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A B S T R A C T   

Bones are continuously remodeled (resorbed and regenerated) to allow fracture healing and skeleton adaptation 
to stress. When excessive resorption occurs, bone microstructure is deteriorated, leading to osteoporosis. At early 
stages, osteoporosis usually has no symptoms; most people are diagnosed when a fracture occurs due to disease 
severity. To prevent fractures, technologies have been developed to identify high risk population eligible to 
treatment. Fracture risk has been assessed by analyzing the interaction of different energy stimulus with bone 
tissues as well as by statistical models that evaluate multiple clinical risk factors. The most applied methods are 
Dual-energy X-ray Absorptiometry and Fracture Risk Assessment tool. As they present some limitations, other 
technologies have been proposed for such purpose. A survey of the currently applied and emerging methods is 
here presented in order to provide a scenario of the technological challenges and trends to diagnose osteoporosis.   

1. Introduction 

Osteoporosis affects 200 million women [1]. For the population over 
50 years old, it is estimated that the percentages of men and women with 
osteoporosis are, respectively: 16.0% and 29.9% in the USA [2], 6.8% 
and 22.5% in European Union [3], 6% and 23% in Australia [3], 6.46% 
and 29.13% in China [4]. In Latin America, estimates of hip fractures for 
women and men aged from 50 to 64 years old indicate an increase of 
400% between 1990 and 2050; a growth around 700% for the popula-
tion over 65 years old [1]. In Brazil, over 10 million people have oste-
oporosis (one in 17 people); however, only a third of patients with 
osteoporotic hip fracture is diagnosed and a fifth of such patients re-
ceives treatment [5,6]. 

In six European nations (France, Germany, Italy, Spain, Sweden, and 
the UK), 2.7 million osteoporotic fractures occur every year with an 
associated healthcare expenses of US$40.7 billion; it is expected a 23% 
cost increase by 2030 (US$ 51.7 billion) [7]. Among Medicare benefi-
ciaries (American Healthcare Trust Fund), there were 2.3 million oste-
oporotic fractures in 2015; costs of US$57 billion were estimated in 
2018 with an expected increase over US$95.2 billion in 2040. Such 

estimates take into account the population aging and growth [8]. 
Bones provide structural support for locomotion, protection of in-

ternal organs, calcium and phosphate storage, as well as produce hor-
mones to regulate mineral and energy metabolism [9]. Total bone mass 
is composed of, approximately, 80% of cortical tissue and 20% of 
trabecular tissue, but their proportion varies in each bone, establishing 
the bone’s strength. For example, long bones have more cortical tissue 
and vertebrae contain more trabecular one [10]. Trabecular bone is less 
dense and more flexible and fragile than cortical bone, presenting higher 
metabolic activity [11]. 

During their life cycles, bones are continuously renewed through a 
remodeling process (composed of two phases resorption and regenera-
tion) for skeleton adaptation to mechanical stress as well as for fracture 
healing. Bone resorption without proper reposition by specialized cells 
reduces mass and causes micro architectural deterioration of the tissue. 
When a clinically significant imbalance occurs, the individual is diag-
nosed with osteoporosis; that is, a systemic skeletal disease that causes 
bone fragility and susceptibility to fracture [12]. Osteopenia is also 
associated to reduced bone mineral content, being less severe than 
osteoporosis. After the age of 20, bone resorption becomes predominant 
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in men and its mineral content declines about 4% per decade. Females 
generally maintain the peak mineral content until menopause; there-
after, it declines about 15% per decade [13], first affecting the trabec-
ular bone [12]. Osteoporosis affects to all old individuals [14]. Above a 
third of older women and a quarter of older men have fractures related 
to fragile bones [8]. Some people have osteoporosis at an earlier life 
stage due to illness, medication or hormonal deficiency [15]. Frequent 
intake of glucocorticoids (recommended for inflammatory rheumatic 
diseases and lung disorders) doubles the risk of fractures in both sexes 
[16]. Other risk factors are: smoking, alcoholism, physical inactivity, 
and improper diet. Based on the etiology, osteoporosis is classified as 
primary (due to genetic illnesses and aging) or secondary (caused, for 
example, by immunosuppressive drugs). 

Osteoporosis has no symptoms and most people are diagnosed when 
fracture occurs due to disease severity [17,18]. Such fractures lead to 
chronic health problems. Its global impact is increasing due to popula-
tion aging, demanding worldwide efforts to prevent bone fractures [11, 
19,20]. Screening to find out high risk population eligible to treatment 
(among others, administration of calcium and vitamin D) may reduce 
social and economic burden. 

A common diagnostic test for osteoporosis is bone densitometry. 
Dual-energy X-ray absorptiometry (DXA) is pointed out by the World 
Health Organization (WHO) as the gold standard to measure bone 
mineral density [13]. Based on such measurement, diagnosis of osteo-
porosis and the assessment of fracture risk has been carried out. How-
ever, WHO also suggests the investigation of alternative technologies for 
such purpose [21]. Currently, there is no accepted policy to identify 
patients with high risk of fracture in Europe [22]. Thus, there is a clear 
need for technology development to complement the existing proced-
ures for osteoporosis diagnosis, aiming to improve the results as well as 
to reduce the associated technological costs in order to allow an 

universal coverage. 
Unlike other reviews, this survey does not only focus on current 

methods to assist the osteoporosis diagnosis, but also discusses tech-
nologies that have been investigated to enhance osteoporosis manage-
ment and reduce exam costs. Thus, the reader has a scenario of current 
trends and efforts to develop technologies to characterize bone health. 

The remainder of this text is structured as follows. Section 2 de-
scribes the literature review (database, search terms, inclusion and 
exclusion criteria). Section 3 presents the current technologies available 
in the market to assist osteoporosis diagnosis. Section 4 reports new 
approaches that have been been investigated for this purpose. Section 5 
discusses the current scenario and concludes this review. 

2. Search Methodology 

There is a vast literature on osteoporosis screening methods; thus, it 
was necessary to limit the search scope. Using the words ”osteoporosis +
screening”, search in the Scopus database (title, abstract and keywords) 
resulted in 687 records from 1985 to 2022 (Fig 1). As observed in Fig 1, 
there was significant increase of publications in the last 20 years. It 
shows that the population aging has raised concerns about the impact of 
osteoporosis on public health. 

Search for the words ”osteoporosis + review” found out 33 records 
published between 1968 and 2022 (Fig 2). Most reviews discuss medical 
perspectives on treatments, clinical diagnosis, prevention, and cost- 
effectiveness. Search for the words ”osteoporosis + technologies” had 
only three findings [23–25]. During our searches, a paper was found that 
discusses current applied technologies without presenting new tech-
nologies being investigated for such purpose as carried out in this review 
[26]. 

We could not find any manuscript that surveys current and emerging 

Fig. 1. Number of publications in the field of osteoporosis screening methods in the period between 1985 and 2022 (www.scopus.com, consulted 05/05/2022) 
(Keywords: Osteoporosis + screening). 

Fig. 2. Number of publications in the field of osteoporosis review methods in the period between 1968 and 2022 (www.scopus.com, consulted 05/05/2022) 
(Keywords: Osteoporosis + review). 
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technologies applied to diagnosis of osteoporosis, aiming to provide a 
wide view of the technological challenges in this field. Hence, this re-
view summarizes the working principles of different technologies for 
osteoporosis diagnosis, highlighting their advantages and limitations. 

3. Current Applied Technologies 

Currently, there exist several commercial devices and computer tools 
to assist osteoporosis diagnosis. However, all of them have limitations, 
as pointed out in the following subsections, demanding additional de-
velopments to circumvent them. This section is presented according to 
the structure of Fig 3. 

3.1. Dual-energy X-ray Absorptiometry 

DXA is considered the gold standard for measuring bone mineral 
density (BMD), since it has been intensively investigated and validated 
worldwide. DXA systems generate X-ray beams with two different levels 
of energy. The absorption of the high (e.g. 71 keV) and low (e.g. 39 keV) 
energy beams by the different body tissues allows the quantification of 
BMD. Bone minerals (e.g. calcium) absorb more low energy X-rays 
beams than soft tissues. The attenuation imposed by soft tissues to the X- 
ray beams in body regions without bones is used as a baseline mea-
surement. Bone mineral content is then estimated by subtracting 
attenuation ratio between low and high energy X-rays through tissue 
and bone from the baseline measurement. The system also does a X-ray 
sweep on the region of interest in order to provide images. There are 
differences among DXA systems of different manufacturers regarding to 
X-ray beams generation, energy range, X-ray detectors, and body 
sweeping method [27]. 

BMD (g/cm2) is given by the ratio between the measured bone 
mineral content (grams) and the measured area of the bone (cm2). For 
diagnosis purpose, bone density values are usually reported as standard 
deviation units related to the normal probability density distribution of a 
uniform Caucasian female control group [28], the T-score: 

T-score =
SBMD − μC

σC
(1)  

where SBMD is a new BMD measurement, μC and σC are the mean and the 
standard deviation of the normal distribution, respectively. The refer-
ence values for normal subjects, low bone density (osteopenia), and 
osteoporosis are respectively: T-score ≥ -1, -1 > T-score > -2.5, T-score 

≤ -2.5 [21]. 
BMD should be measured from posterior-anterior spine (L1 to L4, 

excluding the ones with structural damage) and hip (lowest BMD value 
between proximal femur or femoral neck). In case of hyperparathy-
roidism or obesity, BMD may be measured from forearm (1/3 distal 
radius). 

BMD measurements in children, who have not achieved their peak 
bone mass, is carried out by means of the Z-score. Z-score can be 
calculated similarly to Eq. 1, replacing the control group values (mean 
and standard deviation) for those of a matched population taking into 
account the same age range, gender, and ethnicity. Z-score is also rec-
ommended for prior menopausal women and men under 50 years. A Z- 
score of -2.0 or lower is defined as ”below the expected range for age” 
and a Z-score above -2.0 is ”within the expected range for age” [21]. 

Despite being largely used, the analyzes of DXA measurements de-
mand attention. Since BMD is based on X-rays attenuation, lumbar 
vertebra compressed by a fragility fracture may generate measurement 
artifact; a high BMD value may be related to an increased vertebra 
thickness instead of high mineral content. To circumvent that, if a BMD 
measurement obtained for given vertebra is very large when compared 
to the others, it shall be excluded from the calculated indices. 

As mentioned, T-score is calculated using a control group as refer-
ence. Ideally, there should be available an ethnically-defined reference 
database for each examined subject. That is particularly difficult to 
manage in nations with large racial diversity [29]. 

Different manufacturers do not use a common database or a same 
technology to generate their measurements. Therefore, follow-up of 
patients should be conducted in the same facility, same bone region, and 
same device [19]; even though, database or device software may be 
updated. Thus, BMD is more suitable for patient monitoring instead of T 
or Z-scores. Besides, operators should be trained as correct patient 
positioning should be observed [29]. Quality control procedures should 
be weekly followed to assure repeatability of DXA measurements. Such 
aspects hamper the follow-up of patients’ treatment. 

The American College of Physicians points out that there are no 
evidences to recommend DXA monitoring for patients with normal 
BMD, neither during the initial five years of pharmacological treatment 
of osteoporosis [30]. Besides, the cost of DXA devices is high, generally 
over US $35,000. Thus, further development of currently investigated 
technologies may provide more powerful tools to improve osteoporosis 
screening. 

Quantitative indices of hip geometry calculated from DXA images 
have been investigated to assess fracture risk [31,32]. Researchers have 

Fig. 3. Scheme of the current technologies for osteoporosis diagnosis.  

M.A. Oliveira et al.                                                                                                                                                                                                                             



Medical Engineering and Physics 108 (2022) 103887

4

proposed a statistical model based on joint BMD and femur shape 
measurements to improve hip fracture risk assessment when compared 
to that carried out by only T-score [33]. Currently, only proximal hip 
axis length (HAL) index (distance from the inner pelvic brim to the 
greater trochanter) is recommended to assess hip fracture risk of post-
menopausal women [28]. 

It has been pointed out that quantitative indices obtained by DXA 
overlook localized bone weakness, hampering the diagnosis. Comple-
mentary techniques have been proposed to improve the patient’s eval-
uation such as vertebral fracture assessment and trabecular bone score. 

3.1.1. Vertebral Fracture Assessment 
Lateral spine images for vertebral fracture assessment (VFA) may be 

acquired by DXA when measuring BMD. Such method allows a radiation 
dose 200 times lower than that of standard X-ray devices, being less 
expensive [34]. DXA images of vertebrae superior to T7 have inferior 
quality when compared to those of standard radiographs, but their 
fracture is relatively uncommon in older women [35]. 

Fractures have been identified by lateral spine images in patients 
with and without osteoporosis according to the BMD criteria; such 
findings influence the prescription of preventive medication to avoid 
new vertebral and non-vertebral fractures [36]. 

The International Society for Clinical Densitometry (ISCD) recom-
mends VFA when T-score is inferior to -1 associated to one (or more) of 
the following conditions: women above 70 years, men above 80 years, 
height loss superior to 4 cm, previous vertebral fracture, glucocorticoid 
therapy for three months [34]. The United Kingdom National Osteo-
porosis Guidelines Group (UK NOGG) recommends VFA for post-
menopausal women as well as for men age 50 years and older who have 
height loss equal or greater than 4 cm, kyphosis, recent or current 
long-term oral glucocorticoid therapy, or a BMD T-score ≤ -2.5 at either 
the spine or hip, or in cases of acute onset back pain with risk factors for 
osteoporosis [37]. 

3.1.2. Trabecular Bone Score 
Bone resistance to fractures is determined by many factors, such its 

micro and macro structures, BMD, and adjacent tissues (e.g., cartilages, 
muscles). Such complementary factors shall be analyzed when BMD 
alone does not explain increased fracture risk (e.g., presence of desmo-
phytes in vertebral column) [38,39]. 

Trabecular bone score (TBS), obtained from DXA images, indirectly 
assesses the trabecular microstructure. A heterogeneous bone density 
causes irregular photon absorption that can be detected by grey level 
changes among pixels belonging to two-dimensional (2D) lumbar spine 
DXA images. The so-called variogram is the sum of the squared grey 
level differences between pixels at a specific distance. TBS is calculated 
as the slope of the log-log transform of the 2D variogram to characterize 
the rate of grey level amplitude variations. A high TBS value is related to 
fracture-resistant bone [39]. 

Since DXA image resolution (0.5 mm) is not enough to solve bone 
microstructure, TBS is actually related to macroscopic vertebrae features 
resulting from microarchitectural arrangements. TBS is affected by soft 
tissue composition and thickness. Such factors may be compensated by 
software adjustments that take into account body mass index (BMI). As 
TBS comes from DXA images, its measurements depend on proprietary 
manufacturers’ technologies [40,41]. 

Recent work did not find relation between TBS and a vertebral 
fracture severity index based on VFA; the authors suggested the use of 
both indices to characterize bone strength [42]. A similar result was 
found when comparing TBS to quantitative ultrasound (QUS), suggest-
ing that both techniques assess different characteristics of bones [43]. 

TBS has been pointed out as an useful index to assist the osteoporotic 
fracture risk assessment of postmenopausal women and men older than 
50 years [44–46]. It may be also useful to assess patients with osteo-
phytes, since such condition leads to inaccurate BMD measurements [47, 
48]. However, it shall not be used for patients’ follow-up, since its value 

is not proportional to BMD increasing [41,49]. Additional research is 
recommended to better establish its applicability [50–52]. 

3.2. Quantitative Computed Tomography 

Computed tomography (CT) generates cross-sectional images after 
processing multiple X-ray planes acquired at different body angles. For 
that, X-ray beam and detectors are rotated around the patient during the 
exam [53,54]. Thus, a CT scan is assembled based on a set of images 
(usually contiguous) obtained from the area of interest. The grey-scale of 
CT images is associated to the relative attenuation imposed by the 
interrogated structures, being estimated for each region of the 
cross-sectional image. 

Quantitative computed tomography (QCT) allows the analysis of CT 
images beyond a visual radiological evaluation. Quantitative parameters 
are measured from structures and texture of bone images [55–57]; for 
instance, vertebral strength has been estimated by finite element anal-
ysis of QCT scans [58]. 

QCT is generally obtained from lumbar spine and hip by means of 
standard whole-body CT scanners and dedicated software. Other bones 
investigated by QCT are proximal femur, forearm, and tibia [56,59]. 

QCT plays an import role in the osteoporosis diagnosis since it pro-
vides selective trabecular BMD measurement (tissue more affected by 
metabolic diseases) and has superior soft tissue differentiation [60]. 

Since DXA is used as gold standard, its comparison to CT has been 
recently carried out [56,61,62]. For instance, fracture risk indices esti-
mated from DXA-based (two-dimensional) and CT-based (three-dimen-
sional) finite-element models have shown significant correlation [63]. 
However, CT provides a better sensitivity and more accurate data [26, 
59,63]. 

In contrast to DXA, all CT scanners are similarly calibrated [55]. QCT 
is less susceptible to confounding factors such as superimposition of 
overlying structures, spinal degenerative changes, aortic calcification, 
bone size, and BMI [61]. Thus, femoral neck and total hip T-scores 
calculated from two-dimensional projections of QCT data are considered 
equivalent to DXA T-scores for diagnosis of osteoporosis [27]. However, 
movement artifacts during QCT scanning can lead to misinterpretations 
[53]. 

QCT is a complex procedure with low availability, high cost, and 
relative high radiation exposure [26,55,59]. To circumvent these two 
last aspects, researchers propose opportunistic screening when CT scans 
obtained to assess other health conditions (acquired from chest, 
abdomen, pelvis, and spine) are used to diagnose osteoporosis. [61,64, 
65]. 

Multivariate linear regression analysis (MLRA) has been successfully 
applied to QCT, assisting the evaluation of osteoporosis in subjects with 
normal glucose tolerance, impaired glucose tolerance, and diabetes 
[66]. 

A deep learning model was used to analyse processed images of 
upper lumbar vertebrae obtained by means of low dose chest CT, ordi-
narily used for early lung cancer diagnosis. The proposed system had 
good performance to automatically detect osteoporosis and low BMD 
[61]. 

Recently, hip fracture risk prediction was assessed by means of a 
partial least square based statistical model of the proximal femur taking 
into account three-dimensional bone geometry measurements and BMD 
distribution obtained by CT. Results of the proposed model applied to a 
sample group of 100 Caucasian women show that it substantially en-
hances fracture risk prediction when compared to areal BMD measured 
by DXA [67]. 

In a clinical study with 98 prostate cancer patients using a combi-
nation of FRAX (Section 3.5) and mean attenuation of the mid-L5 
vertebra measured from pelvic CT, the assessment of hip fracture risk 
was not significantly improved [68]. Among other factors, the results 
were associated to the small number of only male subjects. 

CT-based and FRAX without BMD (FRAXwb) predictors were 
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investigated to improve the detection of high fracture risk individuals 
[65]. A CT-based prediction tool based on linear regression was devel-
oped, using as input three bone imaging biomarkers along with age and 
sex data; contribution of FRAXwb to the CT-based prediction tool was 
also assessed. The authors concluded that when FRAXwb input is not 
available, the initial evaluation of fracture risk can be carried out 
automatically based on a single abdomen or chest CT. 

Biomechanical computed tomography (BCT) has been proposed to 
identify high fracture risk patients based on both femoral strength and 
hip BMD T-scores [69]. The clinical outcomes were obtained using a four 
states Markov model along a year, which includes: presence and absence 
of hip fractures, osteoporosis treatment, and bone’s death (absorbing 
state). BCT also comprises a virtual stress test, advanced medical image 
processing, bone biomechanics concepts, and non-linear finite element 
analysis to predict typical fracture [70]. 

Cone beam computed tomography (CBCT), used in oral and maxil-
lofacial surgery, has been investigated as a screening tool for early 
detection of osteoporosis and subsequent referral [71]. As advantage, 
CBCT offers lower radiation exposure than QCT. In [72], the diagnosis of 
osteoporosis is proposed for postmenopausal women with normal BMD 
by using a composite osteoporosis index (three-dimensional mandibular 
osteoporosis index: 3D MOI) measured by CBCT. 3D MOI showed good 
performance to assess, qualitatively and quantitatively, osteoporosis in 
the mandibular cortex. 

3.2.1. Peripheral Quantitative Computed Tomography 
Peripheral QCT (pQCT) consists of the application of QCT to 

appendicular skeleton sites, such as arms or legs. Compared to general 
CT scanners, pQCT devices have similar data acquisition and recon-
struction procedures, but have higher mobility, employ less radiation, 
and have lower cost [55,73]. 

High-resolution pQCT (HR-pQCT) allows a much more detailed 
follow up of patients under treatment compared to DXA [74,75]. 
HR-pQCT has also been successfully applied to analyze subchondral 
trabecular bone in patients with medial knee osteoarthritis [76]. 
Assessment of trabecular bone architecture and BMD at the distal radius 
and tibia by HR-pQCT has shown reproducibility and ability to detect 
aging and disease-related changes [77]. 

Lately, finite element (FE) models and pQCT have also been suc-
cessfully applied to compute bone strength and stiffness of forearm (i.e. 
distal radius) [78]. It was observed that FE modelling allows the 
assessment of osteoporotic bone strength. FE modelling was also 
employed to identify patients with peripheral low-trauma fracture. 
Therefore, pQCT-FE enhanced the diagnosis when compared to standard 
pQCT and DXA [79]. 

3.3. Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is often used for visualization of 
human organs due to its inherent soft tissue contrast. For that, static and 
transient magnetic fields are applied to the body. Excited hydrogen 
atoms of the interrogated tissues (contained, mainly, in water and fat) 
emit radio frequency (RF) signals while returning to their equilibrium 
state. The RF signals are sampled by the device receiving coils; their 
processing allows the characterization of tissues from different body 
layers. 

Bone structure and texture attributes have been obtained from MRI 
images to characterize vertebral fragility or fracture. For that, MRI im-
ages are usually pre-processed and segmented, before having the fea-
tures extracted and classified. Further development of these methods 
may provide tools for opportunistic screening of osteoporosis [80,81]. 

As trabecular marrow contains water and fat, MRI systems (1.5, 3, 
and 7 Tesla) have been applied to characterize trabecular micro- 
architecture [82,83]. The investigations have been carried out for 
small populations (n<100, being n the number of patients). Results of 
comparative analyses point out that the MRI may allow identification of 

patients with fracture risk not detected by DXA [82]. Relaxation times 
and rates (inherent to MRI technology) are also used to investigate 
trabecular structure and bone density [84]. 

Visualization of cortical bones requires MRI system with advanced 
feature (ultra-short echo time) to acquire RF signals from water 
belonging to cortical microscopic pores and matrix collagen. Quantita-
tive indices to characterize the cortical strength have also been proposed 
[82]. 

Advances of MRI technology allowed the inclusion of magnetic 
resonance spectroscopy (MRS) on the investigation of organs meta-
bolism [85]. As the name suggest, MRS assesses the frequency content of 
the received RF signals to characterize the composition of bone marrow; 
its composition may be related to osteoporosis pathophysiology. As 
different devices use different software to analyze MRS data, researchers 
may have large variability among their results [85,86]. 

MRI does not involve ionizing radiation, but it is an expensive and a 
time consuming exam. Techniques for its application to characterize 
bones are being further developed. 

3.4. Quantitative Ultrasound 

Methods based on ultrasound have been intensively investigated to 
provide an alternative to DXA. They aim to be non-invasive, portable, 
safer (ionizing radiation free), and less expensive technology. 

However, quantitative ultrasound (QUS) systems present drawbacks 
similar to those of DXA. The manufacturers apply different technologies 
to carry out measurements; thus, different devices provide different 
quantitative values for a same subject from different skeletal sites [87]. 
Technologists properly trained shall follow quality control protocols to 
calibrate the devices. Operator may have impact on the reproducibility 
of measurements performed by a same device. Due to such aspects, the 
International Society for Clinical Densitometry (ISCD) recognizes the 
potential of heel QUS to assess fracture risk, pointing out that it is not 
effective for monitoring treatment efficacy [88]. 

3.4.1. Cortical Quantitative Ultrasound 
The cortical bone is a dense tissue that surrounds the trabecular one 

in order to increase the overall mechanical strength of each skeletal 
component; even though, it has a porous network. Its external surface is 
named periosteum and its interface with the internal trabecular tissue, 
endosteum. With aging, the cortical tissue becomes thinner and more 
porous [89]. Several ultrasound technologies have been proposed to 
estimate the cortical thickness in order to assist screening and osteo-
porosis diagnosis. 

Pulse-echo Method An ultrasound burst (3 MHz) is applied by means 
of a focused transducer to interrogate the bone (radius or tibia). Two 
reflected pulses are received by the same transducer from the perios-
teum and endosteum interfaces due to acoustic impedance mismatches. 
The envelopes of the two received bursts are calculated by applying the 
Hilbert transform. The time interval between their peaks is multiplied by 
the speed of sound to estimate the cortical layer thickness (Ct.Th). 
Anthropometric data and Ct.Th measured from different sites (distal 
radius, proximal and distal tibia) are used to calculate an index named 
density index (DI). Studies carried out for relative small groups of 
Caucasian women (n<1000) have shown that DI may assist the 
screening of patients with osteoporosis [90,91]. 

Further developments of the technology may provide a low-cost 
device for osteoporosis diagnosis. Despite being commercially avail-
able, their clinical application has not been validated yet by means of 
studies in large multi-racial populations. 

Axial Transmission The outer cortical shell of bones is often modelled 
as a transverse isotropic free plate [92], since it has different acoustic 
properties from the surrounding soft tissue and internal trabecular tis-
sue. Other models have also been investigated [93,94], but the plate 
model matches reasonably well to the acoustic transmission observed in 
experimental setups [95]. 
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In the free plate model, an incident ultrasound pulse causes the 
propagation of longitudinal and shear waves that interact to generate, as 
result (depending on the cortical layer thickness and ultrasound fre-
quency), multiple resonant vibration modes known as Lamb waves. 
They are symmetric and anti-symmetric waves (having the longitudinal 
axis as reference) that propagate independently of each other. 

In axial transmission, an ultrasound probe containing an array of 
transducers (transmitters and receivers) is placed on the interrogated 
bone (usually radius or tibia). A transmitted pulse (200 kHz to 1 MHz) is 
sampled by each receiver (placed at different distances from the trans-
mitter). Owing to the complex Lamb waves propagation, each receiver 
samples signals that have different waveforms. The array of sampled 
waveforms (distance vs time) is processed to obtain a two-dimensional 
(2D) spatio-temporal Fourier transform. From the 2D Fourier trans-
form, the phase velocity of each guided wave mode can be obtained as 
they correspond to the temporal evolution of local spectral peaks. 
Theoretical modes computed for the free plate model are fitted to such 
experimental measurements. As the theoretical model is based on 
physical parameters (such as Young’s modulus), bone properties can be 
estimated; that is called model-based inversion method. 

The initial studies on axial transmission of acoustic waves in bones 
observed a first arriving signal (FAS) as part of the received ultrasound 
burst. With the posterior application of Lamb’s theory, FAS was asso-
ciated to the fundamental symmetric Lamb wave [60] for applied 
acoustic wavelengths comparable or greater than the cortical thickness; 
such acoustic waves have a larger penetration depth, interrogating 
deeper bone layers. The FAS velocity (vFAS) has been obtained by 
measuring the delay between the instant of application and the initial 
reception time of the ultrasound pulse; knowing the distance between 
the transducers (transmitter and receivers), the propagation velocity 
(vFAS) is calculated. 

Based on vFAS and phase velocity of other Lamb modes, character-
istics (porosity and thickness) of the cortical bone have been investi-
gated. Ex vivo and in vivo studies have been carried out to compare the 
estimated cortical properties to those measured by computed tomogra-
phy [75,96–98]. Future investigations shall allow the improvement of 
current QUS devices that apply such method. 

Meanwhile, axial velocity of ultrasonic waves was employed to 
assess antiresorptive therapies in a small population (n = 468); it was 
observed an increase of the velocity measured from tibia over five years 
when compared to a control group [99]. 

Velocity of ultrasonic waves along the axial direction has also been 
investigated at relative high-frequency (3 MHz) to assess the bone 
microstructure. The purpose is to associate bone anisotropy to the 
measured velocity in order to assess the tissue integrity [100]. 

A different approach used a hydrophone to sample, at four different 
axial distances, acoustic pulses applied to the tibia by an ultrasound 
probe; based on arrival time measurements of waves propagated to two 
nearby distances, a median velocity was obtained. For a small in vivo 
sample (n = 27), such median propagation velocity was successfully 
used to identify three sets of subjects: healthy (n = 13), osteopenic (n =
8), and osteoporotic (n = 6). In this work [101], the authors also 
modeled the waveform received by the hydrophone as consisting of 
superimposed multiple echoes from bone (different vibration modes) 
and soft tissues (interfering signals). To identify the different contribu-
tions, the received signal was decomposed in five modes by means of 
Variational Mode Decomposition (VMD) [102]. Measurements of the 
median velocity for the mode with maximum power (obtained by VMD) 
presented better performance than the direct velocity estimation to 
detect osteoporotic bone. 

Transverse Transmission Commercial ultrasound systems also carry 
out measurements from hand’s phalanges. Usually, they measure the 
time taken by an ultrasound pulse to travel across the distance between 
two aligned transducers placed on opposite sides of the distal meta-
physis; it corresponds to the interval between the pulse application time 
and the instant when the received signal first achieves the amplitude of 2 

mV. The so-called amplitude-dependent speed of sound (AD-SoS) is 
obtained by dividing such time interval by the distance between the 
transducers [103]. The mean AD-SoS measured from phalanges of the 
non-dominant hand has been correlated to BMD measured by DXA 
[104]. AD-SoS measurements have also been associated to age-related 
changes in bone mass during pubertal years [105]. 

3.4.2. Cancellous Quantitative Ultrasound 
There are many commercial devices that carry out different quanti-

tative measurements from the heel. 90% of the calcaneus (heel bone) 
consists of trabecular bone tissue where initial loss of bone mass occurs. 
The heel can be easily handled; besides, it is not surrounded by a large 
amount of soft tissue that could hamper the analysis of the results. 

Transverse Transmission The velocity and attenuation of ultrasound 
waves propagating across different materials depend on their physical 
properties. Velocity depends on the Young’s modulus and density; 
attenuation is related to acoustic impedance, scattering, and absorption. 
Thus, velocity and attenuation measurements of acoustic waves are 
associated to characteristics of the interrogated tissue. 

To assess the calcaneus, QUS systems usually measure the speed of 
sound (SoS) and broadband ultrasonic attenuation (BUA). These indices 
have shown good performance to predict fractures risk [106]. 

For that, a piezoelectric transducer is used to apply a short duration 
acoustic wave that, after travelling across the heel, is received by a 
second transducer (aligned at a fixed or adjustable distance). For 
acoustic impedance matching, the transducers may be coupled to the 
heel by means of gel or water; it depends on the system manufacturer. 
Reference measurements from degassed water are obtained for the ul-
trasound system. The time interval for the applied pulse to reach the 
receiver is measured using only water (reference), and later, with the 
placement of the patient’s heel; the difference between these measure-
ments allows the estimation of SoS (m/cm2) [107]. Technical ap-
proaches to carry out such measurement were reviewed [108]. 

BUA measurement is more complex, since attenuation depends on 
the ultrasound frequency. As a short acoustic pulse has a broad range of 
frequencies, discrete Fourier transform is applied to the sampled 
received signal in order to obtain the amplitude of each frequency 
component. Attenuation measurements are carried out for frequencies 
ranging from 300 to 700kHz [108]. Within such range, attenuation is 
higher for increasing frequencies (linear trend). Thus, it is possible to fit 
a straight line to the experimental data set (attenuation vs frequency). 
The angular coefficient of the fitted line is the BUA (dB/MHz). Such 
index divided by the heel thickness (dB. MHz− 1.cm− 1) is named 
normalized BUA (nBUA); it allows the comparative analysis of mea-
surements carried out from different subjects. 

The propagation of acoustic waves through bone is quite complex 
since its tissue is anisotropic and inhomogeneous. Several models have 
been proposed and several experiments have been carried out to better 
understand it [109]. 

Among these models, Biot’s theory describes longitudinal waves that 
travel at different velocities (fast and slow) in fluid-saturated porous 
media, such as the trabecular bone. Fast transmission occurs when solid 
(trabecular structure) and fluid (bone marrow) move in phase; slow 
transmission corresponds to solid and fluid moving out of phase during 
the wave propagation [110]. Experimental results characterized their 
different interactions with bone tissue. For higher bone densities, 
propagation velocity of the fast wave increases (2200 to 2700 m/s), 
being almost constant for the slow wave (about 1400 m/s). Such velocity 
is almost independent of the applied ultrasound frequency for a range 
between 0.5 and 5 MHz. The attenuation constant of the slow wave 
increases with bone density; for the fast wave, the attenuation constant 
is much higher, but independent of bone density. Based on the velocity 
and amplitude of the received waves, equations were proposed to esti-
mate the bone elasticity and bone density [111]. The study has shown 
significant correlation of such measurements with those obtained by 
peripheral quantitative computerized tomography for an Asian 
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population (n = 52) [112]. 
Backscatter Processing Ultrasound systems also obtain quantitative 

measurements by processing the backscattered waves. In pulse mode, 
ultrasound echoes of cancellous bone come from interfaces among the 
solid trabecular network (rod-like or plate-like) and the marrow. 
Therefore, they are composed of multiple interfering contributions due 
to random scatters. The backscattered signal also depends on the ul-
trasound wavelength, geometry and orientation of the trabecular 
structures relative to the incident wave. Several quantitative indices 
obtained from backscattered ultrasound have been proposed to char-
acterize bone density and microstructure [108]. In vivo measurements 
have shown moderate correlation between proposed backscatter indices 
and BMD measured by DXA [113,114]. Based on backscatter indices, 
ultrasound parametric imaging for ex vivo bone samples has been 
investigated [115]. 

Ultrasound medical images are built based on echoes originated from 
tissue boundaries at different body depths; brightness of image pixels are 
associated to amplitudes of the returned echoes. For two dimensional 
visualization of a given anatomical structure, the ultrasound system 
scans consecutive body slices. The radiofrequency echographic multi-
spectrometry (REMS) system generates conventional images and stores 
the unprocessed backscattered (also called radiofrequency - RF) signals 
from 100 scans (frames) of the interrogated body region; usually, lumbar 
spine (L1-L4) or femoral neck. Custom-implemented algorithms auto-
matically identify signals backscattered from the vertebrae and select an 
analysis region using a spectral model database as reference. Next, 
spectra of the patient’s RF signals are compared to those of age-matched 
models (51-55 and 56-60 years old) previously classified by means of 
DXA as osteoporotic, osteopenic or healthy [116]. Studies carried out for 
Caucasian populations (n< 1640) showed good performance of REMS 
measurements when compared to those obtained by DXA [117,118]. 
The European Society for Clinical and Economic Aspects of Osteopo-
rosis, osteoarthritis and musculoskeletal diseases (ESCEO) states that the 
REMS has the potential to become the first clinically available method 
for direct non-ionizing measurement of lumbar and femoral BMD [119]. 

3.5. Clinical Tools 

BMD measured by DXA has low sensitivity to assess fracture risk 
since other factors are involved. The fracture risk assessment tool (FRAX 
is a computer-based algorithm that, based on multiple clinical risk fac-
tors, estimates the 10-year probability of a major fracture (hip, verte-
brae, humerus or wrist fracture)). The risk factors are previous fragility 
fracture, parental hip fracture, smoking, systemic glucocorticoid intake, 
excessive alcohol consumption, rheumatoid arthritis, and secondary 
causes of osteoporosis (e.g., type I diabetes, chronic malnutrition, 
endocrine disorders); besides, age, sex, and BMI are taken into account. 
BMD measured from the femoral neck may also be used as an optional 
input. The fracture probability also involves the risk of death [120,121]. 
FRAX has low cost and may be used where other methods are not 
available. 

FRAX, first released in 2008, has 71 models based on the epidemi-
ology of fractures adapted for 66 countries. It is a tool recommended in 
more than 80 osteoporosis prevention guidelines around the world 
[120–123]. 

FRAX algorithm has been improved over the time. There were ad-
justments to calibrate the results according to the time passed by after a 
fracture, since evidences indicate an increased risk of a new fracture 
after a recent one. Recently, an additional category, very high-risk, was 
included due to development of new treatment options. Thus, more 
modern and efficient drugs (anabolic therapy) may be prescribed for 
such patients while the high-risk patients continue receiving conven-
tional drugs [124]. 

For example, the UK NOGG recommends major osteoporotic fracture 
(MOF) assessment of postmenopausal women, and men age 50 years or 
older by means of FRAX to classify patients in four risk groups: low, 

intermediate, high, and very high (Fig 4). Those with FRAX probabilities 
of 10-year MOF risk above UAT (high and very high risk patients), shall 
have their BMD measured to guide drug choice and provide a baseline 
for BMD monitoring. Those classified as intermediate risk patients (be-
tween UAT and LAT) are further assessed with BMD measurement; if 
new calculated probabilities using BMD lie above or below intervention 
(IT), it is recommended treatment or given lifestyle advice, respectively. 
If BMD measurements are not viable, intermediate risk patients with 
probabilities above IT are considered for treatment. Low risk patients do 
not require BMD measurements and shall modify their lifestyle [37]. 

FRAX has also some limitations. Owing to its dependence on 
different preventive therapies, there is no universal pattern to assess its 
results [121,125]. It fails in computing the impact of different exposure 
periods to some risk factors (e.g. the amount and time of glucocorticoids 
intake) which leads to different outcomes [121,126,127]. There is a 
large number of other fracture risk factors that are not taken into ac-
count by FRAX. 

Aiming to circumvent that, several clinical tools have been proposed 
[128]. Garvan, for instance, was developed for the Australian popula-
tion and Qfracture for the British one. Studies suggest their potential 

Fig. 4. UK NOGG recommendations of assessment, intervention, and risk 
thresholds for major osteoporotic fracture probability (MOF) using FRAX. The 
four thresholds are: VHRT (Very high risk), UAT (Upper assessment), IT 
(Intervention), and LAT (Lower assessment threshold). Modified from [37]. 

Fig. 5. Emerging technologies. a) Scheme of the emerging technologies for 
osteoporosis diagnosis, b) machine learning as a tool for osteoporosis diagnosis. 
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applicability. However, both tools have limitations, since they have not 
been adapted for populations different from those comprised in their 
development. Comparison among these tools is difficult due to sub-
stantial differences among their inputs and outputs. Thus, additional 
evidences are needed to support or reject their wide application 
[129–131]. 

4. Emerging Technologies 

Emerging technologies have been proposed to ease osteoporosis 
diagnosis with the premises of being cost-effective, portable, and reduce 
power consumption. The techniques assess responses from bones after 
the application of stimuli/excitation. These methods are described in the 
next subsections following the structure of Fig 5. 

4.1. Electromechanical Impedance-based Methods 

The electromechanical impedance (EMI) technique detects failures 
of structures in a wide range of applications (mechanical, civil, aero-
space, marine, and others), being first proposed by Liang et al. in 1994 
[132]. 

A low amplitude voltage is applied to a piezoelectric lead zirconate 
titanate sensor (PZT) bonded to the structure of interest in order to 
evaluate their coupling. Application of a sinusoidal voltage (U =

Um⋅ejwt) to the PZT patch generates a current (I = Im⋅e(jwt+θ)), being the 
electrical impedance of the PZT obtained by [132]: 

ZE(ω) =
U
I
=

1
jωa

(

ϵT
33 −

Z(ω)
Z(ω) + Za(ω)

d2
3xY

E
xx

)
− 1 (2)  

where j, Za(ω), Z(ω), ϵT
33, d2

3x ,YE
xx and a correspond to imaginary unit, 

transducer impedance, monitored structure impedance, electric field 
constant, coupling piezoelectric constant, Younǵs modulus of the 
monitored structure, and geometric constant, respectively. Thus, 
modification of the monitored structure impedance is followed by 
electrical impedance changes of the PZT. EMI has been widely applied 
for structural health monitoring (SHM), since PZT transducers are 
inexpensive. 

The interaction between the applied voltage signal and the structure 
under study generates resonant peaks at different frequencies. The 
resonant frequencies and their amplitudes are affected by structural 
damages. Resonant frequencies are very sensitive to geometry, mass, 
boundary conditions or even external effects (temperature and sensor 
placement). Low frequency signals have large wavelengths that provide 
global information about the structure; that is, detection of significant 
damages (or bone fractures in the current context). On the other hand, 
high frequency signals (short wavelengths) are more prone to detect 
small damages. However, such systems shall have repeatability to be 
useful [133]. 

In practice, a function generator applies a sinusoidal voltage signal to 
the PZT, sweeping different frequencies in order to obtain the frequency 
response function (FRF); the so-called EMI signature. Several electronic 
devices have been developed to acquire EMI signatures [134,135]. EMI 
technique has low-cost and portability. 

4.1.1. EMI Applied to Bone Assessment 
In the osteoporosis context, EMI application requires the placement 

of PZT patch on the bone (surrounded by skin, muscles, and fat) to 
measure the coupling parameters that are likely related to the tissues 
properties. 

EMI based methods demand a reference signature (baseline); in this 
context, it should be obtained from healthy bones. Later, signal pro-
cessing techniques are applied to a sampled EMI signature in order to 
extract the most significant features that are compared to the baseline. 
Any deviation from the baseline may be analyzed as a bone related 
condition [136]. Generally, statistical methods are used to classify the 

signature as a healthy or osteoporotic. Root mean square deviation 
(RMSD) and correlation coefficient deviation metric (CCDM) have been 
recurrently employed for this purpose [137]. 

4.1.2. Current Stage 
To date, there are few reports on the evaluation of bone’s health by 

EMI based methods. In [138], the authors used two PZT patches to 
investigate bone cracks in ex vivo animal model; shifts of the FRF peaks 
due to damages were detected. In [139], the authors investigated EMI 
applied to an ex vivo human femur with fissure and fracture as well as the 
effect of density increase due to wetting of dry bone. In [140], EMI based 
method was able to detect artificially induced bone fissures. Experi-
mental results were analyzed by quantifying RMSD computed between 
EMI frequency responses obtained from bone with and without fissures. 
The results showed that the EMI detects structural changes of bones. 

In [137], the authors simulated osteoporosis in an ex vivo bovine 
bone by drilling various small holes in it. Changes of the resonant fre-
quencies measured before and after drilling the bone were investigated. 
Furthermore, the authors investigated two methods for fixing PZTs on 
the bones: bonded sensor (BS) and non-bonded sensor (NBS). The BS is 
directly glued to the bone. NBS is kept on the bone by means of clamps. 
Modifications of the resonant frequencies occurs as the torque of the 
clamp screws changes, affecting the results of the analysis. In [141], the 
authors proposed an autonomous gripping mechanism for NBS using 
shape memory alloy (SMA) wires. In summary, they replaced the clamps 
by SMA wires to fix the PZT on the bone. Experiments were performed 
on ex vivo healthy and osteoporotic femur bones with promising results. 
In [142], the authors assessed NBS and BS with finite element models of 
the radius and femur; they concluded that the simulations matched well 
the experimental results of their previous investigations [137,141,143]. 

From the reported studies, EMI based methods sound promising. 
However, there are technical challenges for their clinical use. Applica-
tion pressure of PZT transducers on the body, frequency range for in vivo 
measurements, in vivo characterization of healthy and osteoporotic 
bones, validation of quantitative indices are aspects that require further 
investigation to assess their potential for bone health assessment. 

4.2. Stimulus Response-based Methods 

To diagnose osteoporosis, researchers have also investigated the vi-
bration of bones resulting from mechanical stimulus. For that, an 
impulsive stimulus (using a vibration hammer, electromechanical de-
vices, and others) is applied to bone (radius or tibia); at some axial 
distance, the propagated wave is sampled by means of a sensor 
(stethoscope, accelerometers, and others). Methods based on such 
premise take into account that the bone’s lowest fundamental natural 
frequency (f0) is closely related to its stiffness. 

Statistical signal processing methods are applied to extract osteo-
porosis sensitive features from the sampled waveforms that are associ-
ated to bone health. 

Bone elastic responses have been investigated since early 70s [144]. 
For concision, this review focuses on recent approaches. In [145], an 
instrumented vibration hammer is used to stimulate the bone (tibia), the 
resulting vibration is picked up by accelerometers. Similar procedures 
were carried out in [146,147]. Methods based on vibroacoustic are very 
sensitive to geometry, mass, boundary conditions or even external ef-
fects (noise, temperature, and sensor placement), thereby hampering the 
follow-up of osteoporosis treatment [144,148]. The impact of the mass 
on the natural frequency is greater than stiffness. Muscles damp the 
vibrations; thus, they shall be added to the whole system mass. Effects 
due to fibula and joints are difficult to quantify. The bone length has a 
minor effect on the bone natural frequency [149]. In [148], electronic 
stethoscope was used to acquire bone’s response instead of an acceler-
ometer. Broadly, researchers’ findings showed that bone strength is not 
always associated to mineral density since the bone may have a fragile 
section [145]. The low cost and portability of such systems make them 
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very attractive for osteoporosis screening. However, the impact of 
physical characteristics (BMI, soft tissue composition, and joints) on the 
measured response may be very difficult to circumvent. 

4.3. Microwave Frequency-based Methods 

Dielectric properties of bones over microwave frequency bandwidth 
have been investigated to characterize osteoporosis from volunteers 
[150] and ex-vivo samples [151]. Recently, a device was designed for 
such purpose [152] consisting of antennas (5cm x 1.8cm) placed on 
opposite sides of the wrist under controlled pressure (1kg.f). The wrist 
was chosen because it is more easily accessed without being surrounded 
by large amount of soft tissues. The setup radiates 0.1 W of RF (30kHz to 
2GHz) to the wrist without requiring an impedance matching medium 
(gel or water). The microwave transmission coefficient (s21(f)), affected 
by attenuation and scattering, was measured from healthy (n=37) and 
osteopenic/osteoporotic subjects (n=23); the volunteers were 23-94 
years old, being 48 female and 12 male. They were classified as osteo-
penic or osteoporotic based on T-score (DXA) measurements or clinical 
history. The authors concluded that their results correlate well with the 
disease classification (86% for female; 100% for male), being safer and 
less expensive. 

As other emerging technologies, more clinical studies are necessary 
to validate the potential of such proposals to assist the diagnosis of 
osteoporosis. 

4.4. Machine Learning-based Methods 

Due to the significant increment of machine learning applications in 
medical sciences, a brief section on the use of such tools on osteoporosis 
diagnosis is presented. 

Machine learning involves computer algorithms that search, with 
little or without human intervention, patterns in sampled data to allow, 
for instance, predictions or their classification into different categories. 
Detailed description of these algorithms may be found elsewhere [153, 
154]. 

Since osteoporosis is a multi-factorial disease, machine learning al-
gorithms have been taking into account clinical risk factors (malnutri-
tion, previous fracture, previous diseases, medications, ethnicity, 
heredity, alcohol consumption, and others) and anthropometric data 
(sex, age, height, weight, and others) in order to outperform clinical 
tools (such as FRAX) in the prediction of fractures [155,156]. 

As a matter of fact, machine learning has been applied to a large 
diversity of scenarios (BMD data, dental radiographs, QCT measure-
ments, and others) to assist diagnosis of osteoporosis, having deserved 
recent reviews entirely dedicated to this subject [157,158]. For instance, 
it has been used for the automatic detection of boundaries in bone im-
ages (obtained by means of x-rays, DXA, CT, and MRI), delimiting sec-
tions with similar characteristics (image segmentation); after the image 
segmentation, features are extracted from those sections to be used by 
classifiers (such as machine learning algorithms) to detect osteoporosis 
[159]. 

Machine learning is a transversal tool that may complement any of 
the presented technologies (Figure 5(b)). The measurements of the 
existing technologies may be processed to enhance the diagnosis as well 
as assist the interpretation of the results, revealing underlying patterns 
and grounds of the osteoporosis diagnosis. 

Despite the large number of investigations, additional research will 
be necessary to consolidate its potential in such applications. 

5. Challenges and Conclusions 

Population aging demands the development of new technologies to 
improve treatment of the associated illnesses in order to reduce health 
costs and assure quality of life. In this context, new methods to support 
osteoporosis management would have a significant impact, since its 

Table 1 
Current applied technologies: capabilities and limitations.  

Technology Capabilities Limitations References 

Dual-X-Ray 
Absorptiometry 
(DXA)    

• Based on X-rays • Gold standard 
for diagnosis 

• Requires rigorous 
quality control 
procedures 

[22,29,30]  

• Independent 
diagnosis 

• Expensive, large, 
and bulky    
• Inaccurate 
measurements in 
bones affected by 
desmophytes or 
previously fractured    
• Patient’s exposure 
to ionizing radiation    
• Absence of 
reference indices (T- 
score, Z-score) for 
populations with 
large racial diversity    
• Questionable 
adequacy for follow- 
up  

Vertebral Fracture 
Assessment    

• DXA based method • Complements 
DXA 

• Applicable only in 
association with DXA [34,36] 

• Analyses of lateral 
spine images 

• Radiation dose 
200 times lower 
than standard X- 
ray devices 

• Patient’s exposure 
to ionizing radiation    

• Qualitative 
assessment  

Trabecular Bone 
Score    

• DXA based method • Complements 
DXA 

• Not suitable for 
follow-up [47–49, 

160] 
• Image gray scale 

analysis 
• Accuracy 
unaffected by 
presence of 
desmophytes 

• Requires 
complementary 
exams    

• Patient’s exposure 
to ionizing radiation  

Quantitative- 
Computed 
Tomography    

• Based on X-rays • Less susceptible 
to confounding 
factors 

• High ionizing 
radiation exposure [26,55,59, 

61] 

• Generates multiple 
cross sectional 
images 

• Higher 
sensitivity than 
DXA 

• High cost and low 
availability  

• Analyses 
quantitative 
parameters 

• Quantitative and 
qualitative 
assessment 

• Complex scanning 
procedure  

Peripheral QCT    
• Computed 

Tomography based 
method 

• Less bulky, less 
expensive, lower 
radiation and 
higher mobility 
than QCT 

• High cost 
[55,73,75, 
78,152] 

• Applied to 
appendicular 
skeleton sites  

• Patient’s exposure 
to ionizing radiation   

• Better follow-up   
Magnetic 

Resonance 
Imaging    

• Images based on RF 
signals emited by 
hydrogen atoms 
excited by 
magnetic fields 

• Ionizing 
radiation free 

• Expensive 
[82,85,86]   

• Time consuming  

(continued on next page) 
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incidence starts at relative early ages. The main challenge is to develop a 
technology that provides an accurate diagnosis at low cost such that low 
income countries may also benefit from it. An additional requirement is 
that such technology may be enclosed into a portable device; thus, iso-
lated populations could also be assisted. Reliability of quantitative 
indices to support diagnosis is also important; thus, the technology be-
comes independent of expert examiners’ availability. 

A summary of related critical aspects, capabilities and limitations, 
for both current applied (Table 1) and emerging technologies (Table 2), 
are depicted. 

Previous sections reviewed the most applied technologies for oste-
oporosis diagnosis. Nowadays, such condition is mainly diagnosed based 
on BMD measurements obtained by means of DXA. However, its po-
tential to identify fractures risk has been questioned. Furthermore, it 
requires the patients’ exposure to ionizing radiation. 

New technologies have been proposed for such purpose, aiming to 
provide alternatives to DXA as well as reliable quantitative indices to 
improve diagnosis. However, some investigated methods increase the 
patients’ exposure to ionizing radiation (QCT, pQCT, HR-pQCT), have 
no mobility and high costs (QCT, pQCT, HR-pQCT, and MRI). It should 
be emphasized that such methods are very useful as research tools to 
investigate osteoporosis as well as for opportunistic screening; however, 
even if they become the gold standard, there will be need to develop 
other technologies that may be less expensive and portable. 

QUS systems do not apply ionizing radiation, have portability and 
relative low cost. Due to these characteristics, they may replace DXA 
devices in the near future. There are several commercial systems in the 
market, but the manufactures need to circumvent some technological 
challenges in order to have their devices recommended by health sur-
veillance agencies. 

Majority of these technological approaches have been compared to 
DXA results, demonstrating utility for a complementary analysis of 
osteoporosis. These methods aim to characterize bone fragility, but they 
do not assess fracture risk. For such purpose, clinical tools have been 
proposed. FRAX is the most applied, being a computer-based algorithm 
that takes into accounts multiple clinical risk factors to estimate a 10- 
year probability of a major fracture. It is a tool recommended by 
several prevention guidelines around the world, but it does not take into 
account many risk factors and it may not have a good performance in 
countries with a large ethnic diversity. Such tools depend on medical 
records or patients’ collaboration. Thus, despite further development, 
the clinical tools can not always replace complementary diagnostic 
exams. 

Although emerging technologies have presented promising pre-
liminary results, they demand further investigations to prove their po-
tential to assist osteoporosis diagnosis. 

The basic premise of this publication is to collate information about 
the current and emerging technologies for osteoporosis screening. Such 
overview may guide the choice of technology for different research and 
clinical scenarios. This publication also shows the challenges to achieve 
a low cost, robust, portable and reliable method for diagnosis and 
follow-up of osteoporosis treatment. 
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Table 1 (continued ) 

Technology Capabilities Limitations References 

Quantitative 
Ultrasound    

• Piezoelectric 
transducers 

• Ionizing 
radiation free 

• Results discrepancy 
among devices [97–99, 

106,112, 
117–119] 

• Assesses properties 
of ultrasound 
waves applied to 
the bones 

• Low cost and 
portable 

• Not suitable for 
diagnosis   

• Useful for 
screening 

• Not suitable for 
follow-up  

Clinical tools    
• Computer-based 

algorithm 
• Low cost • Each proposed tool 

has different inputs 
and outputs 

[120,121, 
126,127, 
129–131, 
161] 

• Fracture risk 
assessment based 
on risk factors 

• Offers 
independent 
fractures risk 
assessment 

• Not suitable for 
follow-up   

• Comprises 
several risk 
factors 

• Not validated for 
all different 
populations   

Table 2 
Emerging technologies: capabilities and limitations.  

Technology Capabilities Limitations References 

Electromechanical 
Impedance    

• Based on electrical 
impedance 
measurement • Use 
low cost PZT patches •
Requires a reference 
measurement 
(baseline) 

• Ionizing 
radiation free •
Low cost • Portable 
• Easy handling 

• No consistent 
quantitative 
results •
Limitation to 
place PZT patch 
on bones •
Affected by 
boundary 
conditions 

[137,141, 
142] 

Stimulus Response    
• Based on the vibration 

theory • Measures 
bone response 
resulting from 
mechanical stimulus 

• Ionizing 
radiation free •
Low cost • Portable 
• Easy handling 

• No consistent 
quantitative 
results • Affected 
by boundary 
conditions 

[146,147] 

Microwave frequency    
• Based on radio wave 

propagation • Uses on- 
body antennas •
Applied to the wrist 

• Ionizing 
radiation free •
Low radiated 
power (0.1 W) • No 
need of coupling 
media • Easy 
handling • Fast 
response (2030s) 

• Requires 
additional 
clinical studies 

[152] 

Machine Learning    
• Based on computer 

algorithms • Extracts 
and classifies patterns 

• Assesses clinical 
risk factors •
Classifies patterns 
without human 
intervention •
Analyzes other 
techniques’ 
measurements 

• Affected by 
quality of data 
input • Affected 
by coding quality 
• Above aspects 
hamper 
comparisons 

[152]  
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osteoporosis from percussion responses using an electronic stethoscope and 
machine learning. Bioengineering 2018;5(4):107. 

[149] Hassan SS, Al Juboori AM. Evaluation the sensitivity of bone natural frequency as 
a diagnosis tool to identify bones integrity. MS&E 2020;765(1):012055. 

[150] Meaney PM, Goodwin D, Golnabi AH, Zhou T, Pallone M, Geimer SD, Burke G, 
Paulsen KD. Clinical microwave tomographic imaging of the calcaneus: A first-in- 
human case study of two subjects. IEEE transactions on biomedical engineering 
2012;59(12):3304–13. 

[151] Amin B, Shahzad A, Farina L, Parle E, McNamara L, O’Halloran M, Elahi MA. 
Dielectric characterization of diseased human trabecular bones at microwave 
frequency. Medical engineering & physics 2020;78:21–8. 

[152] Makarov SN, Noetscher GM, Arum S, Rabiner R, Nazarian A. concept of a 
radiofrequency device for osteopenia/osteoporosis screening. Scientific reports 
2020;10(1):1–15. 

[153] Watt J, Borhani R, Katsaggelos A. Machine learning refined: foundations, 
algorithms, and applications. Cambridge University Press; 2020. 

[154] Bishop CM. Pattern recognition and machine learning. springer; 2006. 
[155] Erjiang E, Wang T, Yang L, Dempsey M, Brennan A, Yu M, Chan WP, Whelan B, 

Silke C, O’Sullivan M, et al. Machine learning can improve clinical detection of 
low BMD: the DXA-HIP study. Journal of Clinical Densitometry 2020. 

M.A. Oliveira et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0102
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0102
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0103
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0103
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0103
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0103
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0104
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0104
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0104
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0104
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0104
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0105
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0105
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0105
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0106
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0106
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0106
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0106
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0107
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0107
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0107
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0108
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0108
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0108
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0109
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0109
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0109
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0110
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0110
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0111
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0111
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0111
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0112
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0112
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0112
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0112
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0112
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0112
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0113
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0113
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0114
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0114
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0114
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0115
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0115
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0115
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0116
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0116
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0116
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0116
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0117
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0117
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0117
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0117
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0117
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0118
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0118
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0118
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0118
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0119
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0119
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0119
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0119
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0119
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0119
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0120
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0120
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0120
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0121
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0121
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0121
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0122
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0122
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0122
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0123
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0123
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0123
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0124
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0124
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0124
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0124
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0125
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0125
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0126
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0126
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0126
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0127
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0127
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0127
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0128
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0128
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0129
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0129
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0129
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0129
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0130
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0130
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0131
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0131
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0132
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0132
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0132
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0132
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0133
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0133
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0133
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0134
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0134
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0134
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0135
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0135
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0135
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0135
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0136
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0136
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0136
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0137
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0137
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0137
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0138
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0138
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0139
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0139
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0140
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0140
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0140
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0140
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0141
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0141
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0141
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0142
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0142
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0142
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0142
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0143
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0143
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0143
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0143
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0144
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0144
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0144
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0145
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0145
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0146
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0146
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0146
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0147
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0147
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0147
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0148
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0148
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0148
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0149
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0149
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0150
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0150
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0150
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0150
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0151
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0151
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0151
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0152
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0152
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0152
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0153
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0153
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0154
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0155
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0155
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0155


Medical Engineering and Physics 108 (2022) 103887

14

[156] Shim J-G, Kim DW, Ryu K-H, Cho E-A, Ahn J-H, Kim J-I, Lee SH. Application of 
machine learning approaches for osteoporosis risk prediction in postmenopausal 
women. Archives of Osteoporosis 2020;15(1):1–9. 

[157] Ferizi U, Honig S, Chang G. Artificial intelligence, osteoporosis and fragility 
fractures. Current opinion in rheumatology 2019;31(4):368. 

[158] Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. Machine learning solutions for 
osteoporosisa review. Journal of Bone and Mineral Research 2021. 

[159] Wani IM, Arora S. Computer-aided diagnosis systems for osteoporosis detection: A 
comprehensive survey. Medical & Biological Engineering & Computing 2020: 
1–45. 

[160] Martineau P, Leslie WD. The utility and limitations of using trabecular bone score 
with FRAX. Current opinion in rheumatology 2018;30(4):412–9. 

[161] Viswanathan M, Reddy S, Berkman N, Cullen K, Middleton JC, Nicholson WK, 
Kahwati LC. Screening to prevent osteoporotic fractures: updated evidence report 
and systematic review for the US preventive services task force. Jama 2018;319 
(24):2532–51. 

M.A. Oliveira et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0156
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0156
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0156
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0157
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0157
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0158
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0158
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0159
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0159
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0159
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0160
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0160
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0161
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0161
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0161
http://refhub.elsevier.com/S1350-4533(22)00135-7/sbref0161

	Osteoporosis Screening: Applied Methods and Technological Trends
	1 Introduction
	2 Search Methodology
	3 Current Applied Technologies
	3.1 Dual-energy X-ray Absorptiometry
	3.1.1 Vertebral Fracture Assessment
	3.1.2 Trabecular Bone Score

	3.2 Quantitative Computed Tomography
	3.2.1 Peripheral Quantitative Computed Tomography

	3.3 Magnetic Resonance Imaging
	3.4 Quantitative Ultrasound
	3.4.1 Cortical Quantitative Ultrasound
	3.4.2 Cancellous Quantitative Ultrasound

	3.5 Clinical Tools

	4 Emerging Technologies
	4.1 Electromechanical Impedance-based Methods
	4.1.1 EMI Applied to Bone Assessment
	4.1.2 Current Stage

	4.2 Stimulus Response-based Methods
	4.3 Microwave Frequency-based Methods
	4.4 Machine Learning-based Methods

	5 Challenges and Conclusions
	Declaration of Competing Interest
	Ethical approval
	Acknowledgement
	References


