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Abstract

Hand-based interaction, such as using a handheld controller or making hand gestures, has been

widely adopted as the primary method for interacting with both virtual reality (VR) and augmented

reality (AR) head-mounted displays (HMDs). In contrast, hands-free interaction avoids the need for

users’ hands and although it can afford additional benefits, there has been limited research in exploring

and evaluating hands-free techniques for these HMDs. As VR HMDs become ubiquitous, people will

need to do text editing, which requires selecting text segments. Similar to hands-free interaction, text

selection is underexplored. This research focuses on both, text selection via hands-free interaction. Our

exploration involves a user study with 24 participants to investigate the performance, user experience,

and workload of three hands-free selection mechanisms (Dwell, Blink, Voice) to complement head-based

pointing. Results indicate that Blink outperforms Dwell and Voice in completion time and accuracy.

Users’ subjective feedback also shows that Blink is the preferred technique for text selection. This work

is the first to explore hands-free interaction for text selection in VR HMDs and our results provide a

solid platform for further research in this important area.

Keywords: Text Selection, Virtual Reality, User Study, Hands-free Interaction

Index Terms: Human-centered computing—Human computer interaction (HCI)—Interaction paradigms—

Virtual reality; Human-centered computing—Human computer interaction (HCI)—interaction techniques;

Human-centered computing—Interaction design—Empirical studies in interaction design
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1 INTRODUCTION

Today’s virtual reality (VR) and augmented reality (AR) head-mounted displays (HMDs) predominately

prioritize hand-based interaction via a handheld controller or hand/finger gestures. Despite its functional

advantages and wide adoption, relying on hands for interaction can be impractical and at times impossible

in many task scenarios, for instance, in manual assembly and manufacturing tasks [2, 4], emergency

responses [31], text entry activities [29, 30] and many others [33, 51]. In addition, users who have hand/arm

impairment are unlikely be able to use their hands to hold a controller or perform hand gestures accurately.

An efficient and usable hands-free interaction method would be the most convenient and practical solution

in scenarios where hands-based interaction is impractical. There have been some attempts to explore

hands-free interaction for HMDs for text entry [30], system control [50], and rapid activation of glanceable

objects [28]. However, there is very limited attention to text selection tasks for VR HMDs.

Text selection is an essential task when reading text content such as newspapers, magazines, and

academic papers to highlight important elements for later reference or to copy/cut and transfer the content

to another document, application, or platform. It can also be useful when coding in immersive environments

with an unlimited screen size. While there has been some work on text selection in HMDs, it is not based

on hands-free interaction. For instance, EYEditor [11] uses a ring mouse for cursor navigation and text

selection, where a button is used for placing the cursor before and after a text fragment to be selected while

the selection is made via a touchpad. Lee et al. [26] have employed a force-sensitive smartphone as their

input device, where users exert a force on a thumb-sized circular button to select the desired text fragment.

Similarly, Darbar et al. [6] have explored the use of a smartphone as the input mechanism for text selection

in AR HMDs. They found that continuous touch is more efficient than discrete touch, spatial movement,

and ray casting. These methods all employed an external handheld device for accomplishing text selection.

In this research, we are interested in evaluating and comparing hands-free interaction methods for text

selection in HMDs. As described earlier, hands-free interaction is helpful in many scenarios where hands

or handheld controllers are not available or impractical to use.

Interacting with virtual content in HMDs usually requires (1) a pointing mechanism for the identification

of the objects to be selected priors to interact with them [43], and (2) a selection mechanism (e.g.,

signal/command/action) to indicate the selection [32]. In this study, we focus on head-based pointing as our
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primary pointing method as it is a mature and cost-effective way to control a cursor and has been widely

adopted as a standard way for pointing at virtual objects in HMDs for hands-free interaction [24]. Studies

have demonstrated that head-based pointing is accurate, comfortable, and convenient [23, 24]. However,

head-based pointing lacks an intrinsic mechanism to confirm a highlighted/identified selection [9]. To enable

selection with head-based pointing, this work first explores potential selection mechanisms (including dwell,

eye blinks, voice (HumHum: first-letter-hum plus last-latter-hum, and Hummer: continuous humming),

neck forward/backward motions) that are available in the literature and can be used for text selection

in HMDs. It then, through pilot studies and a set of three usability criteria, narrows them down into

three suitable candidates (dwell, eye blinks, voice-hummer) for the final experiment. Our results with

24 participants suggest that eye blinking is the best hands-free selection candidate as it has the fastest

performance, best accuracy, highest experience, and lowest workload.

The main contribution of this work is a first formal evaluation of three hands-free text selection

mechanisms for VR HMDs in terms of their performance, user experience, and workload. Our work can

serve as the foundation for further research linking text selection and hands-free interaction.

2 EVALUATED SELECTION METHODS

In this section, we described the selected hands-free methods evaluated in this work. They were developed in

Unity (v2019.4.10f1). Please refer to [45] for the exploration of hand-based and controller-based interaction

techniques regarding text selection.

2.1 Selection Methods

We implemented and tested the following methods in pilot trials to determine their suitability for the main

experiment.

2.1.1 Dwell

The most commonly used hands-free selection method is the dwell technique [21]. It was originally

developed to avoid the effects of eye-tracking jitters for eye gaze interaction and has also been widely tested

in various 3D interaction tasks, e.g., text entry [30, 44, 47], rapid activation [28], and system control [50].

Therefore, we have included this technique as the baseline technique. With the Dwell technique (Dwell for
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short), the user starts the selection of the desired text fragment by dwelling (staying or hovering the pointer

on an area for 1s) at the beginning of the first letter and ends the selection by dwelling (1s) again at the

end of the text fragment. Determining the dwell time is important because if it is too long, it will make

interaction inefficient unnecessarily but if it is too short it can lead to high errors and a stressful interaction.

We first checked prior studies (from text entry in AR/VR, for example, [15, 29, 36, 44]). It ranges from

400ms to 1s. We run some pilot tests with several possibilities within this range and found that 1s is the

most optimal dwell time.

2.1.2 Eye Blinks

Eye blinking has been explored and used frequently in assistive technologies [5, 13] and has been lately

incorporated into HMDs for text entry [30] and rapid activation of glanceable information [28]. Lu et

al. [30] found that using eye blinks (of both eyes) outperforms Dwell in text entry tasks in VR regarding

performance and experience, while Lu et al. [28] suggested that blinking is preferred by users when

accessing information in the real world in AR.

Although eye blinks (Blinking for short) is a promising selection mechanism, it requires add-on or

built-in eye trackers for HMDs, which could be an issue with earlier generations of HMDs. However,

manufacturers are now integrating the eye-trackers with their HMDs (e.g., HTC VIVE Pro Eye, Pico Neo

2 Eye, FOVE, HoloLens 2, Magic Leap 1, and LooxidVR), and there is now increasing interest in using

eye data for interactive operations, for example, Blinking for confirming a selection [28, 30]. Eye-tracking

capabilities will likely be standard in future HMDs and, as such, Blinking is important to consider now.

In our implementation, the user blinks both eyes at the beginning of the first letter to start the selection

and then blinks again at the end of the last letter to complete the selection. Blinking of the two eyes (instead

of the left/right eye) is used based on findings in [30], whose text entry experiment shows that the accuracy

of using two eyes is near 100% (compared to 79% with the left eye and 69% with the right eye). Also, the

literature suggests that a natural blink could last from 100-400ms depending on the situation. In VR, the

blinking frequency is even higher [16]. Therefore, we set 400ms as a minimal threshold to filter out natural

and unintentional blinks. Our pilot tests suggest this threshold works well.
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2.1.3 Voice

Voice activation has been used as an input modality in various user interfaces. There are two types of

voice-based interactions: (1) voice command [46], and (2) nonverbal commands, like humming [19] which

rely on sound volume changes. Voice commands can be powerful but also come with many drawbacks, for

instance, (1) voice recognition takes time (i.e., longer than nonverbal command recognition), (2) people

with speech disorders or with certain cognitive impairments cannot use it properly [35]. On the other hand,

nonverbal commands that use sound volume can be easily detected and is much faster to process. Therefore,

in this study, we focus on exploring nonverbal commands. We have followed [19] to implement HumHum

(a short hum at the first and the last letter of the text fragment) and Hummer (continuous humming from the

first to the last letter of the text fragment) for text selection, with a volume threshold of 60db. We decided

to only include Hummer in our experiment as our pilot results, in line with [19], showed that Hummer

outperformed HumHum in performance and user experience.

2.1.4 Forward/Backward Neck Motions

Cursor movements can be controlled using lateral head motions or rotations. Forward and backward

movements (or the depth dimension) could in theory also be used for activation or selection [30]. Yu et

al. [50] proposed DepthMove for VR which utilizes head forward and backward movements to indicate

selection. They found that DepthMove is faster than dwelling (with a 1 dwell time) to select objects in

3D environments. This approach has also been explored in adaptive interfaces to adjust the level of detail

given to users [8] and to calibrate proximity-aware interactions [17]. In this study, we also implemented

this method, followed the implementation in [50] and [30], and tested its performance and usability in

pilot trials. Our pilot results show that these types of head motions are not suitable for text selection

in VR because these types of motions are not precise enough when dealing with text content and, more

importantly, participants dislike them as they found them tiring and uncomfortable to perform. Similar to

findings from [28], participants found the motions not so acceptable to perform in public. Therefore, we

did not include this in our experiment.
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Table 1: Rating for each usability criteria regarding the four selection mechanisms identified from the

literature (0-3 ticks indicate ratings from worst to the best). UC1: Simple, easy, and fast to use; UC2:

Minimal error rate and workload; UC3: Social acceptability.

Mechanisms UC1 UC2 UC3

Dwell DDD DDD DDD
Eye blinks DDD DDD DDD
Voice DD DDD D
Neck - - -

2.2 Usability Criteria

In this section, we describe the following three usability criteria (UC) to determine the usefulness and

suitability of each selection mechanism and, hence, to help narrow the scope of possible head-based text

selection mechanisms for VR HMDs.

• UC1: Simple, easy, and fast to use. Selection usually goes together or complements pointer

movement. With users controlling the pointer with their heads and paying attention to the highlighted

text, selection should simple and straightforward so that it is possible to perform the two tasks almost

at the same time. These two-step processes should be fast.

• UC2: Minimal error rate and workload. Head-based interaction should be accurate, comfortable

and convenient to perform [23, 24], it is ideal for the selection mechanism to minimize the workload

during text selection and have some degree of precision while allowing fast interaction.

• UC3: Social acceptability. While HMDs are designed for individual users, their interactions are

often quite noticeable. As prior research has shown [1, 34, 40], the social acceptability of interactions

between HMDs and mobile devices can be an important factor in determining their adoption and

usability.

The rating process of the usability criteria of the four selection mechanisms (i.e., Dwell, Eye Blink,

Voice, Neck; see Section Sect. 2.1) was guided by findings reported in the literature and a pilot study. We
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used a 4-point Likert scale (with 0 indicating the worst and 3 the best). A summary of the rating for each

selection mechanism can be found in Table 1. From the analysis of prior work together with the pilot study

results, neck motions do not meet any of the criteria and was not considered further in the experiment. Other

than the neck approach, Dwell, Eye blink, and Voice all meet at least two UC and hence are considered

further and integrated into the experiment stage. This table will be revisited based on the results of our user

study (see Table 3 in the Discussion section below).

3 TESTBED ENVIRONMENT

Figure 1 shows the test environment, which was also developed in Unity (v2019.4.10f1). An ‘instruction

panel’ is located on the left side, where participants can see the text that needs to be selected. The

‘interaction panel’ is located at the center, where participants need to use each technique to select text

fragments. In addition, two buttons are provided: ‘Delete’ for deleting the wrong selection, and ‘Next’ for

moving to the next trial.

The following parameters are set based on the recommendations from previous studies and then further

tested and agreed upon by 5 users from a pilot study. We controlled the length of the materials to be

between 9-12 lines, with each line having around 40 characters with spaces [41], in both panels. The plane

is set at 2.6m which our pilot participants have found to be suitable. 2.6m is also the recommended reading

distance by [7]. For the text style, we used Sans-serif Arial with a light color [7]. Angular size was set as

1.8◦, which was within the recommended range suggested by [7].

Visual support and feedback is provided in four ways: (1) The end of the ray is akin to a cursor, (2)

changing the color of the selected text to yellow, (3) changing the color of the cursor when a selection was

started/stopped, and (4) a visual indicator is provided for showing dwell progress. We did not display the

ray because users from our pilot studies suggest the cursor alone is more effective than a combination of

the ray and the cursor in helping them understand where they are pointing. In addition, they believe a head

ray makes them feel overwhelmed because there are many visual changes on the display.
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Figure 1: (a) A screenshot of the interface of the experiment environment which was used for all conditions.

An ‘instruction panel’ is located on the left side, slightly tilted towards the user. The ‘interaction panel’ is

located in the center, slightly tilted towards the user. Its design is based on recommendations from prior

related work. (b) A picture of a participant doing the experiment with the HTC VIVE Pro Eye headset.

4 EXPERIMENT

4.1 Participants and Apparatus

24 participants (12 males, 12 females; aged 19-26) with a mean age of 21.75 (SD=1.66) from a local

university campus volunteered to participate in this experiment. They all had a normal or corrected-to-

normal vision and did not have any difficulties moving their head or had any health issues that could affect

their participation in the project. 21 of them have experienced VR HMDs, but only 9 were regular VR users

(weekly) and 4 of them had interacted with the device used in this experiment, but they were not regular

users of the HTC VIVE Pro Eye.

The experimental application was run on a computer with an i7 processor, 16GB RAM, and an NVIDIA

GTX 2080 Ti graphics card. An HTC VIVE Pro Eye VR headset was used in the experiment, which

has a resolution of 2880 × 1600 pixels, 90 Hz refresh rate, and 110° (diagonal) FOV. The built-in Tobii

eye-tracker was used to detect eye blinks with a data transmission at 120Hz. The experiment was conducted

in a quiet office room (30db). Participants were accompanied by one researcher and sat on a comfortable
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Figure 2: Screenshots of an example of short (a), medium (b), and long (c) text fragments used in our

experiment.

office chair during the experiment.

4.2 Design and Tasks

The experiment followed a one-way within-subjects design with Interaction Techniques (Dwell, Blink,

Sound; see Sect. 2.1 for their implementation details) as the independent variable.

For each condition, participants needed to complete 3 training trials (1 short, 1 medium, and 1 long text

fragment; see Figure 2 for examples of each) and 27 trials (9 short, 9 medium, and 9 long texts) which were

randomly sampled from a corpus of standardized English reading assessment [37]. Each selection target

would only appear once in a specific condition. The order of the interaction techniques was counterbalanced

across participants to avoid learning effects. Excluding the training texts, we collected 1944 trials (24

participants × 3 interaction techniques × 27 texts). Although the local area had nearly no local COVID-19

cases for 12 months before the experiment, we sanitized the device before and after each participant’s turn

and followed extra safety measures to ensure the safety of the participants and researchers (e.g., wearing a

mask and staying at a safe distance and has good ventilation).

4.3 Procedure

Participants were briefed on the goal of the research and the experimental procedure before the experiment

began. Then, they needed to sign the consent form to participate in the experiment and filled out a
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demographic questionnaire (e.g., age, gender, and experience with VR). Before each condition started, the

corresponding text selection method was explained to the participants, who then had a practice session

with three warm-up selection tasks before the experiment stage (with 27 text selection tasks). Error

correction was allowed by using the delete button in the VR scene (see Fig. 1). The order of the conditions

was balanced across participants. After each condition, participants needed to fill out a post-condition

questionnaire (NASA-TLX [18] and UEQ [25]). Once they completed the experiment, they needed to

complete a post-experiment questionnaire and a structured interview. The whole experiment lasted around

30-40 minutes for each participant.

4.4 Measurements

We collected the following measurements to assess participants’ performance and experience:

• Objective: (1) Task-completion time: The task completion time for each trial is defined as the time

from when the cursor first hovers over the first target letter to the time they complete the correct

selection. As such, the time spent on blinking, increasing the sound volume, and dwelling would be

included for analysis. (2) Total error rate: (the number of wrong sentences at the end + the number

of deletions)/total number of attempts, (3) not corrected error rate: the number of wrong sentences at

the end/total number of sentences.

Total error rate and not corrected error rate are measurement concepts derived from text entry

studies [38]. The two measurements allow us to calculate the mistakes made during the text selection

process in the data analysis (as participants are allowed to delete their selections if needed), instead of

just counting how many mistakes were observed in the final recorded data. These two measurements

provide a more complete picture of how many errors were made by the participants during the text

selection tasks (deletions plus the number of error selections at the end) similar to text entry activities.

Both completion time and error rates would help assess if and how well an approach meets UC1 and

the first part of UC2 (see Sect. 2.2).

• Subjective: NASA-TLX Questionnaire [18] to measure workload, User Experience Questionnaire

(UEQ) [25] to measure user experience, and collect participants’ comments on the advantages and
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disadvantages of each technique plus their ranking of these. We used NASA-TLX and UEQ as they

are commonly used to gather feedback from users in VR research [39, 44, 48]. The NASA-TLX,

UEQ, and participants’ comments would allow to determining how well each approach meets the

second part of UC2 and UC3 (see Sect. 2.2).

4.5 Results

Shapiro-Wilks tests and Q-Q plots were used to check if the data had a normal distribution.

Performance analysis. For normally distributed data, we employed two-way repeated-measures

ANOVAs with Interaction Techniques (Dwell, Blink, Voice) and Sentence Lengths (short, medium, long) as

the within-subjects variables. For data that were not normally distributed, we processed the data through

Aligned Rank Transform (ART) [42] before using repeated-measures ANOVAs with the transformed data.

Experience analysis. For normally distributed data, we employed one-way repeated-measures ANOVAs

with Interaction Techniques as the within-subjects variable. For data that were not normally distributed,

like the performance analysis, we first processed the data through ART and then use repeated measure

ANOVAs with the transformed data.

For both analyses, we used Bonferroni correction for pairwise comparisons and Greenhouse-Geisser

adjustment for degrees of freedom if there were violations of sphericity. All tests were with two-tailed

p-values.

4.5.1 Performance

Task completion time. In total, we collected 1944 trials (24 participants × 3 interaction techniques × 27

texts) besides the training trials. To analyze task completion time, we discarded trials in which participants

made a wrong selection (320 error trials or 16.4%), and removed outliers, which were those trials whose

selection time was above three standard deviations from the mean (mean + 3std.) in each condition (18

trials or 1.0%).

Table 2 shows the task completion time for each technique, where Blink is the fastest and Voice is

the slowest technique. There was a statistically significant difference between Techniques on completion

time (F2,184 = 51.427, p < .001). Post-hoc analysis with Bonferroni correction suggested that Blink

outperformed Dwell (p < .001) and Voice (p < .001), while Dwell outperformed Voice (p < .001).
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We also observed a significant difference between Sentence Lengths on completion time (F2,184 =

10.831, p < .001). Post-hoc analysis with Bonferroni correction suggested that participants completed

Small faster than Medium (p = .005) and Long (p < .0001).

Total Error Rate (TER). Among these three techniques, Dwell achieved the best results (M=7.00%,

SD=6.69%) and Voice had the worst results (M=11.40%, SD=9.39%). Table 2 shows more detailed results of

TER. There was a statistically significant difference between Techniques on TER (F2,184 = 8.413, p < .001).

Post-hoc analysis with Bonferroni correction suggested that Voice was significantly worse than Blink

(p = .0015) and Dwell (p = .0014). We did not observe any significant difference between Lengths

(F2,184 = 0.367, p = .693) nor the interaction of Techniques × Lengths (F4,184 = 0.554, p = .554).

Not Corrected Error Rate (NCER) In general, among these three techniques, Voice achieved the

lowest NCER (M=0.67 %, SD=1.98%) and Blink had the highest NCER (M=1.17 %, SD=2.68%); see

Table 2 for more details. There was a statistically significant difference between Techniques on NCER

(F2,184 = 6.935, p = .0012). Post-hoc analysis with Bonferroni correction suggested that Blink was worse

than Dwell (p = .0048) and Voice (p = .0041). We could not find any significant effect of Lengths

(F2,184 = 0.743, p = .477) on NCER and the interaction of Techniques × Lengths (F4,184 = 0.344, p = .848)

on NCER.

4.5.2 User Experience

UEQ. For average scores, Blink achieved the best results (M=1.51, SD=0.23), Voice was the second

(M=1.18, SD=0.39), and Dwell had the worst results (M=1.14, SD=0.36). However, ANOVA tests showed

no significant difference between Techniques (F2,46 = 2.228, p = 0.119). Regarding the UEQ subscales,

ANOVA tests yielded a significant difference between Techniques on Attractiveness (F2,46 = 4.093, p =

.023), Efficiency (F2,46 = 3.837, p = .029), and Novelty (F2,46 = 4.192, p = .021). Post-hoc pairwise

comparison suggested that Voice had a significantly higher score than Dwell in Novelty (p= .030). However,

post-hoc tests did not yield any difference between Techniques regarding Attractiveness and Efficiency.

We could not find any significant effect of Techniques on Perspicuity (F1.445,33.242 = .953, p = .369),

Dependability (F2,46 = 1.189, p = .314), and Stimulation (F2,46 = .520, p = .598).

Details of each UEQ subscale score can be found in Figure 3. Overall Blink was rated Above Average
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Table 2: Performance data for each Interaction Technique among three Sentence Lengths, mean (SD). The

ranking of each condition is indicated with Roman numerals (I: light green ; II: darker light green ; and

III: blue-green ).

Performance Metrics Sentence

Length

Blink Dwell Voice

Task completion

time

Small I: 2.32 (0.50) II: 2.51

(0.36)

III: 3.16

(0.94)

Medium I: 2.32 (0.57) II: 3.03

(0.54)

III: 3.52

(0.90)

Long I: 2.60(0.69) II: 3.10

(0.46)

III: 3.54

(1.12)

TER Small I: 7.4%

(9.3%)

II: 7.9%

(7.1%)

III: 11.6%

(9.6%)

Medium I: 6.9%

(6.4%)

II: 7.3%

(6.4%)

III: 12.1%

(9.8%)

Long II: 8.8%

(9.5%)

I: 5.8%

(6.4%)

III: 10.5%

(8.7%)

NCER Small III: 1.2%

(2.5%)

II: 1.1%

(1.7%)

I: 0.8%

(2.4%)

Medium III: 1.2%

(2.8%)

I: 0.9%

(1.9%)

II: 1.1%

(2.3%)

Long III: 1.1%

(2.7%)

II: 0.3%

(1.0%)

I: 0.1%

(0.7%)
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Figure 3: UEQ subscale ratings of the tested methods concerning comparison benchmarks.

to Good; Dwell was rated Below Average to Above Average, and Voice was rated from Bad to Excellent

(mainly Below Average to Above Average).

Workload. For overall task workload, Blink was rated the best (M=21.46, SD=16.10), Dwell the second

(M=30.47, SD=19.05), and Voice the worst (M=35.45, SD=20.72). ANOVA tests yielded a significant

difference between Techniques (F2,46 = 6.173, p = .004). Post-hoc pairwise comparisons indicated that

users experienced less overall workload with Blink than with Voice (p = .013).

Regarding each NASA-TLX workload subscale, ANOVA tests yielded significant effects between

Techniques on Physical (F2,46 = 4.535, p = .016), Performance (F2,46 = 5.675, p = .006), Mental (F2,46 =

3.978, p = .026) and Frustration (F2,46 = 3.847, p = .029). Post-hoc pairwise comparisons suggested

that participants believed Blink led to less workload than Voice regarding (1) Physical (p = .040), (2)

Performance (p = .016), and (3) Mental (p = .034). Post-hoc analysis yielded no significant difference

between Techniques regarding Frustration. Details of NASA-TLX workload subscales can be found in Fig.

4.

Ranking. Users’ rankings show a preference for Blink (17 ranked it first while 6 ranked it second)

among the three techniques. It was followed by Dwell (7 ranked it first while 11 ranked it second). Voice

was generally rated the worst (8 ranked it second and 16 ranked it third).
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Figure 4: The mean responses for the 6 components of the NASA TLX questionnaire. Error bars indicate a

95% confidence interval.

4.5.3 Qualitative Feedback

In general, most participants stated positive comments about Blink: ”fast” (N=8), ”simple” (N=3), ”con-

venient” (N=7), and ”accurate” (N=6). There was one negative comment: ”frequent blinking caused eye

discomfort” (N=1). Similarly, participants comment positively about Dwell: ”convenient” (N=5). Some

commented that it was ”hard/difficult to stay still” during selection (N=4). In addition, some participants

(N=5) described Voice as ”creative”, but more said it as ”embarrassing” and as such they were not so willing

to use it in ”public places” (N=7) due to the need to constantly make noises. In general, participants said

that both Blink and Dwell were socially acceptable (that is, they would use them in front of others). On the

other hand, they would use Voice in private places without anyone around them.

5 DISCUSSION

In general, a dwell-based approach is a typical, default choice for hands-free interaction because it is

relatively easy to use and does not require additional hardware. However, dwell has inherent issues, for
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example, if dwell time is long, it makes interaction inefficient and if it is short, it can lead to errors [22,30]—

in short, users have less control over the process. With the rapid advances of HMDs, new sensing capabilities

have been added to these, particularly eye-tracking, which should be more and more standard. In this work,

we focused on comparing the dwell-based selection mechanism by using eye blinks and voice. Both of

them are relatively easy to do, give more control to users, and, more importantly, can be captured by a wide

range of HMDs without additional hardware requirements or external sensing (handheld) devices, unlike

some recent work [6, 26, 27], which can add extra costs to users and complexity to the interaction process.

Overall, our results suggest that Blink has the best performance (speed and accuracy) in text selection

tasks and outperforms Dwell and Voice, which aligns with [29, 30] for hands-free text entry tasks in both

AR and VR, where Blink outperforms Dwell. Voice has the worst performance in task completion time and

total error rate. Based on our observations, we believe the reasons could be due to (1) users’ unstable voice

volume control: Keeping the voice volume at/above 60db during the selection process can be difficult for

participants, which has led to an increase in errors, (2) users need to inhale: users are only able to exhale

when making a sound using the Hummer technique; if users are not well trained for and familiar with this

technique, they have to stop in the middle of the selection process to inhale oxygen. Regarding the effect

of sentence length on performance, we found that the length of a sentence has a significant effect on the

completion time, as longer sentences require more time to complete their selection.

In line with [30], we could not find any significant difference between Blink and Dwell regarding user

experience. In general, Blink has the lowest workload ratings and outperforms Voice (overall workload,

physical, performance, and mental). We could not find a significant difference between Blink and Dwell,

suggesting that intentional eye blinks might be as acceptable as Dwell regarding workload. In summary,

Blink should be given priority for the lowest workload.

In Sect. 2.2 we described three usability criteria (UC) that we have identified from the literature. Based

on the above results, we revisited Table 1. Of the three mechanisms, Blink is the only one that has kept the

same ratings unchanged. Dwell received a slightly lower rating for UC1 and UC2. Voice has been found to

be not so acceptable in social settings, to be difficult to use, and lead to higher errors and workload.
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Table 3: Rating for each usability criteria regarding the three selection mechanisms tested in our experiment

(0-3 ticks indicate ratings from worst to the best). UC1: Simple, easy, and fast to use; UC2: Minimal error

rate and workload; UC3: Social acceptability.

Mechanisms UC1 UC2 UC3

Dwell DD DD DDD
Eye blinks DDD DDD DDD
Voice D D -

5.1 Key Takeaways and Lessons

• Blink is a viable solution for hands-free text selection in VR/AR HMDs; it could possibly be useful

for text editing in general as it has also been found to work well for text entry [29, 30]. It could be set

as default if an eye tracker is available because it has the best performance, good user experience,

and low workload/error rate, and is acceptable in public settings.

• Dwell is an acceptable hands-free method and should be used when an eye-tracker is unavailable or

when the HMD does not have eye-tracking capabilities (which is still a common scenario for low-cost

but popular VR HMDs such as Meta Quest 2).

• Voice input such as nonverbal volume-based input should be avoided due to the poor performance

and its perceived socially unacceptability as mentioned by participants.

5.2 Limitations and Future Work

There are some limitations of this study. Due to a lack of standard performance metrics for this type of

study, we measured the speed through optimal task completion time from pointing selection tasks [20, 49]

and measured error rates using the concepts of total error rate and not corrected error rate derived from text

entry studies [38, 43]. Given the limited work on performance metrics for text selection, future work is

needed to establish standard metrics for text selection experiments.

In addition, some design considerations are derived from prior related work (e.g., dwell duration, white

text highlighted in yellow, display of the ray, interaction distance) and determined through with pilot study
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users. Future exploration of these factors would be useful for the development of new techniques that can

improve user performance further and increase their acceptability of the techniques. We only included

university students as our participants in this study and future work can use a more inclusive and diverse

population (e.g., impaired and elderly users who might have difficulty using their hands). Future work can

also involve longitudinal explorations of text selection approaches that consist of more sessions (e.g., 1 or 2

sessions for 4-5 days like some studies that explored text entry in VR/AR [12, 29, 44, 48]). Also, as eye

trackers become a standard feature in many HMDs (e.g., Pico Neo, HoloLens 2, Magic Leap), it would be

useful to explore eye gaze in the future and compare it against head-based pointing.

The movement toward an office that is more virtual and immersive [14] is gaining rapid momentum with

the development of the Metaverse, where users need to use common office applications that depend heavily

on text editing (e.g., in spreadsheets [10] and presentations [3]). However, text editing in VR/AR, of which

text selection is an important aspect, is far behind in the level of efficiency and usability to which people

are used in less immersive, traditional platforms, like desktop and laptop computers. In the future, we plan

to extend our work on text selection, still focusing on hands-free approaches as this work shows they are

usable and efficient, and integrate the results into the ecosystem of text editing, especially in combination

with text entry techniques that are also hands-free (e.g., [29, 30, 44]).

6 CONCLUSION

In this work, we have implemented three selection mechanisms (Voice, Blink, Dwell) derived from our

review of the literature on hands-free interaction for virtual reality (VR) head-mounted displays (HMDs)

for text selection tasks. Our results with 24 participants showed that an approach based on eye blinks is

the best hands-free selection candidate as it has the fastest performance, best accuracy, highest experience,

lowest workload, and positive social acceptability. It is followed by a dwell-like approach, which has better

accuracy than using voice. According to our results, eye blinks can be an excellent hands-free selection

mechanism and should be used for text selection in VR if an eye tracker is available.
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