
Review Article
Software Defect Prediction Using Artificial Neural Networks: A
Systematic Literature Review

Muhammad Adnan Khan,1 Nouh Sabri Elmitwally,2 Sagheer Abbas,3 Shabib Aftab,3,4

Munir Ahmad,3 Muhammad Fayaz ,5 and Faheem Khan6

1Pattern Recognition and Machine Learning Lab, Department of Software, Gachon University, Seongnam, 13120,
Republic of Korea
2Faculty of Computing, Engineering and the Built Environment at Birmingham City University, Birmingham, UK
3School of Computer Science, National College of Business Administration and Economics, Lahore 54000, Pakistan
4Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan
5Department of Computer Science, University of Central Asia, Naryn 722918, Kyrgyzstan
6Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea

Correspondence should be addressed to Muhammad Fayaz; muhammad.fayaz@ucentralasia.org

Received 18 October 2021; Revised 12 April 2022; Accepted 3 May 2022; Published 12 May 2022

Academic Editor: Shah Nazir

Copyright © 2022 Muhammad Adnan Khan et al. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

�e demand for automated online software systems is increasing day by day, which triggered the need for high-quality and
maintainable softwares at lower cost. Software defect prediction is one of the crucial tasks of the quality assurance process which
improves the quality at lower cost by reducing the overall testing and maintenance e�orts. Early detection of defects in the
software development life cycle (SDLC) leads to the early corrections and ultimately timely delivery of maintainable software,
which satis�es the customer and makes him con�dent towards the development team. In the last decade, many machine learning-
based approaches for software defect prediction have been proposed to achieve the higher accuracy. Arti�cial Neural Network
(ANN) is considered as one of the widely used machine learning techniques, which is included in most of the proposed defect
prediction frameworks and models. �is research provides a critical analysis of the latest literature, published from year 2015 to
2018 on the use of Arti�cial Neural Networks for software defect prediction. In this study, a systematic research process is followed
to extract the literature from three widely used digital libraries including IEEE, Elsevier, and Springer, and then after following a
thorough process, 8 most relevant research publications are selected for critical review. �is study will serve the researchers by
exploring the current trends in software defect prediction with the focus on ANNs and will also provide a baseline for future
innovations, comparisons, and reviews.

1. Introduction

Due to the exponent increase in the use of computer systems
since the last two decades, almost everything around us has
been changed and the world is getting digitalized even faster
than we thought. More software systems are being developed
nowadays to automate the processes and procedures which
are related to our daily life. Due to these automate proce-
dures, our lives are now more comfortable than before. A
software with compromised quality can produce wrong and

unexpected results [1]. Nowadays, due to growing com-
plexities in modern software systems, it is becoming di�cult
to produce high-quality software product at lower cost. �is
issue can be solved by using the techniques of software defect
prediction. Software defect prediction is one of the famous
and dynamic research areas in the software engineering
domain [2] and is also considered as a key activity in the
quality assurance process. �e defect prediction approaches
have accomplished the signi�cant acceptance in the software
industry in the last two decades. �is activity can improve

Hindawi
Scientific Programming
Volume 2022, Article ID 2117339, 10 pages
https://doi.org/10.1155/2022/2117339

mailto:muhammad.fayaz@ucentralasia.org
https://orcid.org/0000-0002-7554-290X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2117339


the software quality by indicating the software modules in
advance where faults are more likely to occur [3, 4]. Pre-
diction and prevention of software defects at the initial stages
of software development can reduce the overall development
time and cost by limiting the testing efforts [5, 6]. Artificial
Neural Network (ANN) is a widely accepted supervised
learning approach to deal with the prediction problems in
multiple domains of software engineering such as effort
estimation, cost estimation, and defect prediction [7]. *e
structure of ANN is divided into three layers: (1) input layer,
(2) output layer, and (3) hidden layer(s). A connection exists
from the nodes in the input layer with the nodes in the
hidden layer and then from the nodes of the hidden layer
with the nodes of the output layer.*e input data are entered
into the neural network through the input layer [8, 9]. *e
classifiers which belong to the supervised machine learning
group first need a data set (training data) with predefined
output class for training. *e data set includes various
features which are categorized as dependent and indepen-
dent features. *e dependent feature is one which is going to
be predicted, also known as the output class. Other features
except the output class are known as independent features.
During training, the supervised classifier extracts the hidden
patterns and relations among the dependent and indepen-
dent features and develops a classification model. After
training, a data with unknown output (test data) class is
given to the classifier which is then predicted by the clas-
sification model on behalf of extracted patterns and rules
from training data [10–14]. *e task of software defect
prediction is achieved by classifying a particular software
instance (method, class, module, file, and package) as de-
fective or nondefective. *e data set used for software defect
prediction includes the historical software defect data col-
lected from previous releases of same project (or in some
cases from other projects), which consists of a number of
features or attributes, called quality metrics. *e defect
prediction approach can help the development team to
effectively utilize its testing effort to save the time and cost.
Suppose there are 50 modules in a software from which 30
are already developed and tested whereas the remaining 20
are in developing stage. Now, defect prediction techniques
can be used by using the data of 30 tested modules to predict
the defects in the remaining 20 modules. After the identi-
fication of possible defective modules, testing practices can
only be performed on those modules which are predicted as
defective. In other case, the defective modules can be focused
with multiple testing iterations as compared to those which
are predicted as nondefective. ANN is one of the widely used
machine learning techniques for software defect prediction.
*e nonlinear nature of ANN is capable to effectively extract
the hidden patterns in the historical defect data set [8, 15].
ANN with its multilayer optimizable structure can provide
the promising results on the detection of defect-prone
software modules as compared to other techniques [16, 17].
*is study aims to provide a critical review of the latest
literature published from 2015 till 2018 on software defect
prediction with the focus on ANNs. *ree online libraries
are used to extract the literature: IEEE, Elsevier, and
Springer. *e extracted papers with particular search query

are 3937, 2214, and 1280, respectively. However, by fol-
lowing the complete systematic process, 8 most relevant
papers were finally selected for in-depth critical review.

2. Related Work

Use of machine learning techniques to solve the prediction
problems has been the focus of many researchers since last
decade. Most of the researchers have been working to tune
the performance of ANN classifier for software defect
prediction. *ey have proposed various models and
frameworks either by optimizing the structure of ANN or by
integrating it with other preprocessing, machine learning, or
statistical techniques. *is section highlights some of the
related studies which used ANN and other classifiers for
software defect prediction. Researchers in [18] proposed a
defect prediction model based on an improved ANN. *ey
compared the performance of proposed technique by using
the data sets from MDP (Metrics Data Program). *e
proposed improved ANNmodel showed better results while
comparing with other techniques such as Bayesian Logistic
Regression, Random Tree, and Classification and Regression
Trees (CART). In [19], researchers presented an ANN-based
tool with Levenberg–Marquardt algorithm to predict the
software defects at the early stage of SDLC. *e used data
sets in experiments are collected from PROMISE repository
and consisted of CKOO (Chidamber and Kemerer Object-
Oriented) metrics. *is study reflected that Lev-
enberg–Marquardt-based ANN provides better results as
compared to other techniques such as Polynomial Function-
Based Neural Networks, Linear Function-Based Neural
Network, and Quadratic Function-Based Neural Network.
Researchers in [20] discussed that a software module which
is in developing stage and have same metrics like any other
module which is defective and developed in the same en-
vironment might have same levels of defects. To predict the
defects, the authors have developed an Adaptive Resonance
Neural Network having 29 input nodes (metrics) and two
output nodes (defective or nondefective). *e developed
model is trained with data set obtained from PROMISE
repository. *e results reflected the improved Recall mea-
sure. Researchers in [21] compared various classification
models such as Näıve Bayes, Decision Tree, and Random
Forest to detect the defects in latest version of software by
using the data of seven old versions of same software.
According to the results, Random Forest outperformed
others and showed highest predictive power while using the
AUC curve as performance measure. In [22], researchers
explored that the ANN reflects the more accurate results as
compared to Fuzzy logic based model. Moreover according
to these researchers, ANNs have the tendency to be used
effectively in hybrid approach for large data set. Performance
analysis of these models is performed by Magnitude of
Relative Error (MMRE) and Balanced Mean Magnitude of
Relative Error (BMMRE). Researchers in [23] presented a
novel technique named P-SVM to detect the bugs from
software at early stages of software development. P-SVM is
the combination of PSO and SVM. *e proposed technique
outperformed Backpropagation-based Neural Network,

2 Scientific Programming



SVM Model, and GA-SVM model. *e researchers also
claimed this mode to be the more robust. Researchers in [24]
explored that the Multi-Variant Gauss Näıve Bayes
(MVGNB) technique has tendency to outperform all other
kind of classifiers.*ey experimented with J48 to analyze the
performance of MVGNB and found that it is more effective
technique to predict the defects at an early stage of software
development. In [25], researchers discussed that the hybrid
model of classifiers always reflects more accurate results than
any of the single classifier. *ey also elaborated that the use
of hybrid technique to select the attributes can further
improve the accuracy. In this research, five classifiers are
compared: k Nearest Neighbors (KNN), KStar (k∗ ), Locally
Weighted Learning (LWL), Random Forest (RF), and
Random Tree (RT). According to results, LWL out-
performed the others with 92.23% accuracy. Researchers in
[26] implemented the multilevel preprocessing and per-
formed attribute selection twice followed by instance fil-
tering thrice. Preprocessing is performed with four versions
of KNN classifiers: KNN-LWL, K∗ r, KNN, and IB1 clas-
sifier. *e results are compared with RT, RF, and nonnested
generalized classifier. Performance is analyzed by means of
Accuracy, Recall, Area Under Curve (AUC), and precision.
Results reflected that performance of RF outperformed the
others after double preprocessing. In [27], researchers in-
tegrated the SVM and Auto Regression Integrated Moving
Average (ARIMA) for software defect prediction. *ey
analyzed that proposed technique can perform better with
lower error rate in comparison with other conventional
models. In [28], researchers combined three classification
algorithms, NB, Voting Feature Interval, and ANN, for
software defect prediction and used five data sets for ex-
periment. *ey concluded that the integration of these
classifiers showed better performance during the prediction
of software defects especially for embedded system. Re-
searchers in [29] performed an analysis on software defect
prediction by using various machine learning techniques
including Logistic Regression (LR), RF, Decision Tree (DT),
Association Rule Mining, Näıve Bayes (NB), ANN, SVM,
Genetic Algorithm, and Fuzzy Programming. *ey dis-
cussed that machine learning techniques can be helpful for
the detection and removal of minor defects. In [30], re-
searchers performed a comparative analysis of 13 machine
learning algorithms and found that B, ANN, and Instance-
based learning showed better results than others. According
to [31], various studies on software defect prediction rep-
resent the data sets which are used for experiments, methods
which are used for prediction, and frameworks which are the
collection of multiple methods. *e aim of research on all of
these elements related to development activities is to im-
prove the quality of end product. *e literature review
presented in this study analyzes and presents the data sets,
research trends, methods, and frameworks used in the re-
search of software defect prediction between year 2000 and
2013. Researchers in [32] highlighted that different software
metrics are in use for defect prediction modeling; however,
the small subset from all of the available metrics would not
only increase the accuracy of prediction system but also
reduce the cost. *e researchers have used the Bayesian

networks to select probabilistic relationships between
metrics and the defect prone modules. Moreover, they have
extracted two additional metrics including “number of
developers (NOD) and lack of coding quality (LOCQ)”
which contributed towards the detection of defect-prone
software modules.

3. Research Protocol

*is study focuses on the latest research trends regarding the
use of ANNs for software defect prediction. *e purpose of
the systematic literature review is to deeply investigate the
selected research articles, spanned over a specific time period
as explained by [33]. A research protocol has to be followed
to formalize the systematic review process. *is process
includes various steps to be followed in a particular se-
quence. In this study, the latest research articles published in
four years (2015 till 2018) are focused. To select the high-
quality research papers, a systematic research process is
followed as explained by [34, 35]. Moreover, the detailed
guidelines are also taken from [36–42]. *e systematic re-
search process followed by this study consists of 9 steps as
shown in Figure 1.

3.1. Research Questions. Research questions reflect the true
objectives of a systematic literature review SLR. During the
critical review of the most relevant extracted articles, we will
try to find the answers to these questions.

Research questions of this SLR are as follows:

RQ1: which technique of ANN is proposed/used for
software defect prediction?
RQ2: how the performance of the proposed/used
technique of ANN is evaluated?
RQ3: with which technique(s) the proposed/used
technique is compared?
RQ4: which data set is used for the performance
evaluation of used technique?
RQ5: what is the source of the used data set?
RQ6: which tool is used for the experiment and sim-
ulation of results?

3.2. Selection of the Keywords. Extraction of keywords from
the research questions is considered a basic building block of
systematic research process. *ese keywords will be
arranged systematically to create a query string, which will
extract the articles.

Keywords extracted from research questions are as
follows: Software, Application, System, Fault, Defect, Error,
Prediction, Prone, Probability, Assessment, Detection, Es-
timation, Classification, Artificial Neural Network, Neural
Network, and ANN.

3.3. Formation of Query String. Query string is formed by
using various combinations of selected keywords and will be
used to extract the relevant research articles from the se-
lected libraries.

Scientific Programming 3



*e following search query is finalized with the extracted
keywords.

((“Software” OR “Application” OR “Systems”) AND
(“Fault” OR “Defect” OR “Error”) AND (“Prediction” OR
“Prone” OR “Probability” OR “Assessment” OR “Detection”
OR “Estimation” OR “Classification”) AND (“Artificial
Neural Networks” OR “Neural Network” OR “ANN”))

3.4. Selection of Search Space. *ree well-known online search
libraries are selected to extract the relevant research literature:
IEEE, Elsevier, and Springer. All three selected libraries have
different characteristics and options to search the relevant
material. *erefore, few adjustments are made in the query
string to extract more relevant and appropriate literature from
these libraries. Moreover, the query had to be searched for
multiple times with different combinations of selected keywords.

3.5. Formation of Selection Criteria. *is section of sys-
tematic research process deals with the selection of relevant
articles from the extracted literature. For this purpose, a
particular selection criterion is formed which consists of IC
(inclusion criteria) and EC (exclusion criteria).

3.5.1. Inclusion Criteria (IC). Inclusion criteria is formed
with the following rules.

IC1: papers published from year 2015 till 2018 date
IC2: papers that proposed/used any technique(s) of
ANN for Software Defect Prediction
IC3: papers that used hybrid model for software defect
prediction, which includes ANN
IC4: papers that used any data set to implement the
proposed technique/model
IC5: papers that used other technique(s) in comparison
with proposed/used technique to evaluate the
performance

3.5.2. Exclusion Criteria (EC). Exclusion criteria are formed
with the following rules:

EC1: papers which are not in English
EC2: papers published before 2015 or after 2018
EC3: papers which did not target the software defect
prediction
EC4: papers which did not use ANN in proposed/used
technique
EC5: papers that used Hybrid Model, which does not
include ANN
EC6: papers which did not evaluate the performance of
proposed/used techniques

3.6. Literature Extraction. Literature extraction is also
considered as one of the crucial stages of systematic research
process as it deals with the step-by-step process of short-
listing the most appropriate research articles for critical
review as shown in Figure 2.

After applying the search process, 8 most relevant research
articles were short-listed as provided in Table 1 where C.P
stands for Conference Paper and J.P stands for Journal paper.

3.7. Quality Assessment. In this research, quality standards
were maintained throughout the systematic research pro-
cess.*e crucial parameters for quality assessment which are
followed during the selection of relevant literature make this
study a true reflection of current research.

Following parameters are considered for the selection of
literature:

(i) *e scientific libraries with highest ratings are se-
lected to extract the appropriate research material

Identification of Research Questions

Selection of keywords

Formation of Query String

Selection of Search Space

Formation of Selection Criteria

Literature Extraction

Literature Analysis

Quality Assessment

Results & Discussion

Figure 1: Steps of SLR.

4 Scientific Programming



(ii) Selection process is unbiased
(iii) All the steps of SLR are followed in the true sense

3.8. Literature Analysis. *is stage deals with the critical
review of the shortlisted papers from the stage “Literature
extraction.”*is stage will be discussed in detail in Section 4.

3.9. Results andDiscussion. *is stage deals with the answers
to the identified research questions. *is stage will be dis-
cussed in detail in Section 5 of this study.

4. Literature Analysis

4.1. Software Defect Prediction via Convolutional Neural
Network. Researchers in [43] presented a framework for
software defect prediction called DP-CNN (Defect Predic-
tion via Convolutional Neural Network) which used Con-
volutional Neural Network (CNN) to generate
discriminative features from the programs’ Abstract Syntax
Trees (ASTs), which preserves semantic and structural in-
formation of the source code. Moreover, to further tune the
performance, the proposed technique used word embedding
to encode the tokens extracted from ASTs which aids CNN
to learn the semantics of source code. Finally, the CNN-

learned features are integrated with traditional defect pre-
diction features to take the advantages of both nonlinear
features and hand-crafted features. *e proposed DP-CNN
framework is evaluated on seven open-source Java projects
from Tera-PROMISE Repository. From the selected projects:
version numbers, class name of each file, and the defect label
for each source file are provided.*e source code of each file
can be extracted from GitHub by using the version numbers
and class names. Performance of proposed framework is
measured in terms of F-measure. Performance is compared
with other baseline methods such as Deep Belief Network
(DBN), Traditional Logistic Regression (TLR) classifier,
DBN+, and CNN. According to overall results, the proposed
DP-CNN outperformed all other baseline methods espe-
cially state-of-the-art DBN-based methods and traditional
features-based methods by 12% and 16%, respectively.

4.2. Comparison of Backpropagation Training Algorithms for
Software Defect Prediction. Researchers in [44] developed
Multilayer Feed Forward Neural Network using three
standard backpropagation training algorithms: Lev-
enberg–Marquardt (LM), Resilient Backpropagation (RP),
and Bayesian Regularization (BR) Backpropagation in
MATLAB. *e network architecture consisted of single
hidden layer with 10 neurons. *e constructed models were
compared on seven data sets from the PROMISE repository
to predict the software defects. Performance evaluation is
performed by usingMSE, RMSE R2, and other parameters of
the confusion matrix. *e results showed that the BR
training function performed well on six out of seven data sets
with a minimum MSE of 4.91; however, RP performed well
only for one data set PC2 with an MSE of 0.02. *e LM
function did not achieve minimum MSE in any of the data
sets. Moreover, according to overall results from other
performance-related parameters such as R2, Accuracy,
Recall, and False Negative Rate, the BR outperformed the
LM and RP. *is research has highlighted the application of
search-based optimization algorithm which is inspired by
the nature, in the domain of software engineering. More-
over, according to the authors, the project managers can
prioritize the performance measures on the basis of context
and criticality of software, and then, according to goals and
available resources, the appropriate training function can be
selected.

4.3. Software Defect Prediction via Transfer Learning-Based
Neural Network. In [45], researchers presented Transfer
Component Analysis Neural Network (TCANN) for effec-
tive software defect prediction. *e proposed approach
targeted to solve three problems in software defect pre-
diction domain: (1) Noisy Data, Class Imbalance, and
Transfer Learning among Cross-Projects. TCANN consisted
of three modules for the mentioned three issues:
interquartile range (IQR)-based method is used to remove
the noise, Dynamic Sampling Neural Network (DSNN) is
used to take care of the class imbalance issue of training data,
and Transfer Component Analysis (TCA) technique is used
to reduce the differences of feature distribution among

Remove Duplicates [4116]

Scan based on Title [135]

Scan based on Abstract [42]

Scan based on Selection Criteria [21]

Scan Full Text Manually [8]

IEEE
3937

Elsevier
2214

Springer
1280

Figure 2: Search process.

Scientific Programming 5



source and target data. Performance of the proposed method
is measured in terms of Precision, Recall, F-measure, and
AUC are used. Performance analysis is performed from two
aspects of defect prediction, within-project and cross-
project. Within-project evaluation for each data set, 70%
data are selected for training, and the remaining 30% are
used for test purpose, and finally, the results are compared
with the real value. Along with ANN, noise reduction
technique is used; however, TCA is not used as training and
testing both instances are from the same project. In cross-
project validation, all 26 combinations of AEEEM and
ReLink data sets are used along with TCA. *is experiment
included the comparison with other modern techniques
such as TCA and TCA+ etc. *e proposed approach re-
flected the good performance for software defect prediction
in both within-project and cross-projects.

4.4. Cognitive Deep Neural Networks Prediction Method for
Software Fault Tendency Module Based on Bound Particle
Swarm Optimization. Researchers in [46] presented a Deep
Neural Network (DNN)-based BPSO (Bound Particle
Swarm Optimization) dimensionality reduction technique
to predict the software defects. In the proposed approach,
BPSO is used to reduce the dimensionality of measurement
space, whereas DNN predicted the potential defective
software modules. Traditional particle swarm algorithm is
optimized by introducing a field theory for effective
searching to ensure the global convergence. Preprocessing
method is used to keep the values of used software pa-
rameters in a specific limit for better training and prediction
results. Data sets used to evaluate the performance of the
proposed approach are taken from the software programs of
NASA, and the performance is analyzed in terms of AUC
and AUC mean value, no of selected software indexes, and
Mean Calculation Time. *e accuracy is compared with
various conventional and modern proposed methods, which
showed that the proposed approach performed well and
brought the impressive results with less software indexes in
short time. *e authors concluded that the proposed feature
reduction technique can directly guide the developers to
focus on such software modules which are more likely to
have defects.

4.5. Software Defect Prediction Using Cost-Sensitive Neural
Network. Researchers in [16] proposed a novel approach for
software defect prediction in the form of an integrated

technique which includes traditional ANN and the Artificial
Bee Colony (ABC) algorithm. To extract the optimal
weights, ABC algorithm is used for training the ANN. In this
technique, the False Positive Rate (FPR) and False Negative
Rate (FNR) are multiplied by parametric cost coefficients,
and this process is governed by the ABC algorithm. Software
defect data contain the class imbalance issue due to the
skewed distribution of defective and nondefective parts of
software; therefore, the conventional error functions bring
unbalanced FPR and FNR output. *e proposed approach
was evaluated by applying on five publicly available data sets
from NASA Metrics Data Program repository. Performance
is measured in terms of Accuracy, Probability of Detection,
Probability of False Alarm, Balance, AUC, and Normalized
Expected Cost of Misclassification (NECM). In this research,
Correlation-based Feature Selection (CFS) method is used in
WEKA tool to extract the subset of available features instead
of considering all quality attributes as input. To remove the
unbiasedness from the results, the data set was shuffled and
the algorithm was executed 10 times with the use of n-fold
cross-validation in each iteration. Performance of the pro-
posed approach is compared in terms of AUC with other
classifiers such as NB, RF, DT, Immunes, and AIRS.

4.6.PredictionApproachof SoftwareFault-PronenessBasedon
Hybrid Artificial Neural Network and Quantum Particle
Swarm Optimization. Researchers in [47] presented an
approach which integrates Hybrid ANN and Quantum
Particle Swarm Optimization (QPSO) to detect the software
modules in which defects are likely to occur. QPSO is used to
reduce the dimensionality of software quality features, and
ANN classified the modules into defective or nondefective.
*e proposed technique has highlighted the correlation
among defective/nondefective software modules and soft-
ware metrics. Moreover, the implementation of QPSO is
simple than PSO as it has only one controlling parameter as
compared to three in PSO. *e experiment results reflected
that QPSO due to its feature reduction technique can
simplify the structure of ANN and can perform well than
other traditional and proposed prediction techniques. *e
selected metrics with the proposed approach also direct the
developers to focus in suchmodules which are more likely to
be defective, which can ultimately reduce the development
cost of the software. Data sets used to evaluate the perfor-
mance of the proposed approach are taken from the software
programs of NASA, and the performance is analyzed in
terms of AUC and AUC mean value, no of selected software

Table 1: Selected studies for review.

Ref Type Name Publisher Year Cited by
1. C.P International Conference on Software Quality, Reliability & Security IEEE 2017 225
2. C.P 2nd International Conference on Contemporary Computing and Informatics IEEE 2016 18
3. C.P 1st International Conference on Reliability Systems Engineering IEEE 2015 19
4. J.P Cognitive Systems Research Elsevier 2018 15
5. J.P Applied Soft Computing Elsevier 2015 183
6. J.P Applied Soft Computing Elsevier 2015 69
7. J.P Cluster Computing Springer 2018 44
8. J.P Cluster Computing Springer 2018 80

6 Scientific Programming



indexes, and Mean Calculation Time. *e accuracy is
compared with various conventional and proposed
methods, which showed that the proposed approach per-
formed well and brought the impressive results with less
software indexes in short time. Preprocessingmethod is used
to keep the values of used software parameters in a specific
limit for better training and prediction results.

4.7. Software Defect Prediction Techniques Using Metrics
Based on Neural Network Classifier. *e authors in [8]
proposed an approach for software defect prediction by
integrating the feature reduction technique and ANN.
Feature reduction is performed by Principal Component
Analysis (PCA) technique. In proposed approach, PCA is
improved by integrating the maximum-likelihood estima-
tion to reduce the error in data reconstruction.*emodified
PCA approach improved the learning performance of ANN
classifier due to nonredundant data as if the machine
learning technique fails to identify the statistical consistency,
then it could affect the learning performance. *e proposed
approach is tested on NASA software data sets in MATLAB
tool, and the performance is evaluated in terms of Precision,
Sensitivity, Specificity, Recall, F-measure, Classification
Accuracy, etc. *e performance of proposed technique is
compared with other state-of-art techniques including
k-NN, SVM, L-SVM, LS-SVM NB, and LDA. Comparative
analysis reflected that the proposed technique outperformed
other techniques.

4.8. Deep Neural Network-Based Hybrid Approach for Soft-
ware Defect Prediction. Researchers in [48] presented a
hybrid approach which integrated GA and DNN. GA is used
for feature optimization whereas DNN performed the
classification task. GA was improved in the proposed ap-
proach by including the new method for designing chro-
mosome along with fitness function computation.
Moreover, DNN was also included after improvement by
using an adaptive auto-encoder which provided a better
representation of selected software attributes. *e proposed
approach is tested on NASA software data sets in MATLAB
tool and performance is evaluated in terms of Precision,
Sensitivity, Specificity, Recall, F-measure, Classification
Accuracy, etc. *e performance of the proposed technique is
compared with various other state-of-art techniques, and the
comparative analysis reflected that the proposed technique
outperformed other techniques.

5. Results and Discussion

We have finally selected the 8 most appropriate research
papers by following the thorough research methodology,
based on the selection criteria, explained in Section 3. *ese
papers were already been discussed with detail in Section 4.
*is section deals with the extracted answers to the research
questions defined earlier.

RQ1: which technique of ANN is proposed/used for
software defect prediction?

Researchers in [43] used the CNN which automatically
learns the semantic and structural features of programs and
then combined those features with traditional hand-crafted
features. Researchers in [44] performed a comparative
analysis of Levenberg–Marquardt, Resilient back-
propagation, and Bayesian Regularization backpropagation
training algorithms for software defect prediction. In [45],
researchers proposed a technique that consisted of three
stages. In 1st stage, IQR-based method is proposed for noise
removal in data sets, and 2nd stage deals with the TCA
method which is used to reduce the feature distribution
differences between source and target data for cross-project
prediction. *e 3rd, stage used the DSNN to deal with the
class imbalance problem of the training data set. In [46], the
BPSO algorithm is used for reducing the dimensionality of
the measurement space while DNN is used for predicting the
fault tendency of software modules. In [16], the ABC al-
gorithm is used to train the traditional ANN for the
achievement of optimal weights. In [47], ANN is used for
classification and QPSO is applied to reduce dimensionality.
Researchers in [8] used the ANN for classification, and an
enhanced version of PCA is used for feature reduction.
Researchers in [48] used a hybrid approach by integrating
GA for feature optimization and DNN for classification.

RQ2: how the performance of the proposed/used
technique of ANN is evaluated?

In [43], the researchers used the F-measure as perfor-
mance measure. Researchers in [44] used MSE, RSME, R
Square, Accuracy, Sensitivity, Specificity, False Negative
Rate, and False Positive Rate to evaluate the performance. In
[45], Precision, Recall, F-measure, and AUC were used.
Researchers in [46] used AUC, AUC Mean, and Mean
Calculation Time. In [16], AUC, PD, PF, BAL, and ACC
were used. In [47], AUC was used. Researchers in [8] used
Precision, Recall, F-measure, Accuracy, Sensitivity, and
Specificity, whereas in [48], Precision Sensitivity Specificity
Recall, F-measure, Accuracy, and AUC were used.

RQ3: with which technique(s), the proposed/used
technique is compared?

Researchers in [43] compared the proposed techniques
with Traditional DBN and DBN.*e research [44] was itself
a comparative study. Levenberg–Marquardt, Resilient
backpropagation, and Bayesian Regularization back-
propagation training algorithms were compared for software
defect prediction. In [45], the proposed technique was
compared with TCA, TCA+, and VAB-SVM. In [46], the
proposed technique was compared with LDA, QDA, Log-
Reg, NB, Bayes Net, LARS, RVM, K-NN, K∗ , MLP-1, MLP-
2, RBF, SVM, L-SVM, LS-SVM, LP, VP, DT, CART, ADT,
LMT, DNN, PSO+DNN, BPSO+ SVM, BPSO+DNN,
PCA+DNN, and PLS +DNN. Researchers in [16] compared
the proposed technique with NB, RF, DT, Immunos, and
AIRS. In [47], the researchers compared the proposed
technique with the following techniques: LDA, QDA, NB,
LogReg, Bayes Net, LARS, RVM, k-NN, K∗ , MLP-1, MLP-
2, RBF, SVM, L-SVM, LS-SVM, LP, VP, DT, CART, ADT,
RndFor, LMT, ANN, PSO+ANN, QPSO+ SVM, and
QPSO+ANN. In [8], k-NN, SVM, L-SVM, LS-SVM, NB,
and LDA were compared with the proposed technique.

Scientific Programming 7



Researchers in [48] compared the proposed technique with
NB, RF, DT, Immunos, ANN-ABC, Hybrid self-organizing
map, SVM, Majority vote, Ant Miner+, ADBBO-RBFNN,
NN GAPO+B, DT, and KNN.

RQ4: which data set is used for the performance eval-
uation of used technique?

*e data sets used by [43] are Camel, jEdit, lucene, Xalan,
xerces, synapse, and poi. Researchers in [44] used PC1, PC2,
PC3, PC4, PC5, KC2, and KC3. In [45], researchers used EQ,
JDT, LC, ML, PDE, Safe, Apache, and ZXing. In [46], re-
searchers used PC1, JM1, KC1, and KC3. Researchers in [16]
used KC1, KC2, CM1, PC1, and JM1. In [47], researchers
used PC1, JM1, KC1, and KC3. Researchers in [8] used PC3,
PC4, KC1, and JM1. In [48], researchers used KC1, CM1,
PC3, and PC4.

RQ5: what is the source of used data set?
Researchers of [43, 44] and [8, 16, 46–48] used the data

set from PTOMISE repository; however, researcher in [45]
used the data sets from PROMISE repository as well as from
SOFTLAB.

RQ6: which tool is used for the experiment and simu-
lation of results?

Researchers in [43] used “Python Keras” library for the
experiment and simulation of results. MATLAB tool was
used by [44, 46] and [8, 47, 48] for simulations and
experiments.

6. Conclusion and Future Work

Today’s modern life is getting digitalized day by day, due to
which the exponent increase in the demand for software
systems triggered the need for high-quality maintainable
softwares at lower cost. Timely delivery of qualitative soft-
ware is now considered as one of the main concerns of
software developers. However, due to the growing com-
plexities in software systems, it is becoming more difficult to
deliver a high-quality maintainable software at lower cost.
*is issue can be solved by using software defect prediction
approaches. ANN is considered as one of the widely used
supervised machine learning techniques to predict the de-
fects at early stages of SDLC. *is research has focused to
extract latest published literature from 2015 till 2018 which
used ANN for software defect prediction. *ree well-known
and widely used online search libraries were used for the
literature extraction such as IEEE, Elsevier, and Springer. A
step-by-step systematic research process was followed in
order to extract and shortlist the most relevant latest papers
for critical review. *e research protocol of this research
starts with the identification of research questions which are
then answered at the end after critical review. It has been
concluded that ANN has wide scope for software defect
prediction especially when used with a hybrid approach after
integration with any other technique such as future selection
or any other preprocessing technique. Moreover, it has also
been seen that most of the researches have worked on
preprocessing technique in order to improve the perfor-
mance of ANN classifier. *e performance of proposed
techniques was evaluated in terms of various measures,
calculated from confusion matrix and compared with

conventional base classifiers as well as with proposed op-
timized techniques. Data set for the experiment was mostly
used from the Promise repository. For simulation, MATLAB
was the most common tool. *is research can be used as a
base study for innovations and for further comparisons and
reviews. Further studies can be carried out by focusing on
other machine learning techniques other than ANNs on
software defect prediction. Moreover, particular data sets
can be investigated by keeping in view the reported accu-
racies of newly proposed techniques. Modern feature se-
lection and ensemble techniques can also be investigated on
the problem of software defect prediction.

Data Availability

*e data used in this paper can be requested from the
corresponding author upon request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest
regarding the publication of this work.

References

[1] K. Gao and T. Khoshgoftaar, “Software defect prediction for
high-dimensional and class-imbalanced data,” in Proceedings
of the 23rd SEKE, vol. 2, pp. 89–94, Miami Beach, FL, USA,
July 2011.

[2] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proceedings of the 33rd International
Conference on Software Engineering, pp. 481–490, Honolulu ,
HI, USA, April 2011.

[3] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical study of
classifier combination for cross-project defect prediction,”
IEEE Annual International Computer Software and Applica-
tions Conference, vol. 2, pp. 264–269, 2015.

[4] J. Goyal and R. Ranjan Sinha, “Software defect-based pre-
diction using logistic regression: review and challenges,” in
Proceedings of the 2nd International Conference on Sustainable
Technologies for Computational Intelligence, pp. 233–248,
Dehradun, India, January 2022.

[5] T.Wang,W. Li, H. Shi, and Z. Liu, “Software defect prediction
based on classifiers ensemble,” Journal of Information and
Computing Science, vol. 8, no. 16, pp. 4241–4254, 2011.

[6] M. Pandit, D. Gupta, D. Anand et al., “Towards design and
feasibility analysis of DePaaS: AI based global unified software
defect prediction framework,” Applied Sciences, vol. 12, no. 1,
p. 493, 2022.

[7] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect
prediction using ensemble learning on selected features,”
Information and Software Technology, vol. 58, pp. 388–402,
2015.

[8] R. Jayanthi and L. Florence, “Software defect prediction
techniques using metrics based on neural network classifier,”
Cluster Computing, vol. 22, pp. 1–12, 2018.

[9] A. Iqbal and S. Aftab, “A classification framework for software
defect prediction using multi-filter feature selection technique
and MLP,” International Journal of Modern Education and
Computer Science, vol. 12, no. 1, 2020.

[10] M. Ahmad, S. Aftab, and S. S. Muhammad, “Machine learning
techniques for sentiment analysis: a review,” International

8 Scientific Programming



Journal of Multidisciplinary Sciences and Engineering, vol. 8,
no. 3, p. 27, 2017.

[11] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid tools and
techniques for sentiment analysis: a review,” International
Journal of Multidisciplinary Sciences and Engineering, vol. 8,
no. 3, 2017.

[12] M. Ahmad and S. Aftab, “Analyzing the performance of SVM
for polarity detection with different datasets,” International
Journal of Modern Education and Computer Science, vol. 9,
no. 10, pp. 29–36, 2017.

[13] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and
Z. Nawaz, “SVM optimization for sentiment analysis,” In-
ternational Journal of Advanced Computer Science and Ap-
plications, vol. 9, no. 4, 2018.

[14] M. Ahmad, S. Aftab, and I. Ali, “Sentiment analysis of tweets
using SVM,” International Journal of Computer Application,
vol. 177, no. 5, pp. 25–29, 2017.

[15] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction
via convolutional neural network,” in Proceedings of the 2017
IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 318–328, Prague, Czech, July 2017.

[16] Ö. F. Arar and K. Ayan, “Software defect prediction using
cost-sensitive neural network,” Applied Soft Computing,
vol. 33, pp. 263–277, 2015.

[17] D.-L. Miholca, G. Czibula, and I. G. Czibula, “A novel ap-
proach for software defect prediction through hybridizing
gradual relational association rules with artificial neural
networks,” Information Sciences, vol. 441, pp. 152–170, 2018.

[18] M. Gayathri and A. Sudha, “Software defect prediction system
using multilayer perceptron neural network with data min-
ing,” International Journal of Recent Technology and Engi-
neering, vol. 32, pp. 2277–3878, 2014.

[19] M. Singh and D. Singh Salaria, “Software defect prediction
tool based on neural network,” International Journal of
Computer Application, vol. 70, no. 22, pp. 22–28, 2013.

[20] P. B. Crosby, Quality Is Free :Ae Art of Making Quality
Certain, McGraw-Hill, New York, NY, USA, 1979.

[21] Y. Koroglu, A. Sen, D. Kutluay et al., “Defect prediction on a
legacy industrial software: a case study on software with few
defects,” in Proceedings of the 2016 4th International Work-
shop on Conducting Empirical Studies in Industry, pp. 14–20,
Austin, TX, USA, May 2016.

[22] T. Sethi and G. Gagandeep, “Improved approach for software
defect prediction using artificial neural networks,” in Pro-
ceedings of the 2016 5th International Conference on Reli-
ability, Infocom Technologies and Optimization (ICRITO)
(Trends and Future Directions), pp. 480–485, Noida, India,
September 2016.

[23] C. He, J. Xing, R. Zhu, J. Li, Q. Yang, and L. Xie, “A newmodel
for software defect prediction using Particle Swarm Opti-
mization and support vector machine,” in Proceedings of the
2013 25th Chinese Control and Decision Conference (CCDC),
pp. 4106–4110, Guiyang, China, May 2013.

[24] T. Wang and W. H. Li, “Näıve Bayes software defect pre-
diction model,” in Proceedings of the 2010 International
Conference on Computational Intelligence and Software En-
gineering, pp. 0–3, Wuhan, China, December 2010.

[25] M. Kakkar and S. Jain, “Feature selection in software defect
prediction: a comparative study,” in Proceedings of the 2016 6th
International Conference, Cloud System and Big Data Engi-
neering (Confluence), pp. 658–663, Noida, India, January 2016.

[26] G. K. Armah, G. Luo, and K. Qin, “Multi-level data pre-
processing for software defect prediction,” in Proceedings of
the 2013 6th International Conference on Information

Management, Innovation Management and Industrial Engi-
neering ICIII 2013, pp. 170–174, Xi’an, China, November 2013.

[27] J. H. Lo, “A data-driven model for software reliability pre-
diction,” in Proceedings of the IEEE International Conference
on Granular Computing, vol. 29, pp. 326–331, Washington,
DC, USA, August 2012.

[28] A. D. Oral and A. B. Bener, “Defect prediction for embedded
software,” in Proceedings of the 22nd International Symposium
on Computer Science and Computational Technology ISC 2007,
pp. 346–351, San Fancisco, CA, USA, October 2007.

[29] A. Singh and R. Singh, “Assuring software quality using data
mining methodology: a literature study,” in Proceedings of the
2013 International Conference on Dependable Systems and
Networks, ISCON 2013, pp. 108–113, Mathura, India, March
2013.

[30] V. Challagulla, F. Bastani, I.-L. Yen, and R. Paul, “Empirical
assessment of machine learning based software defect pre-
diction techniques,” in Proceedings of the 10th IEEE Inter-
national Workshop Object-Oriented Real-Time Dependable
Systems, pp. 263–270, Sedona, Arizona, February 2005.

[31] R. S. Wahono, “A systematic literature review of software
defect prediction,” Journal of Software Engineering, vol. 1,
no. 1, pp. 1–16, 2015.

[32] A. Okutan and O. T. Yıldız, “Software defect prediction using
Bayesian networks,” Empirical Software Engineering, vol. 19,
no. 1, pp. 154–181, 2014.

[33] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner,
J. Bailey, and S. Linkman, “Systematic literature reviews in
software engineering –A systematic literature review,” In-
formation and Software Technology, vol. 51, pp. 7–15, 2008.

[34] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,”
Journal of Systems and Software, vol. 80, no. 4, pp. 571–583,
2007.

[35] Z. Nanli, Z. Ping, L. Weiguo, and C. Meng, “Sentiment
analysis: a literature review,” in Proceedings of the 2012 In-
ternational Symposium on Management of Technology
(ISMOT), pp. 572–576, Hangzhou, China, November 2012.

[36] S. Ashraf, S. Aftab, and S. Aftab, “Latest transformations in
scrum: a state of the art review,” International Journal of
Modern Education and Computer Science, vol. 9, no. 7,
pp. 12–22, 2017.

[37] S. Ashraf and S. Aftab, “Scrumwith the spices of agile family: a
systematic mapping,” International Journal of Modern Edu-
cation and Computer Science, vol. 9, no. 11, pp. 58–72, 2017.

[38] F. Anwer, S. Aftab, and S. Aftab, “Latest customizations of Xp:
a systematic literature review,” International Journal of
Modern Education and Computer Science, vol. 9, no. 12,
pp. 26–37, 2017.

[39] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed, “Sentiment
analysis using SVM: a systematic literature review,” Inter-
national Journal of Advanced Computer Science and Appli-
cations, vol. 9, no. 2, 2018.

[40] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and
Z. Nawaz, “Rainfall prediction using data mining techniques:
a systematic literature review,” International Journal of Ad-
vanced Computer Science and Applications, vol. 9, no. 5, 2018.

[41] F. Matloob, S. Aftab, M. Ahmad et al., “Software defect
prediction using supervised machine learning techniques: a
systematic literature review,” Intelligent Automation & Soft
Computing, vol. 29, no. 2, pp. 403–421, 2021.

Scientific Programming 9



[42] F. Matloob, T. M. Ghazal, N. Taleb et al., “Software defect
prediction using ensemble learning: a systematic literature
review,” IEEE Access, 2021.

[43] J. Li, P. He, J. Zhu, and R. L. Michael, “Software defect pre-
diction via convolutional neural network,” in Proceedings of the
QRS’17: International Conference on Software Quality, Reli-
ability and Security, pp. 318–328, Prague, Czech, July 2017.

[44] I. Arora and A. Saha, “Comparison of back propagation
training algorithms for software defect prediction,” in Pro-
ceedings of the 2016 2nd International Conference on Con-
temporary Computing and Informatics (IC3I), pp. 51–58,
Noida, India, December 2016.

[45] Q. Cao, Q. Sun, Q. Cao, and H. Tan, “Software defect pre-
diction via transfer learning based neural network,” in Pro-
ceedings of the 2015 the 1st International Conference on
Reliability Systems Engineering (ICRSE), Beijing, China, Oc-
tober 2015.

[46] W. Geng, “Cognitive Deep neural networks prediction
method for software fault tendency module based on bound
particle swarm optimization,” Cognitive Systems Research,
vol. 52, pp. 12–20, 2018.

[47] C. Jin and S.-W. Jin, “Prediction approach of software fault-
proneness based on hybrid artificial neural network and
quantum particle swarm optimization,” Applied Soft Com-
puting, vol. 35, pp. 717–725, 2015.

[48] C. Manjula and L. Florence, “Deep neural network based
hybrid approach for software defect prediction using software
metrics,” Cluster Computing, pp. 1–17, 2018.

10 Scientific Programming


