
A NEAT Approach to Wave Generation in Tower
Defense Games

Daniel Hind
DMTLab

School of Computing and Digital Technology
Birmingham City University, B4 7XG

Email: daniel.hind@mail.bcu.ac.uk

Carlo Harvey
DMTLab

School of Computing and Digital Technology
Birmingham City University, B4 7XG

Email: carlo.harvey@bcu.ac.uk

Abstract—Neural networks have shown promise when applied
to video games and have proven effective at performing tasks such
as dynamic difficulty adjustment (DDA). This paper explores
how an evolving neural network can be applied to a tower
defense game in order to generate dynamic content with the
intent of increasing player engagement through the principals
of flow. A NeuroEvolution of Augmenting Topologies (NEAT)
neural network (NN) was trained as a wave manager to observe
the current game state and generate an opposing enemy wave
which best challenges the players’ current tower defenses. The
resulting network was compared against manually designed
human waves in a blind A/B test using the Games Experience
Questionnaire (GEQ) to evaluate the waves across a range of
criteria. The results show that an approach like this could be
viable if used for content generation purposes as no discernible
difference existed in reported player experience between AI
and human designed waves. However, the findings regarding
subsequent increases to player engagement were inconclusive.
More research is required in this field to conclusively determine
if machine learning generated content can exceed the quality
of content created by human designers, but the findings of this
paper indicate that this approach may prove valuable to game
developers in the near future by allowing them to save time and
money by having AI generate content instead of requiring costly
human game designer time.

I. INTRODUCTION

This paper aims to explore Artificial Intelligence (AI)
techniques when applied within video games. We investigate
whether it is possible to generate dynamic content that is
similar to content developed by a game designer and sepa-
rately, investigate the effect on player engagement across these
conditions. A machine learning driven AI wave manager was
built for a tower defense game using NEAT and has been
compared against human designed waves in order to determine
its viability as a content generation system.

Video game content can be expensive and time consuming
to develop, hand crafting each encounter the player may
experience and manually tuning difficulty for a range of
differing skill levels may take up a large part of any game
designer’s work time, and yet players may still reach the end
of this finite content and find themselves craving for more.
This project aims to investigate whether the possibilities of
Artificial Intelligence (AI) can be applied to ease this strain
on development and dynamically generate engaging content
for players to experience. This work can lead to reducing the

amount of human work hours required to create content. The
AI generated content has the potential to be more dynamic and
more engaging than finite manually designed content, therefore
also causing the end-product to be endlessly re-playable and
far more valuable to the player base, and reciprocally, game
studios.

This project adapts the output into a Tower defense (TD)
paradigm, many other game genres use a similar AI enemy
waves vs player structure, such as a range of base building and
action games. Another reason why a TD game was chosen as
the basis of this project is due to the research undertaken by
Olesen et al. when investigating the use of Dynamic Difficulty
Adjustment (DDA) using rtNEAT within a real-time strategy
game [1]. Their findings suggested that games that have easily
observable game states and simple goals work best for this
approach, and a TD game fits that criteria perfectly so are an
ideal candidate for a similar ML DDA technique.

The aim of this project is to explore if an evolving neural
network can be effectively trained and applied to a tower
defense game to generate enemy waves which challenge the
player’s strategy, with the goal of increasing player engage-
ment. The specific contributions are as follows:

• An implementation of a wave director using a NEAT NN
which can observe the current state of the game and make
informed decisions about which enemies to spawn in the
next wave;

• An evaluation of whether player engagement was in-
creased by the addition of the wave manager by using
a contrasted A/B testing method;

• An analysis of whether the AI generated content is
better than or comparable to human designed content to
conclude whether dynamic AI content generation can be
used to minimise human designer time;

• Suggestions for practical uses cases via a cogent discus-
sion.

II. RELATED WORK

Artificial Neural Networks (ANNs) come in a wide range
of varieties and are often specialised for their desired purpose,
such as: Convolutional Neural Networks (Krizhevsky et al.
[2]), which are designed for image classification; Dynamic
Recursive Neural Networks (Guo et al. [3]), a modern design

that excels in computer vision tasks; and Long/Short Term
Memory Networks (Hochreiter and Schmidhuber [4]), which
are ideal for speech recognition tasks.

NEAT is an established and effective method for neuro-
evolution which is unique as it allows ANNs to not only evolve
their weights and biases, but also their topologies [5]. This
allows for NNs to be evolved rapidly. NEAT has since been
iterated on, and has even proven to be viable to be used in real-
time video games to achieve various goals such as automated
content generation using cgNEAT [6], and dynamic difficulty
adjustment using rtNEAT [1], in a Real-Time Strategy Game.
ANNs have also been used in video games to perform a variety
of tasks such as DDA, demonstrated by Li et al. [7] and
Ebrahimi and Akbarzadeh-T [8]. Genetic techniques have also
been used in wave design for games [9]. For a recent SOTA
report on this field, please see the work by Risi and Togelius
[10].

Another key theme for this work is Dynamic Difficulty
Adjustment (DDA), in which a video game can dynamically
change its difficulty in real-time to match the player’s skill
level. This can allow for greater player engagement by ensur-
ing that players are constantly met with a fair, consistent level
of challenge. DDA has already proven to be successful and has
been implemented into a range of well-known games. The idea
of using a brain-like topology to perform complex computation
was first conceived by McCulloch and Pitts [11] and has since
gone on to be a fundamental form of machine learning. By
learning from given examples, ANNs can be trained to solve a
wide range of problems such as decision making, prediction,
and classification.

Automated Game Design (AGD) is a broad field, but it
generally involves the concept of using AI to generate content
for video games, or even entire games from scratch. AGD has
been used in the past to combine existing game systems in
order to create new games using machine learning [12], and
to generate two-dimensional level layouts inspired by classic
games [13]. AGD is important as it allows developers to reduce
hands-on designer time required on a given project. Automated
systems can also be used to create endless procedural playable
content that can increase the value of a game and allow
for content that would not otherwise be possible through
manual creation. Recently, Wave Function Collapse techniques
have been implemented in the area of Procedural Content
Generation to successfully produce 3-dimensional meshes as
game content [14]. This technique has been bolstered in its
utility with design-level constraints embracing knowledge of
tile-based connective structures of the used imagery [?].

Csikszentmihalyi proposed the concept of “flow”, meaning
that people enjoy activities most when they strike a balance
between their own skill and the challenge at hand; if a task
is too difficult, players may feel frustrated or anxious, but if
it is too easy then players could feel bored and disengaged
[15]. As Zohaib explains [16], this concept can be applied
to difficulty in video games to ensure that players are kept
engaged throughout the course of a game. However, video
games traditionally rely on pre-set difficulties such as Easy,

Medium, and Hard, which the player must select at the start of
a game, but these static difficulties are often restrictive and are
not nuanced enough to account for a wide range of skill levels.
The tower defense game genre in particular could benefit from
the use of DDA. In a typical tower defense game, the player
is tasked with placing defenses in order to fight back waves
of pre-planned enemies. Tower defense games are generally
pure strategy games where levels are predictable and can be
solved once a player discovers a viable strategy. This can lead
to players feeling disengaged once they find a strategy that
works as there is no incentive to deviate.

Sutoyo et al. attempted to tackle this problem by creating
a traditional DDA system for a wave-based tower defense
game with the goal of ensuring that players of all skill levels
are always presented with a suitable challenge [17]. During
gameplay, their DDA system looks at key in-game metrics
to determine the player’s skill level and adjusts the difficulty
accordingly between waves. Difficulty is adjusted by changing
three difficulty scalars: the status point effects the power and
health of enemies, the gold point effects how much currency
the player generates at the end of a wave, and the spawn point
effects how many enemies are spawned. By using hand-picked
scalars for difficulty adjustment, the system is still reliant on
a designer having set these multipliers to appropriate values,
otherwise the system suffers from difficulty swings, or the
system may not adjust significantly enough to cater for a wide
range of player skill.

The proposed system considers three in-game metrics when
deciding how to adjust difficulty. The generic metrics of player
health, enemy health, and skill points may not give the system
the full picture of how competent a player actually is. For
example, the metrics of player and enemy health are simply
side effects of how the player has structured their defense, so it
would likely be more valuable to evaluate the tower placement
itself. A machine learning method can be used instead in
order to evaluate tower placement directly and observe tower
synergies, which could then in turn produce a more accurate
estimate for actual player strategy and allow for more fine-
tuned DDA via wave generation and management.

III. METHODOLOGY

The goal for this project is to create a wave manager driven
by a NEAT network which is trained to analyse the player’s
defenses in a tower defense game in order to decide which
enemies have the best chance of success. The wave manager
will have a certain amount of points to spend on spawning
enemies, and the amount of allocated points will be driven by
traditional difficulty increments and the current wave count.
These points are used to ensure the wave manager is still fair
and doesn’t generate any unbeatable waves. The overview of
this can be visualised in Figure 1.

A. Game Development and Project Setup

The Unity game engine (2020.2.1f1) was used to build
the game, this project took advantage of game templates
available to download for the engine. SongGameDev’s Tower

Fig. 1. Illustration of the inputs and outputs for the neural network for the
tower defense game

Defense Toolkit 4 (TDTK-4) was used as a basis for the game
as it contains a comprehensive set of tools and assets that
can be used to quickly build a generic tower defense game.
UnitySharpNeat was used to implement the NEAT ANN, this
contains most of the necessary features required to begin
training an ANN immediately with some additional project
specific set-up required.

1) Units and Towers: Throughout development and testing
it became clear that certain strategies were favoured by the
network in generating waves due to imbalance in the features
of individual units, and indeed towers in the game design.

The wave unit spawn costs and stats were adjusted to make
them feel fair and less challenging as some units were more
powerful than expected when used against the player tower
strategies. These are presented in Tables I and II with ratios
of units chosen presented in Figure 4.

2) NEAT Management and Fitness: An AIWaveManager
class was created in order to feed the NEAT agents their
required inputs and to handle their outputs, as well as feeding
back data regarding the outcome of the wave which was then
used to determine network fitness.

The fitness function of the ANN should be determined by
the following factors and is presented in Algorithm 1:

• The number of units that make it to the end of the level
thus dealing damage to the players health pool. The ANN
will be rewarded for each point of damage dealt.

• Average distance travelled by units. This will encourage
the ANN to learn that having units survive for longer will
increase the chance of damage being dealt.

• Severe punishment if the number of units requested to
spawn exceeds the number of available spawn points.

ruled
The existing SpawnManager class within TDTK-4 initially

required all waves to be defined at the start of a game so
this was modified to allow for new waves to be inserted at

Input: P,U // Path of defence and List of units
Output: R // Average Path Completion
Function GetAveragePathCompletion(P,U):

fTotComp←− 0;
foreach U ∈ Units do

fTotComp←−
fTotComp+ P.U.PathCompletion;

end
iNumSpawned←− U.Len();
if iNumSpawned = 0||fTotComp = 0 then

R←− 0;
end
R←− fTotComp/iNumSpawned;
R←− Clamp(R, 0, 1);
return R;

End Function

Input: W // Wave applied to Path
Output: F // Fitness Function
Function GetFitness(W):

fMaxFitness←− 100;
fAvgComp←−
GetAveragePathCompletion(P,U);
F ←− fMaxFitness ∗ fAvgComp;
F ←− Clamp(F, 0, fMaxFitness);
return F ;

End Function

Algorithm 1: GetFitness implementation details

runtime from the AIWaveManager class. This was set up so
that whenever a new wave was created the AIWaveManager
would then let the NEAT supervisor know that a new wave has
begun, clear any fitness trackers from the previous wave, then
request each NEAT agent in the scene to generate a wave for
their associated TD tower path. This project used ten NEAT
agents as can be seen in Figure 2.

The NEAT agents took the form of a NeatGameWaveGen-
eratorUnit class which handled all of the inputs, outputs and
fitness for a given agent. The specifics of this classes function
is to return a double array [0-1] representing the priority for
which enemy units to spawn at the start of a given wave. When
the AIWaveManager requests a wave to be generated it will
supply each NEAT agent with an associated path, the agent
will then register the inputs relevant to that path by querying
the game state, then the agent activates itself and evaluates the
neural network to generate an output array representative of
the wave to spawn.

B. Training

The AI wave manager ultimately settled on a network where
the inputs are the number of each tower type in the level and
the outputs are the spawn priority for each enemy type, the

Icon Name Spawn Cost Health Shield Speed Armour Special

Transport 1 17 0 1.5

Speeder 3 15 10 2.5 Physical

Support 5 50 30 1.5 50% resistance to nearby units

Carrier 7 40 40 1 Electric Spawns a drone when killed

Tank 25 650 0 0.5

Drone 3 1 10 2 Flying: can’t be slowed

TABLE I
SHOWING THE WAVE UNIT STATS THAT WERE USED IN GAME DEVELOPMENT AND FOR TRAINING THE AI.

Icon Name Cost Damage Cooldown Range Crit Damage Type Special

Machine Gun 10 1-2 0.75 2 25% chance
1.25x multiplier Physical

Zapper 15 3 1.25 2.5 10% chance
2x multiplier Electric 10% to stun on hit

Laser 20 2-3 1 3 10% chance
2x multiplier Electric Damage over time

6 damage / 3s

Cannon 25 8-10 2 3.5 0% chance Physical Area of effect

Slow 25 2.25 Slows enemies in range
40% slow speed

Support 30 3 Fire rate increase
25% attack speed

TABLE II
ILLUSTRATING FINAL TOWER STATS THAT WERE USED TO TRAIN THE NEAT NETWORK.

fitness was entirely determined by the average path completion
percentage of all enemies spawned that wave.

During training, each of ten lanes was given a unique tower
layout and used ten trials so that each NEAT agent now
performed against each tower layout before having fitness
evaluated. This meant that networks were evaluated based on
their mean fitness at the end of the trials, so it ensures that
the overall best network always survives. The tower layout
of each lane was designed to allow the network to learn the
strengths and weaknesses of each tower type and to also test it
against different combinations of towers. Each of the damage
dealing towers has its own lane where only that tower is
used so that the network can learn which units are best to
defeat those towers, some lanes have only a single damage
type meaning that the network should adapt to spawning the

associated damage type resistant enemy against those lanes.
The rest of the lanes are made to represent the sort of real
defense layouts that players will be using in the final game,
these test if the network is able to use a mix of units to
best tackle those complex defense layouts. The finalised tower
layouts used can be seen in Figure 2 where the training process
is also shown.

As shown in Figure 1, the input for the network is the integer
values representing how many of each of the tower types are
currently in the level, upgraded towers were counted twice as
they are effectively twice as impactful as a single tower. The
output is once again a [0-1] double for each of the 6 enemy
types, this represents the spawn priority of the given enemy
type. To determine how many of each enemy type to spawn,
the available spawn points for the wave are distributed across

Fig. 2. Illustration of five NEAT agents, concurrent training within Unity of
the NEAT network used for wave generation.

the enemy types proportionally to their given spawn priority,
any unspent points are then redistributed to the next highest
priority enemy type until all points are spent.

After approximately 5000 generations the network began
to consistently defeat the training lanes so learning plateaued
with fitness reported between 95-100, at this point the tower
layouts were made significantly harder to challenge the net-
work and the network was trained for another 500 generations
where fitness stayed relatively consistent. The finally selected
champion network had a fitness of 56.3 against the harder
tower layout and when internally playtested against was suf-
ficiently challenging and dynamic, the final topology for the
network selected can be seen in Figure 3.

Fig. 3. Graph showing the topology for the trained NEAT network used for
wave management. Inputs at the top, outputs at the bottom.

C. Evaluation

The two key metrics to measure to evaluate the success of
this project are:

• Content Generation: is the system able to generate content
that is considered similar to human generated waves?

• Player Engagement: are players differently engaged when
playing against the AI wave manager than against human
designed waves?

A/B testing was used to effectively evaluate changes in
player engagement. Winkler [18] demonstrated that a mini-
mum of 10 participants are needed in each test group. Half
of the participants played the manually designed waves while
the other half played the AI waves.

Test participants were given a set of levels in the game to
play and were instructed to play for 25 minutes or until they
completed all three levels. Due to the ongoing (at the time)
COVID-19 pandemic, this testing was conducted remotely,
so participants were given a link to download the game to
their local machines, a participant information leaflet and
web consent form and played from the comfort of their own
home while entirely unsupervised. Immediately after the play
session participants were surveyed using the Game Experience
Questionnaire (GEQ) developed by Ijsselsteijn et al. [19]. The
GEQ Core Module was used in order to measure how they felt
about the game and how engaged they were throughout. The
most important areas of the survey to observe will be questions
relating to Flow, Tension/Annoyance and Challenge as these
are the areas that should be most affected by the AI wave
manager.

IV. RESULTS AND DISCUSSION

A total of 22 people participated in the survey, meaning that
each trial (A or B) had 11 participants each. As an inclusivity
criteria, every participant had experience playing at least one
tower defense game previously meaning they had at least some
knowledge of the genre.

GEQ Total Scores

Co SaII Fl T/A Ch NA PA

AI 149 152 107 18 72 23 179
Human 120 115 86 33 86 32 167

p-value 0.19 0.06 0.21 0.19 0.41 0.34 0.38

TABLE III
TABLE DEMONSTRATING THE TOTAL SCORES FROM THE GEQ A/B

TESTING SURVEY WITH 11 PARTICIPANTS FOR EACH GROUP (AI AND
HUMAN WAVES). THIS IS COMPLEMENTED WITH A T-TEST TO DETERMINE
SIGNIFICANCE. CO = COMPETENCE, SAII = SENSORY AND IMAGINATIVE

IMMERSION, FL = FLOW, T/A = TENSION/ANNOYANCE, CH =
CHALLENGE, NA = NEGATIVE AFFECT, PA = POSITIVE AFFECT.

Table III shows the final results from the survey and
demonstrates the total scores achieved for both the AI and
Human across all seven aspects of the GEQ. Overall, the
results are favourable for the AI with it achieving higher
scores in positive aspects such as competence, sensory and
imaginative immersion, flow and positive affect. The AI also
scored lower in the negative aspects of tension/annoyance and
negative affect. Though unexpectedly the AI scored slightly
lower than the human waves for the challenge aspect meaning
that the AI wave manager might not be challenging players as
much as it was expected to.

One finding from this survey is that the AI waves scored
107 in the flow category whereas the human waves only

scored 86, meaning that the AI waves were generally more
engaging than the human ones. Another key category was
tension/annoyance where the AI scored a total of 18 compared
to the 33 of the human waves. This could mean that players
were generally less frustrated when playing against the AI
which likely contributes to the higher flow score too. There
was a serious risk that the AI would score higher here due
to the fact that it would be less predictable and intentionally
counter player strategy over the human designed wave.

Another result is that the AI scored slightly lower for the
challenge aspect with a score of 72 compared to the 86
scored by the human waves. While a lower challenge score
isn’t necessarily a bad thing, it certainly wasn’t expected.
The entire concept behind the AI wave manager’s imple-
mentation was that it could be trained to adapt to player
strategies and therefore always produce a challenging wave,
thus theoretically increasing levels of engagement through the
principles of flow. However, in this case challenge decreased
but flow still increased. These lower than expected challenge
scores may also go some way to explaining why the related
tension/annoyance score are also lower than anticipated.

At a glance the results seem favourable for the AI wave
manager, however a deeper look at data in Table III shows
that the results are not statistically significant when comparing
the two groups. This leads us to accept a null hypothesis that
means are equal under testing and that there is no difference
between these groups. On the other hand, whilst no group
can be determined better or worse than one another with this
sample, this does demonstrate that in terms of the GEQ and
player experience, the AI generated waves were considered not
statistically different to the human generated waves against
the dependent variable of Game Experience Factors. This
illustrates that the NEAT guided wave management system
can perform the function of a human wave designer, delivering
similar game experience to a player audience.

A. Engagement

One of the key goals of this project was to determine
if an evolving neural network could be used to increase
player engagement within a video game. The results from the
blind A/B test GEQ survey failed to prove any statistically
significant improvement in player flow. However, the results
are potentially still promising as the AI waves did score higher
than the human designs for flow and the lack of statistically
significant findings at least proves that the AI is comparable
to the human designs.

The plan for increasing engagement was to use the ANN
to ensure that the player is constantly being challenged thus
increasing engagement due to the theory of flow. However, the
survey results show that players generally found the AI waves
to be less challenging than the human waves, meaning that
the AI didn’t really achieve its goal. There are a few factors
that may have contributed to the AI being less challenging
than the human waves: the ANN might not have been trained
for long enough, the method of training may not have been

representative of actual gameplay, or the fitness function used
may not have been sufficient thus training bad habits.

Another potential reason may be due to the way the AI
structures its waves. The AI is able to spawn any enemy type
on any wave (assuming is has the spawn points to afford it),
which means that it’s possible that the AI wave manager does
a better job at naturally introducing each enemy type to the
player earlier in the game compared to the human waves which
don’t introduce some of the harder units until later waves. This
may lead to players playing against the AI waves to develop
better strategies earlier in the game as any weaknesses in their
defences are exposed earlier in the game where the punishment
for letting your defences get overwhelmed is far less significant
and less likely to lead to a game over compared to later in
the game when the human designed waves introduce certain
enemies such as the challenging carrier unit.

Even though the AI waves were perceived as being less
challenging than the human waves, the AI still scored higher
in flow. This may mean that the human waves were too chal-
lenging as they also had a higher score for tension/annoyance,
so therefore lowering the challenge could have increased flow
if the high level of challenge was the limiting factor at the time.
While the AI and human waves conform to the same spawn
points limitation in an attempt to keep them balanced, there
are other factors that may affect the difficulty of the human
waves. Unlike the human waves, the AI waves are structured
with a constant 1 second gap between each enemy being
spawned and enemies are spawned from highest cost to lowest
cost, meaning that the structure and timing is predictable and
consistent across all AI waves. The human waves however
are intentionally designed to take advantage of the natural
synergies between certain enemy types, such as combining
support units with closely grouped collections of transport
units, combinations like this are possible to generate with
the current AI implementation, but are not curated by design
intervention, so it is possible that these specifically designed
combinations and unique wave timings are contributing to the
increased challenge of the human waves.

To conclude whether an AI approach like this can be
used to improve engagement, the results are promising but
inconclusive, it may still be viable with further research.
There are many factors at play when it comes to increasing
engagement and the results can be unpredictable, so each game
to use this approach would likely need an entirely bespoke and
fully tested system. This may prove to be too expensive and
risky for some game developers, though if a game were to be
designed with this method in mind from the start it is possible
that it could benefit greatly from this approach.

B. Content Generation

The second goal of this project was to determine if an
ANN could be used to generate valuable game content, and
this project has succeeded in achieving that goal. Though as
stated previously the survey results were inconclusive, this
also proves that the AI generated waves were at the very least
statistically indifferent from the human waves meaning that the

AI generated content was at least as enjoyable as the human
content and is therefore valuable for automated game design.

The main advantage of an AI content generation system
such as the one developed for this project, is that it allows
for endless content generation and endless replayability. As
the AI generates waves in real time while the player is
playing, there is no limit to the amount of content that can be
generated so the potential playtime is theoretically limitless
which is often an important metric for perspective players,
therefore this approach could increase revenue streams via
replayability. Another important advantage is that time and
money can be saved during development by having the AI
handle all of the wave generation while real human designers
focus on other areas of the project, designing unique waves
for each level and difficulty can prove to be an extremely
time consuming process. The ANN developed for this research
benefits from not requiring to be trained specifically for each
level, meaning that it works for rapid iteration and would
allow for level designers to playtest their levels early on
without needing designers to curate waves, this is another
potential development time and cost saving. Often a downside
of automated content generation is that designers lack the
ability to fine tune content, though the developed system can
still allow for designers to tweak parameters such as the
allowed spawn points to spend and the individual cost for
each unit. It would also be easily be possible to add additional
tweakable parameters such as blocking certain units type from
spawning until specified waves or changing the wave timings.

However, there are some potential downsides to this ap-
proach. The initial training of the network took a significant
amount of time and could prove to be a bottleneck in the
often parallelised game development process as the rest of
the game mechanics need to be in place before the network
can begin learning. More complex games with more features
and mechanics would likely require more training time and
may required more bespoke automated training configurations,
particularly if the player can impact the wave while it’s
in progress. Updating games with balance changes or new
content post-release is a common practice throughout the
industry, but making any changes to the game will also require
the network to be retrained, for small balance changes this
shouldn’t be too costly but larger changes particularly with
new towers or enemies would require the entire network to be
retrained rather than fine-tuned.

A potential improvement for this approach could be to
rather than allowing the AI to spawn any enemies it wants by
generating a wave from scratch, to instead have it pick from
pre-set human designed subwaves. For example, a subwave
of support and transport units with their wave timings set
effectively or a subwave of alternating physical and electrical
resistant enemies. This could allow for the AI generated
content to still have some of the benefits of the human
designed content (customised wave timings, use of designed
enemy synergies, and more unit variation) while still allowing
for potentially endless content generation. This would come
with the downside of more human design time being required,

but higher quality content may make this worthwhile. Another
potential improvement could be to allow designers to set which
enemy types are allowed to spawn on which waves, this would
allow for a more natural designed difficulty curve as new units
could be introduced once at a time as is typical for the genre.

In summary, while the specific system developed for this
research may not be suitable for use in a real product, a similar
purpose-built system could definitely be viable for use within
video games to generate endless content. This research has
proven that AI generated content can be indistinguishable from
human designed content, meaning that it can provide value to
developers that wish to save designer’s time.

C. Future Use Cases

Beyond the uses discussed already, there is potential for
this methodology to be applied to other areas within games.
One potential avenue could be to use a machine learning
approach like this as a tool to aid game designers in balancing
a game. Throughout the training process of the tower defence
example explored for this project it was observed that the AI
had a preference for certain enemy types and rarely chose
others, this helped fine-tune the enemy stats to ensure that
the units were more balanced. Figure 4 shows the proportions
of each enemy type spawned in the final network and data
like this is very useful to game designers looking to create a
balanced experience. In theory, a game designer could use a
tool like this to make balance changes to a game, then run the
training process until the fitness plateaus, then run the resulting
champion network and harvest data from it to observe how
the balance changes effected the game when compared to the
results prior to the change. By running these simulated waves
constantly this could also be seen as a form of automated
testing and additional analytics could be recorded in order to
provide more insight into the health of the software.

Fig. 4. Proportion of each enemy spawned by the final champion network
when being run through the 10 test lanes.

Beyond tower defence games this approach could easily
be mapped to many other prominent game genres where the
player competes against an AI opponent such as real time

strategy games, base building games, or horde style games.
Other games such as Left 4 Dead 2 (2009) already use a
similar system of observing the current game state when
procedurally generating enemy waves, but those encounters
are predetermined and limited in their nature, whereas a
machine learning approach could allow for this content to be
generated infinitely with the resulting enemy waves being far
less predictable and repetitive.

AI generated content like this doesn’t necessarily have to
be limited to the wave generation demonstrated in this project.
Given the somewhat promising results of this experiment it is
possible that a similar machine learning approach of allowing a
network to observe the current game state and make informed
decisions could be applied to other areas of game development.
Perhaps an ANN could be trained to generate rooms and
scenarios in a dungeon-crawler style game, or maybe it could
generate dynamic quests in a role-playing game, the potential
is near limitless. This approach could also be a great way to
incorporate DDA within games as the AI can observe the game
state to see how well the player is doing and adjust difficulty
accordingly.

V. CONCLUSION

This paper explores whether an ANN can be used to
generate engaging video game content via wave management
for a TD game. The result means showed that while this
technique did increase overall player engagement, the game’s
perceived difficulty was actually reduced by this addition.
Meaning that the link between challenge and engagement de-
rived through the principals of flow did not apply as expected,
so more research is required to further evaluate this approach.
Whilst means were different across approach, there was no
statistically significant difference between the human and AI
generated waves. Whilst no significant engagement increase
or decrease was observed, this result proves that this approach
would be viable as a form of dynamic content generation as
the AI waves are effectively indistinguishable from human
designed ones. This research also shined a light on other
potential uses for this technology, such as being used as a tool
for game balance and automated testing. In summary, there is
a lot of potential for this technology to drive innovation within
the games industry and this research helps highlight potential
approaches to this end.

REFERENCES

[1] J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge
balance in an rts game using rtneat,” in 2008 IEEE Symposium On
Computational Intelligence and Games, 2008, pp. 87–94.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[3] Q. Guo, Z. Yu, Y. Wu, D. Liang, H. Qin, and J. Yan, “Dynamic recursive
neural network,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 5142–5151.

[4] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 11 1997. [Online].
Available: https://doi.org/10.1162/neco.1997.9.8.1735

[5] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, p. 99–127, Jun.
2002. [Online]. Available: https://doi.org/10.1162/106365602320169811

[6] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content
generation in the galactic arms race video game,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 1, no. 4, pp. 245–
263, 2009.

[7] X. Li, S. He, Y. Dong, Q. Liu, X. Liu, Y. Fu, Z. Shi, and W. Huang,
“To create dda by the approach of ann from uct-created data,” in
2010 International Conference on Computer Application and System
Modeling (ICCASM 2010), vol. 8, 2010, pp. V8–475–V8–478.

[8] A. Ebrahimi and M.-R. Akbarzadeh-T, “Dynamic difficulty adjustment
in games by using an interactive self-organizing architecture,” in 2014
Iranian Conference on Intelligent Systems (ICIS), 2014, pp. 1–6.

[9] S.-H. Cho and S.-J. Kang, “An automated wave generation technique in
tower defense games based on a genetic algorithm,” Journal of Korea
Game Society, Korea Academic Society of Games, April 2011.

[10] S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” CoRR, vol. abs/1410.7326, 2014. [Online]. Available:
http://arxiv.org/abs/1410.7326

[11] W. S. McCulloch and W. Pitts, “A logical calculus of the
ideas immanent in nervous activity,” The bulletin of mathematical
biophysics, vol. 5, no. 4, pp. 115–133, Dec 1943. [Online]. Available:
https://doi.org/10.1007/BF02478259

[12] M. Guzdial and M. Riedl, “Automated game design via conceptual
expansion,” CoRR, vol. abs/1809.02232, 2018. [Online]. Available:
http://arxiv.org/abs/1809.02232

[13] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “PCGRL:
procedural content generation via reinforcement learning,” CoRR, vol.
abs/2001.09212, 2020. [Online]. Available: https://arxiv.org/abs/2001.
09212

[14] H. Kim, S. Lee, H. Lee, T. Hahn, and S. Kang, “Automatic generation
of game content using a graph-based wave function collapse algorithm,”
in 2019 IEEE Conference on Games (CoG), 2019, pp. 1–4.

[15] L. A. Beck, “Csikszentmihalyi, mihaly. (1990). flow: The psychology
of optimal experience,” Journal of Leisure Research, vol. 24, no. 1,
pp. 93–94, 1992. [Online]. Available: https://doi.org/10.1080/00222216.
1992.11969876

[16] M. Zohaib, “Dynamic difficulty adjustment (dda) in computer games:
A review,” Advances in Human-Computer Interaction, vol. 2018, p.
5681652, Nov 2018. [Online]. Available: https://doi.org/10.1155/2018/
5681652

[17] R. Sutoyo, D. Winata, K. Oliviani, and D. M. Supriyadi, “Dynamic diffi-
culty adjustment in tower defence,” Procedia Computer Science, vol. 59,
pp. 435–444, 2015, international Conference on Computer Science
and Computational Intelligence (ICCSCI 2015). [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187705091502092X

[18] S. Winkler, “On the properties of subjective ratings in video quality
experiments,” in 2009 International Workshop on Quality of Multimedia
Experience, 2009, pp. 139–144.

[19] W. IJsselsteijn, Y. de Kort, and K. Poels, The Game Experience Ques-
tionnaire. Technische Universiteit Eindhoven, 2013.

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/106365602320169811
http://arxiv.org/abs/1410.7326
https://doi.org/10.1007/BF02478259
http://arxiv.org/abs/1809.02232
https://arxiv.org/abs/2001.09212
https://arxiv.org/abs/2001.09212
https://doi.org/10.1080/00222216.1992.11969876
https://doi.org/10.1080/00222216.1992.11969876
https://doi.org/10.1155/2018/5681652
https://doi.org/10.1155/2018/5681652
https://www.sciencedirect.com/science/article/pii/S187705091502092X

	Introduction
	Related Work
	Methodology
	Game Development and Project Setup
	Units and Towers
	NEAT Management and Fitness

	Training
	Evaluation

	Results and Discussion
	Engagement
	Content Generation
	Future Use Cases

	Conclusion
	References

