modality analysis is sometimes undertaken. Thus,
medical practitioners do not always have access to the most complete data. One aim of
the evaluation is to assess the performance of the surface detection filters on individual
imaging modalities, in order to make recommendations for each domain.

6.3 Evaluation Methods
There are two distinct approaches to evaluating surface detection in an application spe-
cific domain, one employs the use of model data, and the other uses real data. The first
of these approaches further expands on the objective analysis presented in Chapter 5,
with increased development of the synthetically generated images. In this approach the
aim is to replicate real data as close as possible for use with a specific application case.
This requires the inclusion of more complex topological structures, and the development
of more complex textures. The most recognised approach for simulating MRI data is to
use MR phantom images, such as the BrainWeb data set (Collins et al., 1998). These
simulated models have a number of advantages. Firstly they are created using a math-
ematically defined model which allows for the creation of repeatable reference images
which are valid for 3-D data. Secondly, models and reference images can be created
for individual modalities, such as T1-weighted, T2-weighted and T1-contrast enhanced
MRI images allowing for objective analysis of algorithms to be performed on single
modalities separate from one another. The current BrainWeb models, are considered
the benchmark of simulated 3-D MRI data for the analysis of different segmentation
methods (Despotović et al., 2015). However, simulated phantom models introduce some
issues. Firstly the data is still not from a real application case, thus the reliability of
the result is dependent on the accuracy of the model. However, more importantly when
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considering Phantom MR for surface detection evaluation, is that this type of dataset is
modelled specifically for the segmentation of specific tissue types, such as white-matter,
grey-matter and cerebral spinal fluid regions. Simulations of other brain structure or
specific pathologies are not available, such as types of brain tumours which have their
own spatial and statistical characteristics.

The second approach is to use real data, which has been manually segmented. The
current gold standard method for obtaining reference images for real data is the meth-
odology established in the BRATS multimodal brain tumour segmentation challenge
(Menze et al., 2015). The validation of reference material is as follows:

Firstly pre-segmentation is applied to remove all material which is not part of the brain,
such as skull, nasal and optic regions, and other soft tissues. Then all imaging datasets
are segmented manually by one to four ‘raters’ following an annotation protocol as
described by Menze et al. (2015), the BRATS data includes T1-weighted, T2-weighted,
T1-weighted contrast enhanced, and T2-weighted FLAIR imagery. The lower resolution
images are interpolated to have the same resolution as the T1-c image modality which
are then then co-registered ready for segmentation. Manual segmentation of a partic-
ular pathology is performed on a single modality, with data obtained from the other
modalities used as supplementary resource to assist in the segmentation decision making
process. This process requires viewing a combination of T1-weighted, T2-weighted im-
age layers concurrently in order for the radiologist to make a more informed assessment
of where object boundaries lie. The segmentation annotations are then approved by
experienced radiologists. A huge number of segmentation methods have been objectively
evaluated using this methodology with real data, and is therefore recognised framework
for evaluating techniques using a real application case (Menze et al., 2018).

While suitable for general segmentation The BRATS challenge methodology is not
directly transferable to objectively measuring the performance of edge and surface
segmentation. This is due to 3 different factors.

• It is an objective analysis framework for region segmentation and object detection,
not surface detection.

• Only 1 reference image is provided for 4 co-registered modalities.

• The reference image is comprised of manually segmented 2-D layers and is not
true 3-D.

Segmentation is a category of image processing tasks, of which surface segmentation
is considered a sub-category. General segmentation remains one of the most studied
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problems in image analysis and computer vision (Fernandez et al., 2015). Wang et al.
(2020) states that segmentation algorithms are abundant in the literature and that
evaluation frameworks are continuously being proposed to meet these needs. There
exists a number of evaluation frameworks to evaluating the effectiveness of segmentation
methods (Cardoso and Corte-Real, 2005; Martin et al., 2006; Udupa et al., 2006; Zhang
et al., 2008; Menze et al., 2015). However, these approaches are specifically tailored
toward objectively analysing 2-D object segmentation, and are not directly applicable
to surface segmentation.

The BRATS reference solutions are a labelled image which define only the structure
which relates to the tumour interface. Therefore this methodology discriminates against
other structures which may be relevant for a different segmentation task. It therefore
effectively penalises surface detection algorithms for serving their primary function of
detecting surfaces, based on an subjective assumption of which structure is relevant in
the image. While this approach to creating reference solutions is suitable for object
detection, and for aiding a subjective qualitative analysis, it is not suitable for objectively
analysing surface detection for real data.

The second factor is that only a single reference image is provided unique to each
case. This is important if the goal is assessing the evaluation of object detection, since
the object’s position is most accurately described by taking into account all available
data. Surface detection algorithms have no prior image understanding; they are not
intended to combine outputs from different image modalities in order to generate a
single result. Using co-registered reference images does not allow for a valid objective
analysis to be performed on each of the individual T1, T2 and contrast enhanced
T1-weighted modalities independently. In order to accurately analyse the algorithms
performance, a separate reference image for each modality would be required. Then
a richer set of recommendations could be made for specific algorithms with respect to
the image modality, and guide how parameters should be set and define best use for
semi-automated practice.

Thirdly Bomans et al. (1990) showed how structure can exist when considering data in
3-D that would be missed when viewing the data in 2-D, this is illustrated earlier in
Figure 2.19 and within the results presented in Chapter 5. An often overlooked issue of
using manual segmentation for 3-D data is that manual segmentation is performed on
individual 2-D axial layers, and ultimately neglects interfaces which exist between the
layers. This causes the reference solutions for 3-D data to be flawed for an algorithm
which employs 3-D processing. When manual segmentation annotations are made in
2-D, and then interpolated into 3-D volumes, some structure which exists across the
z-plane may be missed (Bomans et al., 1990). Therefore manually segmented reference
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images may contain incomplete information and are unsuitable for true 3-D objective
examination.

As a consequence these factors also make the BRATS protocol an unsuitable methodo-
logy for objective surface detection evaluation.

6.4 Case Study: Pilocytic Astrocytoma Tumour and Cyst
Interfaces

Surface detection algorithms are exclusively used to process 3-D data, and therefore to
evaluate surface detection approaches in a real application, a case study with a 3-D data
format is required. The purpose of this study is to provide context of where various
surface detection algorithms are effective in different modalities of MRI data.

The case study selected for this work is the examining of surface detection methods for
their ability to determine Pilocytic Astrocytoma tumour and cyst boundaries in paedi-
atric patients. Unlike the adult population, the majority of childhood tumours present
in the posterior fossa region of the brain, this is a sensitive region of the brain where
critical and vital brain functions take place, making treatment challenging. Around 55%
of childhood brain tumours arise in the posterior fossa, compared with 15% to 20% of
adult tumours (Fetit, 2015). Accurate segmentation of these pathological structures is
of paramount importance in order to avoid further complications in treatment planning.
Analysis of the surface detection algorithms will be based on their utility at detecting
tumour and cyst interfaces in 3-D data. In contrast to the methodology employed
by the BRATS challenge (Menze et al., 2015), the effectiveness of detection methods
on different imaging modalities in MRI (namely T1, T2 and T1 contrast enhanced)
is considered. This approach is used as it allows for recommendations to be made of
where specific algorithms are preferential.

6.5 MRI Datasets
The data provided in this study was made available by Birmingham Children’s Hospital
and the Children’s Brain Tumour Research Group. The data is comprised of 5 Multi-
modal MRI Patient cases and are of paediatric patients with Pilocytic Astrocytoma
brain tumours, and for each case, T1-weighted, T2-weighted and T1-contrast-enhanced
MR imaging modalities were available. The complete dataset is provided in Appen-
dices A,B,C.

Example images of T1-weighted images are presented in figure 6.1, T2-weighted images
in figure 6.2 and T1-weighted contrast enhanced images in 6.3. The images are in
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their original formats and have not been interpolated or registered so they remain with
the original acquired resolution. Nor has any pre-segmentation been applied, so the
entire scan of the head region is available, and is not confined to a pre-segmented brain
image, as seen in BRATS data. All data was anonymised by the clinical lead scientist
at Birmingham Children’s Hospital brain tumour research group for the study, and all
data was processed following formal ethical clearance review process.

(a) Patient
case 1

(b) Patient case 2 (c) Patient case 3 (d) Patient case 4 (e) Patient case 0

Figure 6.1: T1-weighted volumes with Pilocytic Astrocytoma tumours present in the
posterior fossa region of the brain

(a) Patient
case 1

(b) Patient case 2 (c) Patient case 3 (d) Patient case
4

(e) Patient case 5

Figure 6.2: T2-weighted volumes with Pilocytic Astrocytoma tumours present in the
posterior fossa region of the brain

(a) Patient
case 1

(b) Patient case 2 (c) Patient case 3 (d) Patient case
4

(e) Patient case 5

Figure 6.3: Contrast enhanced T1-weighted volumes with Pilocytic Astrocytoma
tumours present in the posterior fossa region of the brain



176 CHAPTER 6. 3-D SURFACE DETECTION IN MULTI-MODEL MRI

T1 - weighted
Cases x� y � z

dimensions
xy-res (mm) z-res (mm)

1 384�512�30 0.45 5
2 512�512�25 0.45 5
3 512�512�24 0.45 5
4 288�320�39 0.63 4
5 288�320�40 0.72 4

T2 - weighted
Cases x� y � z

dimensions
xy-res (mm) z-res (mm)

1 384�512�38 0.45 3
2 512�512�41 0.45 3
3 512�512�39 0.45 3
4 360�448�43 0.45 3
5 402�448�50 0.51 3

T1 - weighted with Contrast agent
Cases x� y � z

dimensions
xy-res (mm) z-res (mm)

1 384�512�30 0.45 4
2 512�512�33 0.45 4
3 512�512�32 0.45 4
4 260�320�37 0.72 4
5 320�320�35 0.72 4

Table 6.1: Dataset dimensions and resolution.x� y � z are the image dimensions
measured in voxels. x, y res is the measurement of the space covered by each voxel in
axial plane in mm. z res is voxel thickness also measured in mm. For each image
volume the resolution is anisotropic with higher resolution in the x and y dimensions
compared with that of the z dimensions.
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Due to the limitations of providing a repeatable objective analysis using real data,
namely the problem of obtaining valid reference imagery for 3-D data and individual
MRI modalities, an objective analysis of real data was not undertaken. Reference
images can still be of useful assistance in a qualitative analysis. In a qualitative analysis
reference images can act as visual guide to a region of interest and can indicate the
location of where some of the tumour interfaces are expected to exist. This can assist
in providing context for discussion of the results.

For this data, reference images were created manually in the 2-D axial plane by the
clinical lead expert at Birmingham Children’s Hospital and validated by the brain
tumour research group separately for each of the T1-weighted, T2-weighted and T1-
contrast-enhanced MR imaging modalities, allowing for a visual assessment to be made
on results for each.

Upon observing the reference data for different modalities, it is apparent that different
modalities provide unique image structure, further increasing the necessity of using
separate reference images for each modality in an evaluation (Fig 6.4). As this analysis
is visual and not objective, the annotations label only the boundary of solid tumour
regions omitting regions of cyst from the reference image, these can then serve as a
guide for regions of interest .

(a) T1 (b) T2 (c) T1-contrast

Figure 6.4: Reference : Annotations for T1, T2 and T1 contrast MRI volumes. The
annotations indicate the interface of the tumour with other regions of the image. The
annotations do not include brain regions such as grey matter, white matter, and
cerebral spinal fluid, nor do the annotations indicate cyst regions. Notably the
annotations are different for each of the modalities on a single patient

In Figure 6.4 the tumour regions are annotated for each of the modalities on a single
patient. In Figure 6.4a, the T1 image, cysts are signified by the dark grey oval shaped
regions on the perimeter of the tumour, while normal brain tissue is the lighter shaded
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grey surrounding this region, the normal tissue has similar visual properties to the
tumour, making manual segmentation of these types of interfaces non-trivial (Bauer
et al., 2013). In Figure 6.4b, the T2 image, cysts are signified by the bright white
regions on the perimeter of the tumour, and the normal brain tissue is signified by
the darker grey surrounding region. Here the change in intensity between tumour and
normal tissue is greater, however, visually differentiating between tumour and cyst is
more challenging since they are both represented by high intensity regions. In Fig-
ure 6.4c, the T1-contrast image, cysts are signified by the dark grey oval shaped regions
on the perimeter of the tumour, and the normal tissue is the brighter grey surrounding
area. For T1-contrast images, the tumour region is higher intensity than both cyst and
normal regions. Each independent modality offers a unique visualisation of the physical
pathological structures within each of the patient cases, therefore surface detection
applied separately to each modality is a valuable tool.

6.6 Qualitative Assessment
Subjective methods of evaluation can also be defined as observation methods, and these
methodologies are dependent on a human assessor to visually inspect results (Wang
et al., 2020). For this case study an observational methodology of analysis is employed,
providing a visual assessment of the filter responses from the same 8 statistical surface
detection and baseline methods analysed in Chapter 5.

The surface detection methods are applied across 5 volumetric data sets, each of which
possess data from three individual imaging modalities (T1-weighted, T2-weighted and
T1-weighted contrast images).

In this case study the primary surfaces of interest are illustrated in Fig 6.5 and are
which that exist between:

• Tumour (Tu) and Cyst (Cy) - Tu� Cy interface.

• Tumour (Tu) and normal brain tissue (Br) - Tu�Br interface.

• Cyst (Cy) and normal brain tissue (Br) - Cy �Br interface.

The primary advantage of a subjective visual assessment is the ability to accurately
describe the features and structure of the responses which is relevant to determining
the context in which they can be applied. In this case a number of context specific
characteristics shown in Chapter 5 are assessed in the results, namely:

• Detection of a surface interface.

• Strength of the detected surface relative to surroundings.
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Tu
Cy

Br

(a) T1

Tu
Cy

Br

(b) T2

Tu
Cy

Br

(c) T1-contrast

Figure 6.5: Tumour(Tu), Cyst(Cy) and Brain (Br) region labels

• Connectivity of the surface.

• The quantity of clutter (duplicated surface information)

• Prevalence of noise

These characteristics can be assessed visually, without the need to use a supervised
comparison. These characteristics can also assist in the discussion of recommendations
for a particular surface detection method. Attributes such as the connectivity of a
detected surface, the amount of surface clutter (duplicated surface information) and the
amount of noise in the image affects the suitability of the responses for specific tasks.

In alignment with chapter 5, the following same Vector Magnitude statistical methods
are applied at a neighbourhood mask scale of 5 � 5 � 5:

• Difference of boxes

• Fisher test

• Likelihood ratio test

• Student’s t-test

• χ2 test

• Kolmogorov Smirnov test

• Mann-Whitney u-test

• Robust Rank Order test

All methods, including the baseline 3-D Canny surface detector and 3-D steerable
methods were applied without the non maximum suppression and hysteresis thresholding
stages. While these are fundamental components of the Canny and Steerable method,
the results from Chapter 5 reveal different methods produce their optimal result in
different threshold ranges. Within the dataset, as is typical for MRI data, not all
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images across modalities have the same spatial dimensions or voxel spacing which leads
to images with anisotropic resolution (Table 6.1). Information regarding the scanner
settings is available within the DICOM files (MRI Image format) which is utilised by
the VM method to adjust the dimensional weighting as defined earlier in Eq 3.13. In
all patient cases the images have equal voxel spacing in the x and y dimensions of an
axial view, but the z-spacing is larger by varying degrees.

Showing the visual results prior to NMS and Hysteresis thresholding stages allows
for a direct comparison of the filter response, rather than subjectively selecting the
optimal post-filtering stage parameters. Furthermore, the intensity of surfaces is useful
in evaluation of subsequent processes and can offer guidance into the strength of the
interface, mitigation of post processing techniques for this purpose is in alignment with
the work of Williams et al. (2014). Image results cover a single layer from a region of
interest situated in the tumour location. Presented with the results are 2-D manually
segmented reference images for the tumour interface, this is to be used as a visual guide
to indicate where a surface interface is expected.

6.7 Evaluation 4: T1-weighted 3-D
T1-weighted images are obtained with a short echo time and short repetition time
sequence. In T1-weighted images of the brain, the white matter presents with bright
regions, while conversely the grey matter presents as dark regions. Other structures
such as cerebral spinal fluid (CSF) appear as dark regions, while the cortex (grey matter)
appears grey, and fat contained within bone marrow appears bright (Fetit, 2015). PAs
commonly present with one or more large cystic components (Fig 6.6b) which are
generally composed of air, fluid and semi-solid material. In T1-weighted images, the
tumour present as mildly hypo-intense(darker) regions with respect to surrounding
white matter tissue, typically at a similar level to the CSF intensity while the cystic
components present as hypo-intense regions (Fetit, 2015). This similarity in brightness
to the surrounding tissue also makes differentiation between tumour pathology and
healthy regions non-trivial when using gradient style methods. The similar intensity
levels between the regions of the Tu � Br interface share characteristics of the Tex
type interface while the Cy �Br and Tu� Cy interfaces are characteristically similar
to the Com2 interface type used in evaluations 1 and 2 in chapter 5. Topologically,
the tumours interfaces are complex in shape, with small details and curvature, and are
typically not uniformly flat. Therefore characteristics observed in evaluations 2.2 and
2.3 are explored in the real data. Additionally, the images are complex with several
regions including those which are not part of the region of interest (ROI), as these
regions are unique, the relative magnitude of the surface interfaces will be different
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throughout the image. Evaluation 3 demonstrated a trade-off in performance between
sensitivity and noise suppression when multiple different strength interfaces are present,
with the non-parametric tests and the t-test achieving the best results (Fig 5.31). It
is therefore expected that the trade-off observed in evaluation 3 would be present or
elevated for real T1 imagery.

roi

(a)

roi

(b)

Figure 6.6: Pilocytic Astrocytoma pathologies in T1 imagery

6.7.1 Results
Figures for the results are provided on the following page.
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(a) Volume 1 (b) Reference 1 (c) Canny (d) Steerable (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

(m) Volume 2 (n) Reference 2 (o) Canny (p) Steerable (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) RRO (x) u-test

Figure 6.7: T1-weighted surface maps patient 1 and 2
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(a) Volume 3 (b) Reference 3 (c) Canny (d) Steerable (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

(m) Volume 4 (n) Reference 4 (o) Canny (p) Steerable (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) RRO (x) u-test

Figure 6.8: T1-weighted surface maps patient 3 and 4
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(a) Patient Volume
5

(b) Reference 5 (c) Canny (d) Steerable 3D (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

Figure 6.9: T1-weighted surface maps patient 5
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6.7.2 Discussion
For the T1-weighted images, all methods detected interfaces surplus to those revealed in
the reference image. All methods produced what can be considered spurious responses
and clutter (connected spurious responses). However the best performing method was
the Student’s t-test, which achieved near complete accurate visual detection of the
target interfaces in most cases. The t-test response was characterised by connected
high magnitude surfaces across PA tumour cases, but this was most prominent with
the case presented in Fig 6.7h, here the high magnitude interface is signified by a solid
connected, bright surface interface. The t-test method on some occasions also resolves
some internal structural details of the tumour (Fig 6.8h), which may be considered
clutter, thus undesirable for various segmentation techniques. However, this can be
mitigated with hysteresis thresholding.

The χ2 method also produced accurate detection with connected responses (Figures 6.7i 6.8u).
The responses were visually less cluttered than the results from the other non-parametric
tests (KS, u-test, RRO), while maintaining a similar level of detection of the tumour
interface. Generally the χ2 method produced connected tumour interface surfaces, how-
ever there were some missing surface details as can be seen in Fig 6.7u between cyst
and tumour as well as some localisation error incurred due to a displacement of the
surface (Fig 6.9i). The cause of the displacement is due to surface interfaces which exist
between adjacent image layers.

The Canny surface detector, Steerable filters and the statistical DoB method are
designed to produce high value responses to shifts in image intensity, T1-weighted images
do not always produce a large intensity differentiation between solid tumour material and
the surrounding white matter brain tissue, therefore these methods are not optimal with
much of the tumour interface not always being detected (Figures 6.7o,p,q 6.8c,d,e,o,p,q).
However, while the Steerable filter failed to resolve the tumour interface, the Canny and
DoB method can offer value since they typically produced a lower noise output, mostly
absent of cluttered surfaces, and under some conditions produced good detection of the
tumour interface (Fig 6.7c,).

The non-parametric u-test, RRO and KS tests offer stronger magnitude boundaries
across most image volumes, with good differentiation between tumour and cyst regions.
This characteristic is due to the local normalising effects of ranking the data. However
a consequence of the added sensitivity is a significant increase of clutter and image
noise (Figures6.7, 6.8j,k,l,v,w,x, 6.9j,k,l). The variance based F and L test methods
both produced duplicated surfaces along the interface, and both presented responses
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which contained clutter. However, the F -test typically produced a stronger magnitude
and connected surface at the interface of the tumour (Fig 6.7f,g,r,s and 6.9f,g).

6.7.3 Key Findings
Table of the key findings is provided on the following page.
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Method Tu�Br Cy �Br Tu� Cy Noise or Clutter Characteristics
DoB X X partial low Good detection, but

weak interfaces

F X- duplicate X- duplicate X- duplicate High Duplicated surfaces

L � � � mixed Poor detection

t-test X X X mixed Good connectivity,
strong surfaces

χ2 test X X X Low Good connectivity and
noise suppression

KS X X X high Good detection, but
weak surfaces

u-test X X X- partial high good detection but
significant clutter

RRO X X � high partial detection, but
cluttered

Canny X-mixed X-mixed X-mixed low good detection but weak
interface

Steerable � � � low poor detection of axial
interfaces

Table 6.2: Surface filter characteristics on T1-weighted MRI scans. (X) indicates detection of surface. Tu-Br is brain and tumour interface,
Cy-Br is brain and cyst interface and Tu-Cy is cyst and tumour interface
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6.8 Evaluation 5: T2-weighted 3-D
T2-weighted images are obtained using a relatively long echo time and repetition time
sequence. For T2-weighted bran imagery, structures are revealed with different in-
tensity profiles when compared with T1-weighted images. White matter presents as
dark grey, and the cortex appears light grey. In T2-weighted images fluids appear as
very bright regions including the CSF, while fat contained in bone presents as a light
region(Fetit, 2015). PA solid mass tumours present as hyper-intense regions with better
differentiation between solid tumour and white matter (Fetit, 2015). However, the large
cystic components which are commonly associated with PA tumours also present as
bright hyper-intense regions, making differentiation between solid tumour and cyst a
non trivial problem for gradient methods of surface detection (Fig 6.10b). Characterist-
ically, the Cy-Br interface has a strong intensity component similar to that of the Int
type interface utilised in chapter 5, while the Tu-Cy has similar attributes to the Com1
interface type.

roi

(a)

roi

(b)

Figure 6.10: Pilocytic Astrocytoma pathologies in T2 imagery

6.8.1 Results
Figures for the results are provided on the following page.
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(a) Volume 1 (b) Reference 1 (c) Canny (d) Steerable (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

(m) Volume 2 (n) Reference 2 (o) Canny (p) Steerable (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) RRO (x) u-test

Figure 6.11: T2-weighted surface maps patient 1 and 2
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(a) Volume 3 (b) Reference 3 (c) Canny (d) Steerable (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

(m) Volume 4 (n) Reference 4 (o) Canny (p) Steerable (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) RRO (x) u-test

Figure 6.12: T2-weighted surface maps patient 3 and 4
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(a) Patient Volume
5

(b) Reference 5 (c) Canny (d) Steerable 3D (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

Figure 6.13: T2-weighted surface maps patient 5
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6.8.2 Discussion
Overall, across the T2-weighted datasets the strongest performing method was the
t-test. This was established by accurate, connected surfaces with a high magnitude
response (Figures 6.11h,t, 6.12h,t and 6.13h). The t-test successfully resolved interfaces
between each of the three target interface types, solid tumour and cyst, solid tumour
white matter, as well as between cyst and white matter. Some clutter is also present,
however this can be minimised by thresholding the responses.

The χ2 method also successfully resolved many of the tumour boundaries while main-
taining relatively low levels of noise and clutter (Figures 6.11i,u, 6.12i,u and 6.13i). The
resolved surfaces were of a strong magnitude for both interfaces between white matter
and solid tumour as well as solid tumour and cysts. The interfaces presented with less
fragmentation. The DoB method produced clear responses in terms of image noise
and clutter, and produced accurate detection of each of three interface types with good
connectivity (Figures 6.11e,q, 6.12e,6.13e).

However, the DoB method produced low intensity surfaces between some of the
cyst and solid tumour interfaces (Fig 6.12q). The RRO, u-test and KS test meth-
ods provided good detection of the tumour and cyst boundaries, however these re-
sponses were heavily cluttered due to the high sensitivity of the operators, with the
KS test being the slightly more cluttered than the RRO and u-test methods (Fig-
ures 6.11, 6.12j,k,l,v,w,x, 6.13,j,k,l). The F and L test methods produced relatively
cluttered surfaces interfaces, as well as duplicated responses (Figures 6.11, 6.12f,g,r,s, 6.13f,g).

The Steerable filter and Canny methods remained relatively noise and clutter free, and
provided good detection of the cysts with good connectivity in some cases. Traditional
methods remain a valid approach to T2-weighted images, but they are still outperformed
by statistical approaches, and due to the fact they are impeded by resolution distortion
this effect is clearly apparent in Figure 6.11c,d,e. Despite the Canny, Steerable and
DoB approaches all being techniques suited for intensity shifts, the DoB method has
much clearer defined surfaces. Additionally the baseline approaches are comparatively
weak at detecting the tumour and brain interface when compared to the non-parametric
statistical methods.

6.8.3 Key Findings
Table of the key findings is provided on the following page.
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Method Tu�Br Cy �Br Tu� Cy Noise or Clutter Characteristics
DoB X X X low Low noise, good

detection,
F -test X-duplicate X-duplicate X- duplicate high Detects duplicated

surfaces, but noisy

L X-weak � X-weak mixed shaded regions due to
noise

t-test X X X medium connected boundaries,
with clutter

χ2 X X X low connected surfaces

KS X X X high Sensitive detector,
reveals noise

u-test X X X high sensitive, reveals noise

RRO X X X high low magnitude surfaces

Canny X X-weak X low weak interfaces in
x, y-plane

Steerable � X-weak X medium weak interfaces in
x, y-plane

Table 6.3: Surface filter characteristics on T2-weighted MRI scans. (X) indicates detection of surface. Tu�Br is brain and tumour
interface, Cy �Br is brain and cyst interface and Tu� Cy is cyst and tumour interface
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6.9 Evaluation 6: T1-weighted with Contrast 3-D
In addition to adjusting the MRI sequencing to reveal different structures, a Gadolinium
contrast agent can be administered to the patient prior to the scan. The contrast agent
produces a bright response, and it concentrates in the solid tumour region of the patient.
For T1-weighted imagery, this can be used in order to increase the contrast between
tumour and white matter regions, resulting in the solid tumour material presenting as
a hyper-intense region with respect to the reference white matter of the surrounding
tissue. Since the contrast agent concentrates in the solid tumour material, and not
the cystic components, differentiation between solid tumour and cysts is also improved
(Fig 6.14). The increase in contrast allows for improved differentiation between solid
tumour and white matter, as well as improved differentiation between solid tumour
and cysts. Assisting in improving the performance of surface detection in these areas.
This leads to a Tu-Cy interface which shares similarities with the Int type interface
employed in Chapter 5, while the Tu�Br and Cy�Br interface more closely resemble
the Com1 interface types but at different intensity levels.

roi

(a)

roi

(b)

Figure 6.14: Pilocytic Astrocytoma pathologies in T1 imagery with contrast agent

6.9.1 Results
Figures for the results are provided on the following page.
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(a) Volume 1 (b) Reference 1 (c) Canny (d) Steerable (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

(m) Volume 2 (n) Reference 2 (o) Canny (p) Steerable (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) RRO (x) u-test

Figure 6.15: T1c-weighted surface maps patient 1 and 2
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(a) Volume 3 (b) Reference 3 (c) Canny (d) Steerable (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

(m) Volume 4 (n) Reference 4 (o) Canny (p) Steerable (q) DoB (r) F -test

(s) L (t) t-test (u) χ2 (v) KS (w) RRO (x) u-test

Figure 6.16: T1c-weighted surface maps patient 3 and 4
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(a) Patient Volume
5

(b) Reference 5 (c) Canny (d) Steerable 3D (e) DoB (f) F -test

(g) L (h) t-test (i) χ2 (j) KS (k) RRO (l) u-test

Figure 6.17: T1c-weighted surface maps patient 5
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6.9.2 Discussion
The T1-weighted image with a contrast agent visually provides the greatest differenti-
ation between regions of white matter tissue, solid tumour pathologies and cyst material.
The best method for detecting the interface between cyst and solid tumour in addition
to the interface between solid tumour and white matter was the χ2 method, which
produced high magnitude, accurate surfaces, with good connectivity. The χ2 responses
can also be categorised as having a low noise profile with only minor clutter. While
the χ2 method produced high magnitude tumour surface points, it also suppressed
interfaces between cyst and white matter.

The parametric DoB and t-tests produced good visual detection, exhibiting strong
magnitude surfaces with good connectivity. In contrast to the χ2 method, interfaces
between cyst and white matter regions were resolved with a high magnitude response.
The Canny method offered some detection of the surfaces, however the anisotropic
spatial resolution of the MRI volumes was present in these cases again, this gives the
appearance of strong interfaces as large filled regions viewed in a 2-D axial view. When
viewed in 3-D, this appears as a large uniform truncated surface. However, the Canny
method response is uncluttered and low noise compared with some of the non-parametric
statistical responses. The Steerable filter also produced low noise results, however, not
all of interfaces of the tumours are resolved. Similarly to the χ2 method, the Steerable
filter also suppresses the cyst boundaries with white matter tissue.

The non parametric KS, u-test and RRO tests again provided similar surface map
responses, with the RRO method slightly outperforming the u-test and to a greater
extent the KS method in terms of noise and clutter. However, both filter responses
were reasonably cluttered relative to the χ2, parametric and gradient methods.

The surfaces resolved by the non parametric statistical filters were of a high magnitude
and accurately positioned, however the surfaces possessed some areas of fragmentation,
and missed boundaries. The F test method produced strong magnitude surfaces across
all three interface types. |However, as with the T1-weighted and T2-weighted imaging
modalities, those surfaces were duplicated.

6.9.3 Key Findings
Table of the key findings are provided on the following page.
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Method Tu�Br Cy �Br Tu� Cy Noise or Clutter Characteristics
DoB X X X low Good detection,

connectivity and
magnitude

F -test X-duplicate X-duplicate X- duplicate high Detects duplicated
surfaces, but noisy

L X-duplicate � X-weak mixed shaded regions due to
noise

t-test X X X medium high magnitude
connected boundaries,

with clutter

χ2 X � X low high magnitude and
connected

KS X X X high Sensitive to noise,low
magnitude surfaces

u-test X X X high Sensitive to noise,low
magnitude surfaces

RRO X X X high Sensitive to noise,low
magnitude surfaces

Canny X X-weak X low weak interfaces in
x, y-plane relative to z

Steerable � X-weak X medium weak interfaces in
x, y-plane

Table 6.4: Surface filter characteristics on T1-weighted MRI scans with contrast agent. (X) indicates detection of surface. Tu-Br is brain
and tumour interface, Cy-Br is brain and cyst interface and Tu-Cy is cyst and tumour interface
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6.10 Summary of Results
Generally the best performing surface detection method was the Student’s t-test, provid-
ing high magnitude surfaces with good connectivity. Across the different patient cases,
the t-test provided best surface map results for the T1-weighted and T2-weighted pre
contrast image modalities. Providing good delineation between solid tumour and cyst,
between grey matter tissue and solid tumour as well as between cyst and grey matter
tissue. The t-test also produced the most optimal results for the tumour pathology cases
across the different modalities, particularly in the case of the T1-weighted modality,
where other methods struggled to produce an optimal result (Fig 6.18).

(a) T1-weighted (b) T2-weighted (c) T1-weighted with
contrast

(d) T1-weighted (e) T2-weighted (f) T1-weighted with
contrast

Figure 6.18: Cross section of t-test results from a single patient across the three
modalities. The results show good detection of the surface interface on each of the
modalities characterised by high magnitude surfaces with good connectivity.

A characteristic of the t-test results were surface maps which were not overly cluttered.
In addition, because there is no local normalisation of the neighbourhood mask region,
image noise remained low on a global scale. There are instances where internal structure
within the solid tumour region is resolved, depending on context this could be deemed as
clutter. However the magnitude of these surfaces is lower than that of the solid tumour
interface, thus post processing steps such as hysteresis thresholding and morphological
operations could be employed to assist in mitigating some of the effects of this if needed.
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The second best performing method on pre contrast modalities, and the best method
with the use of a contrast agent was the χ2 method. This method overall produced sur-
face maps which could be characterised by containing very little clutter and noise, while
at the same time producing accurate high magnitude responses with good connectivity.
However, some localisation inaccuracies and missed surfaces on T1-weighted pre con-
trast images, led the t-test to be deemed the preferential method (Fig 6.8h,i). The low
noise profile of the response, and very little clutter makes the χ2 test method quite suit-
able for a number of segmentation techniques, such as region growing algorithms which
are optimised for low noise surface maps with strong magnitude connected boundaries
(Militello et al., 2015). By manipulating the number of bins employed by the χ2 method,
the types of interfaces present in the image can be selected to be resolved. For example,
using 4 bins for T1-weighted images with contrast produces surface maps where the
cyst-grey matter interface is omitted. Producing a very clear surface map with just the
solid tumour interface present.

The DoB method produced good delineation across the different interface types, how-
ever, this method was not as consistent as the t-test and χ2 methods on T1-weighted
modalities, signified by some success (Fig 6.9e) and some failure (Fig 6.8e) across dif-
ferent PA pathologies. However, for T2-weighted and T1-contrast modalities, the DoB
method produced good results. As the vector magnitude method is adaptable to image
volumes which are anisotropic in resolution, the DoB method produced markedly better
results than the 3-D Canny method, even though they are both designed to produce
high outputs to strong differences in image brightness (Fig 6.19).

roi
(a) T2-Patient Volume

i
(b) Canny

i
(c) Steerable

ii
(d) DoB

Figure 6.19: Baseline methods produce weak x and y component surfaces relative to z
component, signified by high magnitude shaded regions within the internal tumour
structure(i), however Vector Magnitude techniques account for anisotropic image
resolution thus are not as greatly affected by poor z resolution (ii).

The KS method was able to resolve the tumour surface as well as the surface interface
between cyst and tumour across the different modalities. Surfaces presented typically
with good connectivity. However, as the KS used ranked data points instead of pixel
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values, it has the effect of locally normalising the output. This effect decreases the
signal to noise ratio of the surface interface. This effect presents itself with a cluttered
surface map, signified by spurious responses throughout the image, which can be seen
in Fig 6.12i,v. Consequently, the presence of this effect can make post processing
steps such as hysteresis thresholding more challenging, and limiting the use of the KS
method use to a narrower context. The RRO and u test methods also exhibit this
local normalisation property, and the results are comparable with similar all round
performance characteristics.

In a similar fashion to the synthetic tests, the variance based F and L method produced
outputs with duplicated surfaces, this effect is most clearly visible in Fig 6.12f and
6.16g, signified by the production of a additional surface boundary either side of the
correct surface interface.

The analysis undertaken indicates that the application case results produce comparable
findings to the synthetic results across the 3 different MRI modalities. For T2-Weighted
imagery, tumour interfaces typically present with a step change in image brightness. In
the evaluations presented in chapter 5 the Int and Com1 type interfaces types are com-
parable to interfaces present in T2-weighted imagery, these interface types were shown
to be the least challenging for all but the L and t-test filter methods, with the gradient
based Canny method well suited for this type of interface. However, the anisotropic
resolution of the real data impeded the Canny method’s ability to resolve boundaries in
the x and y plane to the same extent as interfaces with a strong z dimension component,
resulting in strong over detection of surfaces which exist between layers in the axial
plane. This resulted in solid filled in regions (Fig 6.19a). The 3-D statistical DoB
and t-tests are also methods which exploit changes in image brightness, but the Vector
Magnitude method filter architecture allows for weighted vector components based on
image resolution, mitigating some of the excessive z component surfaces, producing
good results (Fig 6.19c).

In addition, the statistical methods which performed well on the intensity based syn-
thetic interfaces also performed strongly on T2-weighted images on grey matter - tumour
interfaces. Notably the χ2 test. The T1-weighted results also produced comparable
results to the synthetic data, here some of the interfaces from this modality are compar-
able to the synthetic combination interfaces types in terms of region profiles. Results
of the synthetic tests strongly indicate the Student’s t-test and χ2 test to be the best
performing methods, which was reflected in the results of the application case data.



Chapter 7

Discussion

7.1 Introduction
Chapter 5 presented an objective analysis of statistical surface detection, while chapter
6 presents a qualitative analysis of statistical surface detection across independent MRI
modalities. In this chapter, the characteristics of the results are explored to identify
trends between the evaluations in order to discuss the generalisability and transferability
of the results. Primarily the advantages and disadvantages of the different filter meth-
ods are discussed, including any performance benefit of utilising a Vector Magnitude
approach to surface detection. Additionally, parameters such as neighbourhood scale
are explored in order to see if the trends observed in 2-D statistical edge detection are
applicable in 3-D.

7.2 3-D Statistical Surface Detection approaches
In this work, two 3-D configurations of Statistical surface detection were developed,
The Maximum Response configuration, and the Vector Magnitude configuration. 3-D
detection is a requirement for accurate detection in 3-D data in order to identify surface
features which exist between the layers within a 3-D image volume (Monga et al., 1991).
2-D edge detection approaches are often used for 3-D data, as is typically applied to
the 2-D layers individually and sequentially, however this approach is not optimal as
z-component surfaces are not identified. 3-D detection also uses 26-voxel connectivity
neighbourhoods instead instead of 8-connectivity. Therefore for a given scale, the 3-D
approach has greater noise suppression and resolving power.

The Maximum Response method is a modified implementation of the Statistical Edge
techniques evaluated by Williams et al. (2014) for 3-D data. In 3-D, the approach
requires the neighbourhood mask to be orientated through 13 unique positions. While
the Vector Magnitude method is a novel approach developed to increase efficiency by
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using 3 mask positions oriented orthogonally to the x, y and z image volume dimensions.
This allows for a L2-Norm calculation to be applied to determine a statistical difference
vector gradient in place of an outright maximal orientation and corresponding statistical
difference magnitude. A number of benefits arise from this configuration:

• Improved computational efficiency

• Improved scaleability

• z-spacing correction

Firstly the method is more efficient, requiring the processing of 3 mask orientations in
place of 13 which is a considerable reduction in processing time (Table 3.1). Additionally
this allowed for parametric tests to be implemented using a convolution based approach
as described in Section 3.3.3.2, this allows for very fast processing times for parametric
tests, at speeds comparable to traditional gradient techniques.

With the maximum response technique, a constrained approach is used when scaling
the size of the neighbourhood mask, fixing the number at 26-voxel directions for each
mask size. However, when increasing the size of the neighbourhood mask, new potential
orientations become possible, this increase is also exponential. Therefore at larger mask
sizes the maximum response method is not fully optimised in detecting the true surface
gradient direction. Contrastingly, the vector magnitude approach is scaleable, in the
sense that as the neighbourhood size is increased, no further orientations are required
to accurately compute the L2-Norm statistical vector.

One of the primary advantages of the vector magnitude method which was not apparent
in evaluations 1-3, but was strongly visible once the VM technique was applied on real
data in evaluations 4-6, was the mitigation of the negative effects of z-space biasing.
This remained very apparent for both baseline Canny and Steerable techniques, but not
the VM method (Fig 6.19). As is typical in real patient cases, the MRI data did not
have isotropic resolution (Tab 6.1), but because the VM approach applies weighting
to the z-component of the statistical vector relative to the z-spacing resolution, this
leads to a reduction in the strength of surfaces in the z direction, for a clearer and more
representative surface map.

7.3 Parametric Tests Characteristics
The following section provides details of the characteristics and recommendations for
the different parametric statistical methods implemented using the VM configuration.
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7.3.1 Difference of Boxes (DoB)
7.3.1.1 Surface Response
The DoB method is a computationally efficient parametric statistical measure. A 2-D
Implementation of the DoB method indicates performance similar to that of the Canny
method, strong where there is a substantial intensity component to the edge, and weaker
where the variance component is large (Williams et al., 2014). The results from chapters
5 and 6 support this observation with an overall summary of each evaluation presented
in Table 7.1. The DoB measure compares the mean value of each mask region to
produce a response, and as such behaves in a similar fashion to traditional gradient
methods such as the 3-D Canny method, by responding to shifts in image brightness.
Characteristically the DoB method was therefore effective on intensity based interfaces.
(Figures 5.9e, 5.13a)

Conversely, since high variance regions, such as those in the texture (Fig. 5.2b)) in-
terfaces, are comprised of shifts in image intensity, just on a smaller spatial scale, the
DoB method produces spurious responses in the high variance regions as illustrated
in Fig 5.10e. Thus it was largely unsuccessful at resolving surfaces for the Tex type
interface volumes. The DoB method objectively performed well on the combination
interfaces. However, in the high variance regions the DoB method produced over-
detection artefacts.

7.3.1.2 Observations
One advantage of the DoB method over other intensity based statistical measures,
such as the Student’s t-test is that the DoB method is not as susceptible to potential
fail points in areas such as junctions and corners, this can be seen in the cuboid and
staircase images in Fig 7.1. Therefore if 3-D image structure is known to contain flat
surfaces and regular corners a priori, the DoB is preferential over the t-test method.

On T1-weighted MRI case data the DoB method produced good delineation across
the different tissue types, although not as reliable as the t-test signified by some suc-
cesses (Fig 6.9e) and some failures characterised by missed responses such as the example
in Fig 6.8e. For T-1 weighted modality the DoB method offers similar performance to
the baseline 3-D Canny method.

For the T2-weighted and T1-weighted (contrast enhanced) images, the DoB method
performed significantly better than the baseline Canny and Steerable methods. This
was due to the anisotropic resolution of the data, which unlike the VM approach, is
not accounted for. The effect can clearly be seen in Fig 6.19 signified by the lack of
defined interfaces from the baseline methods compared with the DoB method in the
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Accurate
detection,
connected
surface, no

over-detection
artefacts

Did not resolve
surface,

over-detection
artefacts

Accurate
detection,
connected

surface, some
localised

over-detection
artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

2.1 (Cu),
Section 5.6.2

Accurate
detection,
connected
surface, no

over-detection
artefacts

No surface,
over-detection

artefact

Accurate
detection,
connected
surface, no

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.2 (Sp),

Section 5.6.3
Accurate
detection,
connected
surface, no

over-detection
artefacts

No surface
resolved, some
over-detection

artefacts

Accurate
detection,
connected
surface, no

over-detection
artefacts

Accurate
detection,
connected

surface some
over-detection

artefacts
2.3 (CSt),

Section 5.6.4
Accurate
detection,
connected
surface, no

over-detection
artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface some
regional

over-detection
artefacts

Accurate detec-
tion,connected
surface. some
over-detection

artefacts

2.3 (FSt),
Section 5.6.4

Accurate
detection,
connected

surface, very few
spurious surfaces

No surface
resolved,

over-detection
artefacts

Surface resolved
and connected

with some loss of
detail, regional
over-detection

artefacts

Surface resolved
with finer detail

lost some
regional

over-detection
artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Some missed surfaces, low

levels of noise, good
connectivity

Missed surfaces, good noise
suppression, low magnitude

surfaces

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Detected Detected Partial
detection

Low Good
detection, but

weak
interfaces

5 (T2),
Section 6.8

Detected Detected Detected Low Low noise,
good

detection
6 (T1c),

Section 6.9
Detected Detected Detected Low Good

detection,
connectivity

and
magnitude

Table 7.1: Difference of Boxes filter characteristics cross comparison of evaluation
summaries through Evaluations 1-6.
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a

a a

a

(a) DoB IntCu

b

b b

b

(b) t-test IntCu

Figure 7.1: Difference of boxes was shown to have good performance in corners (a)
compared to the mean based parametric Student’s t-test (b).

highlighted region of interest. The Canny method has a closed shaded region whereas
the statistical methods with a weighted z-component resolves the tumour border with
greater clarity. The DoB method was well suited to both T1 contrast enhanced and
T2-weighted images this resulted in a strong detection of the tumour surface (Tab 7.1).
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(a) 2-D layer

(b) 2-D Reference
(c) 3-D

Figure 7.2: 3-D visual DoB result on T1-Weighted MRI image (case 5). The Cyst
interface is strongly resolved by the method with relatively low noise. As a surface
detection method, and not a segmentation technique, other internal structures are also
revealed in the outer portions of the image.

These results indicate that the DoB method is most effective on strong intensity bound-
aries, where the baseline gradient methods are also most effective. However, as the
DoB was shown to be more reliable across different interface types, therefore statistical
DoB method is preferential over gradient based methods, the technique also has the be-
nefit of being more computationally efficient than the other parametric tests (Table 3.1).

7.3.1.3 Scale Response
When different neighbourhood scales are used, there is a trade-off between noise suppres-
sion and uncertainty in the surface position. Larger neighbourhood masks have greater
noise suppression at the cost of uncertainty in the position of the surface. Fig 7.3
illustrates this, as the scale is increased, the number of spurious responses is fewer,
indicated by the dark blue background, while the surface width is greater, indicated
by the wider light blue and yellow regions. From an objective analysis perspective, the
greater noise suppression at large mask sizes achieved greater F1-score performance on
this image type.
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Figure 7.3: Comparison of neighbourhood scales for DoB method. a) F-1 score
performance metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map
volume using different scale neighbourhoods, prior to post processing stages.

7.3.2 Student’s t-test (t-test)
7.3.2.1 Surface Response
The Student’s t-test determines if the mean of two samples are significantly different in
normally distributed data. It is another parametric test, and as such is a computationally
fast performing algorithm (Table 3.1).

Similar to theDoB method, and traditional derivative based methods, the t-test method
is able to accurately detect intensity interfaces or where a difference in the mean exists
between the regions. The results from Chapters 5 and 6 support this observation and
an overall summary of each evaluation presented in Table 7.2

Typically the t-test produced surfaces with a high signal to noise ratio, in images where
surfaces exist between regions of uniform brightness (very low variance), this results in
a high surface magnitude. However, this can cause problems where surfaces of different
strengths exist in the same volume, and was most notable with the IntSp and IntCSt
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Accurate
detection,
connected
surface, no

over-detection
artefacts

Did not resolve
surface,

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

2.1 (Cu),
Section 5.6.2

Accurate
detection

detection, weak
corner resolution,
no over-detection

artefacts

No surface,
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts, weaker
corners and

edges

Accurate
detection,
connected

surface, some
over-detection

artefacts

2.2 (Sp),
Section 5.6.3

Accurate
detection,

unconnected
surface, no

over-detection
artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection, some

varying of
surface strength,
no over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.3 (CSt),

Section 5.6.4
Accurate
detection,
connected
surface, no

over-detection
artefacts, weaker
strength corners

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface some
over-detection

artefacts,
variable surface

strength

Accurate detec-
tion,connected
surface. some
over-detection

artefacts

2.3 (FSt),
Section 5.6.4

Accurate
detection,
connected

surface, localised
artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface, varied
surface strength,

some
over-detection

artefacts

Surface resolved
with finer detail

lost, some
over-detection

artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Good detection, good noise

suppression, good connectivity,
mixed magnitude surfaces

Good detection, good noise
suppression, good connectivity, low

magnitude surfaces

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1), Section 6.7 Detected Detected Detected Mixed Good
connectivity,

strong
surfaces

5 (T2), Section 6.8 Detected Detected Detected Medium connected
boundaries,
with clutter

6 (T1c), Section 6.9 Detected Detected Detected High Sensitive to
noise,low
magnitude
surfaces

Table 7.2: Students t-test filter characteristics cross comparison of evaluation
summaries through Evaluations 1-6.
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images (Figures 5.19h and 5.24h). Fig 7.4 provides a logarithmic output from the
t-test, revealing weaker magnitude boundaries that have also been detected, while still
maintaining reasonable suppression of noise. These weaker boundaries have absolute
values which would not typically be considered weak, however surfaces positioned
between a uniform region can produce a very high magnitude response relative to the
other surfaces, this masks the weaker boundaries when normalised for an on-screen
visual display. It is therefore recommended that if the t-test is applied to images which
contain regions of uniform brightness, and the target surfaces are not positioned on the
boundaries of the uniform regions, then global thresholding methods should be avoided
and replaced with local thresholding methods or avoid any normalisation of output
prior to thresholding in order to maximise the performance of the method.

(a) Test Image (b) Reference (c) 5�5�5 (d) 5�5�5 log

Figure 7.4: Logarithmic output shows that t-test detects surfaces, but they can be
masked by very strong responses to uniform image regions

7.3.2.2 Observations
A notable finding was that the t-test method proved to be one of the best surface
detection methods for tumour interface detection in MRI data, this was most notable
on T1-weighted images with no contrast agent, where it outperformed the other methods
in terms of resolving the PA tumour interfaces between both white matter tissue, and
the cystic components (Figures 6.7h and 6.9h,7.5).
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(a) 2-D layer

(b) 2-D Reference (c) 3-D

Figure 7.5: 3-D visual t-test result on T1-Weighted MRI image (case 5). The t-test has
a strong response to the tumour interface, but other structures are also revealed

While shown to be one of the most effective methods at resolving intensity based
interfaces with strong detection, Chapter 5 evaluations 2 and 3 does reveal that the
t-test was not optimally suited to resolving corner interfaces when compared against the
other mean based parametric test, the DoB method (Fig 7.1). Williams et al. (2014)
found the t-test to be effective at detecting mean based interfaces, while providing good
connectivity and good noise suppression, these findings were found to be consistent with
both the 3-D synthetic imagery, including the real MRI data. Since regular corners and
junctions are not typical in human anatomy, and the method offers efficient detection
of mean based interfaces superior to that of the baseline methods, the t-test methods
is recommended for use with MRI data.

Some internal tumour structure was also resolved, which is undesirable in this context,
however this can largely be mitigated by using non maximum suppression and hysteresis
thresholding (Fig 7.6).
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roi

(a) T1-weighted MRI

roi

(b) Surface Map

roi

(c) NMS

roi

(d) Surface range

roi

(e) Hysteresis thresholding

Figure 7.6: Removing t-test clutter from T1-weighted MRI surface map response: (a)
Shows the test image with a region of interest (roi), while (b) shows the cluttered
surface map result. (c) With Non Maximum Suppression applied. (d) Shows the
relative magnitudes of the surfaces in the NMS image, weaker surfaces are those with a
light blue colour, while strong magnitude surfaces are yellow. (e) then shows the
removal of the light blue clutter surfaces through hysteresis thresholding

7.3.2.3 Scale Response
Fig 7.7 reveals the narrow threshold window for an optimal result when global threshold-
ing methods are applied however, the t-test still achieves the highest peak score out of
the baseline methods and parametric measures.

7.3.3 Fisher Test (F -test)
7.3.3.1 Surface Response
As a variance based statistical measure, the F -test produced accurate results for texture
based interfaces, but was less successful on other interface types. The results from
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Figure 7.7: Comparison of neighbourhood scales for t-test. a) F-1 score performance
metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map volume using
different scale neighbourhoods, prior to post processing stages.
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
duplicated

surfaces, some
additional

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Inaccurate
surface,

duplication, some
over-detection

Inaccurate,
connected
surface,

duplicated
surface and
additional

over-detection
artefacts

2.1 (Cu),
Section 5.5

Missed surface,
duplicated

boundary either
side, no

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Inaccurate
surface position,

duplicated
surface, no
general

over-detection
artefacts

Displaced
graduated
surface

2.2 (Sp),
Section 5.5

Duplicated
surface either

side of interface,
some

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Duplication of
boundary,
connected

surface, some
over-detection

artefacts

Displacement of
boundary, some
over-detection

artefacts

2.3 (CSt),
Section 5.5

Duplicated
surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Incomplete
detection,
duplicate
responses,

over-detection
artefacts

Disconnected
surface surface
with single voxel
displacement,

some
over-detection

artefacts
2.3 (FSt),
Section 5.5

Duplicate
inaccurate

surfaces, some
over-detection

artefacts

Surface resolved,
localised

artefacts, some
additional

over-detection
artefacts

Inaccurate
duplicated

surfaces, some
over-detection

artefacts

Surface
accurately

resolved with
small shift, some
over-detection

artefacts
Evaluation Flat Curve

3 (Multi), Section 5.5 Good detection, but
duplicated surfaces, some
noise, good connectivity

Good detection, but
duplicated surfaces, some
noise, good connectivity

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 5.5

Detected -
duplicate

Detected -
duplicate

Detected -
duplicate

High Duplicated
surfaces

5 (T2),
Section 5.5

Detected-
duplicate

Detected
-duplicate

Detected -
duplicate

High Detects
duplicated
surfaces, but

noisy
6 (T1c),

Section 5.5
Detected
-duplicate

Detected
-duplicate

Detected -
duplicate

High Detects
duplicated
surfaces, but

noisy

Table 7.3: Fisher test filter characteristics cross comparison of evaluation summaries
through Evaluations 1-6.
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chapters 5 and 6 support this observation and an overall summary of each evaluation
presented in Table 7.3. The effectiveness on texture based interfaces can be observed
clearly in Fig 5.10f where the method produces the joint best subjective result with
the Likelihood method. Objective results presented in Fig 5.13b support the subjective
results with Fisher methods having the widest optimal threshold window. In the work of
Williams et al. (2014) the 2-D implementation of this technique also performed strongly
on variance based interfaces, however it was observed that the technique produced a
shift in the resulting edges which is proportional to the size of the neighbourhood mask.
While performing well on texture based interfaces, the shift observed in 2-D also occurs
in 3-D data, including the production of a double surface boundary. The creation of an
erroneous double boundary occurs on opposing sides of the intensity interface and can
be seen in Fig. 5.9f. Figures 5.14f, 5.19f, 5.24f,r, reveal this issue extents to different
topological interfaces.

7.3.3.2 Observations
The duplicated boundary artefact present with synthetic data also extends to real
imagery, on T1-weighted MRI the Fisher method also produced duplicated surfaces
along the interface (Fig. 7.8h-j). The cause of the double boundary is due the fact
that as the neighbourhood mask approaches the location of an intensity interface, the
surface boundary will reside in one of the dual regions of the neighbourhood mask. The
presence of the interface leads to a variance difference between each of the dual regions
of the mask, thus producing an off-centred surface response. As the filter mask moves
into the correct surface boundary location, the variance difference between the regions
equalises, resulting in no surface in the correct location, and as the neighbourhood
mask passes over the interface location, the off-centred surface response is repeated. To
further illustrate the problem Fig. 7.8a-g shows the effect of a Fisher mask traversing
a mean based interface, leading to a double interface. For real data, the trends found
with synthetic data were also apparent. The duplicated boundary is a characteristic
that applies to all intensity based boundaries. In order to fully utilise the strong texture
surface resolving potential the Fisher method provides, morphological operations should
be applied to convert double boundaries to single surfaces
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(a) Filter mask in different positions
across a surface

(b) Synthetic image response

(c) Low ∆ (d) High ∆ (e) Low ∆ (f) High ∆ (g) Low ∆

(h) MRI layer (i) Interface location (j) Fisher test surface map

Figure 7.8: 2D representation of the double surface artefact associated with Fisher test
and likelihood methods. (a) Synthetic mean interface with path of mask locations. (b)
Duplicated surface response on synthetic image. Mask positions 2 (c) and 4 (d) have
the large variance differential between regions, thus these two locations produce
surfaces in each of the locations, Mask positions (e,f,g) possess small variance
differentials, thus do not produce a surface. (h-j) Fisher test response to MRI layer,
produces duplicated surface at tumour interface.

Results from Evaluation 1 with the combinational (Com1Fl,Com2Fl) images show that
under these conditions the duplication effect is not as pronounced (Figures 5.11f and 5.12f)
due to the fact the surface is detected at the correct location in addition to the du-
plication either side. However, the F-measure analysis indicates that the F -test was
unsuccessful on this interface type (Fig 5.13c,d) due to the displacement of the surface
which occurs after non-maximum suppression and thresholding.
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In addition to synthetic and T1-weighted imagery, these problems also arose across T2-
weighted and contrast T1-weighted results, it is therefore recommended that the F -test
only be used when prior information is known about the image structure, and should
not be the first choice when the target surfaces are primarily mean based interfaces
unless post processing morphological operations are available prior to any further stage,
such as segmentation.

(a) 2-D layer

(b) 2-D Reference

(c) 3-D

Figure 7.9: 3-D visual F -test result on T1-Weighted MRI image (case 5). The F -test
has a strong response to the tumour interface, but other structures are also revealed

7.3.3.3 Scale Response
At larger scales the F1-score performance metric decreases (Fig 7.10), this is due to
the wider surfaces amplifying the double boundary error. Visual results show greater
suppression of unwanted texture at larger mask sizes, while producing high magnitude
connected boundaries, but morphological post processing operations may be required
to mitigate duplication.



7.3. PARAMETRIC TESTS CHARACTERISTICS 219

0 0.2 0.4 0.6 0.8 1

Threshold

0

0.2

0.4

0.6

0.8

1

F
1
 S

c
o
re

5 5 5

7 7 7

9 9 9

11 11 11

(a) F1-Score

(b) 5�5�5 (c) 7�7�7 (d) 9�9�9 (e) 11�11�11

Figure 7.10: Comparison of neighbourhood scales for F -test. a) F-1 score performance
metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map volume using
different scale neighbourhoods, prior to post processing stages. F1- score is low due to
surface duplications in the results.

7.3.4 Log-Likelihood Ratio Test (L-test)
7.3.4.1 Surface Response
The L-test is a parametric test which when used in this context exploits shifts in variance
between regions, and therefore should be effective on the Tex interface type. An overall
summary of each evaluation presented in Table 7.4 indicates this to be the case, but
also the results from Evaluation 1 reveal that the L-test method was able to resolve all
the interface types tested. However, with the combinational (Com1, Com2) images, the
L-test is not the optimal choice. The subjective visual results indicate that the method
detects the surface (figures 5.11g and 5.12g), but the surface map reveals that there
are some duplicated surface points running parallel to the interface. In 2-D the work
of Williams et al. (2014) also found that the L-test was able to detect both intensity
and texture based interfaces.
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
connected
surface, no

over-detection
artefacts

Accurate
detection,
connected

surface, very few
over-detection

artefacts

Accurate
detection,
duplicate

surfaces are
present, some

localised
over-detection

artefacts

connected
surface,

duplicated
surfaces, some
over-detection

artefacts

2.1 (Cu),
Section 5.6.2

Accurate
detection,
connected

surface, some
localised corner

and edge
artefacts,
localised

over-detection
near surface

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected
surface,

duplicated
surface, no
general

over-detection
artefacts

Displaced surface
response,
connected

surface, some
over-detection

artefacts

2.2 (Sp),
Section 5.6.3

Duplicated
surface, artefacts
near interface, no
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Displacement of
boundary,
connected

surface, some
over-detection

artefacts

Displacement of
boundary, some
over-detection

artefacts

2.3 (CSt),
Section 5.6.4

Accurate
detection,
connected

surface some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Incomplete
detection,
duplicate
responses,

over-detection
artefacts

Disconnected
surface surface
with single voxel
displacement,

some
over-detection

artefacts
2.3 (FSt),

Section 5.6.4
Duplicate
inaccurate

surfaces, very few
spurious surfaces

Surface resolved,
localised

artefacts, some
additional

over-detection
artefacts

Surface resolved,
some

displacement,
very few spurious

surfaces

Surface resolves
with

displacement,
very few spurious

responses

Evaluation Flat Curve
3 (Multi), Section 5.7 Good detection, but

duplicated surfaces, good noise
suppression, magnitude

surfaces

moderate detection, but
duplicated surfaces, moderate

noise suppression, strong
magnitude surfaces

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Not detected Not detected Not detected mixed Poor
detection

5 (T2),
Section 6.8

Detected
-weak

Not detected Detected
-weak

Mixed Shaded
regions due to

noise
6 (T1c),

Section 6.9
Detected
-duplicate

Not detected detected
-weak

Mixed Shaded
regions due to

noise

Table 7.4: Log Likelihood ratio test filter characteristics cross comparison of evaluation
summaries through Evaluations 1-6.
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Objective results from Evaluation 1 reveal that after post processing stages are applied,
the Likelihood method also produced optimal results across a wide threshold range
superior to that of the baseline Canny and Steerable methods (Fig 5.13c,d). One
characteristic of the L-test method was the suppression of noise compared to the other
methods on synthetic imagery, notably on images with a large variance component
(figures 5.15, 5.20, 5.25), but the suppression was consistent across many different
interface types as can be illustrated in Fig 5.29g.

7.3.4.2 Observations
While Evaluation 3 presented in Chapter 5 revealed a strong suppression of texture,
it does highlight a limitation of the L-test, the production of duplicated boundaries.
While the Fisher-test produced surfaces which occurred either side of the interface and
not in the correct location, the L-test boundaries differ, with surfaces occurring both
in the correct position and the duplicated positions parallel to the interface, producing
what visually appears as a smeared surface interface (Fig 7.11).
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(a) IntCu Synthetic (b) Fisher (c) Likelihood-ratio

(d) T1- Contrast

i

(e) Fisher

ii

(f) Likelihood-ratio

Figure 7.11: Duplicated boundaries; Fisher vs Likelihood ratio test. The Fisher test
presents with duplicated boundaries running parallel to the reference interface on
synthetic data (i), while the Likelihood method resolves the reference boundary in
addition to duplicated boundary producing a “smeared” surface. This is reflected in
the real imagery, manifesting as a triple interface (ii), with a stronger central boundary
and weaker duplicated parallel boundaries

7.3.4.3 Scale Response
At increased scales, regions with very low to zero variance can cause artefacts, these
manifest as wide responses at the surface location, this kind of artefact can be viewed
in Fig 7.12 illustrated by the wider yellow and light blue section at larger mask sizes.
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Figure 7.12: Comparison of neighbourhood scales for L-test. a) F-1 score performance
metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map volume using
different scale neighbourhoods, prior to post processing stages.

Williams et al. (2014) observed that the Likelihood-ratio test was able to resolve edges
in 2-D histological images, however for 3-D MRI data, the L-test was shown to not
be particularly effective for T1, T2 and T1c modalities. The L-test method was able
to detect some pathology interfaces, but it did also introduce duplicated surfaces. On
real MRI data, visually the L-test did not obtain the same level of noise or texture
suppression as was the case with 2-D histological data or the 3-D synthetic data, this
occurred across T1, T1-contrast and T2 weighted modalities. The L-test would therefore
not be a first choice recommendation for MRI data.
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(a) 2-D layer

(b) 2-D Reference
(c) 3-D

Figure 7.13: 3-D visual L result on T1-Weighted MRI image

7.4 Non-parametric Tests Characteristics
The following section provides details of the characteristics and recommendations for the
different non-parametric statistical methods implemented using the VM configuration.

7.4.1 The χ2 Test (χ2)
7.4.1.1 Surface Response
The χ2 test is a non-parametric rank based test which checks for the independence of
two sorted data sets. The χ2 method sorts each mask region sample into bins based on
voxel intensity, the observed number of points in each bin should be similar if the two
data samples come from common distributions. This allows for regions to be checked for
similarity based on the distribution of the voxels. For the task of surface detection, the
number of bins is a specified user parameter which controls the sensitivity of the filter.
The greater the number of bins the more sensitive the method becomes, allowing for
weaker structures to be resolved. For analysis with synthetic data, the bin parameter
remained fixed across all interface types.

Objectively, the χ2-test was the best performing method on synthetic data, consistently
scoring well across all interface topologies and types, as well as performing strongly
on the synthetic multiple interface volumes. The effectiveness of the method can be
observed across each evaluation summary presented in Table 7.5. Characteristically,
the χ2 method offered good detection and accurate surfaces, which were connected and
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection, some
discontinuity,

some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.1 (Cu),

Section 5.6.2
Accurate
detection,
connected
surface, no

over-detection
artefacts

Accurate
detection

detection, some
discontinuities,

some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts, weaker
corners

Accurate
detection,
connected

surface, some
over-detection

artefacts

2.2 (Sp),
Section 5.6.3

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection, some
discontinuities in
surface strength,

some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

2.3 (CSt),
Section 5.6.4

Accurate
detection,
connected

surface some
over-detection

artefacts

Accurate
detection, some
discontinuities,

some
over-detection

artefacts

Accurate
detection,
connected

surface some
over-detection

artefacts

Accurate detec-
tion,connected
surface. some
over-detection

artefacts, weaker
strength corners

2.3 (FSt),
Section 5.6.4

Accurate
detection,
connected

surface, some
over-detection

artefacts

Surface detected
with some
inaccuracies,

surface
discontinuities,

some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Surface resolved
with finer detail

lost, some
over-detection

artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Best detection, some noise,

good connectivity, strong
magnitude surfaces

Best detection, some noise,
good connectivity, strong

surface magnitudes

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Detected Detected Detected Low Good
connectivity
and noise
suppression

5 (T2),
Section 6.8

Detected Detected Detected Low connected
surfaces

6 (T1c),
Section 6.9

Detected Not detected Detected Low high
magnitude

and
connected

Table 7.5: χ2 test filter characteristics cross comparison of evaluation summaries
through Evaluations 1-6.
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high magnitude. In addition, the χ2 method is able to produce surface map responses
which are low in spurious responses when compared against the other non parametric
methods. The χ2 method achieved good performance across all topologies and was
the best performing method on both of the Evaluation 3 image types (MultiFlat and
MultiCurve). (Figures. 5.29i, 5.30i, 5.31).

7.4.1.2 Observations
Observing the MRI results, the χ2 method produced good results across a range of
interface types. When T1-weighted imagery is observed the χ2 method produced results
comparable to the Canny method, but with fewer spurious responses, stronger surface
magnitude and improved surface connectivity, and in some instances better detection
of structures internal to the tumour pathology (Fig 7.14a-c). T2-weighted imagery
produces interfaces characterised by greater luminosity differentials, in which derivative
based techniques should be the optimal choice. Performance between the baseline
methods and the χ2 technique show comparable results, however the χ2 method does
produce surfaces with a greater magnitude and improved connectivity this is illustrated
in Figure 7.14d-f, and also be seen in Chapter 6 in Figures 6.11u and 6.12i,u.
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Figure 7.14: Comparison of χ2 vs baseline on real data. For T1 imagery, the χ2

method produced fewer spurious responses, signified by the empty black region (i).
While also more clearly resolving internal structure (ii). On T2 imagery, the χ2
method produces stronger magnitude surfaces with improved connectivity (iii). On T1-
Contrast imagery, the χ2 method produce better detection and connectivity (iv),
including improved detection of the cyst interfaces with the tumour and normal brain
tissue (v).

The χ2 was best suited to the T1-weighted contrast images, here the χ2 method con-
sistently produced the best results across all examples. The method produced fewer
spurious response and improved detection of the cyst interfaces in terms of connectivity
and surface strength when compared with the baseline Canny method, as illustrated in
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Figure 7.14g-i. In addition the χ2 method also produce good results on the T1-contrast
images compared with the other statistical methods (Figures 6.15i,u, 6.16i,u and 6.17i).

(a) 2-D layer

(b) 2-D Reference

(c) 3-D

Figure 7.15: 3-D visual χ2 result on T1-Weighted MRI image

One feature of the χ2 test is that it requires an additional parameter which determines
the number of bins used. Establishing the optimal number of bins is non trivial and
is dependent on the image properties. Typically fewer bins result is fewer detected
surfaces, but the magnitude of the surfaces increases, allowing for greater differentiation
between regions. This is demonstrated in Fig 7.16, here different surface structure is
resolved as the number of bins is increased. Fig 7.16b lacks a sufficient number of
bins to differentiate between most regions in the image. While Fig 7.16h produced
a response typified by excessive spurious responses which are not ideal. Fig 7.16,d
and e presents a more suitable range due to the low noise, high magnitude, connected
surfaces. The ability to control the sensitivity of the filter without adjustment of the
scale parameter can produce more optimised results. The principal advantage of this is
when the image modality in known a priori, manipulation of the parameter can better
target specific interfaces. Such as with T1-weighted images with a contrast agent, the
interface between white matter and cyst components can be suppressed (Fig 7.16c,d)
producing a surface map response better suited for segmentation of the solid tumour
material. However, the parameter needs to be specified manually, thus increasing the
degrees of freedom, impacting the simplicity of use. The results of the χ2 method in
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Chapters 5 and 6 were all obtained using a bin size of 4, which offered the best trade-off
between detection and noise suppression.

(a) Original (b) Reference (c) Bin 2 (d) Bin 4

(e) Bin 8 (f) Bin 16 (g) Bin 32 (h) Bin 64

Figure 7.16: The sensitivity of the filter can be adjusted to reveal different image
structure by modifying the number of intensity bins used by the method. (c-h) show
the surface map response from the χ2 method with increasing number of bins

7.4.1.3 Scale Response
In the work of Williams et al. (2014), the χ2-test was effective at larger scales for 2-D
imagery. However, for 3-D it was observed that the χ2-test was effective across smaller
scales (Fig 7.17), due to the increased signal to noise factor of a 3-D neighbourhood
geometry.

When applied as a statistical edge detection measure, the method offers good detection
of mean, mean-variance and variance interface types at larger mask sizes, but was
less successful with a small mask size (Williams, 2008). However in 3-D it was found
that the χ2-test was successful across a wide range of mask sizes, and no significant
improvement above a neighbourhood size of 7 � 7 � 7 (Fig 7.17). Monga et al. (1991)
proposed that 3-D methods offer improved performance due to improved immunity to
noise due to smoothing along the z- dimension, thus in 3-D a smaller mask size can be
used to achieve the same level of noise immunity.
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Figure 7.17: Comparison of neighbourhood scales for χ2-test. a) F-1 score performance
metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map volume using
different scale neighbourhoods, prior to post processing stages. Higher surface signal
to noise ratio at larger scale due to suppressed noise signified by darker regions
between surfaces. However, greater uncertainty in surface location, signified by a
’smeared’ surface interface

Non-parametric statistical methods, which evaluate differences in region distributions,
were shown to be robust to changes in interface types (Fig 7.17b,c,d,e), this was perhaps
most notable for the χ2 method, in comparison to both baseline Canny and Steerable
methods in addition to the statistical parametric tests the χ2 method produced the
most complete detection while not over saturating the result with spurious surfaces.
Therefore, when the type of interface is not known a priori, it can be inferred that non
parametric tests such as the χ2-test should be more reliable at resolving different types
of surfaces within the image volume.

The χ2 method produced surfaces which were characteristically accurate, strong and
connected, with low levels of noise, these trends were also observed using real data. The
χ2 method performed strongly across all 3 modalities, but was particularly effective



7.4. NON-PARAMETRIC TESTS CHARACTERISTICS 231

on T1-contrast images, producing a strong connected surface boundary with very little
noise. It is therefore recommended that when surfaces detection is required on contrast
enhanced T1-weighted imagery, the χ2 with a bin size of 4 should be the preferred
approach.

7.4.2 Kolmogorov-Smirnov Test (KS)
7.4.2.1 Surface Response
The KS-test is a non-parametric statistical test which compares the Empirical Cumu-
lative Distribution Function (ECDF) of sorted ascending data points from two sample
distributions. The KS statistic is defined as the maximum difference between the
ECDFs for each mask sample region. By calculating the KS statistic the similarity
of the distributions can be evaluated, in the context of surface detection, this local
ranking of the data simulates the effect of local normalisation of the output, such that
the strength of detected surfaces are relative the local neighbourhood region and not
the global image. Using ranking values instead of absolute values, the KS statistic
will always fall between the range of 0 to 1. Consequentially surfaces which are of
weak magnitude relative to the global image, but strong locally can be resolved. This
means that the KS statistical test is a sensitive method which has the ability to resolve
surfaces with statistically similar regions. Across evaluations this can be observed as
good detection but a noisy response (Table 7.6). This has advantages and disadvantages,
the method can resolve different interface types, including those which are weak where
other methods are not able to resolve the interface, for example figure 5.29j) reveals
that the KS method can resolve multiple surfaces of different strengths in the same
image, including weak boundaries, consequently the output can also be saturated with
weak surfaces, which may or may not be considered spurious responses depending on
the context. This effect is more pronounced in regions of uniformity where no surfaces
should be expected. Evaluation 1 illustrates this with detection of the different bound-
ary types, but also the production of false positive surface points (Figures 5.9, 5.10,
5.11 and 5.12).

The results illustrate good detection, but with spurious surface points, F1 scores reveal
that the KS method can achieve optimal detection results. However, optimal results are
achievable with a narrower threshold window compared to some of the other statistical
measures such as the χ2 and L-test methods (Fig 5.13a,c,d). The advantage of the
sensitivity of this method is best illustrated in Fig 7.18, where after non-maximum
suppression has been applied, the KS method clearly offers one the best detection
results in terms of resolving the most interfaces, this is supported by Fig 5.31a in which
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

2.1 (Cu),
Section 5.6.2

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.2 (Sp),

Section 5.6.3
Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.3 (CSt),

Section 5.6.4
Accurate
detection,
connected

surface some
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

Accurate
detection,
connected

surface some
over-detection

artefacts

Accurate detec-
tion,connected
surface. some
over-detection

artefacts

2.3 (FSt),
Section 5.6.4

Accurate
detection,
connected

surface, some
over-detection

artefacts

Surface detected
with some
inaccuracies,
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Good detection, considerable

noise, good connectivity,
strong magnitude surface

Good detection, considerable
noise, good connectivity,

strong magnitude detection

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Detected Detected Detected High Good
detection, but
weak surfaces

5 (T2),
Section 6.8

Detected Detected Detected High Sensitive
detector,

reveals noise
6 (T1c),

Section 6.9
Detected Detected Detected High Sensitive to

noise, low
magnitude
surfaces

Table 7.6: Kolmogorov-Smirnov test filter characteristics cross comparison of
evaluation summaries through Evaluations 1-6.
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the KS method obtains the second best F1-score after the χ2 output. When surfaces
exist at different strengths the KS test can be very effective (Fig 7.21).

(a) MultiFlatGT (b) KS NMS Result MultiFlat

Figure 7.18: KS cross sectional result from MultiFlat image after NMS is applied.
This shows that despite a noisy response, the KS method achieves good detection,
with many of the interfaces detected.

7.4.2.2 Observations
The high sensitivity characteristics of the KS method were also observed with the
real MRI data. The method was able to resolve solid tumour interfaces between white
matter tissue and cyst material for each of the MRI modalities, however T1-weighted
images produces more over-detection artefacts compared to the other modalities relative
to the χ2, RRO and u-test non-parametric methods which also provide a normalised
output. On T2-weighted and T1 contrast enhanced imagery, the KS would not be
considered the optimal method, due to the sensitivity of the method and over-detection
artefacts.

The effectiveness of the non-parametric tests correlates with the findings in the work
of Williams et al. (2014). In that study an improved performance was observed when
a larger scale parameter was applied. This is due to increases in the number of pixels
in each sample region of the mask as the scale parameter is increased. However the
primary drawback of a larger mask size in 2-D is the introduction of localisation error.
By using a 3-D statistical filter the number of voxels processed in the mask increases by
a factor of v2 in comparison to a 2-D filter with the same scale parameter. Therefore
3-D statistical filtering methods provide increased resolving power at a comparable
scale, negating the requirement for always applying a large neighbourhood mask. This
effect can be observed in Fig 7.19, here the interface of the tumour boundary is resolved
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by both 2-D and 3-D non parametric statistical filters. The signal to noise ratio of the
detected surfaces is improved with 3-D filtering, signified by greater delineation of the
tumour boundary from the background in 3-D compared with 2-D at the same scale.

(a) 2D KS (b) 3D KS

Figure 7.19: Comparison between 2-D and 3-D KS test at equivalent scale parameter.
a) -2D 5x5 and b) 3-D 5x5x5

(a) 2-D layer

(b) 2-D Reference
(c) 3-D

Figure 7.20: 3-D visual KS result on T1-Weighted MRI image

7.4.2.3 Scale Response
In the work of Williams et al. (2014), the observed characteristics of the 2-D KS method
were also present in 3-D. The KS method is a very sensitive detector that achieved good
detection but with many spurious edges being resolved. It was shown that increasing the
scale parameter of the method suppresses the noise of the algorithm, this also applies
in 3-D (Fig 7.21).
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Figure 7.21: Comparison of neighbourhood scales for KS-test. a) F-1 score
performance metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map
volume using different scale neighbourhoods, prior to post processing stages. Higher
surface signal to noise ratio at larger scale due to suppressed noise signified by darker
regions between surfaces. However, greater uncertainty in surface location, signified by
a ’smeared’ surface interface

For real MRI data, the KS method can be used to resolve the solid tumour interfaces,
the cyst interfaces and the normal tissues interfaces, but it also detects many more
structures which are not detected by the other methods. This was characteristic across
the different modalities (Figures 6.9, 6.13, 6.17l). This can be disadvantageous for
normal segmentation tasks, as this could be considered noise or spurious responses.
However, the increased sensitivity reveals structure about the tumour which could be
of use, therefore the KS test should not be excluded as a potential option.
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Accurate
detection,
connected

surface, some
over-detection

artefacts

Did not resolve
surface,

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

2.1 (Cu),
Section 5.6.2

Accurate
detection,
connected

surface, some
over-detection

artefacts

No surface,
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.2 (Sp),

Section 5.6.3
Accurate
detection,
connected

surface, some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.3 (CSt),

Section 5.6.4
Accurate
detection,
connected

surface some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface some
over-detection

artefacts

Accurate detec-
tion,connected
surface. some
over-detection

artefacts

2.3 (FSt),
Section 5.6.4

Accurate
detection,
connected

surface, some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Surface resolved
and connected

with some loss of
detail, some
over-detection

artefacts

Surface resolved
with finer detail

lost, some
over-detection

artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Good detection, moderate

noise, good connectivity,
strong magnitude surfaces

Good detection, moderate
noise, good connectivity,
strong magnitude surfaces

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Detected Detected Detected -
partial

High Good
detection but
significant
clutter

5 (T2),
Section 6.8

Detected Detected Detected High sensitive,
reveals noise

6 (T1c),
Section 6.9

Detected Detected Detected High Sensitive to
noise, low
magnitude
surfaces

Table 7.7: Wilcoxon Mann-Whitney test filter characteristics cross comparison of
evaluation summaries through Evaluations 1-6.
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7.4.3 Wilcoxon Mann-Whitney Test u-test
7.4.3.1 Surface Response
The non-parametric Wilcoxon Mann–Whitney test is commonly used for detecting
differences in central tendency between two samples. As the method is evaluating
differences in central tendency between distributions, it is expected that the method
would be successful for mean based surface interfaces. The work of Williams et al.
(2014) found the 2-D u-test to be particularly effective for mean based edges.

The Mann Whitney u-test performed strongly on the intensity interface type and the
combination images (Figures 5.9k, 5.11k and 5.9k ). However, the u-test does not
resolve surfaces of between textured regions (Fig 5.10k). Similar to the KS method,
the ranking nature of the technique locally normalises the output. This results in a
sensitive detection method with a propensity to create over-detection artefacts. This
high sensitivity reduces the signal to noise ratio with respect to the detection of the
surface interface. These characteristics were observed across evaluations as shown in
Table 7.7, signified by good detection across interface types, but with high amounts of
noise.

However, on the multiple statistic images, the u-test proved to be an effective method
outperforming the many of the statistical methods and significantly outperforming the
baseline Canny and Steerable methods (Fig 5.31). The objective results indicate that
while the u-test does not achieve the highest peak score on the MultiFlat and MultiCurve
image volumes it can operate over a wider threshold range than the other methods
(Fig 5.31). This reliability makes the u-test suitable when the image characteristics are
not known a-priori.

7.4.3.2 Observations
Subjectively, the u-test method was third best for T1-weighted MRI modalities behind
the χ2 and t-test methods as the signal to noise ratio of the surfaces is higher than that
of the KS and RRO methods, while achieving better detection than the baseline and
other statistical methods(Fig 6.7). For T2-weighted imagery, the u-test does produce
over-detection artefacts due to the high sensitivity of the method, however, it does
produce surfaces with a higher magnitude than the clutter (Fig 6.11) and is greatly
outperformed by the parametric DoB and t-test methods which are characteristically
less noisy in their outputs. For contrast enhanced T1-weighted imagery, the u-test
produces strong magnitude outputs of the tumour structure, however there are still
more noise artefacts produced when compared against the χ2, t-test and DoB methods
(Fig 7.22).
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Figure 7.22: Characteristics of statistical filters with successful responses on
T1-contrast images. u-test method, KS, RRO have similar strong surface responses
(i), however compared against other methods such as the DoB, t-test and χ2-test there
is increased sensitivity in the response, signified by clutter in region (ii)

(a) 2-D layer

(b) 2-D Reference (c) 3-D

Figure 7.23: 3-D visual u-test result on T1-Weighted MRI image
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7.4.3.3 Scale Response
Increasing the scale of the neighbourhood mask increases the signal to noise ratio of the
interface (Fig 7.24), and suppresses to the noise to a greater extent than smaller mask
sizes. However, the larger mask sizes introduce greater uncertainty in the location of
the detected surfaces.
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Figure 7.24: Comparison of neighbourhood scales for u-test. a) F-1 score performance
metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map volume using
different scale neighbourhoods, prior to post processing stages. Higher surface signal
to noise ratio at larger scale due to suppressed noise signified by darker regions
between surfaces. However, greater uncertainty in surface location, signified by a
’smeared’ surface interface

Overall the u-test performed similarly to the KS and RRO methods, with the u-test
providing marginally better results on the MRI data. When weaker surfaces require
detection, the u-test is a good option due to its high sensitivity, offering a slightly
improved signal to noise ratio than the KS and RRO methods.
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7.4.4 Robust Rank Order Test (RRO)
7.4.4.1 Surface Response
The Robust rank order is a statistic similar to u-test method which was developed
by Fligner and Policello (1981), it was later adapted as an edge detection method by
Lim (2006). The method does indeed produce visually comparable and objectively
comparable results to the u-test, but also the KS method. An overview of the each
evaluation is presented in Table 7.8, and the general characteristics reveal a sensitive
filter with good detection, but generally some noise in the response.

On the intensity (Int) based interfaces the RRO method performed strongly (Fig-
ures 5.9,5.14,5.19). However the method failed to resolve many of the Tex type inter-
faces in evaluations 1 and 2 (Figures 5.10,5.15,5.20,5.25). A sensitive detector with
a tendency to produce spurious responses, the RRO method performed similarly to
the other non-parametric tests. On images with multiple statistical regions the RRO
method was the 3rd highest scoring method behind the χ2 and KS methods (Fig 5.31).

7.4.4.2 Observations
On T1-weighted imagery, the RRO method produced results comparable to the KS
method, characterised by poor surface signal to noise ratio due to the sensitivity of the
method (Fig 6.8l,k). For T2-weighted imagery the RRO method has improved surface
signal to noise ratio, however it does not perform as well as other statistical methods,
such as the DoB, t-test and χ2 methods (Fig 6.12e,h,i,k), which produce more accurate
connected surfaces with fewer spurious responses. For contrast enhanced T1-weighted
MRI data, the RRO method can detect some surfaces, but again the surface signal to
noise ratio is poorer than the DoB, t-test and χ2 methods (Fig 6.17e,h,i,k).
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Accurate
detection,
connected

surface, some
over-detection

artefacts

Did not resolve
surface,

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

2.1 (Cu),
Section 5.6.2

Accurate
detection,
connected

surface, some
over-detection

artefacts

No surface,
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts, weaker
corners

Accurate
detection,
connected

surface, some
over-detection

artefacts

2.2 (Sp),
Section 5.6.3

Accurate
detection,
connected

surface, some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.3 (CSt),

Section 5.6.4
Accurate
detection,
connected

surface some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface some
over-detection

artefacts, weaker
corner strength

Accurate detec-
tion,connected
surface. some
over-detection

artefacts

2.3 (FSt),
Section 5.6.4

Surface resolved,
connected

surface, some
inaccuracies,

some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Surface resolved
and connected

with some loss of
detail, some
over-detection

artefacts

Surface resolved
with finer detail

lost, some
over-detection

artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Good detection, considerable

noise, good connectivity,
strong magnitude surfaces

Good detection, low-moderate
noise, good connectivity,
strong magnitude surfaces

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Detected Detected Not detected High Partial
detection, but

cluttered
5 (T2),

Section 6.8
Detected Detected Detected High Low

magnitude
surfaces

6 (T1c),
Section 6.9

Detected Detected Detected High Sensitive to
noise,low
magnitude
surfaces

Table 7.8: Robust Rank Order test filter characteristics cross comparison of evaluation
summaries through Evaluations 1-6.



242 CHAPTER 7. DISCUSSION

(a) 2-D layer

(b) 2-D Reference
(c) 3-D

Figure 7.25: 3-D visual RRO result on T1-Weighted MRI image

7.4.4.3 Scale Response
At larger scales the RRO method is significantly more computationally expensive
than the other non parametric methods, however the method saw no improvements in
performance beyond mask sizes larger than 7 � 7 � 7 for the multiple statistical region
image (Fig 7.26a).
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Figure 7.26: Comparison of neighbourhood scales for RRO-test. a) F-1 score
performance metric. b,c,d,e) Shows central 2-D layer taken from 3-D surface map
volume using different scale neighbourhoods, prior to post processing stages. Higher
surface signal to noise ratio at larger scale due to suppressed noise signified by darker
regions between surfaces. However, greater uncertainty in surface location, signified by
a ’smeared’ surface interface

While Lim (2006) found the RRO edge detector outperformed the u-test, t-test and the
Canny Edge detection methods, when used in the context of a 3-D dual region filter
for surface detection, in this evaluation the t-test proved to be an overall more effective
method. Instead the RRO was found to perform similarly to the u-test method but
with a smaller signal to noise ratio, this can be observed in the objective results where
the effective threshold range is wider (Figures 7.24a and 7.26a). Additionally the RRO
method comes with a much higher computational cost. Due to the computational cost
off the RRO method, for MRI data the u-test would be the preferential option if RRO
surface map characteristics are desired (Table 3.1).
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7.5 Baseline Methods
In this work, the 3-D statistical methods of surface detection were compared against
2 baseline methods. The 3D canny method, adapted from the 2-D Canny edge filter
(Canny, 1986), and the 3-D steerable filter from the work of Aguet et al. (2005).

7.5.1 3-D Canny
7.5.1.1 Surface Response
The Canny method is known for being an effective method at resolving interfaces where
there is a step change in brightness. Table 7.9 reveals that across the evaluations the
method is indeed effective at intensity based interfaces. However it was also shown
that statistical methods perform equally well on these kinds of interface, notably the
DoB, t-test, and χ2 methods. When there is not a strong intensity component or, when
the there is a strong variance component to one or more of the regions, the Canny
method loses its effectiveness, and achieves inferior performances relative to many of
the statistical approaches.

The Canny method produced accurate detection on Com1 interface types (Fig 5.11),
however again the DoB and t-test methods also achieved accurate detection but with
improved noise suppression. On the Com2Fl interface type the Canny method was
able to achieve optimal detection, but in a much narrower threshold range (Fig 5.13c,d,
and was significantly outperformed by a number of statistical methods including DoB,
L, χ2, t and u-test methods. Predictably the Canny method performed poorly on
the variance type interfaces (Fig 5.13b). This is because as variance within a region
presents as abrupt changes in brightness contained within a region, these abrupt changes
are themselves interpreted to be a surface, instead of the interface between regions of
different variance. This leads to the production of clutter and noise within the high
variance region, whereas some statistical methods are not impacted by this to the same
extent.

7.5.1.2 Observations
The performance of the 3-D Canny methods on the real images indicates that it does
produce accurate surface maps when there is a strong delineation between solid tumour
and grey matter in the image volume in terms of brightness between regions. While this
may be the case in T2-weighted images, this is not typical of T1-weighted images, which
is the modality where the Canny method was outperformed to a greater extent by some
of the statistical methods, namely the t-test and χ2 methods. But even in the case of
T2-weighted imagery, where the Canny is more effective compared to T1, the 3-D Canny
method was still outperformed by the χ2, DoB and t-test methods (Figures 6.11, 6.12
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Accurate
detection,
connected

surface, some
over-detection

artefacts

Did not resolve
surface,

over-detection
artefacts

Accurate
detection,
connected

surface, localised
over-detection

artefacts

Accurate
detection,
connected
surface,

over-detection
artefacts

2.1 (Cu),
Section 5.6.2

Accurate
detection,
connected
surface, no

over-detection
artefacts

No surface,
over-detection

artefacts

Accurate
detection,
connected
surface, no

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.2 (Sp),

Section 5.6.3
Accurate
detection,
connected

surface, some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected
surface, no

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts
2.3 (CSt),

Section 5.6.4
Accurate
detection,
connected

surface, some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface some
regional

over-detection
artefacts

Accurate detec-
tion,connected
surface. some
over-detection

artefacts

2.3 (FSt),
Section 5.6.4

Surface resolved,
connected

surface, some
inaccuracies,

some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Surface resolved
with finer detail

lost, some
over-detection

artefacts

Surface resolved
with finer detail

lost, some
over-detection

artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Missed surfaces, some noise,

good connectivity,
Missed surfaces, good noise
suppression, low magnitude

surfaces

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Detected Detected Detected Low Good
detection but

weak
interface

5 (T2),
Section 6.8

Detected Detected
-weak

Detected Low Weak
interfaces in
x, y-plane

6 (T1c),
Section 6.9

Detected Detected
-weak

Detected low weak
interfaces in
x, y-plane

relative to z

Table 7.9: 3-D Canny Filter characteristics cross comparison of evaluation summaries
through Evaluations 1-6.
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6.13). On contrast enhanced T1-weighted imagery the Canny method was again less
successful than the χ2, DoB and t-test methods (Figures 6.15, 6.16 6.17) but it was
able to resolve some of the boundary information as illustrated in the 3-D result in
Fig 7.27.

(a) 2-D layer

(b) 2-D Reference
(c) 3-D

Figure 7.27: 3-D visual 3-D Canny result on T1-Weighted MRI image

A further drawback of the 3-D Canny method against the 3-D statistical methods in
reference to resolving interfaces based on brightness, is the lack of option to weight
the mask orientations, or adjust the mask dimensions based on image resolution. This
had pronounced negative impact on evaluations 4-6 and the problem is illustrated in
Fig 6.19. We make recommendations to adapt the 3-D Canny method to account for
this in line with the work of Brejl and Sonka (2000), particularly at larger σ values,
where the neighbourhood mask is larger and the distortion is exacerbated. Or to only
use 3-D implementations of these algorithms on either isotropic or interpolated 3-D
data.

7.5.1.3 Scale Response
At increased Gaussian filter kernel sizes the Canny method exhibit the similar character-
istics of the increased neighbourhood size for the statistical measures. Such as improved
noise suppression offset by greater uncertainty in the surface accuracy (Figures 7.28)
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Figure 7.28: Comparison of different sized Gaussian filter kernels with 3-D Canny
method. Higher surface signal to noise ratio at larger scale due to suppressed noise
signified by darker regions between surfaces. However, greater uncertainty in surface
location, signified by a ‘smeared’ surface interface

7.5.2 3-D Steerable Filter
7.5.2.1 Surface Response
The 3-D Steerable filter method is optimised resolving interfaces where there is a step
change in brightness. Table 7.10 reveals that across the evaluations the method is most
effective at resolving intensity based interfaces. When there is not a strong intensity
component or, when the there is a strong variance component to one or more of the
regions, the Steerable method loses its effectiveness, tending to produce noisy and
cluttered surface maps which results in inferior performances relative to many of the
statistical approaches in addition to the 3-D approach.

7.5.2.2 Observations
The steerable method is optimised for detecting changes in brightness and did produce
good visual results in Exp.1 IntFL (Fig. 5.9), however the method conversely produced
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Evaluation Int Tex Com1 Com2
1 (Fl),

Section 5.5
Connected
surface,

displaced, some
over-detection

artefacts

Did not resolve
surface,

over-detection
artefacts

Accurate
detection,
connected

surface, some
over-detection

artefacts

Connected
surface,

displaced, severe
over-detection

artefacts

2.1 (Cu),
Section 5.6.2

Displaced
surface,

connected
surface, localised
inaccuracies at
corners, some
over-detection

artefacts

No surface,
over-detection

artefacts

Displaced
surface,

connected
surface, some
over-detection

artefacts

No resolved
surface,

over-detection
artefacts

2.2 (Sp),
Section 5.6.3

Small
displacement,
connected

surface, some
localised

artefacts near
surface and some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Accurate
detection,
connected

surface, poor
surface

resolution,
over-detection

artefacts

poor
differentiation
between surface

and
over-detection

artefacts

2.3 (CSt),
Section 5.6.4

Displaced
surface,

connected
surface, some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

connected
surface

surface,but some
duplicates and

positional
inaccuracies,
over-detection

artefacts

Inaccurate
surface,

connected
surface, poor
differentiation

from
over-detection

artefacts
2.3 (FSt),

Section 5.6.4
Surface resolved,

connected
surface, some
inaccuracies,

some
over-detection

artefacts

No surface
resolved,

over-detection
artefacts

Surface resolved,
inaccurate
location,
duplicated

surface response,
over-detection

artefacts

Surface resolved
with finer detail
lost and slight
displacement,
over-detection

artefacts

Evaluation Flat Curve
3 (Multi), Section 5.7 Missed surfaces, considerable

noise, low magnitude surfaces
Poor detection, considerable

noise, weak surfaces

Evaluation T �B C �B T � C Noise or
Clutter

Characteristics

4 (T1),
Section 6.7

Not detected Not detected Not detected low poor
detection of

axial
interfaces

5 (T2),
Section 6.8

Not detected Detected
-weak

Detected medium weak
interfaces in
x, y-plane

6 (T1c),
Section 6.9

Not detected Detected
-weak

Detected medium weak
interfaces in
x, y-plane

Table 7.10: 3-D Steerable Filter characteristics cross comparison of evaluation
summaries through Evaluations 1-6.



7.5. BASELINE METHODS 249

a poor objective score (Fig 5.13a). The quantitative metric score indicated some failure
of the surface result which was not clearly visually apparent. Here the discrepancy lies
with the localisation of the surface. The steerable filter produced a surface with 2 voxel
displacement (Fig. 7.29). Often a connected but displaced surface is desirable over a
fragmented but accurate surface, thus this displacement is not a significant drawback as
the performance results may suggest, with a greater T -match zone applied within the
performance metric, improved scores would be expected. However overall the Steerable
method was still generally outperformed by the statistical methods, frequently being
unable to resolve the surface of interest, as illustrated in the 3-D representation in
Fig 7.30.

(a) Reference (b) Steerable
Result

(c) Comparison

Figure 7.29: 2D comparison of centre layer from steerable filter output. Comparison
against Reference indicates small displacement of the surface which contributes to the
negative performance metric score.
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(a) 2-D layer

(b) 2-D Reference
(c) 3-D

Figure 7.30: 3-D visual Steerable result on T1-Weighted MRI image
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7.5.2.3 Scale Response
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Figure 7.31: Comparison of different sized Gaussian filter kernels with 3-D Steerable
filter method. Higher surface signal to noise ratio at larger scale due to suppressed
noise signified by darker regions between surfaces. However, greater uncertainty in
surface location, signified by a ‘smeared’ surface interface, in addition to weak
performance on corners and T-junctions which lose their regularity. Larger scales also
introduce greater displacement of surface

At increased Gaussian filter kernel sizes the Steerable filter method exhibited the similar
characteristics of the increased neighbourhood size for the statistical measures. Such
as improved noise suppression offset by greater uncertainty in the surface accuracy
(Fig 7.31. However the Steerable filter exhibited negative artefacts with increased
Gaussian smoothing, particularly in the detection of corners and T-junctions.

7.6 Summary
In this discussion, the generalisable trends found in Chapters 5 and 6 are established.
For each filter method, the surface response, scale response and observations of the
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filter characteristics are presented. The key findings from the objective and qualitative
evaluations were extrapolated into summary tables which allow for ease of comparison
between evaluations. Through examination of the trends, the generalisability and
transferability of the evaluation results were identified. The findings support a strong
link between the characteristics of the synthetic results with that of the MRI data,
indicating good transferability, therefore establishing that the objective analysis can
reliably offer insight to the likely performance of each statistical filter in a real application
domain.

In general it was shown that statistical methods, notably the t-test and χ2 test either
match or outperform both baseline Canny and Steerable methods across all evaluations,
while nearly all statistical methods improve upon the baseline techniques in high variance
images. This can be observed by the performance of the baseline methods on all
texture type interfaces (TexFl, TexCu, TexSp,TexCSt, TexFSt) relative to the statistical
methods. This finding is also present in the Com2 interface results and the MultiFlat
and MultiCurve assessments in evaluation 3.

In the discussion, the effects of the scale parameter are also observed. Generally
across all filtering methods, as the neighbourhood scale is increased, the level of noise
suppression is also improved, and the detection of the surface is more strongly resolved.
However, increasing the scale, spreads out the surface response across more voxels, this
leads to some uncertainty in the true surface location, and after NMS is applied, there
is more localisation error in the result which offsets some of the advantages gained, and
therefore differences in objective performance is marginal. However, on the MultiFlat
scale analysis the χ2, F , L and Steerable filter methods favoured a small scale, while
the other statistical filters and the Canny method favoured a larger scale.

On the MRI data, the statistical methods consistently outperformed the baseline Canny
and Steerable methods, with the parametric tests, notably the DoB and t-tests offering
improved noise suppression, while the non-parametric tests offered improved detection
and connectivity, but at the expense of more noise in the surface map output. The best
performing method was the χ2 method, which was able to achieve a strong signal to
noise ratio in the output, signified by good noise suppression, but it was also able to
combine this with good detection and surface connectivity.

A notable difference between results from evaluations 1-3 with that of evaluations 4-6,
is the presence of z-spacing biasing in the results. As the MRI data is anisotropic in its
resolution (Tab 6.1) which is typical for real patient cases, the baseline methods did not
account for this in their design and as a consequence produced artefacts which negatively
impacted the performance. These artefacts are illustrated in Fig 6.19, signified by a
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shaded 2-D region and the effect is present throughout all patient cases in evaluations
4-6. The Vector Magnitude which incorporates scaling of the directional components of
the statistical vector can largely minimise this effect, for superior results in the surface
map outputs.

In the following and final chapter, the contributions found here and throughout are
summarised and conclusions are drawn.





Chapter 8

Conclusions

8.1 Contributions
This chapter provides a conclusion of the different aspects of the work carried for this
thesis, summarising each chapter and the contributions offered throughout.

8.1.1 Two Novel Approaches to Statistical Surface Detection
Chapters 1 and 2 review advancements in edge and surface detection. Existing work
has shown that statistical methods for detecting edges to be superior over traditional
methods when factors such as texture and noise are present in the image data. However,
reviewing the literature revealed that development of 3-D statistical approaches to
surface detection remained largely unexplored. This led to the development of two novel
non-linear methods of surface detection which employ oriented, dual region statistical
filters. Which were then comprehensively analysed to see if the advantages offered by
statistical edge detection can be utilised in 3-D data. Also introduced is a novel 3-D
orientation filtering method for 3-D non maximum suppression (Chapter 3).

The two distinct surface detection architectures were developed and were presented in
Chapter 3, these include:

• Maximum Response method

• Vector Magnitude method

8.1.1.1 Maximum Response Method
The maximum response method exists in 2-D, and has previously been comprehensively
evaluated by Williams et al. (2014), in this thesis a novel adaptation of the 2-D statist-
ical edge detection architecture is made in order to reconfigure the technique for 3-D
surface detection and is a new contribution within this work. The Maximum Response
method resolves surface interfaces by applying a rotating dual region voxel neighbour-

255
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hood to the image and analysing the statistical properties of the regions covered by
the mask. The number of orientations covered by this process is determined by the
scale of the neighbourhood, but this implementation used a constrained case of 13-
orientations where all surface directions are truncated to a 26-connectivity mask. The
magnitude of the surface is determined to be the maximum response of the computation
of an interchangeable statistical test applied across the 13 orientations. This technique
determines the maximum statistical difference through different neighbourhood mask
positions and tends to produce surfaces with a high magnitude. This is advantageous in
terms of signal to noise ratio for the parametric tests which offer good noise suppression,
but for the more sensitive non-parametric tests, this advantage is offset due to the
noise also being of high magnitude. Computationally, the method is expensive if the
number of orientations is not constrained, since as the neighbourhood mask scale is
increased, the number of viable orientations which are available is also increased, due
to the exponential increase computational cost with regard to scale, the unconstrained
MR method is not a scaleable technique in practice.

8.1.1.2 Vector Magnitude Method
The second method developed in this work is the Vector magnitude method. This
architecture was developed primarily to improve the efficiency of statistical surface
detection in 3-D data. The vector magnitude achieves this by fixing the number of
region orientations used within the neighbourhood to the 3 orthogonal planes defined
by 3-D data (x,y and z planes). By performing a statistical comparison in 3 orthogonal
directions, 3 directional magnitude components are acquired. These components form a
vector which describe both the overall magnitude and direction of a statistical differential.
This work shows there are multiple benefits to the VM approach.

When the image resolution is anisotropic, applying surface detection using an isotropic
mask distorts the surface map result, biasing the output toward surfaces which exist in
the direction of the imaging plane with the smaller resolution. This is a common issue
in real 3-D data and the effects of which should not be overlooked. In MRI data for
example, the spatial resolution in the z-dimension of an axial viewed image volume is
often lower than in the x and y directions, thus the voxel accounts for more physical
space in the z-direction. This was also shown within the thesis in the MRI dataset
(Table 6.1). Anisotropic resolution, where the x and y voxel resolution is superior to the
z-direction, increases the likelihood of bigger shifts in image properties between voxels in
adjacent layers, compared with adjacent voxels in the same image layer. A bigger change
in image properties typically results in a larger differential computed by the surface
detection method, which results in surfaces computed with a stronger z-component
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than what would be expected from an isotropic image which has no inherent directional
bias in the spatial properties. The VM architecture allows for the offsetting of this bias
by applying coefficients which appropriately weight the directional components of the
statistical vector based on the image resolution, prior to the L2-norm calculation. This
in turn proportionately reduces the influence of the z-component in the calculation for
a more balanced surface map. The benefit of this is that erroneous surface points in
the surface map which manifest as filled regions can be avoided, which ws not the case
for the baseline Canny and Steerable techniques as demonstrated in evaluations 4-6.
This effect is best illustrated in Fig 6.19. The Vector Magnitude method was shown to
offset this bias to achieve superior results in anisotropic MRI data compared with the
baseline approaches.

In terms of efficiency the Vector Magnitude greatly improves over the Maximum response
method, this can be seen in the results presented in Table 3.1, showing that the VM
completion time is significantly shorter than that of the MR method. This is due to
the fact the statistical test is always calculated 3 times in each location instead of 13.
Additionally, as the scale of the mask is increased, there is no loss in accuracy in the
directional component of the VM measurement, this is in contrast to the MR method,
which either has to use a constrained set of orientations resulting in greater error
magnitude as the scale increases, or by applying more orientations in the measurement,
which would further increase the computational cost of the method. The impact of
this are surfaces in results which are more seamless when obtained by the VM method
compared with the MR method. These advantages make the VM the preferential choice
of the two architectures, and was the method evaluated in Chapters 5 and 6.

8.1.2 Evaluation Methodology Framework
Chapters 1 and 2 present a strong case for undertaking an evaluation of statistical
surface detection, exposing the present gap in literature and knowledge in the appraisal
of these techniques. Currently there is no formal evaluation of 3-D statistical methods
for surface detection, however, evaluation of surface detection methods is a non trivial
process.

Chapter 4 explores the literature for the most appropriate methodologies for objectively
evaluating surface detection methods. A number of issues have previously been raised
such as those from Forbes and Draper (2000) and Bowyer et al. (2001) showing that
objective measures and real world results do not always correlate due to the disparity
in complexity between real imagery and synthetic data. Therefore in this work, a
combined objective and qualitative approach was undertaken.
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The criticisms associated with synthetic data analysis refer to the overall lack of complex-
ity in the dataset interfaces. Notably the lack of topological considerations, specifically
the lack of curvature, but also the relative strengths of interfaces. This observation led
to a 3 stage approach within the objective methodology detailed in Chapter 5 and were
as follows:

1. Evaluation 1: Measurement of the resolving power of statistical surface detection
on interfaces between regions of different region profiles.

2. Evaluation 2: Measurement of effects of surface topology on the detection per-
formance.

3. Evaluation 3: Measurement of detection performance with data that possesses
multiple distinct region profiles with different strength interfaces.

Following the objective assessment, the filters were analysed qualitatively in a real case
assessment in Chapter 6. Chapter 7 provides a discussion of the characteristics of the
filters on both the synthetic and real image volumes. Comparisons are made and reveal
that many of the filtering characteristics which occur in the synthetic domain also
manifested in the results on real data. Indicating that objective analysis can inform
performance to a degree for specific applications.

8.1.3 Efficient Paring Strategy
In the literature, F-measure analysis has been shown to be the most appropriate and
reliable objective measure for accurately assessing surface detection performance (Pont-
Tuset and Marques, 2016). Correct implementation of the F-measure metric requires
proper collection of the TP, FP, TN and FN figures established through one to one
correspondence matching of the filter results with the reference images as recommended
by Liu and Haralick (2000).

Accurate correspondence matching can be solved for 2-D data alone using the Hungarian
algorithm (Kuhn, 1955). However this is a brute force process which is very computa-
tionally expensive. The complexity of the problem is dependent on the size of the image
and the number of edge or points present in the image. Due to these factors, in 3-D
data the computational complexity is even greater, making the Hungarian algorithm
impractical at currently available computational speeds for large datasets. This led
to the development of the Efficient Paring Strategy (EPS) correspondence matching
technique and its development is detailed in Chapter 4.

The EPS technique approximates very closely the Hungarian algorithm result in terms
of accuracy with a Pearson Pairwise Correlation coefficient of 0.99, however it is solved
with quadratic time complexity (Opn2q) improving over the exponential time complexity
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(Opcnq, c ¡ 1) achieved by Hungarian Algorithm variations (Fig 4.16). This allows for
both the evaluation of large 3-D image volumes and the evaluation of large datasets
with a greatly reduced completion time.

The EPS method is introduced and tested in Chapter 4, and then in Chapter 5 used as
a novel contribution to evaluate objective response of surface detection methods.

8.1.4 Objective Evaluation of Surface Detection
This work has presented several techniques for statistical surface detection. Presented
in Chapter 5, using the evaluation framework, a novel contribution in this thesis, the
statistical tests were objectively evaluated with a direct comparison against the baseline
3-D Canny and Steerable filter methods. This was achieved utilising the novel EPS
assisted F-measure, a further contribution, which newly allows for accurate objective
analysis of 3-D surface detection with large 3-D data sets.

This evaluation is the first appraisal of statistical surface detection which has been
undertaken in the literature and and is one of the primary contributions of the thesis.
The evaluation provides recommendations for the following Vector Magnitude statistical
tests:

• Difference of Boxes

• Fisher test

• Log Likelihood ratio test

• Student’s t-test

• χ2 test

• Kolmogorov-Smirnov test

• Mann-Whitney u-test

• Robust rank order test

To support the quantitative findings, the surface detection methods were also visually
assessed to identify whether visual characteristics found in the results correspond with
the objective metric scores. Evaluation 1 was constructed to establish the resolving
power of the different methods on interfaces with a strong intensity component (IntFl),
a strong variance component to simulate stochastic texture (TexFl), and two interfaces
which combine intensity and texture components at different amounts (Com1Fl and
ComFl2). In 2-D data Williams et al. (2014) showed that the gradient based Canny
method was effective at detecting the edges corresponding to intensity based interfaces,
but was ineffective on texture based edges. For 3-D data the same trends continue,
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with the Canny and Steerable methods performing strongly on interfaces with a strong
intensity component, but poor on interfaces with a texture component. Evaluation 1
also revealed that the statistical tests excluding the F test, were able to accurately
detect both the intensity based interfaces and interfaces with a textured component.
For the intensity based interface, the statistical DoB, t-test, χ2, KS, u-test and RRO
methods were all able to match the Canny method of achieving an optimal result.
While the KS, L and F test methods were the only methods able to achieve optimal
results for the texture interface, with the χ2-test achieving close to optimal detection.
On the Combinational interfaces all methods with the exception of the F test method
outperformed the Steerable method, and all statistical methods with the exception of the
F method either offered improved detection or parity with the Canny method. Clearly
indicating that statistical methods are more reliable at detecting surface interfaces over
baseline methods, when texture is a factor in the properties of a region.

Evaluation 2 was constructed to identify the impact of interface topology on the de-
tection. With 2-D statistical edge detection, Williams et al. (2014) identified that
the non-parametric statistical tests were more effective with a larger scale parameter.
However, a larger scale parameter introduces uncertainty in the location of a detected
edge. The topology of an interface can contain details that may be lost due to the
location uncertainty that arises at larger scales, which limits the effective range of the
scale parameter of a detection method. Since a 3-D local neighbourhood possesses
N3 voxels compared to N2 pixels for a 2-D neighbourhood, the number of elements
processed in 3-D is greater than 2-D with an equal scale parameter. This allows for
non parametric methods in 3-D to resolve surfaces with a relatively high signal to noise
ratio when compared against 2-D. The same observation was made by Monga et al.
(1991) in comparing 2-D and 3-D operators. Using a variety of 3-D interface topologies
the results from Chapter 5 clearly show that for surface detection, the non-parametric
tests are effective at smaller scales and are comparable to the parametric tests. This
indicates that the earlier findings of Monga et al. (1991) hold true for statistical surface
detection. There are some topological considerations when selecting a statistical test,
for instance, the t-test was less effective on regular corners, compared to the other
statistical methods. This is due to the test providing a high magnitude output when
variance within a neighbourhood region is low. However, when positioned on a corner
interface, the variance in one of the regions will be higher, and this results in a lower
magnitude output. Consequentially corners are more weakly defined. However, when
compared against baseline Canny and Steerable methods, the results replicate the gen-
eral trends discovered in Evaluation 1, with region properties being the most important
factor in resolving a surface interface.



8.1. CONTRIBUTIONS 261

Real images seldom contain 2 distinct regions, it is more typical for a real image to be
complex, containing several distinct regions which may be different from one another
by varying degrees of difference in the region properties. When surface detection is
performed on an image of this kind, the relative magnitudes of the detected surface
interfaces will be different, producing a surface map with surfaces of different strengths.

Different relative surface strengths are an important consideration when applying post
processing techniques such as thresholding, or when the results are used by higher level
processes such as region growing. This is because weaker surfaces can be removed
by thresholding, or they may have a weaker response within a higher level process.
Evaluation 3 introduced two synthetic image types which contained multiple regions,
and this evaluation was used to identify the ability of a method to resolve multiple
interface types within the same image. The most effective methods on these images
were the non-parametric tests of the χ2, KS, u-test and RRO test methods. This is
due to the ranking nature of the tests which compare sorted data, instead of absolute
values, which effectively creates normalisation at a scale equal to that of the local 3-D
neighbourhood. As a result the non parametric tests are able to resolve boundaries
considered “weaker”, but at the expense of being more sensitive thus presenting with
more noise. Evaluation 3 clearly shows that statistical methods outperform the baseline
techniques on this image volume type.

8.1.5 Qualitative Analysis of Surface Detection with Multi-Modal
MRI Data

Following the quantitative analysis in Chapter 5, the recommendations for the data can
now be viewed in a qualitative analysis on multi-modal MRI data. Chapter 6 provided
a real world application case for the evaluation of statistical surface detection which
assessed whether the trends found with synthetic data in the quantitative analysis
presented in Chapter 5 were also applicable to real imagery. It was found that many
filter characteristics observed with the synthetic data also occurred with the different
MRI modalities. Aspects such as sensitivity, noise suppression and artefacts such as
duplicated and displaced surfaces were common to both.

The datasets consisted of real magnetic resonance image volumes from paediatric pa-
tients with Pilocytic Astrocytoma tumours. Each set of image data were comprised of
3 different MRI image modalities, T1-weighted, T2-weighted, and T1-weighted with an
additional contrast agent. The statistical and baseline methods were assessed visually
on their ability to resolve 3 different interface types within the images. The interface
between the brain and tumour, the interface between the tumour and cysts, and the
interface between the brain and the cysts.
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The trends found in Chapter 5 evaluations 1,2 and 3 can also be found within the real
imagery. T1-weighted images have a weak intensity component on interfaces which
exist between the tumour and brain matter. Evaluation 1 showed that the baseline
methods require a strong intensity component to delineate the surface, and when
applied to T1-weighted images, the baseline methods were largely unable to detect the
tumour interface, with statistical methods producing superior results. Most notably
the Student’s t-test which produced high magnitude connected surfaces on this type of
image modality.

T2-weighted images possess a strong intensity component on the interface between
tumour and brain, and the interface between cyst and brain, and a weak intensity
component on the interface between tumour and cyst. The baseline methods which are
better suited towards detecting a strong intensity differential were effective at resolving
the tumour-brain and cyst-brain interfaces, but not the cyst-tumour boundaries. How-
ever, because the resolution of the real data was not isotropic, the z-spacing was greater
than that of the x and y voxel spacing, this introduces a bias toward the detection of
surface interfaces existing across the z-space. In the results this is apparent due to the
large shaded areas, particularly visible on the cyst portion of the images. Whereas the
Vector magnitude architecture was able to compensate for this bias, thus being able
to detect the surface interfaces more clearly. The χ2 method was the most effective at
resolving the 3 interface types of interest, while the parametric tests outperformed the
baseline methods predominantly due to the bias compensation. The non parametric
tests were effective at resolving all 3 interface types of interest, however this was at the
cost of added noise, due to the sensitivity of the methods towards “weaker” surfaces,
reflecting the results found in evaluation 3.

The T1-contrast enhanced modality provides a distinct intensity component for the each
3 interface types of interest. However, despite the baseline methods being optimised
for intensity interfaces, they were largely outperformed by statistical methods on the
T1-contrast enhanced modality. The parametric DoB produced outputs with similar
characteristics to the baseline methods. However, due to Vector Magnitude architecture
allowing to offset the bias introduced by anisotropic resolution data, the DoB method
produces a preferential surface map response. While the t-test produced superior
connectivity and magnitude in the interface response. The χ2-test offers potentially the
best characteristics for T1-contrast data, due to producing strong connected boundaries
with low noise outputs.

In Chapter 7, trends between the synthetic results and MRI results are discussed,
highlighting the generalisability and transferability of the results. The key trends and
characteristics were extracted from the objective and qualitative analyses and presented
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in summary tables which contribute a useful set of guidelines for the expected trends in
statistical and traditional surface detection. The summary tables strongly indicate the
generalisability of the synthetic results to correspond with the MRI real case, with many
of the characteristics found within the synthetic data results also being present in the
MRI results. These tables therefore provide insight to the types of statistical test which
are most effective for a particular type of interface, but also what the characteristics
of the result would likely be if used if applied in a new domain, such as the amount
of noise suppression, or the connectivity of the surfaces. These tables can therefore be
used as a guideline to understand how to apply the statistical tests in different domains
in the future.

8.2 Summary
Presented in this thesis were several novel statistics based techniques for surface detec-
tion which are well suited to resolving complex interfaces in 3-D data. These techniques
were evaluated both objectively and qualitatively against two existing baseline methods
(3-D Canny and Steerable filters) and is the first evaluation of statistical surface detec-
tion to have been undertaken. The objective evaluation utilised a 3 stage evaluation
to analyse different aspects of the various filtering approaches. Each evaluation stage
required the development of novel 3-D synthetic datasets which satisfied specific criteria
aimed at addressing the issue of correlation between results obtained from that of both
synthetic and real data. The factors which were analysed were the resolving power of
the filters, the effect of interface topology on the filter response, and impact of multiple
types of interface present within an image. Accompanying the objective evaluation
was the need for an efficient and accurate performance metric for 3-D data, the most
appropriate metric for surface detection is an F-measure score. However, for proper
implementation of the metric, one to one correspondence matching between the filter
response and reference image was required, this led to the development of an efficient
algorithm for accurate 3-D correspondence matching called the EPS (Efficient Pairing
Strategy) method. The statistical methods were also assessed qualitatively using ima-
ging data from paediatric patients with Pilocytic Astrocytoma tumours. This case study
observed the characteristics of the filter responses applied to individual T1-weighted,
T2-weighted and contrast enhanced T1-weighted magnetic resonance imaging modal-
ities, specifically examining the interfaces in the tumour and cyst regions of the brain
image. The results of the evaluation strongly indicate that statistical approaches offer a
number of benefits over the baseline methods, both in synthetic and real data. Notably,
statistical methods outperform traditional methods in high intensity variance regions in
synthetic data, and this translates to improved detection and less noisy results obtained
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with both T1-weighted and contrast enhanced T1-weighted MRI modalities. Finally
the statistical methods were also shown to be better suited to minimising distortion
introduced by anisotropic resolution, a factor which is common in real 3-D images. The
results suggest that statistical methods of surface detection should be adopted in place
of traditional methods, if the type of surface is known to be defined by features in
addition to or in place of intensity.

8.3 Future Work
While this work has presented a comprehensive evaluation of 3-D surface detection
and compared the responses, trends and findings to work in 2-D edge detection, no
full formal objective analysis on real data has been presented. This is largely due to
the complexity of generating suitable and valid 2-D and 3-D ground truth data which
is representative of the 3-D information required. Future, work should explore this
and aim to provide a framework for acquisition of reliable real ground truth data for
supporting objective comparisons of 2-D and 3-D operators.

At present, contouring tasks are supported in software with 2-D processes, and the
potential benefits of 3-D detection methods, such as greater noise suppression, greater
resolving power, and detection of surfaces between layers are yet to be realised. While
an indicative application case has been presented in this thesis, the detection of brain
tumour boundaries in MRI data, the understanding of the influence this 3-D surface
detection approach can have has not yet been fully explored. While positive feedback
was gained from the clinicians during discussions, a formal evaluation of how well this
can improve contouring, by offering reliable detection of surfaces in T1, T2 and T1
contrast enhanced MRI data needs to be evaluated further.

One of the findings of this work was the impact of anisotropic image resolution on the
quality of the results. The z-spacing is often inferior to the x and x resolution in real
data and while this asymmetrical imbalance has no impact on the performance of 2-D
operators, it can have a significant negative impact on the results for 3-D operators.
This obstacle may be the reasoning behind why the wide scale incorporation of true
3-D operations has yet to be adopted into image analysis and visualisation software
packages. Therefore, a future study which aims to quantify the effects of the bias, and
the degree to which the Vector Magnitude method is able to mitigate it would be a
useful contribution.

One of the most challenging aspects of fully utilising the potential of the statistical
surface detection method are the considerations that need undertaking when selecting
parameters for scale and the type of statistical test being applied. These parameters are
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powerful with respect to their impact on the result. This thesis provides guidelines for
optimising results, noting the most effective statistical tests on synthetically produced
data, and across paediatric MRI modalities. However, selection of parameters are
currently performed manually using human input and predicting the most effective
scale and the most effective test to use requires an understanding of trade-off associated
with scale selection and a detailed knowledge of the characteristics of each of the
statistical filters. Future work should be focused toward streamlining this process
into an automated or semi automated process whereby the parameters are optimised
regardless of input data, the primary field of study for this would be a machine learning
approach, with the end goal of a surface detection method suitable for all types of 3-D
data. Additionally other statistical comparison tests could be evaluated.

Finally the benefits of statistical surface detection should be explored in alternate
domains in order to determine how generalisable statistical surface detection would
be to the follow-on high level processes, such as region growing that require surface
information in 3-D. Understanding the impact that improved surfaces could have on
the accuracy and reliability of the follow on processes would be a valuable contribution
and would inform how to best utilise the method.
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Appendix A

T1 - Weighted Dataset

The following Appendices show the 5 paediatric MRI datasets, grouped by modality,
T1-weighted, T2-weighted and contrast enhanced T1-weighted images.

283



284 APPENDIX A. T1 - WEIGHTED DATASET

Figure A.1: Set 1, T1-weighted
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Figure A.2: Set 2, T1-weighted



286 APPENDIX A. T1 - WEIGHTED DATASET

Figure A.3: Set 3, T1-weighted
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Figure A.4: Set 4, T1-weighted



288 APPENDIX A. T1 - WEIGHTED DATASET

Figure A.5: Set 5, T1-weighted
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290 APPENDIX B. T2 - WEIGHTED DATASET

Appendix B

T2 - Weighted Dataset

Figure B.1: Set 1, T2-weighted
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Figure B.2: Set 2, T2-weighted



292 APPENDIX B. T2 - WEIGHTED DATASET

Figure B.3: Set 3, T2-weighted
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Figure B.4: Set 4, T2-weighted



294 APPENDIX B. T2 - WEIGHTED DATASET

Figure B.5: Set 5, T2-weighted
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296 APPENDIX C. CONTRAST ENHANCED T1 - WEIGHTED DATASET

Appendix C

Contrast Enhanced T1 -
Weighted Dataset

Figure C.1: Set 1, Contrast Enhanced T1-weighted
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Figure C.2: Set 2, Contrast Enhanced T1-weighted



298 APPENDIX C. CONTRAST ENHANCED T1 - WEIGHTED DATASET

Figure C.3: Set 3, Contrast Enhanced T1-weighted
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Figure C.4: Set 4, Contrast Enhanced T1-weighted



300 APPENDIX C. CONTRAST ENHANCED T1 - WEIGHTED DATASET

Figure C.5: Set 5, Contrast Enhanced T1-weighted
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