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Abstract 
Large sympathetic, resonance-like, structural behaviour to earthquake excitations with analogous 

frequency content often plays a critical role in determining its maximum seismic response.  Earthquake 

excitation typically contains a broad spectrum of non-stationary frequency content, wave packets, 

which are difficult to observe from the recorded time series. Therefore, identifying the root cause of 

large responses (which act sympathically with the input but do not achieve full-resonance) of a 

structure is problematic. Hence, this paper proposes a new multi-pulse decomposition method of 

ground motions, through which components of a ground motion within a specific period range are 

determined. In this method, a ground motion is approximated with a Gauss-Fourier wave packet series. 

The decomposed components, wave packets, contain information about it’s time-position, frequency, 

amplitude, pulse width and phase angle. Unlike the Ricker (Morlet) wavelet the Gauss-Fourier wave 

packet is not limited to symmetrical pulses. One ensemble of 40 near-fault ground motions and one 

ensemble of 44 far-fault ground motions are used to demonstrate the application and efficiency of the 

proposed method. The method is shown to be precise in reconstructing the original ground motion 

using its decomposed components. It is also concluded that the method is accurate in replication of 

elastic and inelastic response spectra of ground motions within a specific period range. It is 

demonstrated that for some structure/ground motion combinations, only a few Gauss-Fourier 

components are required to faithfully describe response behaviour. This highlights that, for these 

systems, most of the recorded earthquake time series acts like noise on a much simpler wave-packet 

signal.   

Keywords: Ground motion decomposition; ground motion reconstruction; Gaussian-Fourier 

series; multi-pulse; Gabor wavelet; dominant components; elastic and inelastic response spectra 

regeneration; Genetic Algorithm 

1. Introduction 
1.1 Background   

In the earthquake-resistant design of structures, critical excitation methods are very prominent ([1], 

[2],[3]). For a linear elastic structure, the coincidence of natural modal frequencies with the frequencies 

of the dominant components of a ground motion can lead to a critical seismic response of a structure 

consisting of a sympathetic resonance-like behaviour. The term ‘sympathetic’ denotes an effect which 

arises in the response that is caused by a particular feature of the input. This response is only 

‘resonance-like’ because not enough cycles of forcing are present to achieve full resonance. Typical 

Fourier spectral analysis can determine the magnitude, averaged in time, of these dominant frequency 

components in the ground motion, and standard eigenvalue analysis can determine the modal 

frequencies of the structure. Note that the time-localized nature of these dominant frequency 

components (which are non-stationary) cannot be estimated using standard Fourier spectral methods. 

Nevertheless, for a linear structural system, an application of a Fourier transform to the equations of 

motion effectively converts it from a set of linear differential equations to a set of linear algebraic 

equations; thus, the analysis, for this case, is considered accurate. Therefore, the loss of information 

(i.e. the pulse arrival time, intensity, and duration) does not affect the accuracy of calculating the 
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structural responses. In addition, the modal participation factors tend to reduce in magnitude with 

increasing mode number strongly suggesting only a few modes need to be considered.  

As ground motion amplitudes increase, structures are pushed, by design, from linear to nonlinear 

(plastic) response behaviour. A Fourier transform of the equations of motion no longer yields a set of 

linear algebraic equations. Thus, inferences (such as modal superposition for linear systems) is no 

longer necessarily valid for nonlinear systems. During the plastic, ductile, deformation phase, two 

types of localization can be observed. Firstly, spatial localization of plastic hinges typically occurs in 

the beams of the bottom storeys of a well-designed building. This localization, it has been suggested, 

tends to mathematically project the dynamic responses onto a much lower dimensional sub-space 

involving only one or two 'modes' ([4], [5]). Note also that orthogonality and superposition of 'modes' 

for a nonlinear system are no longer mathematically correct. The second type of localization is in time. 

The phases of ductile deformation occur at specific times generating an increase in energy losses. This 

also causes a reduction in stiffness and hence a time-localised large reduction in the averaged 'modal' 

periods. The interaction between instantaneous period and damage can be quite complex ([6],[7]).   

Therefore, since spatiotemporal localization is important for a nonlinear structural system, this 

research aims to generate a new decomposition of the earthquake time series that involves the sum of 

time-localized wave-packets rather than time-invariant (averaged) Fourier components. As the spatial 

structural localization cause by ductility tends to limit the number of 'modes' that influence the 

nonlinear responses, we seek a new decomposition that is also frequency band-limited to a range likely 

to affect only these 'modes'. Thus, this decomposition will seek to identify pulses within the ground 

motion time series, their magnitude/duration and when they arrive for a given nonlinear structural 

system. Note that the decomposition while being performed on the ground motion alone must 

implicitly assume a particular structural application context.  

1.2 Existing decomposition methods  

Strong ground motions, particularly near-fault ground motions, can have very detrimental effects 

on structures ([8],[9]). Some researchers used simple waveforms to extract the dominant components 

of a ground motion. These waveforms include piece-wise triangular functions ([10],[11]), sinusoidal 

functions [12], and multi-parameter decaying functions [13]. With the emergence of advanced signal 

analysis approaches, more novel methods were developed to identify the dominant component of a 

ground motion. Vassiliou and Makris (2011), in their seminal work, employed an analysis based on 

the continuous wavelet transform to identify the most correlated time-frequency position for a Ricker 

wavelet [14]. However, this approach has limitations, which stem from the wavelet transform (cross-

correlation function) and the symmetrical mother wavelet employed, and will be more fully discussed 

in section 2.1. In addition, they only extracted single pulses and did not develop a robust algorithm for 

multi-pulse extraction. Baker (2007) extracted the dominant velocity component of a ground motion 

using wavelet analysis [15]. The Daubechies wavelet of order 4 was selected as the mother wavelet 

since it approximates the shape of many dominant velocity pulses. However, the wavelet analysis is 

highly dependent on the type of mother wavelet chosen, and the results of the ground motion 

decomposition can be very different using various mother wavelets [16]. Given the shortcoming of the 

wavelet analysis, some researchers used the empirical decomposition method (EMD) to decompose a 

ground motion ([17],[18]). The ground motion is split into high-frequency and low-frequency 

components, and the dominant component is determined by fitting a simple waveform to the low-

frequency component ([19],[20],[21],[22]). Some others adopted principal component analysis and 

genetic algorithm to improve the efficiency of the ground motion decomposition ([23],[24]).  

All these existing decomposition methods are for the identification of a single dominant component. 

However, a ground motion might include multiple dominant components, which need to be considered 

to achieve a more accurate approximation of the ground motion. Additionally, these single dominant 

components are extracted regardless of the 'modal' periods of the structure, and so, critical resonant-

like amplified responses might not be achieved in a structure. For instance, in Baker's method [15], the 

residual component of the ground motion (the pulse component subtracted from the original ground 
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motion) was found to affect the response of structures significantly. In some cases, for ground motions 

with pulses far from the natural periods of the structure, the residual component resulted in larger 

structural responses than the pulse ([25],[26]).  

Thus, given that a single pulse is unlikely to be accurate for an arbitrary structural system, the 

questions are two-fold (i) how a multi-pulse, time-localized decomposition of an earthquake can be 

obtained and (ii) how many components are really necessary for an effective analysis of nonlinear 

structural systems?  

1.3 Research Contribution  

As the above literature survey demonstrated, the identification of a dominant component of ground 

motions (i.e. pulse-like/non-pulse-like) has received much attention. Nevertheless, there is a need to 

develop a more general method for a time-localized, frequency bandwidth limited, multi-component 

decomposition of ground motions. As sympathetic, resonance-like behaviour may be a key issue in 

seismic response estimation of structures, the frequency content of the structure needs to be considered 

in the identification of dominant pulse components of a ground motion.  

The numerical algorithms behind both the discrete Fourier and Wavelet transforms are designed for 

maximal computational efficiency. Both algorithms make full use of the Cooley-Tukey Fast Fourier 

Transform algorithm [27]. The wavelet transform is a cross-correlation function between signal and 

mother wavelet. It conventionally operates as a complex function of only two parameters namely time-

scale and time-shift of the mother wavelet. This is attractive as ploting a 2-D contour plot could enable 

the identification of the optimal position/scale of the mother wavelet relative to the signal (as in [14]). 

However, if we want to make further adjustments to the shape of the mother wavelet, by not assuming 

a particular symmetry, non-frequency dependant wavelet width, amplitude-scaling and skew, this 

would require additional parameters to be explored. Therefore, using the wavelet transform to obtain 

the optimal set of parameters for this higher dimensional space is not so efficient.  

In this study, a minimal parametric representation of a ground motion is sought that: (i) is based on 

a set of parametrically defined functions, and (ii) is a transformation of a ground motion onto some 

subspace with a dimension far smaller than the ground motion itself. This expansion of a ground 

motion comprises a limited number of components that are localized in time and have a consistent 

functional form. Thus, in this approach, a Gaussian-Fourier series, composed of a limited number of 

components, is used to approximate a ground motion, and the parameters of Gaussian components are 

determined through solving a nonlinear global optimization problem. Eventually, two ensembles of 

ground motions, including 40 near-fault and 44 far-fault ground motions, are used to demonstrate the 

efficiency of the proposed method in identifying dominant components and the reconstruction of 

elastic and inelastic response spectra within a specific period range.  

2. Ground Motion Decomposition 
2.1 The limitations of conventional time-frequency analysis approaches 

Fourier series is an archetypical feature extraction tool. Its extension to the Fourier integral 

transform, the discrete Fourier transform (DFT) and the fast Fourier transform (FFT) is the bedrock of 

most signal processing technologies [28]. The main disadvantage, for the case of pulse identification, 

is that we exchange time for frequency, and thus loose the ability to time-localise components. This 

can be ameliorated to some degree by employing the short-time Fourier transform (STFT) which trades 

resolution in time (via windowing) for resolution in frequency. However, due to Heisenberg’s 

uncertainty principle, it is not possible to both maintain high time-resolution (to determine when in 

time a component occurs) while also maintaining high frequency-resolution (to determine the 

frequency of that component).  

The Wigner-Ville transform (WVT) ([29], [30]) is another attempt at obtaining high time-resolution 

and frequency-resolution by making use of additional constraints. While this approach is attractive, it 

does result in interference terms, false peak artefacts (errors), and these may overlap with signal terms. 

By modifying the additional constraints (using for example the pseudo Wigner-Ville Transform 

(PWVT)), it is possible to intuit to some degree, which time-frequency peaks are components of the 
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signal and which are artefacts of the constraints. However, generally, it may be difficult to always 

accurately time-locate a pulse for any general time-series.  

The discrete wavelet transform (DWT) decomposes a time series into a far smaller set of frequency 

band limited components than the discrete Fourier transform. Each wavelet level, also known as the 

detail and approximation components, is defined for frequency sub-bands that are progressively halved. 

For the case of a time series with 1024 points, the number of wavelet levels is somewhere between 5 

and 10 depending on the mother wavelet. This compares favourably with 512 sinuisodal components, 

when one uses the FFT. Thus, the wavelet decomposition results in far fewer non-stationary 

components. Each wavelet level is essentially a cross-correlation function between any signal and the 

mother wavelet function. The mother wavelet is time-shifted and time-scaled (stretched/dilated), and 

then cross-correlated with the time series. A large value of the wavelet level at a particular point in 

time would suggest a larger correlation between mother wavelet (at that scale used) with the time series. 

Thus, the time locations of features in the time series that are correlated with the mother wavelet can 

be identified. However, the weakness of the DWT for pulse extraction is that the frequency-resolution 

is limited to the progressively halved frequency sub-bands. Therefore, it is preferable to employ the 

continuous wavelet transform (CWT), even though this is far less computationally efficient than the 

DWT. The CWT, W x , of a time series, ( )x t , is defined as  

 ( ) ( ) ( )( ), dW x x t t t      


−
  = −     (1) 

where ( )t   is the complex conjugate of the mother wavelet function ( )t ,   introduces time-

scaling and   introduces time-shifting. This integral function (1) is a cross-correlation function 

between time series ( )x t  and time-scaled/shifted wavelet ( )( )t  − .  

Consider the Gabor wavelet that is defined as follows: 

 ( ) ( )( )( ) ( )( )2

2
1

2
: , , exp expt t t


       = − − − −i   (2) 

where parameter   controls the width of the ‘bell-shaped’ Gaussian. The Gabor wavelet is a 

Gaussian function modulated by a complex sinusoidal term. This mother wavelet is complex, the real 

part is symmetric and the imaginary part is anti-symmetric. It is worth comparing this with the Ricker 

(Mexican hat) wavelet:  

   ( ) ( )( )( ) ( )( )( )2 2

2 2
1 1

0.25 2

2
: , , exp 1

3
t t t

 
       

 
= − − − −   (3) 

which replaces the complex sinusoidal term with a real and symmetrical quadratic polynomial. The 

Ricker wavelet may appear attractive as the resulting cross-correlation (equation  (1)) is real. However, 

the symmetry of this wavelet means using it introduces bias towards detecting symmetrical pulses. 

The Gabor wavelet (composed of both symmetrical and anti-symetrical components) is more general. 

Nevertheless, to plot the CWT, W x  (using the Gabor wavelet) requires ploting this function at some 

phase angle. Therefore, we are again back with the same problem of biasing the results towards a 

particular mix of symmetrical and anti-symmetrical pulses.  

Figure 1 displays the absolute imaginary component of CWT, W x  function, for the Gabor wavelet 

and the ground motion no 1 of the near-fault ensemble (section 3.1) (for the case of pulse width 

parameter 1 = ).  Consider the series of maxima at around ( )8, 2 2  = = . The series of closely 

spaced maxima in the cross-correlation functions ( )Im W x is caused by fixing a particular phase angle 

for this section through W x . 
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Figure 1. Absolute imaginary component of CWT for ground motion no 1 of the near-fault ensemble (section 3.1) and 

using a Gabor (Morlet) wavelet with 1 = . 

 

Thus, we have an ambiguity in precisely locating the position of a pulse. Therefore, the weaknesses 

of the CWT for pulse extraction are as follows: 

(i) Only two parameters are modified, i.e. time-shifting   and time-scaling 1    

(ii) The mother wavelet function choice is important e.g. if it is symmetric (like the Ricker wavelet), 

then it is biased towards the identification of symmetrical pulses and even for complex wavelets, like 

the Gabor wavelet, the problem of specifying a particular optimal phase angle remains.  

(iii) The width of the wavelet scales with frequency  , but it is adjusted by the arbitrary parameter 

  (in both equations (2) and (3)). We need to specify   and its optimal value is a priori unknown. 

(iv) The use of the cross-correlation function, in the CWT, means we cannot determine a good 

match for the amplitude of the pulse. This is because the cross-correlation function normalisation 

removes the possibility of determining optimal amplitude scaling. Thus, we would need to adopt an 

additional least square fit process to determine the optimal amplitude for the pulse. Given these four 

problems, we chose to abandon conceptually the wavelet transform, and opt for a more brute-force 

global least squares fit approach, which gives the user complete freedom to identify position, frequency, 

phase and amplitude of the pulse within a time-series.  

2.2 Global nonlinear least-squares using genetic algorithm  

Let ( )0 a t  represent a ground motion time history. This original ground motion is approximated by

( )ˆ  na t , which is a partial, n-component, Gaussian-Fourier series of the following form: 

 ( )0

1

ˆ ˆ( ) ( )
n

in

i

a t a t a t
=

=          (4) 

 
( )

( )
2

1
ˆ ( : , , ) exp si, n

2 2
,

i i

i i i i i i i i

i

i

t
a t A A t

 
    



 − 
 = − + 
   

  (5) 

where , ,,1i i iiA  and i  are time-shift, time-scale, amplitude-scale, pulse width, and phase 

angle respectively. This Gaussian-Fourier series can be viewed as an analogous (real) version of the 
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Gabor wavelet. Each Gaussian wave packet is defined in terms of five parameters. Hence, the equation 

(4) is defined by 5n parameters. The determination of these 5n parameters is a difficult numerical 

process. This nonlinear global optimization problem can be very arduous for even state-of-the-art 

solvers. The optimization toolbox in MATLAB [31] contains a number of different approaches using: 

(i) GlobalSearch, (ii) MultiStart, (iii) Patternsearch, (iv) Particleswarm, (v) Geneticalgorithm, and (vi) 

Simulated annealing. Regardless of which method is adopted, it would be impossible to fit an n-

component Gaussian-Fourier series in a reasonable computational time on today's hardware. Thus, this 

problem is solved by seeking to fit just a single Gaussian-Fourier component at a time. Hence, one 

component ( )ˆ
ia t at a time is determined by solving the following constraint optimization problem: 

 

( )

( ) ( )

 

 

 

 

1 2

max min

ˆminimize    ,

subject x

, ,

to : ma ,max

2 ,2

0,

0,1

0,

,

4

ii ii i

d

i i

i

i

i

i

i

F A a a

A a a

T T

t

   

  





 

−= −

 −  









  (6) 

where td is the duration of the ground motion; Tmin and Tmax are minimum and maximum periods of 

the Gaussian wave packet in the search process. These two periods specify a period range, which 

accounts for periods of dominant modes of the structure as well as the expected nonlinear, period 

elongation effects. In this work, the genetic algorithm approach is adopted as it is robust, relatively 

quick, reasonably accurate, and can handle problems with constraints. It was found that the 

GlobalSearch methods using fmincon() can produce fractionally better fits at an unreasonable 

computational expense. The equation (6) is solved using ga() MATLAB algorithm. The problem with 

using the ga() algorithm is that it is susceptible to the initial random seed. Therefore, to mitigate this 

effect, the ga() algorithm is run repeatedly ten times, and then, the best solution obtained is selected. 

While this appears computationally inefficient, in practice, it stabilizes the results, producing 

repeatability. Nevertheless, it is still far computationally more efficient than other global optimizers. 

Once the first optimal wave packet is determined through the equation (6), it is subtracted from the 

original signal ( )1ia t− , defined in the equation (7):  

 
1

ˆ( ) ( ) ( )ii ia t a t a t−= −                                                              (7) 

Thus, the stages of this optimization are (i) determine a single optimal wave packet ˆ ( )ia t for a given 

target signal ( )1ia t−  (ii) subtract this optimal wave pack ˆ ( )ia t from the target signal ( )1ia t−  to obtain 

a new target signal ( )ia t and (iii) repeat until the n-component Gaussian-Fourier wave packets are 

determined.  

Note that this piecemeal solution to the problem is sequence-dependent. All MATLAB global 

optimization algorithms will attempt to find the apparent global optima in a given finite time or 

function evaluations. This process does not guarantee a global optimum. The internal path of the search 

is not defined by the user. The algorithms, and notably the genetic algorithm, does not always follow 

the same path when an analysis is repeated. Thus, the sequence of extracted wave packets is not 

necessarily unique or magnitude sorted. Therefore, after all the required Gaussian wave packets are 

extracted, they are rank sorted according to their Euclidean norm.      

3. Application of Proposed Method  
In this section, 84 ground motions are used (section 3.1) to demonstrate the application of the 

proposed method in decomposition and minimal representation of ground motions (section 3.2), as 

well as reconstruction of elastic and inelastic response spectra (section 3.3).   
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3.1 Ground motion database   
In this work, two ensembles of ground motions are used. The first ensemble comprises 40 near-

fault ground motions, and the second ensemble is composed of 44 far-fault ground motions. The 40 

near-fault ensemble [15] is given in Appendix, Table 1. The 44 far-fault ensemble is given in FEMA 

P659 [32] and contains 22 pairs of horizontal ground motions from sites located within a distance 

greater than 10 km from fault rupture (see Appendix, Table 2). 

3.2 Decomposition results and discussion 
The application of the decomposition method proposed in section 2 is demonstrated here. The 

minimum and maximum periods for the component extraction are taken as 0.1 s and 1.5 s, respectively. 

This is because the periods of the extracted components fall within the period range of ordinary 

structures ([33], [8]). Figure 2 shows the ability of the proposed method to reconstruct original ground 

motion no.1 of the near-fault ensemble, where 1 to 5 decomposed components are used (e.g. 

components of the Gaussian-Fourier wave packet function in equations (4) and (5)). Figures 2(a)-2(e) 

illustrate the reconstructed acceleration time history. The higher number of components results in a 

better reconstruction of the ground motion. This is seen clearly in the elastic acceleration response 

spectra of the original and reconstructed ground motion shown in Figures 2(f)-2(j). A larger number 

of components gives a better reconstruction of the elastic response spectrum too. The first component 

reconstructs the peak spectral acceleration around the period of 0.5 s (Figure 2(f)), and the second 

component improves the response spectrum approximation for longer periods (Figure 2(g)). The third 

component captures the second peak (Figure 2(h)), and the fourth component reconstructs spectral 

accelerations at lower periods (Figure 2(i)). The signal in Figure 2(e) does not look visually similar to 

the waveform conventionally expected for a recorded earthquake. Nevertheless, the elastic response 

spectrum fits reasonably well using just the first five largest Gaussian wave packet components, as 

seen in Figure 2(j).  

 
Figure 2. Reconstruction of ground motion no. 1 of the near-fault ensemble and its corresponding elastic response spectrum: 

(a) 1 component ground motion, (b) 2 components ground motion, (c) 3 components ground motion, (d) 4 components 

ground motion, (e) 5 components ground motion, (f) 1 components response spectrum, (g) 2 components response 

spectrum, (h) 3 components response spectrum, (i) 4 components response spectrum, and (j) 5 components response 

spectrum. 

Figure 3 compares the acceleration time history and elastic acceleration response spectrum of the 

ground motion no.1 of the near-fault ensemble with those of the reconstructed ground motion using 

15 components. It shows that the proposed method can capture very well the underlying frequency 
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banded trends in the peak ground motion values while maintaining time localization (see Figure 3(a)). 

Additionally, it estimates the elastic response spectrum of the original ground motion with a good 

tolerance over a wide range of periods. Note that the high-frequency content (above 5Hz) constitutes 

most of the difference in the fit (in the time-domain). Other than for the case of very stiff structures, 

this high-frequency content acts as noise on a much lower frequency underlying trend signal.  

 
Figure 3. Reconstruction of: (a) ground motion no. 1 of the near-fault ensemble, and (2) its corresponding linear elastic 

response spectrum, using 15 components. 

Figure 4 compares the velocity and displacement time histories and their corresponding response 

spectra of the ground motion no.1 of the near-fault ensemble with those of the reconstructed ground 

motion using 15 components. Unlike the acceleration time history, the velocity time history contains 

less high-frequency components, and hence, the low-frequency decomposed components approximate 

the original velocity time history with a higher accuracy (Figures 4(a) and 4(c)). Further, the 

displacement time history is mostly composed of low-frequency components, and thus, a more 

accurate reconstruction is achieved (Figures 4(b) and 4(d)).  

Figures 5(a)-5(e) show the parameters of the extracted components for the exemplar ground motion 

in Figure 3. The amplitude of the components, 
iA , could be positive or negative depending on 

capturing the best fit to the ground motion (Figure 5(a)). The circular frequency of the extracted 

components, 
i  , falls within the range of 4.2 rad/s to 26.1 rad/s (Figure 5(b)), which corresponds to 

the period range of 0.24s to 1.5 s, respectively. The phase of each component (Figure 5(c)), 
i . the 

time-shift parameter, 
i  (Figure 5(d)) localizes each component in the time domain (the feature that is 

averaged out and 'lost' in the Fourier Transform), and the variance, 
i , characterizes the width of the 

components (Figure 5(e)). As shown in Figure 5(f), the fit quality of each component (i.e. the ratio of 

Euclidean norm of the component-to-original ground motion), reduces as the number of the component 

increases. This was expected as the components are ranked sorted based on their Euclidean norm.  

Unlike other intensity measures such as peak acceleration, peak velocity, and ordinates of spectral 

acceleration, input energy simultaneously reflects multiple characteristics and strength of a ground 

motion ([22], [23], [24]). So, the ith component-to-original ground motion energy ratio, βi, for the 

near-fault and far-fault ensembles, is given by: 

 
( )( )

( )( )

2

2

0

ˆ d

d

i

i

a t t

a t t
 =




  (8) 

https://uk.mathworks.com/help/matlab/ref/norm.html#bvhji30-1
https://uk.mathworks.com/help/matlab/ref/norm.html#bvhji30-1
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Moreover, the cumulative energy ratio is determined by: 

 

( )( )

( )( )

2

1

2

0

ˆ d

d
i

i

j

jc

a t t

a t t


=
=




  (9) 

 
Figure 4. Reconstruction of ground motion no. 1 of the near-fault ensemble: (a) velocity time history, (2) displacement 

time history, (3) elastic velocity spectrum, and (4) elastic displacement spectrum, using 15 components. 

 
Figure 5. Parameters of each component for ground motion no. 1 of the near-fault ensemble: (a) amplitude, (b) circular 

frequency, (c) phase, (d) timing, (e) variance, and (f) fit quality. 

The energy ratio and cumulative energy ratio of each component depends on the frequency (or 

period), variance, and amplitude of the component. Figure 6 shows the energy ratio and cumulative 

energy ratio for the first 30 extracted components of the near-fault and far-fault ensembles. As seen in 

Figures 6(a) and 6(b), for both ground motion ensembles, the energy ratio reduces for higher 

components. For component numbers larger than 10, the energy ratio is less than 5% for both ground 

motion ensembles, and hence, only the first 10 components of a ground motion could suffice to 

reconstruct the original ground motion with reasonable accuracy within the period range of 0.1-1.5 s.  
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It should be noted that the ground motion might contain high-energy ratio components outside the 

period range of interest. As seen in Figures 6(c) and 6(d), the cumulative energy ratio reaches over 90% 

for some ground motions using only the first few components, which means high-energy components 

of these ground motions exist within the range of 0.1-1.5 s. These ground motions are visually located 

at the top of Figures 6(c) and 6(d). For example, for the topmost cumulative energy ratio, ground 

motion no. 17 (see Figure 6(c)), 90% of the total energy of the ground motion is reached using the first 

eight components within a period range of 0.1-1.5 s. However, for some ground motions, even using 

the first 30 components, the cumulative energy ratio does not exceed 60%, which implies some high-

energy components of these ground motions fall outside the used period range. These ground motions 

are visually located at the bottom of Figures 6(c) and 6(d). For example, for the bottom-most 

cumulative energy ratio, ground motion no. 12 (Figure 6(c)), the cumulative energy ratio reaches 46% 

using the first 30 components.  

 
Figure 6. (a) The component-to-original energy ratios, near-fault ensemble, (b) component-to-original energy ratios, far-

fault ensemble, (c) cumulative component-to-original energy ratios, near-fault ensemble, and  (d) cumulative component-

to-original energy ratios, far-fault ensemble. [ ] implies a unit-less quantity on axis. 

An alternative widely used intensity measure is the Cumulative Absolute Velocity (CAV), which 

shows the continuous accumulation of the acceleration during an earthquake ([34], [35]). The ith 

component-to-original ground motion CAV ratio, Γi, for the near-fault and far-fault ensembles, is given 

by: 

 
( )

( )0

ˆ d

d
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and, the cumulative energy ratio is determined by: 
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Figure 7 shows the CAV ratio and cumulative CAV ratio for the first 30 extracted components of 

the near-fault and far-fault ensembles. As seen in Figures 7(a) and 7(b), like with energy ratios, the 

CAV ratios generally reduces for higher components. However, the energy ratio and cumulative 
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energy ratio curves are smoother compared to the CAV ones. This is because the CAV ratio curves 

contain more high-frequency components caused by the slope-discontinuity introduced by the absolute 

function.  

 
Figure 7. (a) The component-to-original CAV ratios, near-fault ensemble, (b) component-to-original CAV ratios, far-fault 

ensemble, (c) cumulative component-to-original CAV ratios, near-fault ensemble, and  (d) cumulative component-to-

original CAV ratios, far-fault ensemble. 

The capability of the proposed method to detect dominant components of a ground motion within 

a specific period range is very beneficial in the seismic analysis of structures. A single dominant 

component is not necessarily a good representative of the original ground motion for the purpose of 

structural analysis. For linear structural systems more modes play a significant role in the total 

structural response.  For nonlinear structural system fewer 'modes' play a significant role but these 

'modes' change their frequencies with increasing ductility. Hence for both linear and nonlinear systems,  

it is unlikely that a single pulse (frequency component) will be sufficient in general.   

Figures 8 and 9 show periods, amplitudes, and energy ratios of the near-fault and far-fault ensembles 

for the first three components. The extracted periods are within the range of 0.1-1.5 s, as mentioned 

above. The decomposition can be carried out for a narrow/wider range of periods if required. The 

period range of the decomposition depends on the fundamental period of the structure, intended for 

nonlinear seismic analysis. Comparing the periods and amplitudes of the extracted components 

demonstrates that higher components do not necessarily give shorter periods (higher frequencies) or 

larger amplitudes (see Figures 8(a)-8(f) and 9(a)-9(f)). However, from the energy ratio of the 

components, it is clear that higher components have lower energy ratios (see Figures 8(g)-8(i) and 

9(g)-9(i)). This means that the dominant components of a ground motion are those, which collectively 

generate most of the total energy of the original ground motion. Therefore, using the proposed 

decomposition method here, the energy ratio of the components can be interpreted as the pulse 

indicator of the component. A larger energy ratio of the component shows a higher pulse feature of the 

component. This interpretation is regardless of whether the ground motion is a near-fault or far-fault 

record. In particular, for ground motion no 17, 18, and 6 of the near-fault ensemble, the first component 

provides 66%, 45%, and 42% of the total energy of the ground motion, respectively (see Figure 8(g)).  

On the other hand, for ground motion no. of 36, 6, and 39 of the far-fault ensemble, the first component 

contains 53%, 50%, and 43% of the total energy of the ground motion, respectively (see Figure 9(g)). 
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Figure 8. The properties of the first three components for the near-fault ensemble: (a) periods of the first component, (b) 

periods of the second component, (c) periods of the third component, (d) amplitudes of te first component, (e) amplitudes 

of the second component, (f) amplitudes of the third component, (g) energy ratios of the first component, (h) energy ratios 

of the second component, and (i) energy ratios of the third component. 
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Figure 9. The properties of the first three components for the far-fault ensemble: (a) periods of the first component, (b) 

periods of the second component, (c) periods of the third component, (d) amplitudes of the first component, (e) amplitudes 

of the second component, (f) amplitudes of the third component, (g) energy ratios of the first component, (h) energy ratios 

of the second component, and (i) energy ratios of the third component. 

3.3 Comparison of elastic response spectra 

The proposed method in section 2 is adopted to reconstruct elastic and inelastic response spectra of 

the near-fault and far-fault ensembles. Figure 10 shows the elastic acceleration response spectra of the 

original and reconstructed ground motions for the near-fault and far-fault ensembles. The original 

elastic acceleration response spectra are shown in Figures 10(a) and 10(c), for near-fault and far-fault 

ensembles, respectively. The corresponding reconstructed elastic acceleration response spectra are 

illustrated in Figures 10(b) and 10(d) using the first 15 components. Comparing the original and 

reconstructed elastic acceleration response spectra for both near-fault and far-fault ensembles shows 

the robustness of the proposed method in replication of elastic acceleration response spectrum for a 

ground motion. This is seen more clearly when we compare the mean original and mean reconstructed 

acceleration response spectra for both near-fault and far-fault ensembles (see Figures 10(e) and 10(f)). 

Figure 11 compares mean elastic acceleration response spectra of the original and reconstructed ground 

motions with a different number of components for near-fault and far-fault ensembles. As seen, a 

higher number of components captures more features of the original ground motions, and thus, a more 

precise elastic response spectrum is reconstructed.  

 
Figure 10. Elastic acceleration response spectra for: (a) original near-fault ensemble, (b) 15-component near-fault 

ensemble, (c) 15-component far-fault ensemble, (d) 15-component far-fault ensemble, (e) mean near-fault ensemble, and 

(f) mean far-fault ensemble. 
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Figure 11. Mean elastic acceleration response spectra for original, 5, 10, and 15 components: (a) near-fault ensemble, and 

(b) far-fault ensemble. 
3.4 Comparison of inelastic response spectra 

For the construction of inelastic response spectra in this study, the single degree of freedom (SDOF) 

with the Bouc-Wen hysteresis model is analyzed. Both near-fault and far-fault ensembles are used as 

input. The non-dimensionalized hysteretic Bouc-Wen model ([36],[37],[38]) is used to model the 

inelastic behaviour of SDOF structures:  

 ( )22 ,
g

y

a
f

u
    + + = −   (9) 

where ξ is damping ratio; ω is the circular frequency of the structure; μ is ductility, / yu u , in which 

u is displacement, and yu  is the displacement at which the system exhibits yield; ( ),f    is the 

normalized nonlinear (hysteretic) force and ga  is the ground motion accelerogram. To specify yield, 

we define the total acceleration response at the yield 
2

Ty ya u= , and hence 
2

y Tyu a = . Tya is taken 

0.3g in this study. Conventionally, in the standard Bouc-Wen model form, the normalized nonlinear 

force is given by:  

  ( ) ( ), 1f z   = + −   (10) 

where the internal degree of freedom z is defined by:  

 ( ) ( )( )( )1
1 sgn

1

r

v

r

z B z z     
 

= − + +
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  (11) 

where , , ,B r   are dimensionless parameters that control the shape of the hysteretic loops; 
v  and 

r are dimensionless parameters that incorporate strength and stiffness degradation, respectively;  is 

the normalized dissipated energy:  

 ( )
0

1 d
t

z t  = −    (12) 

Often 1B  = = +  is considered for smooth softening hysteretic characteristics of structures 

([39],[40],[41]).  For degradation parameters, these ranges have been recommended:  0,0.3r   and 

 0,0.05v  ([42],[43]). In this work, 
r  and 

v  are taken 0.05 and 0.15, respectively. Figure 12 

shows inelastic analysis results of an SDOF with a period of 0.75 s subject to ground motion no. 1 of 

the near-fault ensemble with a scale factor of 0.5g. As particularly seen in Figure 12(c), the ductility 
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reaches a maximum value of around 4, and the behaviour of the Bouc-Wen hysteresis model is shown 

in Figure 12(a).   

Figure 13 shows the inelastic acceleration response spectra of the original and reconstructed ground 

motions for the near-fault and far-fault ensembles. The original inelastic response spectra are shown 

in Figures 13(a) and 13(c), for the near-fault and far-fault ensembles, respectively. The corresponding 

reconstructed inelastic response spectra are illustrated in Figures 13(b) and 13(d) using the first 15 

components. As seen, the reconstructed inelastic acceleration response spectra approximate well the 

original ones for both near-fault and far-fault ensembles. Further, the mean reconstructed inelastic 

acceleration response spectrum is compared with its original counterpart for the near-fault and far-

fault ensembles in Figures 13(e) and 13(f). Also in this case a very good match is observed between 

the mean original and reconstructed inelastic acceleration response spectra.  

Figure 14 shows the mean inelastic acceleration and ductility response spectra. The 5-component 

acceleration response spectrum is in good agreement with the original response spectrum for the far-

fault ensemble (see Figure 14(b)), while for the near-fault ensemble, a higher number of components 

(around ten components) is required to reach a good match for the acceleration response spectra (see 

Figure 14(a)). Additionally, the reconstructed ductility response spectrum gives a good fit using the 

five components for the near-fault ensemble (see Figure 14(c)). However, for the far-fault ensemble, 

using even 15 components is not sufficient, and a higher number of components needs to be considered 

to reach a precise fit. For the ductility and acceleration demands, a different number of components is 

needed to reach a good match with the original response spectra.  

 
Figure 12. Bouc-Wen model results for an SDOF structure with a period of 0.75 s subject to ground motion no. 1 of the 

near-fault ensemble with the scale factor of 0.5g: (a) non-dimensionalized stiffness force versus ductility, (b) the ground 

motion and response acceleration, and (c) ductility time history.  
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Figure 13. Inelastic acceleration response spectra for: (a) original near-fault ensemble, (b) 15-component near-fault 

ensemble, (c) original far-fault ensemble, (d) 15-component far-fault ensemble, (e) mean near-fault ensemble, and (f) mean 

far-fault ensemble. 

 
Figure 14. Mean inelastic for original, 5, 10, and 15 components: (a) acceleration, near-fault ensemble, (b) 

acceleration, far-fault ensemble, (c) ductility, near-fault ensemble, and (d) ductility, far-fault ensemble. 
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4. Conclusions 

In this study, a new method is proposed to represent a ground motion with a minimal number of 

time-localized wave-packet components within a specific period range. A Gaussian-Fourier series is 

used to approximate the original ground motion. The parameters of this series are obtained by solving 

a nonlinear global optimization problem using a genetic algorithm approach. To demonstrate the 

accuracy and efficiency of the proposed method, two ensembles of ground motions, including one 40 

near-fault and one 44 far-fault ground motions are used, and the reconstructed ground motions and 

response spectra are compared with their original counterparts.  

The elastic and inelastic response spectra of the original ground motions and those from the 

proposed method were generated for the near-fault and far-fault ensembles. It was found that the elastic 

response spectra of the original ground motion can be regenerated within a reasonable precision, and 

the number of components of the approximation depends on the frequency content of the ground 

motion and the period range selected. The inelastic responses, obtained using a Bouc-Wen model, also 

showed that the partial Gauss-Fourier decomposition could accurately replicate the inelastic response 

spectra. Overall, the proposed method was seen to be very efficient and precise in the reconstruction 

of a ground motion and its corresponding response spectra with a minimal number of components.  

Thus, we observe that, in general, earthquakes cannot be accurately characterized by a single pulse-

like component. For linear systems, many more components are necessary, namely, on average, as 

many as ten pulse-like components may be required to match response accelerations across a whole 

spectrum. In contrast, for nonlinear structural responses, only five pulse-like components may be 

required on average to match ductility demand across a whole spectrum. A comparison between the 

mean ductility demand spectra for the near-fault and far-fault records suggests that the near-fault 

records, on average, can be successfully approximated by far fewer pulse components. This suggests 

that the near-fault records are more pulse-like with respect to ductility demand. This opens up an 

alternative metric for the selection of pulse-like records, namely, the records that five or fewer pulses 

can approximate.  

For the case of a particular nonlinear structural system of known 'modal' frequencies, it is possible 

that fewer than 5, carefully selected, pulse-like components from a very narrow period range may be 

effective in the analysis. These critical pulses can be easily extracted using the proposed algorithm by 

specifying this narrow period range in the constraints of the global optimisation. This suggests that the 

ground motion acceleration time series contains a much simpler signal obscured by a lot of 'noise' 

which produces no significant structural responses. Many researchers have attempted to characterise 

ground motions as pulse-like or non-pulse-like by considering just a single pulse component of the 

ground motion. Results presented in this paper suggest, regrettably, that  describing a ground motion 

as pulse-like or non-pulse-like must be done with reference to a specific period range (of the structural 

system it is forcing) and should not generally be done using just a single pulse component. 

The current study applies the proposed method only to the elastic and inelastic SDOFs. Hence it is 

an open question what precisely the results will be for cases of real-life multi-degree-of-freedom 

structures with more complicated nonlinear behaviour. Thus, further research is required to investigate 

the performance of the method in approximation of a ground motion for real-life structures such as 

bridges, steel frames, and concrete shear walls. 
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Appendix  
Table 1. The near-fault ground motion ensemble. 
No Earthquake Name Year Station Name Magnitude 

1 Imperial Valley-06 1979 EC County Center FF 6.53 

2 Imperial Valley-06 1979 EC Meloland Overpass FF 6.53 

3 Imperial Valley-06 1979 El Centro Array #4 6.53 

4 Imperial Valley-06 1979 El Centro Array #5 6.53 

5 Imperial Valley-06 1979 El Centro Array #6 6.53 

6 Imperial Valley-06 1979 El Centro Array #7 6.53 

7 Imperial Valley-06 1979 El Centro Array #8 6.53 

8 Imperial Valley-06 1979 El Centro Differential Array 6.53 

9 Morgan Hill 1984 Coyote Lake Dam (SW Abut) 6.19 

10 Loma Prieta 1989 Gilroy - Gavilan Coll. 6.93 

11 Loma Prieta 1989 LGPC 6.93 

12 Landers 1992 Lucerne 7.28 

13 Landers 1992 Yermo Fire Station 7.28 

14 Northridge-01 1994 Jensen Filter Plant 6.69 

15 Northridge-01 1994 Jensen Filter Plant Generator 6.69 

16 Northridge-01 1994 Newhall - Fire Sta 6.69 

17 Northridge-01 1994 Newhall - W Pico Canyon Rd. 6.69 

18 Northridge-01 1994 Rinaldi Receiving Sta 6.69 

19 Northridge-01 1994 Sylmar - Converter Sta 6.69 

20 Northridge-01 1994 Sylmar - Converter Sta East 6.69 

21 Northridge-01 1994 Sylmar - Olive View Med FF 6.69 

22 Kobe, Japan 1995 KJMA 6.90 

23 Kobe, Japan 1995 Takarazuka 6.90 

24 Kocaeli, Turkey 1999 Gebze 7.51 

25 Chi-Chi, Taiwan 1999 CHY028 7.62 

26 Chi-Chi, Taiwan 1999 CHY101 7.62 

27 Chi-Chi, Taiwan 1999 TCU049 7.62 

28 Chi-Chi, Taiwan 1999 TCU052 7.62 

29 Chi-Chi, Taiwan 1999 TCU053 7.62 

30 Chi-Chi, Taiwan 1999 TCU054 7.62 

31 Chi-Chi, Taiwan 1999 TCU068 7.62 

32 Chi-Chi, Taiwan 1999 TCU075 7.62 

33 Chi-Chi, Taiwan 1999 TCU076 7.62 

34 Chi-Chi, Taiwan 1999 TCU082 7.62 

35 Chi-Chi, Taiwan 1999 TCU087 7.62 

36 Chi-Chi, Taiwan 1999 TCU101 7.62 

37 Chi-Chi, Taiwan 1999 TCU102 7.62 

38 Chi-Chi, Taiwan 1999 TCU103 7.62 

39 Chi-Chi, Taiwan 1999 TCU122 7.62 

40 Chi-Chi, Taiwan 1999 WGK 7.62 
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Table 2. The far-fault ground motion ensemble. 
No  Component 1 Component 2 PGAmax (g) PGVmax (cm/s) 

1,2 NORTHR/MUL009 NORTHR/MUL279 0.52 63 

3,4 NORTHR/LOS00 NORTHR/LOS270 0.48 45 

5,6 DUZCE/BOL000 DUZCE/BOL090 0.82 62 

7,8 HECTOR/HEC000 HECTOR/HEC090 0.34 42 

9,10 IMPVALL/H-DLT262 IMPVALL/H-DLT352 0.35 33 

11,12 IMPVALL/H-E11140 IMPVALL/H-E11230 0.38 42 

13,14 KOBE/NIS000 KOBE/NIS090 0.51 37 

15,16 KOBE/SHI000 KOBE/SHI090 0.24 38 

17,18 KOCAELI/DZC180 KOCAELI/DZC270 0.36 59 

19,20 KOCAELI/ARC000 KOCAELI/ARC090 0.22 40 

21,22 LANDERS/YER270 LANDERS/YER360 0.24 52 

23,24 LANDERS/CLW-LN LANDERS/CLW-TR 0.42 42 

25,26 LOMAP/CAP000 LOMAP/CAP090 0.53 35 

27,28 LOMAP/G03000 LOMAP/G03090 0.56 45 

29,30 MANJIL/ABBAR--L MANJIL/ABBAR--T 0.51 54 

31,32 SUPERST/B-ICC00 SUPERST/B-ICC090 0.36 46 

33,34 SUPERST/B-POE270 SUPERST/B-POE360 0.45 36 

35,36 CAPEMEND/RIO270 CAPEMEND/RIO360 0.55 44 

37,38 CHICHI/CHY101-E CHICHI/CHY101-N 0.44 115 

39,40 HICHI/TCU045-E CHICHI/TCU045-N 0.51 39 

41,42 SFERN/PEL090 SFERN/PEL180 0.21 19 

43,44 FRIULI/A-TMZ000 FRIULI/A-TMZ270 0.35 31 

 


