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Abstract 

Damage detection of bridge structures plays a crucial role in in-time maintenance of such structures, which 

subsequently prevents further propagation of the damage, and likely collapse of the structure. Currently, the 

application of machine learning algorithms are growing in smart damage detection of structures. This work 

focuses on application of a new machine learning algorithm to identify the location and severity of damage in 

truss bridges. Frequency Response Functions (FRFs) are used as damage features, and are compressed using 

Principal Component Analysis (PCA). Couple Sparse Coding (CSC) is adopted as a classification method to 

learn the relationship between the bridge damage features and its damage states. Two truss bridges are used to 

test the proposed method and determine its accuracy in damage detection of truss bridges. It is found that the 

proposed method provides a reliable detection of damage location and severity in truss bridges. 

Keywords: Smart Damage Detection; Frequency Response Function (FRF); Principal Component Analysis 

(PCA); Couple Sparse Coding (CSC); Truss Bridges 
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1. Introduction 

To avoid partial replacement, catastrophic structural failures, and even collapse of civil 

infrastructures, and make informed decisions on maintenance strategy, structural health 

monitoring (SHM) and damage assessment are of great importance (Avci et al., 2018). The 

concept of damage is often defined as the comparison between two states of the structure: 

undamaged and damaged states. Damage identification, localization, and severity estimations 

are among the main aspects of SHM (Bokaeian et al., 2021; Fallahian et al., 2022). In most 

practical cases, damages exhibit their presence as variations in vibrational characteristics of 

the structure such as natural frequencies, damping ratios, and dissipated energy (Doebling et 

al., 1998). This means that any remarkable difference in the vibration characteristics of a 

system can be attributed to a certain type of damage. Then, it is feasible to correlate each 

change in the vibration signature to a specific type of damage and the location of damage 

(Zhao et al., 2019). 

Damage feature selection is one of the main important steps of any SHM system, which is 

generally identifying the most relevant damage indicator. Recently, a new wavelet transform-

based method was developed to identify natural frequencies and damping ratios of civil 

structures using ambient vibrations (A.Perez-Ramirez et al., 2016). However, indirect 

measurement of modal characteristics causes errors, and also the completeness of modal data 

is not achieved in practice (Lee and Shin, 2002). Among all types of vibration responses, 

Frequency Response Functions (FRFs) are one of the easiest to measure in real-time, as only 

a small number of sensors is required (Fang et al., 2005). Moreover, various frequency-

domain procedures like simple peak-picking of the natural frequencies from FRFs have been 

utilized for damage identification procedures (Padil et al., 2020). Unlike the modal-domain 

data, which are extracted from a limited range around natural frequencies, the FRF data can 

provide much damage information over a desired frequency range (Lee and Shin, 2002). 

Nevertheless, if improper frequency range is selected, the measurement errors of the FRF 

data may seriously affect damage detection results (Ni et al., 2006; J.A. Pereira et al., 1995). 

To prevent measurement errors, a new approach composed of uncertain FRFs and the 

bootstrap method was developed (Furukawa et al., 2006). In a different study, two FRFs of 

different frequency ranges were iteratively used to reduce analysis time of damaged 

structures for damage detection purposes (Hwang and Kim, 2004). The frequency-domain 

response of structures contains a large amount of information on damage existence, location 
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and severity. Although frequency-domain damage identification methods have advantages 

over time-domain approaches, yet, there exist many challenges and shortages in frequency-

domain techniques, which need to be resolved. 

In general, there are two main approaches to SHM: (1) model-based, and (2) data-based. The 

model-based approach is updating a Finite Element model of the structure, based on the 

measured data, which identifies any deviation from undamaged state of the structure. The 

data-based approach uses the data from both undamaged and damaged states of the structure 

to establish a relationship between damage features and damaged states of the structure 

through machine learning methods. The Multi-Layer Perceptron (MLP) is one of the most 

commonly methods, that has been used in machine learning-based SHM approaches 

(Alexandrino et al., 2020; Tan et al., 2020; Zenzen et al., 2020). The MLP networks are able 

to approximate any continuous multivariate function to any degree of accuracy (Rumelhart et 

al., 1986; Li and Fang., 2012). Further, a back-propagation based neural network method was 

used to estimate damage intensities of joints in truss bridges (Mehrjoo et al., 2008). However, 

the method could not detect relatively small damages due to modeling deviations and 

measurement uncertainties, such as noise. Xu et al. (2004) used a new neural network 

strategy to directly identify damage features from the forced time-domain vibration responses 

of the structure (Xu et al., 2004). 

Due to the large size of data as well as presence of measurement noise, FRFs cannot be used 

in Artificial Neural Networks (ANNs). So, reduction techniques such as Principal Component 

Analysis (PCA) were used to reduce the dimension of the data (Dackermann et al., 2013). 

PCA-compressed FRF data from undamaged and the damaged structures were inputted to 

ANNs to identify damage location and severity (Li et al., 2012). Recently, an ANN-based 

approach was developed to extract damage indices from the ambient vibration response of a 

structure (Avci et al., 2020). Furthermore, a new method based on deep neural network has 

proposed to identify and localize damages of building structures equipped with smart control 

devices (Yu et al., 2019). 

Sparse Representation (SR) methods have also received much attention in SHM community. 

The main advantages of SR methods are interpretation of data points in a more elegant way, 

quick retrieval of the data, and more flexibility in data representation. Hence, SR methods 

have been extensively used in many pattern recognition tasks, including face recognition and 

object classification (Wright et al., 2009). A couple sparse coding (CSC) was developed 
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based on simple sparse coding algorithm (Zolfaghari et al., 2014). In comparison with simple 

sparse coding algorithm, the CSC algorithm gives a smaller estimation error. Based on 

combining deep neural network and sparse coding, a damage identification method was 

developed and experimentally verified (Fallahian et al., 2018b). The results demonstrated the 

robustness of the proposed method in damage detection of structures. Further, the authors 

investigated the application of the CSC algorithm in damage identification of frame structures 

(Fallahian et al., 2018a). 

In aged truss bridges, ever-changing stiffness of truss members is a common and serious 

issue. Hence, in this study, the application of the CSC algorithm in damage detection of truss 

bridges is addressed. PCA-compressed FRF data are used to produce damage features as the 

inputs for the CSC algorithm. To investigate the efficiency and practicability of the proposed 

method in damage detection of truss bridges, several types of damage scenarios, including 

single and multiple damages, are considered in two real-life truss bridges. For multiple 

damage scenarios, the maximum number of damaged members are considered 4 in this study, 

while in previous studies, structures have not been damaged at more than two members 

(Bandara et al., 2014). Additionally, the measured FRF data is considered to contain high 

levels of noise pollution, up to 20%, compared to previous researches, as taken a maximum 

noise level of 10% (Bandara et al., 2014; Dackermann et al., 2013; Mehrjoo et al., 2008). 

2. Proposed Damage Detection Algorithm 

Figure 1 shows the damage detection algorithm proposed in this study. The data set includes 

FRF data and damage data (stage 1). FRF data are usually the most compact form of data 

obtained from vibration testing, and have appeared as one of the very promising damage 

features for damage detection in recent years. The FRF can be measured from an actual truss 

bridge or can be extracted from reliable and accurate numerical models of a truss bridge. The 

damage data contain location of each truss member (member number) and its damage 

severity (reduction in axial stiffness of each member). Then, the FRF data are compressed 

(stage 2). Large size of the FRF data is very problematic in damage detection of truss bridges 

with high degrees of freedom (i.e. large number of members), as it requires very large space, 

high data generation, and training time. Thus, PCA is applied to the FRF data sets to 

determine the principal components of the data. Data compression also increases the 

performance of the CSC algorithm by removal of multi-collinearity. Afterwards, some part of 

the compressed data set is used in the CSC algorithm to create a damage model of the bridge, 
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named as training data set (stage 3). It basically creates a relationship between the FRF data 

and the damage data. Once the damage model of the bridge is generated (stage 4), the 

remaining part of the FRF data, named as testing FRF data (stage 5), is used to predict the 

damage severity and location (stage 6). The actual damage data is used to determine the 

accuracy of the damage model. In following section, the formulation of FRFs, data 

compression, and CSC algorithm are mathematically presented in detail. 

2.1 Frequency Response Functions 

The equation of motion for a truss bridge with n degrees of freedom (DOFs) is given by: 

       t tt t  Mx Cx Kx F   (1) 

where M, C, and K are nn global mass, damping, and stiffness matrices, respectively. If we 

consider a harmonic excitation, the external force, f, and displacement, x, vectors are given 

by: 

   e
iωtωt f F   (2a) 

and, 

   e
iωtωt x X  (2b) 

Substituting equations (2a) and (2b) into equation (1) gives: 

     2 e eiωt iωtω iω ω ω   M C K X F  (3) 

and subsequently, the FRF matrix, H(ω) is given by: 

   
1

2ω ω iω


   H M C K    (4) 

The number of the FRFs to be used for damage detection purposes depends on the number of 

excitations, and vibration response measurements for a truss bridge. 

2.2 Data Compression 

Principal Component Analysis (PCA) is used in this study to reduce the size of the FRF data 

(Jolliffe, 1986; Bishop, 1995 ). It transforms the original FRF data set of correlated variables 

in an N-dimensional space into a new set of uncorrelated variables called Principal 

Components (PCs), in a P-dimensional space (P < N) through an orthogonal projection (Zang 

and Imregun., 2001). Using all available FRF data of the damaged bridge, FRF matrix, 

( )M N H , is formed where M is the number of FRFs, and N is the number of frequency 

points. The mean of the jth column of the FRF data is expressed as: 
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H H
M

 


   (5) 

and, the corresponding standard deviation, jS , is defined as: 

 2 2

1

1
( ( ) )

M

jj ij

i

S H H
M

 


   (6) 

where ( )ijH   is an element of the FRF matrix, and is replaced by: 

( )
( )

jij
ij

j

H H
H

S M





   (7) 

and, the correlation matrix is given by: 

T

N M M NN N   D H H   (8) 

where ( )H  is the variation matrix, and its ijth element is ( )ijH  . Thus, the ith PC, i , is 

given by: 

i i iD    (9) 

The projection of the variation matrix, ( )H , on the N principal components is given by: 

( )A H    (10) 

where  1 ... N    . Afterwards, the variation matrix is reconstructed for the first P PCs, 

and the remaining PCs, N-P, are eliminated: 

( )
P N

T

R M P
H A    (11) 

Finally, the elements of the compressed FRF data, ( )ijH  , is reconstructed using the 

elements of the reconstructed variation matrix, ( )R H , in equation (7). 

2.3 Formulation of CSC Algorithm 

Recently, Sparse Representation (SR) of data has received much attention in pattern 

recognition and machine learning community as a robust tool for representing noisy signals 

(Wright et al., 2009). Sparsity means that a signal can be sufficiently described using a few 

active features without loss of information. Within the context of the current study, the jth 

compressed FRF data, jH , of length P, is represented as a sparse linear combination: 

 
T

1 2 ... ....

j H

i K   





H D 


 (12) 
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where α has K elements and is the sparse code of the jth FRF data, jH ; HD is a 

transformation matrix of size P K , and is the dictionary of the the jth FRF data. In a similar 

approach, the jth damage data is represented by: 

Yj Y D   (13) 

in which, YD is a transformation matrix of size Q K , and is the dictionary of the jth 

damage data. Generally, CSC uses jH  and jY  as inputs, establish a relationship between the 

damage feature and the damage information for the truss bridge through an optimization 

problem: 

2 2

X 1 2 Y12 2
min :K j jR

 


   H D Y D    (14) 

where κ1 and κ2 are called the regularization parameters; 
1
 and 

2
 are the first and second 

norm operators, respectively. The test FRF data, '

j
H , is then used in the trained model 

(equation (14)), to estimate the damage, Yj
 : 

2 2
'

X 1 2 Y1Y 22
min : Y

M P
j

j
j jR

 


      H D D  (15) 

The feature-sign search algorithm is used to solve the optimization problems in equations 

(14) and (15), (Lee et al., 2007). 

3. Application of the Proposed Method 

To demonstrate the efficiency and performance of the proposed method in damage detection 

of truss bridges, two truss bridges are studied. For each truss bridge, the FRF data of the 

damaged structures are created through reliable Finite Element (FE) models. In this study, FE 

model of each bridge is constructed using MATLAB. To model each truss bridge in 

MATLAB, global stiffness, mass, and damping matrices need to be created (see equation 

(1)). The local axial stiffness matrix of each member are first formed, then transformed to 

assemble the global stiffness matrix of the truss bridge. The mass of each member is 

distributed over its nodes as lumped masses, and then the global mass matrix is constructed. 

The global damping matrix is determined using Rayleigh damping concept, which is a 

combination of global stiffness and mass matrices. Finally, to create FRFs for each bridge, 

single harmonic excitation is applied at the vertical DOFs of a number of nodes, and vibration 

response of horizontal and vertical DOFs of some nodes are determined using Newmark-Beta 
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integration scheme. The nodes are selected based on practical health monitoring in truss 

bridges. It is assumed that the vibration exciter can excite the bridge in the frequency range of 

0-300 Hz, and the vibration response data are completely generated. This frequency range 

was obtained based on a sensitivity analysis, and could be different for different structures. 

The vibration-to-excitation ratio of the bridge over the frequency range gives the FRF data. 

Figure 2 shows an exemplar FRF over frequency range of 0 to 300 Hz. In some studies, the 

frequency range of the FRFs is selected based on the resonance and anti-resonance regions 

(Nozarian and Esfandiari, 2009; Ni et al., 2006; Lee and Shin, 2002; Shadan et al., 2015). 

This causes a significant data loss which could result in inaccuracies and poor resolution of 

the damage detection technique. Thus, in this study, the entire frequency range of the FRF 

data (0-300 Hz) is used. A random white Gaussian noise with zero mean and unit standard 

deviation is added to the FRFs with 5%, 10%, 15%, and 20% levels. This is done to measure 

the ability of the proposed detection method in differentiating between the actual damage and 

the noise. The modulus of elasticity, Poisson’s ratio, and density of each steel member of 

truss bridges are taken 200 GPa, 0.3, and 7850 kg/m
3
, respectively. 

The damage is induced in each model through reduction of axial stiffness of the truss 

members. Thus, the damage data contains member number and their corresponding stiffness 

reduction. Then, the training FRF data and corresponding damage data are inputted into the 

CSC algorithm to create a damage model of each truss bridge. Finally, the testing FRF data 

are used in the CSC-based damage model to predict the damage (stiffness reduction) of each 

member of the truss bridges, and the actual testing damage data is used to evaluate the 

performance of the predicted damage. As stated in the proposed detection algorithm, the PCA 

method is used to reduce the size of the FRFs and increase computational efficiency. 

Figure 3 shows a 25-member truss bridge. It is composed of 6 bays, 12 nodes, and 21 DOFs. 

Single harmonic excitation is applied at three vertical DOFs of nodes 2, 3 and 10. Horizontal 

DOFs of nodes 9 and 6 and vertical DOF of node 3 are selected to determine vibration 

response of the bridge. Since three vibration response DOFs and three excitation DOFs have 

been selected, the FRF data includes 9 sets of FRFs. Figure 4 shows the second truss bridge 

with 9 bays, 40 member, 18 nodes, and 33 DOFs. Excitation are applied at vertical DOFs of 

nodes no. 2, 5 and 7 and vibration response of the bridge is determined at horizontal DOFs of 

nodes 4, 17 and 10. Table 1 summarizes various single and multiple damages scenarios 

considered for both bridges. 
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Figures 5 and 6 compare the predicted and actual damages for different damage scenarios of 

the both bridges in presence of 20% noise. As seen in both figures, the proposed method 

reliably predicts the damage severity, and also the location of the damage (member no.) is 

accurately determined. Figure 7 illustrates the damage detection results of the 40-member 

bridge for various noise levels. As seen, the performance of the proposed method is reliable 

even in the presence of high levels of noise (20%). 

To better quantify the effects of various noise levels, the mean correct classification rate was 

used to determine the accuracy of the proposed method for 100 multiple damage scenarios. 

Table 2 and 3 summarize the accuracy of the proposed method to identify damage location 

and severity of both bridges for various noise levels. 1. As seen in Tables 2 and 3, with the 

increase of the noise level, the accuracy appears to reduce (up to around 5% reduction for 

20% noise level with respect to the noise free data, 0%). However, even in the case of the 

20% noise level, the accuracy of the proposed method is over 90% in both damage location 

and severity for both bridges. Thus, the increase of the noise level does not significantly 

affect the method’s accuracy. 

For the 25-member bridge, a full set of FRFs contains 10800 data points over a frequency 

range of 0-300 Hz (frequency increment of 0.25 Hz). This corresponds to 6750 input nodes 

for the CSC algorithm. Such a large number of input nodes may diminish training 

convergence as well as computational efficiency. Hence, PCA reduces this dimension (6750) 

to 20, 50, 100 and 200 PCs. 

1. Conclusion 

This work addresses the application of Couple Sparse Coding (CSC) algorithm as a powerful 

pattern recognition model in smart damage detection of truss bridges in the presence of high 

levels of measurement noise. For this purpose, the FRF data are created for reliable FE 

models and the Principal Component Analysis (PCA) is carried out to compress FRF data. 

The CSC algorithm is used to estimate damage severity and location of two exemplary truss 

bridges. 

It is found that the CSC algorithm accurately predicts damage location and severity of truss 

bridges even in the presence of high levels of noise. Further, it is seen that the accuracy of the 

proposed method in damage localization does not depend on the number of PCs. Generally, 

the method successfully improves the accuracy of structural damage localization in the 

presence of high levels of measurement noise and incomplete FRF data in truss bridges. 
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Additionally, the method has a great potential to be implemented in vibration-based damage 

detection of real-life truss bridges. With the use of the CSC algorithm, some critical obstacles 

of traditional damage identification techniques, such as over-fitting in large-DOF structures 

and high-level noise can be overcome, and damage detection accuracy and reliability can be 

significantly improved. 

Notation 

A Projection matrix of the principal components 

C Global damping matrix 

D Correlation matrix 

DH The transformation  matrix or dictionary for frequency response function matrix 

DY The transformation  matrix or dictionary for damage matrix 

F(ω) External force in frequency domain 

f(t) External force in time domain 

H Frequency response function matrix 

H  Variation matrix 

RH  The reconstructed frequency response function matrix 

'

j
H  The jth test frequency response function 

Hkj The kjth element of the frequency response function 

jH  The mean of the jth column of the frequency response function matrix 

kjH  The kjth element of the variation matrix 

i The imaginary unit of a complex number 

K Global stiffness matrix 

M Global mass matrix 

M Number of frequency response functions 

N Number of frequency points 

n Number of degrees of freedom 

Sj The standard deviation corresponding to the jth column of the frequency response 

function matrix 

T Transpose of a matrix 

t Time 

X Displacement vector in frequency domain 

x(t) Displacement vector in time domain 

 tx  Velocity vector in time domain 

 tx  Acceleration vector in time domain 

Y Damage matrix 

Y  The jth test damage data 

α Sparse vector for the jth frequency response function 
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k  The kth Eigen value corresponding to the kth principal component 

k  The kth principal component 

  Matrix of all principal components 

ω Circular frequency 
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Table 1. Damage scenarios for 25- and 40-member bridges. 

Bridges Damage Scenarios Element No. Actual Damage (%) 

25-member Bridge 

Case1 5 50 

Case2 
6 11 

18 5 

Case3 

7 40 

12 50 

23 45 

Case4 

4 20 

10 25 

18 20 

23 20 

40-member Bridge 

Case1 14 35 

Case2 
14 50 

18 60 

Case3 

7 10 

35 15 

38 10 

Case4 

10 30 

18 35 

23 25 

28 30 

 

Table 2. Accuracy of the damage detection results for the 25-member bridge in the presence 

of various noise levels 

Noise Level 0% 5% 10% 15% 20% 

Damage Location Estimation (%) 99.23 98.15 96.86 96.02 95.53 

Damage Severity Estimation (%) 99.04 97.21 95.98 95.20 94.37 
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Table 3. Accuracy of the damage detection results for the 40-member bridge in the presence 

of various noise levels 

Noise Level 0% 5% 10% 15% 20% 

Damage Location Estimation (%) 98.12 96.50 95.95 95.64 94.75 

Damage Severity Estimation (%) 97.53 97.05 95.50 94.14 92.63 

 

Figure captions 

Figure 1. Proposed algorithm for damage detection of truss bridges 

Figure 2. An exemplar frequency response function. 

Figure 3. Truss bridge with 25 members: (a) geometry of the bridge (node numbers are in red 

and element numbers are in blue), and (b) DOFs of all nodes. 

Figure 4. Truss bridge with 40 members: (a) geometry of the bridge (node numbers are in red 

and element numbers are in blue), and (b) DOFs of all nodes. 

Figure 5. Damage detection results of the 25-member truss bridge for damage scenario: (a) 1, 

(b) 2, (c) 3, and (d) 4. 

Figure 6. Damage detection results of the 40-member truss bridge for damage scenario: (a) 1, 

(b) 2, (c) 3, and (d) 4. 

Figure 7. Damage detection results of the 40-member truss bridge for various levels of noise. 
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