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Abstract—Innovative solutions providing better coverage and
minimized power consumption by end nodes such as Low Power
Wide Area Networks (LP-WAN) have facilitated the advances
towards improved IoT connectivity. Long Range Wide Area Net-
work (LoRaWAN) technology stands out as one leading platform
of LP-WANs receiving vast attention from both industry and
academia. Performance evaluation of LoRaWAN is promising,
in particular in the field of outdoor localization and object
tracking. Limitations of node ranging and tracking without the
need of energy-draining solutions like GPS, however, has not been
tackled thoroughly. In this work, we explore the performance
of the LoRa LP-WAN technology using real-life measurements
in Birmingham, UK, using commercially available equipment.
We present a channel attenuation model that can be utilized
to estimate the path loss in 868 MHz ISM band in urban-
similar areas. The proposed channel model is then compared
to previously well-identified empirical path loss models and
enhanced by detecting and eliminating outlier data from the
obtained real measurements for an optimal fitted model. We,
further, propose a novel RSSI distribution-based and k-means
clustering to enhance the power-to-distance prediction accuracy
that improves absolute errors by 4% and 18%.

Index Terms—Internet of Things, LoRa, LoRaWAN, Channel
Models, Outliers , Distribution Clustering.

I. INTRODUCTION

With the exponential growth of Internet of things (IoT)
devices connectivity on the road of digitalizing everyday
life, existing communication technologies are faced with new
challenges to fulfill the life quality promised. Those challenges
include assured connectivity with low-power demand to in-
crease the devices’ lifetime, long range, low data rate and cost-
effectiveness. The recent advances in Low-Powered Wireless
Area Networks (LPWAN) technologies such as Sigfox [1] and
Long Range (LoRa) [2] offering optimised device cost, higher
coverage when compared to LTE and low-power utilization,
has facilitated the maturation of Smart Cities.

A LoRaWAN network consists mainly of a gateway (GW),
end nodes and a server. End nodes are embedded with LoRa
modules to communicated wirelessly to the GWs. Gateways,
then, collect the received packets and forward them to server
through an IP network, as shown in fig 1. The LoRaWAN
communication protocol embed its own LoRa modulation [3]
at the physical layer. Based on CSS (Chirp Spread Spectrum)
[4] mechanism, LoRa modulation spreads the narrow band

signal over a larger frequency band. It results in a robust signal
transmission, a long lifetime of battery powered end devices,
and low cost installation. Data rates lie between 0.3 kbit/s and
50 kbit/s [5]. The actual range depends on the data rate and
frequency used as well as on the propagation conditions found
on the installation site [6].

In [7], authors presented a theoretical evaluation of the
capabilities and the limitations of LoRaWAN. Capacity and
scalability studies were presented in [8], [9]. These work
highlighted that LoRaWAN systems should be configured
thoroughly to reach a proper tradeoff between scalability
and efficiency [10]. An essential phase when designing a
Smart City network is the knowledge of the propagation
characteristics. The knowledge of the expected losses a signal
will undergo plays an important role in an optimal network
design [11]. With the correct consideration, better coverage,
lower costs and acceptable quality can be achieved. For this
purpose, empirical path loss models are used to offer accurate
predictions for the possible received signal strengths [11].
While the presence of established empirical path loss model
such as; Okumura Hata model, ITU Advanced, Cost 231-
Hata ,etc, provide a basis for the channel propagation. Yet,
depending on the type of environment the Smart City is
located in, these channels models may lack accuracy, as their
independent parameters such as reflection, diffraction and scat-
tering factors need to be tuned or corrected.Therefore, various
LoRa-based smart networks have recently experimented and
formalized their own path loss model such as, Oulu, Finland
[11] and Dormund, Germany [12]. Due to the nature of
the city, geographical location and the surrounding terrain,
both researches proposed their own propagation model for
further usage of LoRaWAN on their grounds and for similar
environment.

Therefore, to examine and evaluate the requirements of
deploying an urbanized Smart City communication network,
Birmingham City University (BCU) has set up an LPWAN
within Birmingham, UK, using LoRa as a network technology.

In this work, we test various published path-loss models and
inspect their effectiveness against real signal measurements
from our LoRa test deployment within Birmingham. While our
results present a new model for our area, we further expand
our work to include clustering as a



Fig. 1: Star topology of LoRaWAN

The model also, embeds outliers detection and elimination
before verifying and finalizing our initial path loss model. We
extend our work to include clustering algorithms to investigate
their influence on power to distance estimation.

The main contributions of this paper are;
• Critical analysis of three established models to compare

and evaluate their performance accuracy in Birmingham.
• Presenting an initial model based on real measurements

to represent a well defined model for an optimal fit.
• Proposing a RSSI K-mean and DBC clustering for en-

hancing accuracy and comparing it to all models men-
tioned.

The remainder of this paper is organized as follows. Related
and recent work is discussed in Section II. Section III describes
the deployment setup of our experiment. Sections IV and V
provide performance measurement results and the proposed
enhanced channel model. At last, Section VI concludes the
paper.

II. LP-WAN: LORA RELATED WORK

A. Background

Previous experimental work using LoRaWAN such as [13],
tested the technology capabilities in the most rural area of
Oulu, Finland. The work done utilized commercially available
equipment, where the end node was either stationed on top
of a car (for on-land measurements) or attached to the radio
mast of a boat. Real measurements were reported to the gate-
way installed. Under different circumstances considering high
density urban areas, authors in [14] evaluated the performance
of LoRaWAN in Melbourne’s Central Business District. Their
initial measurements showed a guaranteed and successful com-
munication only within a radius of approximately 200 meters
from the gateway. The communication totally fails around 600
meters revealing the challenging task of network deployment
in high density urban areas. For better understanding of
LoRAWAN limitations, the authors then enhanced the gateway
coverage using a higher building installation in a medium
density urban area. This experiment resulted in an improved
LoRa propagation reaching up to 5.8 km.

Fundamental LoRaWAN empirical work testing the signal
coverage and packet loss ratio are found in [13] and [15].
In [16], authors extended the work to test various modulation
parameters on a single link of communication. LoRA modula-
tion, and hence its data rate, depends mainly on the following
factors.

Spreading Factor (SF): ranging between 7 to 12, this
affects the slope of the variation of frequency and so the energy
per chirp symbol. The higher the SF the longer the time taken
to transmit a symbol, which in turn decrease the data rate yet
increases the coverage range.

Bandwidth (BW): To modulate the LoRa data signal, the
chirp has to range through fmin to fmax, also known as the
chirp rate. BW can be set as 125 kHz, 250 kHz or 500 kHz.

Coding Rate (CR): It is the forward error correction rate
(FEC). LoRa implements CR to increase the signal resilience
against interference at the cost of introducing redundancy bits.

B. Path Loss and Channel Models

A fundamental principle when understanding the channel
properties of RF propagation is the usage of the Received
Signal Strength Indicator (RSSI) for ranging. RSSI reflects
the difference between the transmitted and received power of a
signal that is used to estimate the distance propagated. Another
vital parameter is the Path Loss (PL), PL is defined the power
taken by the signal to overcome the communication medium
and can be calculated using the link budget equation:

Ptx(dBm) = RSSI(dBm) +Gsystem(dB)−PL(dB). (1)

The link budget equation shown in eq. (1) relates all gains and
losses from the transmitter, through all transmission mediums,
to the receiver. RSSI is the expected power at the receiver,
Ptx the transmitted power, Gsystem is the system gains such
as those associated with directional antennas for both the
transmitter and/or the receiver. PL are losses due to the
propagation channel, either calculated via a wide range of
channel models or from empirical data.

1) Free Space Path loss (PLFS): PLFS (Friis equation
[17]) model provides the baseline and most ideal path loss as
it assumes a line-of-sight and obstacle-free connection. It is
also the elemental base of all upcoming models. The equation
is given in the logarithmic domain as follows:

PLFS = 20 log10(f) + 20 log10(d) + 32.45. (2)

Here and henceforth, the distance (d) is given in km, the
frequency (f) in MHz and the path loss (PLx) is in (dBm).

2) Okumura-Hata & Cost 231-Hata Path loss Model
(PLOH , PLH ): Calculating the path loss value is usually
referred to as a prediction process given that the exact predic-
tion is only possible for simpler cases, such as the previously
mentioned PLFS or for a flat-earth model. Practically, the
path loss is modelled using experimental data incorporating
statistical methods that are based on measured and averaged
losses along typical environment of radio links. An anchor
signal propagation model, namely Okumura-hata model, was



originally the results of real data collected in Japan, for
signals propagating at a frequency range of 150 to 2000 MHz
[18]. The Okumura-hata model was also used in [19] as the
authors simulated LoRa packets to predict RSSI in an urban
area, where it outperformed other models. It extends the path
loss model PLFS by taking into consideration the antenna
gain factor, propagation gains due to node and base-station
antennas’ heights, and a correction gain.

PLOH = 39.55 + 26.16 log10(f)− 13.82 log10(htx)−
a(hrx) + (44.9− 6.55 log10(htx)) log10(d),

(3)

and
PLH = 46.3 + 33.9 log10(f)− 13.28 log10(htx)−

a(hrx) + (44.9− 6.55 log10(htx)) log10(d) + C,
(4)

where:
a(hr) = 3.2 log(11.75hr)

2 − 4.97. (5)

where the term a(hr) in eq. (3) and (4) and calculated as
eq.(5) shows the correction factor for large cities and for
f ≥ 400MHz, [20]. htx and hrx stand for the transmitter
and the receiver antenna heights in meters, respectively. Cost
231-Hata model extends Okumura–Hata model for medium to
small cities to cover the band [1500–2000] MHz, where C is
0 for medium cities and 3 for metropolitan areas [21].

3) Experimental Path loss Models: LoRa has been recently
experimented in Oulu, Finland [11] and Dormund, Germany
[12]. Due to the nature of the city, geographical location
and the surrounding terrin, both research proposed their own
suitable propagation model for further usage of LoRaWAN
on their grounds and for similar environment. Authors in [19]
used their measurements to compare various empirical models
in search of the optimal model to represent thier data.

This work considers these models for performance analysis
against real experimental data within Birmingham.

III. EXPERIMENTAL SETUP

A. Stage I: Experimental Setting

1) LoRa Base-station and Node: In this work we utilize
a LoRa off-shelf node ”The Things Uno” (shown in fig.
3a). The Things Uno node, thereafter referred to as Leo1, is
based on the Arduino Leonardo with added LoRaWAN module
Microchip (RN2483 - class A protocol stack) [22]. We further
enhance Leo1 with a GPS module for primary measurements.
The Adafruit 746 GPS module uses MTK3339 GPS System
on Chip (SoC) that can can track up to 22 satellites on 66
channels and has a sensitivity of -165 dBm.

Leo1 is used to measure the RSSI and SNR using Lo-
RaWAN modulation operating at 868 MHz (within the ISM
band in Europe) with a receiver sensitivity up to -148 dBm.
The measurement system consists of a singular LoRa Multi-
Connect Conduit IP67 Base Station (shown in Fig. 3b). While
the TTN node is considered mobile and easy to carry around
the vicinity of the campus, the LoRa MultiConnect Conduit
is based indoors on campus. Table I lists the characteristics of
both, the Leo1 node and the gateway used in our setup.

Fig. 2: Map showing the gateway and locations of the data
collected from all experiments

TABLE I: Characteristics of MultiTech Gateway and The
Things Uno node

Characteristic Gateway Node
Module MTCDIP-LEU1-267A-868 The Things Uno

LoRa Chip Microchip RN2483 LoRa
Operating Frequency 867.9 867.9

Modulation LoRa LoRa
SF 12 12

Coding Rate 4/5 4/5
Rx Input Sensitivity (dB) -148

Tx Power 14dBm
Rx current consumption 14.2 mA

2) Measurement Setup: The measurements took place in
the city center of Birmingham, UK. Population of Birmingham
is over 1.2 million and the maximum building height limit
at 242 metres. During all measurements the position of the
base station was fixed. Powered by a 9V battery, Leo1 was
operating various conditions (travelling by car, bus along major
roads, or by foot) to assure a better and thorough coverage.
The Leo1 was periodically sending packets to the gateway,
that includes a packet counter and GPS coordinates.

(a) (b)

Fig. 3: Field setup. a): Leo1 LoRa node. b): LoRa gateway.



B. Stage II: Antenna Pattern

As the Leo1 node has a built-in antenna, an initial and
fundamental step would be exploring the antenna pattern
efficiently. This action would help understand the effect of
changing the direction and polarity of the node wherever it
is moving or when installing it for a period of time. We
set up the node outside the Millennium Point building, in a
fixed position with a compass aligned to a certain direction
for a period of 4 minutes. During this period of time, Leo1
transmits the SNR and RSSI values with empty packets back
to the TTN server. RSSI and SNR values are then extracted
from the packets received and fed into a MatLab program that
averages the values of the RSSI and subsequently illustrate the
antenna pattern. Fig. 4 shows the illustration of the directivity
of the embedded antenna. It is worth mentioning that the
average RSSI values when changing the direction of Leo1
lies within less than 0.017 % of the mean RSSI value. This
experiment revealed that the embedded antenna in Leo1 can
be well approximated as an isotropic antenna, and hence, the
moving and/or fixing position of the node does not affect the
output power and would not be considered as a factor affecting
the RSSI.

Fig. 4: Directivity plot.

IV. DATA ACQUISITION AND REGRESSION CHANNEL
MODEL

A. Regression Model

We consider the parameters hr, ht, Ptx and f to be con-
stant in our evaluation. The initial fit model of the sample
measurements is determined using eq. 1 as the baseline with
the average PL:

PLavg = B + 10n log10(d/1000), (6)

with the distance d in m , B defining the PL intercept and n
being the PL exponent.

To identify the model, a regression based on the minimiza-
tion of the mean square errors is done. The cost function
by J(ζ) :=

∑
i ||RSSImodel(di, ζ) − RSSIi||2, where i

corresponds to the ith measurement, and ζ ∈ R2 are the
parameters of the path loss model: ζ := (B,n). The optimum
parameters ζ⋆ of the model are then obtained by minimization

Fig. 5: Comparing RSSI of different models with measure-
ments in Bham for 868 MHz LoRa

TABLE II: Propagation parameters used for different environ-
ment in literature and the proposed initial model

Metric Free Space Oulu [11] Dortmund [12] B’ham
Path loss exponent (n) 2.00 2.32 2.65 2.52
Path loss intercept (B) 91.22 128.95 132.25 130.85

of J , such that ζ⋆ = argmin
ζ∈R2

J(ζ), following the derivative-

free Nelder-Mead method [23].

B. Data Processing

After obtaining an initial regression model, we perform
some data analysis to enhance the model further, that is done
utilizing outlier data detection and elimination. In [24], authors
presented a data outlier detection method that involves the
median absolute deviation (MAD) as an alternative and more
robust technique to measure the dispersion of data points.
The median (M), like the mean (σ), is a measure of central
tendency but offers the advantage of being very insensitive
to the presence of outliers [25]. After calculating the MAD
of the RSSI values, we then define the criteria upon which a
specific data point should be rejected or tagged as an outlier.
Following the suitable decision criteria proposed in [26], we
implement RSSIi−M

MAD > |±3|. After obtaining and sorting the
outliers, an iterative process of removing them is implemented
that resulted in an optimal MSE value of 24.907, compared
to an initial value of 29.3520.

C. Comparative Performance

The LoRa packets are compared with the following path
loss models: FS, OH, Cost-231, Oulu and Dortmund. Fig.5
shows the RSSI of the packets received within Birmingham,
it also shows the operation of the various models consid-
ered and the regression model for Birmingham. For accuracy
comparison between the propagation models implemented in
this study, we present the following statistical parameters
∆i = RSSIestimate − RSSImeasured,|∆y| = 1

N

∑N
i=1 |∆yi|



and σe =
√

1
N

∑N
i=1(∆i − |∆y|)2. Where |∆y| is the mean

absolute error and the σe is the standard deviation of the
estimated error. N indicates the total number of data sam-
ples collected and ∆i represent the difference between the
estimated and measured samples. Table III summarizes the
results obtained. The Oulu model with |∆y| = 9.966 and has
the closest accuracy to our model, as shown in fig. 5 the model
estimate the RSSI values for a close distance up to 600m
with a good accuracy then deviates at longer distances. While,
both OH and cost-231 models provides the most imprecise
estimation of the RSSI received in B’ham with |∆y| = 13.52
and 13.34 showing a notable variation in both close and far
distances.

Table II shows a comparison between the pathloss expo-
nents (n) and intercepts (B) for the different channel models
considered. While the Oulu and Dortmund models show a
close initial PL intercept B, the proposed regression model for
Birmingham shows higher B. The PL intercept is a parameter
relating to the shadowing effect that is due to the power losses
caused by barriers the signal propagates through. That might
be due to the fact that BCU is surrounded by few tall and
large buildings while Oulu is located at a water shore. It is
also worth mentioning that Dortmund had the advantage of
a better probability of LOS transmission, with a transmitting
antenna height placed at 30m, while in Oulu the antenna was
placed at 24m. In our experiment, the antenna was placed an
an approximate height of 15m.

On the contrary to the PL exponent n, where the B’hm
model shows the least exponent value of all. A lower exponent
translates to a lower rate of RSSI decrease with the increasing
of the distance spanned, resulting in a less inclined slope. The
small value of n reflects the open space surrounding BCU,
where the GW is installed, which indicates the appropriateness
of the location for better coverage.

Our experiment shows a loss of LoRa packets around the
1.1 to 1.3 km range, this loss of can be an indication of
high density of signal barriers causing the attenuation of
the received signal power at the exact angle the measure-
ments were taken from. A constructive approach would be
to retry gathering more measurements at the same distance
but with variable deviations from the gateway. The higher
power received at longer distances in Birmingham (around
1.4 km) when compared to other models had an influence
on the proposed channel model, showing a higher probability
of LOS communication at longer distances accompanied by
relatively higher RSSI value when compared to short distances,
differentiate the Birmingham environment from other models.

TABLE III: Statistical Performance Metrics

Error
Parameters

Okumura
Hata

Cost
231-Hata Dortmund Oulu B’ham K-mean

B’ham
DBC

B’ham
|∆y| 13.52 13.34 10.05 9.96 9.9 8.09 9.5
σe 17.43 17.48 22.88 22.57 22.63 15.17 17.5

D. Experimental Repetition
The repetition principle is an important step in scientific and

experimental research, as the observations and readings are

Fig. 6: Close-by locations achieved from different experiments

affected by natural variables that can be stationary or random,
which require a fair amount of samples to reveal their changing
regularity. Stabilizing the mean and the standard deviation are
the foundation of repetition, resulting in a population fairly
represented by the sample [27].

To achieve the aforementioned, we maintained two methods,
the first approach was collecting a series of measurements
for each location during the same experiment, then averaging
the values for a reliable estimate. The second approach was
collecting the measurements from similar locations but at
different times. To achieve that, the data collected from 7
successful experiments throughout a time span of 15 months
has been separately analysed as shown in fig. 2, where each
experiment’s data points retrieved is presented in a different
color. Even though each experiment was concerned with its
own path, there was enough points overlapping. The analysis
included an algorithm that was used to go through all data-
location pair, calculate the haversine distance, which is the
distance from the GPS co-ordinates to the gateway location.
Then, cross-reference the resulting distance with the GPS co-
ordinates to find close by locations, since the distance on its
own can represent any point on the circumference of a circle
centered from the gateway. The algorithm identified the close-
by locations using a threshold of approximately 15m. This
threshold was chosen after considering the accuracy of the
GPS chip used in the experimentation and the GIS system
that is 3m and 11m, respectively.

Fig. 6 shows the first output of the algorithm, as every
cluster of points is the output of overlapping close-by locations
from at least 2 different experiments. Additionally, to maintain
an even analysis, the algorithm was assembled to output clus-
ters in different directions and distances of the spanned area.
The results of this analysis can be found in table IV, where the
average distance of each cluster from the gateway, the average
and variance RSSI from various experiment are computed
to be compared to the actual measurements found using the



TABLE IV: Analysis from experimental repetition

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6
Mean Distance (m) 309.5 517.8 176.84 290.53 450.62 646.75
Mean RSSI -109.5 -108.5 -101.8 -108.37 -105.66 -108.67
Variance RSSI 0.25 1.66 31.77 0.23 0.333 0.333
Bham Model RSSI
estimate -104 -109.6 -97.89 -103.32 -108.13 -112

K-mean
Clustering Model -110.96 -108.99 -98.38 -109.55 -108.99 -108.99

Distribution-based
Clustering Model -105.98 -108.23 -103.5 -105.71 -107.62 -109.2

Fig. 7: K-mean clustered data with regression models for both
clusters

Bham model when applied to the same average distance. The
results show that the variance of measurements from different
experiments around the same location are quite similar which
conveys the validity of the assumption that the RSSI for every
location is stationary. Moreover, when comparing the average
RSSI to the RSSI yielded when applying the B’ham model,
a trend of overestimating the true value of RSSI in close-by
distances to the gateway, i.e. distances less than or equal to
300m, can be found. In the same way, the model underestimate
the power received in longer distances.

V. DISTRIBUTION-BASED CLUSTERING

After conducting the work done in the previous section, we
noticed that the model represented deflected from the average
RSSI retrieved during repeating experiments, even when con-
sidering the variance of those measurements. The model values
would tend to overestimate the predicted received power is
close-by distances and vice versa when it comes to longer
distances. This observation raised the question of whether
regression models produce the optimal representation of the
collected data. Consequently, we explored the prospect of
grouping data that share some features or similarities forming
clusters.

Initially, we implemented the k-mean algorithm to cluster
our data using the suitable measures of both the squared
euclidean distance and sum of absolute differences as they

Fig. 8: Distribution-based clustered data with regression mod-
els for both clusters

were the most suitable measures to our data. We started by
normalizing the data to limit redundant data and ensures that
good quality clusters are generated which can improve the
efficiency of the clustering algorithm [28]. Then by defining
our 3 variables as distance, RSSI and SNR, we uzed the k-
means algorithm to cluster the data into 2 clusters as shown in
fig. 8. Ending with two clusters was not an assumption, it was
the result of an iterative process to find the optimal number
of clusters to represent the collected data. We evaluated the
outputs for clustering in 3, 4 and 5 clusters and with different
centroid calculation methods and this was found to be the most
convenient.

While k-means chooses the centroid of the cluster based on
the mean or median distance from the rest of the cluster points,
the DBC considers the distribution of the data presented.
In our DBC algorithm, we divided the RSSI data into two
clusters, based on their distribution. The first cluster showed a
binomial distribution up till the distance of 200 m away from
the transmitter, while distances exceeding 200 m and reaching
1400 m showed a normal distribution.

Fig. 7 and fig. 8 show the results of DBC and K-means
clustering, the new clustered models are referred to as near
and far field models. On one hand, the kmean algorithm near
cluster covered up to 346 m, the far field model shows a
constant model for the higher distances. While the differences
between power in longer distances might seem slight, a
constant model would not capture the variations present. On
the other hand, the DBC show quite distinct variation between
near and far field models.

To evaluate the clustering algorithms used in modelling
and for fair comparison, We reused the formula for the mean
absolute error |∆y| that showed that the DBC model yielded
a 4% better absolute error than the initial model presented
and the k-means clustering revealed a 18%. Moreover, we
computed the estimated RSSI for both models and compared



them to the results obtained from the repetition analysis in
sec. IV-D, that is shown in table IV. Although, the overall
absolute error of the DBC was as little as 4%, it still showed
a noticeably more accurate power estimation to the results
from the repetition analysis i.e for Area1, the DBC estimate
is -105.9 dB when the true measurement was -104 dB. While
the initial model estimate is further away also as the K-mean
clustering. This pattern can also be seen in Areas 2 and 3. A
worth mentioning observation is that the K-mean clustering
outperformed DBC in shorter distances to the gateway such
as Area 4.

Based on our findings, it is shown that proposing a clus-
tering algorithm enhances the prediction accuracy when com-
pared to a regression model. Both, K-means or DBC surpasses
regular regression models, but the decision of which is more
adequate is perhaps more related to the distances covered.

VI. CONCLUSION

There are various challenges and factors to be considered
when implementing smart cities using LP-WAN. LoRaWAN
has the potential to build successful LPWANs but only when
its strengths and weakness limitations are considered. In
this work, we presented a real-world experimental study and
proposed a channel model evaluating the performance of LoRa
to understand the its suitability for Smart cities in Birmingham
city and similar urban areas. The experiments show the success
of LoRa signals reception up to 1.4 km range, with blind
spots between 1.1 to 1.3 km range. Extending the work to
compare various empirical channel models showed insufficient
adequacy, subsequently an initial channel model is presented
and evaluated, showing an increase of accuracy of 4% and
18%. Further to that, studying the RSSI values received
and evaluating their distribution had a positive influence on
enhancing the estimated measurements. Utilizing our findings
on a bigger scale of RSSI fingerprinting or localization shows
a promising prospect.
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