

Inclusive Multimodal Voice Interaction for Code Navigation

Bharat Paudyal

DMT Lab, Birmingham City University bharat.paudyal@bcu.ac.uk

Chris Creed

DMT Lab, Birmingham City University chris.creed@bcu.ac.uk

Ian Williams

DMT Lab, Birmingham City University ian.williams@bcu.ac.uk

Maite Frutos-Pascual

DMT Lab, Birmingham City University maite.frutos@bcu.ac.uk

Navigation of source code typically requires extensive use of a traditional mouse and keyboard which can present significant

barriers for developers with physical impairments. We present research exploring how commonly used code navigation

approaches (e.g. locating references to user-defined identifiers, jumping to function definitions, conducting a search for

specific syntax, etc.) can be optimized for multimodal voice interaction. An exploratory study was initially conducted with five

developers who have physical impairments to elicit insights around their experiences in navigating code within existing voice-

controlled development environments. Findings from this study informed the design of a code editor integrating different

navigation features tailored for multimodal speech input. A user evaluation with 14 developers with physical impairments was

conducted with results demonstrating that all participants were able to successfully complete a series of standard navigation

tasks. Participants also highlighted that the code navigation techniques were intuitive to use and provided a high-level of

usability.

CCS CONCEPTS •Human-centered computing~Accessibility~Accessibility systems and tools

Additional Keywords and Phrases: Assistive technology, Programming tools, Speech recognition, accessibility

1 INTRODUCTION

The ability to navigate code efficiently is an essential activity for common software development activities such

as inspecting code, debugging and correcting syntax errors, and code refactoring [1, 25, 36]. Research has

also highlighted that developers spend a significant portion of their time on navigating code to support

comprehension and maintenance [14, 22]. Moreover, studies have demonstrated that effective code navigation

is crucial to support developers in building a cognitive model of a codebase that can facilitate understanding of

code flow and the location of different code blocks [1, 23]. Multiple code navigation approaches have been

developed to support the efficient location of syntax within a codebase including the use of call graphs (e.g.

displaying a tree view of different methods or functions), canvas-based navigation (e.g. visualising all methods

2

in a 2D plane) [8, 13, 16], and a structural navigation approach (e.g. displaying all usages of a method when

clicked [36] or jumping to a function definition [34]). These navigation approaches are commonly integrated

within mainstream development environments (e.g. Visual Studio Code [39]) where syntax is typically navigated

via a mouse and keyboard. However, this can present significant barriers for people with physical impairments

who may experience challenges in using traditional input devices to support coding activities. The use of voice

control in conjunction with other input modalities (e.g. mechanical switches, eye gaze, etc.) presents an

alternative interaction method for enabling disabled developers to write, navigate, and manipulate code [6, 29,

32], although there has been a lack of work around this area to date. Initial research has examined simple inline

navigation approaches via speech (e.g. moving the cursor to a specific position on a line [29, 32]) and page

scrolling through utilising a grid visualisation [42], but there has been less work on other crucial features such

as the use of a call graph to navigate and locate specific code blocks [17, 22, 33]. Multimodal voice-controlled

methods developed to date are also yet to be empirically evaluated with developers who have physical

impairments thus contributing to a current lack of understanding around the potential of alternative methods to

support code navigation.

 To address the limited work in this area, we explored the potential of different code navigation approaches

optimised for multimodal voice control such as finding references of user-defined code constructs (e.g.,

variables), jumping to function definitions, and conducting a search for specific syntax. We initially conducted

interviews with five developers who have physical impairments to understand further their current methods for

navigating code within voice-controlled editors. Findings from this exploratory study were used to inform the

development of an editor containing different code navigation approaches that can be operated via multimodal

speech input. The navigation techniques were evaluated in a user study with developers who have physical

impairments (N=14) where it was found they supported all users in successfully completing a range of standard

code navigation tasks. Results also highlighted that the approaches developed were efficient and intuitive to

use, as well as demonstrating a high-level of usability.

2 RELATED WORK

2.1 Code Navigation

Code navigation has received significant attention from researchers in terms of both understanding current

methods and how new approaches can potentially enhance developer workflows [9, 13, 16, 19, 24, 36].

Common approaches include utilizing a local search function [1, 2, 35] enabling developers to find code based

on lexical matching, using a call graph [16, 24] where methods are represented as nodes that developers can

utilize to navigate across different methods [16, 19], as well as features such as Flower [36] that enable

developers to jump directly into the caller of any method (when selected by a developer). Many modern IDEs

also provide a “find all references” feature that displays all calls associated with a particular method or function

[2, 26], as well as a “go to definition” tool that allows developers to find the definition of a specified identifier [19,

34]. Studies have demonstrated that these approaches can present limitations as developers may have to

switch between file views and then resize or reflow different file panes, thus increasing development time and

increasing cognitive load in understanding the flow of code [9, 13, 16, 22]. Researchers have explored

alternative approaches to address these issues such as canvas based code editors where all project code (i.e.

multiple files) are collated in a single viewable 2D canvas [9, 13, 21]. Code Bubbles [9] allows developers to

3

display code fragments in resizable bubbles which can be arranged around a 2D canvas. Patchworks [16] and

Coderibbon [21] adopt a similar approach and were considered as a promising tools in overcoming the

development time, however these methods are yet to be deployed in mainstream development environments.

2.2 Code Navigation via Voice Interaction

Whilst prior studies have highlighted the potential of voice as an interaction approach within a coding

environment [10, 18, 27, 40, 41], less work has investigated the potential of speech input to support code

navigation. Begel and Graham [5, 6] explored the use of voice control to navigate code utilizing approaches

such as “jump to constructor linked list” (i.e. to move the cursor to a LinkedList constructor) and “go to previous

page” (i.e. to navigate to the previous page). Rosenblatt et al [32] utilized vocal navigational commands such

as “go to line” and “up X lines” to move between lines of code in their VocalIDE prototype. To support inline

navigation, they used color context editing where individual characters within a line were highlighted with

different colors (e.g. red, green, yellow, etc.) which could then be verbalised to navigate to that position (i.e.

“green”, “blue”, etc.). A similar approach is also adopted in Cursorless [43] (a commercial development

environment) which is integrated within TalonVoice [42] to provide additional inline navigational features such

as moving the cursor to the start/end of a line or after specific characters. Paudyal et al. [29] used voice

commands such as “go to the line x” and “left x” for navigating to different lines and re-positioning the cursor on

a specific line, alongside a gaze-based onscreen keyboard where directional keys could also be used for

manipulating the cursor position. TalonVoice is a speech based tool that has been widely used by disabled

developers to support coding activities (including code navigation), although is yet to be formally evaluated in

user studies. Similarly, Serenade [44] provides navigation features (e.g. inline navigation and navigating to

methods, etc.) via natural language speech input, but has not been empirically evaluated to date.

While the existing literature can help to inform the development of voice-based code navigation techniques,

there remain several areas where little or no work has been conducted. For instance, it remains unclear how

common code navigation features (e.g. “go to definition, “find all references”, etc.) can be tailored and adapted

for voice interaction. Moreover, there has been a lack of work around evaluating speech interaction approaches

that support code navigation in collaboration with developers who have physical impairments. Our work

addresses these points through exploring whether voice-based navigation approaches are feasible and the

extent to which they may be able to enhance accessibility within coding environments.

3 CODE NAVIGATION – AN EXPLORATORY STUDY

Interviews were initially conducted with five developers who have physical impairments to understand their

current code navigation strategies. Participants were aged between 24 to 42 years (M=31.2, SD=6.3) - four

participants were diagnosed with Repetitive Strain Injury (RSI) while one had Tendonitis/Carpal Tunnel. All

participants were fluent in English and had at least a year of coding experience (M=10.2, SD=8.7) – they also

all currently use voice as an interaction approach to perform coding activities. Interviews were conducted on

Slack [38] (a team collaboration tool) and focused on exploring challenges participants experience in relation to

navigating code, any strategies used to overcome barriers, and future features they felt could support them

further. Responses across all participants were collated into three key themes:

4

Navigation Challenges: All participants highlighted that they use speech-based tools (e.g. Talon [42], Dragon

Dictate [45]) for development work and emphasized that their existing tools provide limited navigation features.

For instance, these tools only provide commands for inline navigation thus resulting in the majority of

participants relying on keyboard shortcuts (e.g. “:x” to move cursor to line x, “/ word” to search for the term

“word”, etc.) - “…I normally code in Vim, so I use tags to jump around a bit, but it's not really as nice as "go to

definition" features in IDEs like IntelliJ” [P4]. Additionally, three participants highlighted that custom voice

commands for code navigation with speech-based tools are not intuitive and can be difficult to learn (e.g. “slap”

will move the cursor to end of a line, “command up” will move the cursor to line 1, etc.). Whilst tools such as

Talon support customization of commands, participants highlighted that this process can be time consuming

and requires broader understanding of technical skills (such as configuring a microphone and coding

environment, etc.) and can be a frustrating experience (“For Talon it is hard. If you don’t have technical

expertise, it is hard to configure your own customized commands...”) [P2].

Navigation Workarounds: All participants reported that they use additional tools (e.g. an eye tracker, keyboard,

etc.) in conjunction with speech interaction to help overcome navigational barriers (“I have an eye tracker which

lets me do things like ctrl-click to follow definitions and such...” [P2]). Similarly, P3 stated: “…I use relative line

numbers in vim, so if I want to jump to a particular line, I can say 26 down easily. I can also type fx or say fine

plex to jump to the next x character … for scrolling I might just use the trackpad 2 finger scroll”. Moreover, two

participants stated that they use key bindings (e.g. “gd” to go to definition, “gg” to navigate to the first line, etc.)

to map with their IDE navigation features to overcome barriers (“… with Talon I use the Spacemacs key bindings

which would be gd to move to definition” [P5]).

Future Enhancements: All participants expressed a desire for navigation approaches that were less reliant on

additional modalities such as a keyboard (“… if I can use just use voice to search or see the list of all search

results without keys, it will save lot of time” [P1]). Four participants highlighted a requirement for voice optimized

approaches that facilitate the use of common navigation features found in traditional development environments

such as “navigating to a definition” and “listing all references” of a specified search item. Participants also

emphasized that any new approaches developed using solely voice as the primary method of interaction should

be simple and intuitive “out-of-the-box”, as opposed to requiring additional configuration (which can potentially

be tedious and time consuming).

The findings from this initial study provided a solid starting foundation for the project and informed the focus

of new multimodal voice code navigation approaches that support a wider range of features (such as navigating

to definitions and listing references) that have not been explored in the existing literature to date.

4 SYSTEM DESIGN

Drawing from prior research and insights collected from the exploratory study with developers, we developed a

new code editor integrating different code navigation approaches tailored for multimodal voice interaction.

5

4.1 Prototype Design

The prototype was built-upon an open-source JavaScript based editor (Monaco Editor [46]) that provides a

range of standard coding features. The system architecture consists of three components: (1) a speech

recognition interface to convert speech into text (using the Web Speech API [47]), (2) a command interpreter to

parse a user’s intent and command (using wit.ai [48] - an open source natural language platform) and (3) an

execution method to process code navigation actions based on a user’s vocal commands. The system was

trained using navigation commands highlighted in previous studies [29, 32], as well as variations of the common

names of features available in widely-used IDEs (such as “Find all References” and “Go to Definition” in VSCode

and “Find Usages” in JetBrains, along with some alternatives – e.g. “find reference”, “all reference” and

“definition”). The interface design resembled the layout of existing mainstream development environments (e.g.

Atom[49], Brackets[7], Visual Studio Code[39], etc.) and utilized a similar theme to the default one used in VS

Code (Figure 1). The header area within the interface contains a microphone icon by default and provides

feedback in relation to the speech commands that have been issued by the user. The recognition system can

be initiated through using an external mechanical switch (or the space key on a standard keyboard), thus

resulting in the microphone icon subtly pulsating to highlight that the system is “listening” for input. Once a user

completes an utterance the latest speech input recognized by the system is positioned next to the icon to provide

feedback to users. An error message is also displayed below the speech input if the voice recognizer failed to

understand the command. The area below the header included the main editor where syntax can be written,

navigated, and edited. A list of example commands is also available can be displayed on the right side of the

editor via the “help” vocal command.

Figure 1: The editor interface –at the top of the interface a red spinner icon indicates that the recogniser is listening. The “go

to line 7” voice command has been issued by the user and the corresponding action has been performed.

4.2 Code Navigation via Multimodal Voice Input

Common code navigation features found in mainstream development environments were also integrated into

the interface and tailored for speech interaction. This includes standard approaches such as navigating to

specific lines (e.g. “go to line x”, “down x” , etc.), positioning the cursor position within a line of code (e.g. “left

x”, “right x”, etc.), and jumping to the start or end of a line. Additional navigation approaches such as “go to

definition”, “find all references”, and “find” were also incorporated - these are widely used features within

6

mainstream editors [16, 34, 36], although no work to date has explored how they can be adapted for speech

interaction or whether this can present any interaction benefits for developers with physical impairments. The

following sections provide further detail on the design of each of these key features and how they were tailored

for voice control (a list of all navigational speech commands can be found in Table 1.

Table 1: List of features along with example vocal commands used for navigation. ∎ denotes that the cursor has to be

placed around the identifier before verbalizing the command.

Features Usage Example utterances

Go to Definition To navigate to the definition of Identifier

(function/class/variable)

‘define’, ‘go to definition’, ‘definition’

Find all references To display all the possibilities of a selected Identifier ‘reference’, ‘get reference’, ‘refer’

Search To find/search a word using a caret ‘find getarea’, ‘search function hello’

Select Next Item To move forward to next item ‘next’, ‘next 12’, ‘next 5th ’

Select Previous

Item

To go back to previous item ‘previous’, ’move previous’, ‘previous

2nd’

Left/Right/Up/Down To navigate to desire position across the code caret.

Defaulted to one position if position is not provided

‘left’, ‘right 20’, ‘up 10’, ‘move 10 position

left’, ‘go 20 position down’

Navigate to

specific line

To navigate between the lines of code ‘go to 10’, ‘go to line 20’

End of line Navigate to the end of current line ‘end of line’, ‘end line’, ‘line end’

Find all References

In modern IDEs, the “Find all References” feature typically displays the list of all relevant references in relation

to an identifier specified by the user via keyboard input (e.g. a variable, function, etc.). Figure 2 demonstrates

how this feature operates within Visual Studio Code – in this scenario, a user has placed the cursor around their

desired identifier “recognition” (at line 3) and initiated the “Find all References” feature through either a keyboard

shortcut (Shift + F12) or via the context menu (triggered through a right mouse click). This results in a list of

references being overlaid on the main editor that can be navigated through either directional keys on the

keyboard or via direct mouse selection. Once a reference has been selected from the list, a preview of the

relevant code is displayed in the main editor window and a user can then navigate to their desired location.

To tailor this approach for speech interaction, users can initially position the cursor (via the voice commands

available) to a specific identifier within the code (e.g. a variable, function name, etc.). They can then issue a

command to activate the “Find all References” feature (e.g. “reference”, “find reference”, etc.) and a list of

references are displayed on the right-side of the interface (Figure 3). To remove the requirement for mouse and

keyboard input to navigate the list, each list item is mapped with a unique numeric value which users can

verbalize to select their desired reference (e.g. if “11” is issued as a vocal command, the 11th item will be

selected). This results in the relevant code being previewed in the main editor (similar to Visual Studio Code) –

7

users can then issue a “select” vocal command to complete the navigation and reposition the cursor at the

appropriate reference point (within the editor area).

Figure 2: Find all reference utilized in VSCode.

Figure 3: Find all references in our prototype

Find / Search

A “Find” feature is also a common component of mainstream IDEs and enables users to search for code through

providing a search term (via the keyboard). For example, in Visual Studio Code developers can initiate the tool

either through a menu item or via keyboard shortcut (CTRL/CMD + F). Users can then enter their search terms

(e.g. “editor”) into a text field and press the enter key to navigate to first instance of any search results. If there

are multiple instances of the search term, users can navigate them through either selecting the enter key to

move onto the next result or use the mouse to directly select the arrows within the “Find” area located towards

the top of the interface (Figure 4).

8

Figure 4: The 'find/search' function in Visual Studio Code. The user has entered the term 'editor' where 16 occurrences are

found - the user has to press the 'enter' key to move to the desired position

We adapted this feature for speech interaction through enabling the user to issue an associated verbal

command (e.g. “find x”, “search x”, etc) to search for the desired term. The search would then be performed

and a similar “Find” box is displayed towards the top of the interface. Users can then navigate through search

results (where there are multiple occurrences of the search term) through stating the number of the instance

they would like to select. Figure 5 shows the implementation of the “Find/Search” feature in our prototype - the

user has issued the command “find editor” which has performed a search for the keyword “editor” and returned

16 results. The user then issued the command “next 13th” which has resulted in navigating to the 14th search

result.

Figure 5: Implementation of 'Find' feature in the prototype.

Go to Definition

The “Go to Definition” feature within mainstream IDEs enables developers to navigate directly to the definition

of an identifier (e.g., a variable, function, etc.). To use this feature, the user typically has to place the cursor

around the identifier and use a keyboard shortcut (e.g., F12 in Visual Studio Code) or select the tool via the

context menu (accessed via right mouse click). To tailor this for voice interaction, the user can place the cursor

around an identifier (via the available voice commands) and then issue a command to initiate the “Go to

Definition” feature (e.g. “definition”, “define”). The cursor then jumps to the relevant definition of the specific

identifier chosen by the user and the navigation is completed (Figure 6).

Whilst adopting these common IDE features for voice interaction potentially presents new opportunities for code

navigation, an important next step was to formally evaluate them with developers who have physical

impairments to explore the viability of the approaches developed.

9

Figure 6: Implementation of the ‘go to definition’ feature. The cursor was initially at line 152 and placed over the variable

“utterance” - the verbal command 'definition' has been issued resulting in the cursor jumping to line 4.

5 EVALUATION

A user evaluation was conducted to investigate the potential of the voice-controlled code navigation techniques

developed to support developers with physical impairments.

5.1 Participants

14 participants with ages ranging from 21 to 55 years old (M=33.3, SD=10.9) were recruited via online

advertisements posted within disability groups and through existing links with the research team. 12 participants

were diagnosed with Repetitive Strain Injury (RSI), one with Cerebral Palsy, and another with Tendonitis/Carpal

Tunnel. All participants had at least a year of coding experience (M=13.0, SD=12.1) whilst 12 participants had

existing experience in using speech interaction to support coding activities (Table 2).

5.2 Apparatus

All study sessions were conducted remotely via Zoom[50] and Microsoft Teams[51]. Participants were required

to use the Google Chrome browser to ensure compatibility with the Web Speech API. Participants were also

required to use their own microphones for voice input, as well as an additional device of their choice (e.g.,

keyboard, mechanical switch, etc.) to trigger the speech recognizer.

5.3 Procedure

Institutional Review Board (IRB) approval was obtained for the study. The researcher initially met online with

participants (via Zoom or Microsoft teams - whichever was most suitable for participants) and provided a link of

the prototype, along with a brief introduction to the project and a demonstration of the prototype. All participants

were informed that they could use their existing assistive input devices to control through the research prototype

(e.g., in terms of selecting buttons for starting and completing tasks), as well as for initiating the speech

recognizer. However, they were still required to use the speech commands available within the prototype for

completing the navigation tasks (via their own microphone). Four participants opted to use an eye tracker, while

the remainder confirmed they would use a keyboard as additional modality. They were then requested to

complete a consent form and were redirected to the pre-test questionnaire to collect some demographic

information, as well as details of their impairments and technical skills. Participants then completed training

tasks (e.g., moving to different lines/positions, finding references and moving to a specified position, etc.) for

approximately 10 minutes to ensure familiarity with the voice controlled navigation approaches.

Following the practice session, participants started to work on the main experimental tasks. The study tasks

were designed and categorized based on real case debugging scenarios utilized in previous studies [3, 29, 32].

10

Table 2: Participant Details - CD=Coding Experience; AT = Assistive Technology; CL = Coding Languages; CE = Coding

Experience; IDE = Integrated Development Environment; RSI=Repetitive Strain Injury; SUS= System Usability Score

ID Age Impairments Technical Experience SUS

P1 42 (M) Mild RSI- flares up under stress or

excessive typing

CD: 25 years; AT: Talon Voice; CE: Expert; CL: iOS, Swift,

Unity, C#, Python, SQL; IDE: XCode, PyCharm, VSCode

62.5

P2 21 (M) RSI, Pain in fingertips CD: 1 year; AT: Specialized mouse and keyboard, speech

detecting; CE: Novice; CL: Python; IDE: Brackets, Spyder.

80

P3 20 (M) Cerebral Palsy CD: 4 years; AT: Speech, Ergonomic keyboard; CE:

Intermediate; CL: HTML, JAVA; IDE: Dreamweaver, Android

Studio

62.5

P4 33 (M) Tennis elbow in the right arm, finger

tendonitis in most fingers of the left hand.

CD: 17 years; AT: Talon Voice with Eye-tracking; CE: Expert;

CL: Java, Python, JS, Haskell, PureScript; IDE: Vim

87.5

P5 45 (M) RSI, Both hands CD: 6 years; AT: None; CE: Intermediate; CL: Python, Scala,

Clojure, JS; IDE: PyCharm

87.5

P6 40 (M) RSI, pain in wrists from prolonged use

of mouse

CD: 20 years; AT: Vertical Mouse; CE: Expert; CL:JS,

TypeScript; IDE: WebStorm

90

P7 28 (M) Hand and shoulder RSIs. CD: 1 year; AT: Talon Voice, Tobii Eye Tracking; CE: Novice;

CL:JS, HTML, CSS; IDE: VSCode

92.5

P8 55 (M) RSI. Both Hands, Dyslexia CD: 50 years; AT: MS Dictation, Immersive Reader; CE:

Intermediate; CL: C#, Windows; IDE: Visual Studio.

100

P9 21 (M) RSI Wrist, hypermobility, scoliosis.

Chronic inflammation in joints, shoulder,

back, arms

CD: 4 years; AT: Talon Voice, Kinesis Advantage Keyboard;

CE: Intermediate; CL: C#, Java, Python, C++; IDE: IntelliJ,

Notepad++

92.5

P10 43 (M) Tendonitis/Capral Tunnel; difficulty

typing

CD: 24 years; AT: Talon Voice (recently), Kinesis Advantage

keyboard; CE: Novice; CL: Clojure and ClojureScript; IDE:

Spacemacs.

95

P11 26 (M) Limited hand function and motor

impairments

CD: 5 years; AT: Speech Recognition; CE: Intermediate; CL:

Julia, MATLAB, Java, C, JS; IDE: VSCode

97.5

P12 26 (M) Occasional RSI flare-ups CD: 5 years; AT: Mechanical Keyboard, Logitech MX Ergo

trackball; CE: Intermediate; CL: JS, TypeScript, NodeJS,

Python; IDE: VSCode

70

P13 26 (M) RSI, Ulnar Nerve Pain CD: 5 years; AT: Talon Voice; CE: Intermediate; CL: HTML,

CSS, JS; IDE: VSCode

57.5

P14 40 (M) RSI, Wrist and elbow tendon issues CD: 15 years; AT: Talon/Dragon Voice, Eye Tracker; CE:

Expert; CL: Java, Angular; IDE: IntelliJ

92.5

Similar to Shakil et al [34], participants were presented with three code snippets of varying lengths (i.e. “short”

– 71 lines, “medium” – 535 lines, and “long” – 2092 lines) where each snippet consisted of 5-7 syntax errors

requiring 12 navigational steps to uncover for each code snippet. The code snippets were taken from an online

(open source) code repository [11] with common JavaScript syntax errors integrated (i.e. undefined methods,

11

incorrect method parameters, typographic errors, etc.) [15, 28]. This approach was adopted to present realistic

navigation scenarios where manipulation of the onscreen cursor was required over both shorter and longer

distances within different code snippets. Participants were initially presented with one of these snippets and

then required to navigate to each of the errors embedded within the file. To eliminate code comprehension time

impacting on task completion, participants were provided with the exact steps required for navigating to errors

(thus utilizing the same approach used in previous related studies [33, 34]). For instance, at the start of each

task, participants were initially shown a screenshot of the “starting” position of the cursor, alongside a second

screenshot highlighting the location of a syntax error and the required final cursor position. The tasks associated

with each code snippet were developed to encourage use of the different navigation features available

integrated within the prototype. In particular, there were two instances in each code snippet which required

participants to use the “Find All References” feature (e.g. “Find all the references of the method taskShuffle and

select the 9th Instance”), two instances associated with “Go to Definition” (e.g. “Navigate to the definition of

CreateMarker”) in each code snippet, and two instances where use of the “Find” tool was required to

successfully complete the task (e.g. “Find the variable editor”). Whilst an emphasis was placed on these three

features, tasks were also designed in a way where further navigation commands were also required to complete

them (i.e., “go to line”, “left”, “right”, “up”, “down” and “end of the line”).

Once participants had familiarized themselves with a task, they were then required to work on the task using

the commands available and selected a “Complete Task” button once they had completed the necessary

navigation step. Once all 12 navigation tasks for a code snippet were completed, participants would move to

next snippet and the process was repeated until all tasks were finished. The order of code snippets was

counterbalanced to reduce the potential impact of order effects. Participants were then administered the SUS

survey [4] followed by an online open-ended questionnaire exploring their experiences of using the speech-

based code navigation features, as well as suggestions for any improvements. A follow-up semi-structured

interview was also conducted to discuss any key points further.

5.4 Measures

Task Completion: Task completion times were measured in milliseconds from when participants started each

task (i.e., after they selected to “Start Task” button) until the task had been completed.

Usability: Perceptions of usability were measured using SUS [4] which was administered after all navigation

tasks had been completed.

Speech Recognition Accuracy: Errors were categorized into two themes: Speech Recognition – where the

recognizer was inaccurate (e.g. “go to line 160” misrecognized as “Go to wine 160”) and Unrecognized

Commands – where the recognizer misinterpreted the intention behind the user voice commands or the

command was not recognized (e.g. “write down”).

5.5 Results

Task completion time and Usability: All participants were able to complete all the tasks and utilize the

navigation features within the prototype. The average completion time for all the tasks was 11.9 minutes

(SD=3.5 min). Each snippet took under 5 minutes on average to complete with navigation tasks associated with

the short code snippet taking an average time of 4.7 minutes (SD = 1.8 min), tasks for medium length code

requiring an average time of 3.6 minutes (SD=1.45 min), and navigation steps for the long code snippet taking

12

3.6 minutes on average (SD=1.2 min). The navigation features also obtained an average SUS score of 83.4

(SD=14.3) which can be labeled as ‘Excellent’ [4].

Speech Performance and Analysis: A total of 1173 vocal commands were issued (Short: 429; Medium: 382;

Long: 362). 230 commands were related to speech misrecognition (19.6%) while 150 commands (12.8%) were

associated with unrecognized commands. Some of the common speech misrecognition commands included

“write” instead of “right”, “done” instead of “down”, and “to” instead of “two”, etc. Whilst common unrecognized

commands included “write position”, “last 20”, and “west 6th”. Despite misrecognition in a small number of cases

(N=30), the model was still able to identify the correct intention of the command issued by the user. For instance,

in multiple cases, “right” was misrecognized as “write”, although the model would accurately identify the intent

as “right” and would perform the appropriate action.

Subjective Feedback: A thematical analysis was conducted on qualitative data obtained during the open-

ended questionnaire and observations during the evaluation sessions.

Perceptions of “Find All References”: All participants provided positive feedback in relation to the “Find all

References” navigation approach with comments emphasizing that the approach was intuitive, easy to use, and

time saving: “The navigation for references and definitions is very, very straightforward … and saves a

tremendous amount of time” (P8). Eight participants highlighted that this feature is not available in other voice

coding editors with four participants (P1, P5, P6, P14) specifically stating that they would like the feature

integrated into their current IDE: “…I will have to wait for this to come to PyCharm. I think that would be

remarkable!” (P5). Seven participants commented that the ability to verbalize numeric values to support the

selection of references was a useful feature - in particular, the option to traverse the item position via absolute

numbers (i.e., verbalizing the exact numeric value e.g., “5”, “9th”) and relative numbers (i.e., verbalizing the

number with respect to current selected item position, e.g. “next 6th”, “previous 5”, etc.) was useful. An issue

highlighted by three participants was in relation to speech recognition (i.e. in terms of some of the commands

not being recognized properly) with participants suggesting the possibility to incorporate customizable

vocabulary where commands can be tailored depending on user preferences: “…In Talon I can customise my

own thing and has less recognizing bugs, so including custom grammar can improve the accuracy of recognizer

can be boost the performance” [P13].

Perceptions of “Find”: Eleven participants provided positive comments in relation to the “Find” feature with

comments focusing on simplicity and ease of use. Four participants stated that the tool was particularly useful

in terms of searching for multiple terms within a single search query - for instance, P5 was positive about the

“Find” feature, although felt it might present challenges in some scenarios “…the voice search worked

remarkably well in finding variable/function names which consist of multiple concatenated words … but maybe

it will be less so for more complex word combinations…”. Participant P9 re-iterated this point and highlighted

that the tool could be improved further through providing users with the ability to enter individual characters via

speech to address challenges in pronouncing custom identifiers “…would be nice to have an option to manually

type letter by letter for find - since not all keywords lend themselves to easily identified pronunciation” [P9].

Similar to the “Find all References” tool, five participants highlighted the option to select a specific instance of

13

a search result (e.g. “5”, “5th”, etc.) in addition to relative commands (e.g. “previous 2” which would select the

instance two places before the current selected result) to be particularly useful and easy to use (“…The option

of moving forward/backward and directly jumping to a number makes it easier … this is not present in Talon”

(P13)). Two participants suggested that commands such as “go back” and “go forward” would also be useful

additions to support efficient navigation of search results.

Perceptions of “Go to Definition”: Nine participants provided positive feedback on the use of the “Go to

Definition” feature with comments highlighting that it was useful, intuitive, and easy to use “…I found those

features to be useful. I have not seen them in any other packages …” (P11). Three participants suggested

incorporating similar features (e.g. “navigating to local declaration”, “navigating to inner block within curly

braces”, etc.) ,which exist in other coding tools (i.e. Vim) to further enhance accessibility: “Use the commands

of vim like gd to navigate to local declaration, fx to find next occurrence“ (P10). Two participants suggested

integrating a feature for multiple file navigation to enable jumping directly to the definition of the main identifier

located in a different file.

Suggestions for iterative development: All participants stated they were impressed with the navigation

approaches and were able to successfully utilize them to complete the tasks. Four participants suggested

potential improvements around the accuracy of recognizer through incorporating a local speech recognizer.

Five participants highlighted that the inclusion of a scrolling feature via voice would also help them effectively

navigate to different sections of a code listing. Three participants suggested including a feature to navigate to

a specific position of a line (e.g., “center of line x”, “end of line x”). Three participants also felt a “page up/down”

feature would be beneficial to support navigation within a code listing.

6 DISCUSSION AND FUTURE WORK

Prior research on voice-based coding approaches has primarily focused on writing and editing code, as opposed

to different code navigation techniques. The small number of research prototypes that do allow for voice-

controlled navigation typically only support simple functionality such as jumping to a specific line (e.g. “line x”)

or inline navigation (i.e. “left” to move the cursor one position to the left) [6, 29, 32, 41]. No previous studies

have explored the potential of additional commonly used code navigation techniques with mainstream IDEs

(such as “Find All References”, “Go to Definition” and “Find” [2, 26]) within a voice coding context. Furthermore,

no research has investigated or evaluated the efficacy of voice-based source code navigation for developers

with physical impairments. This paper addresses the lack of work in this area to date through presenting a novel

prototype that integrates widely used code navigation approaches that have been tailored and optimised for

speech interaction.

The results from a user evaluation with developers who have physical impairments found the code navigation

approaches to be intuitive and easy to use with SUS scores indicating an excellent level of usability. These

findings build on other related work in the field – for instance, Rosenblatt et al. [32] used navigation commands

such as “go to line” and “go x left” in their VocalIDE application (which was also received positively by

participants), although their work did not include the common navigation features investigated in our study.

Paudyal et al. [29] used similar navigation commands within their Voiceye prototype (i.e. “go to line x”) which

was also rated positively by developers with physical impairments, although participants highlighted the

14

requirement for commands to support more advanced “Find” features. Moreover, whilst navigation features

such as “Find all References” and “Go to Definition” have been explored and evaluated within systems

supporting eye gaze interaction [34], no previous work has investigated these types of features in relation to

voice coding. Our work also confirms that voice is a feasible approach in facilitating a wide range of code

navigation approaches and can help developers with physical impairments to reduce their dependency on

traditional input devices (i.e. a keyboard and mouse). Furthermore, 11 participants, who use Talon as their

primary development environment expressed a desire for the approaches to be integrated into existing

mainstream IDEs (such as VSCode and Talon) to support their development workflow. This work therefore

addresses key challenges associated with navigation of code via voice interaction through presenting fully

functional techniques that can be utilized by developers with physical impairments.

One limitation of the work is the accuracy of speech recognition (which is a known issue within the field [20,

32, 40]), - the system currently utilizes a cloud-based speech recognizer which can present potential challenges

around accuracy and recognition delays due to network and latency issues. As suggested by participants, the

system could be integrated with the local Talon recognizer (stored on the client-side) to help further address

these issues. Moreover, the model is currently trained with a limited range of samples and could developed

further through integrating the terms collected during the evaluation, as well as through additional samples from

a wider and more diverse userbase (e.g. female developers, non-English speakers, etc.) [37].

In terms of future work, it will be important to further evaluate the navigation approaches in longitudinal

studies to explore how developers’ perceptions and usage evolve over multiple interactions (including

comparison with alternative methods – e.g. those found in commercial applications such as Talon [42]). We feel

that increased exposure will likely result in more positive perceptions (as users become increasingly familiar

with navigating code via voice control), although it will be important to empirically evaluate this in future studies.

Scrolling through code via voice control is another important area where there has been a lack work completed

to date. Whilst related work has looked at the use of other modalities to support scrolling within interfaces (e.g.

via gaze [14, 31, 34]), it is unclear how this might best be facilitated via speech input. The use of additional

assistive inputs in conjunction with speech (e.g. gaze, keyboards, switches, etc. [12, 29, 33]) is also an important

research area that could provide insights on how additional modalities can complement code navigation (e.g.

using gaze to perform selections when users experience challenges in terms of speech recognition accuracy).

Furthermore, investigating how other key coding activities such as debugging can be integrated with code

navigation techniques is a crucial area where additional research is required. The findings from this paper may

also present wider benefits for non-disabled developers through augmenting and enhancing their current

development workflow via voice control (in combination with mouse and keyboard input) [17], although further

studies are required to empirically investigate and validate whether this is the case.

7 CONCLUSION

We introduced a range of common code navigation approaches (used in mainstream IDEs) and tailored them

for multimodal voice interaction to support developers with physical impairments (i.e. “Find All References”, “Go

to Definition”, “Find”). Results from a user evaluation found that the techniques exhibited a high-level of usability

and enabled developers to complete a wide range of common navigation tasks. Our work also highlights

important areas where further research is now required to support the development of more inclusive coding

environments.

15

REFERENCES

[1] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and Observation of Blind

Software Developers at Work to Understand Code Navigation Challenges. In Proceedings of the 19th
International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’17),
Association for Computing Machinery, New York, NY, USA, 91–100.
DOI:https://doi.org/10.1145/3132525.3132550

[2] Vinay Augustine, Patrick Francis, Xiao Qu, David Shepherd, Will Snipes, Christoph Braunlich, and
Thomas Fritz. 2015. A Field Study on Fostering Structural Navigation with Prodet. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, 229–238.
DOI:https://doi.org/10.1109/ICSE.2015.151

[3] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. Struct jumper: A tool to help blind
programmers navigate and understand the structure of code. In Conference on Human Factors in
Computing Systems - Proceedings, Association for Computing Machinery, New York, New York, USA,
3043–3052. DOI:https://doi.org/10.1145/2702123.2702589

[4] Aaron Bangor, Philip Kortum, and James Miller. 2009. Determining what individual SUS scores mean:
adding an adjective rating scale. Journal of Usability Studies 4, 3 (2009), 114–123.

[5] Andrew Begel and Susan L. Graham. 2005. Spoken programs. In Proceedings - 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing, IEEE, 99–106.
DOI:https://doi.org/10.1109/VLHCC.2005.58

[6] Andrew Begel and Susan L Graham. 2006. An assessment of a speech-based programming
environment. In Proceedings - IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2006, 116–120. DOI:https://doi.org/10.1109/VLHCC.2006.9

[7] Brackets. 2018. Brackets - A modern, open source code editor that understands web design. Retrieved
from http://brackets.io/

[8] Andrew Bragdon, Robert Zeleznik, Steven P Reiss, Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola. 2010. Code bubbles. In Proceedings of
the 28th international conference on Human factors in computing systems - CHI ’10 (ICSE ’10), ACM,
New York, NY, USA, 2503–2503. DOI:https://doi.org/10.1145/1753326.1753706

[9] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola. 2010. Code bubbles: a working set-
based interface for code understanding and maintenance. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’10), Association for Computing Machinery, New York, NY,
USA, 2503–2512. DOI:https://doi.org/10.1145/1753326.1753706

[10] Hashmeet Chadha, Satyam Mhatre, Unnati Ganatra, and Sujata Pathak. 2018. HTML Voice. In
Proceedings - 2018 4th International Conference on Computing, Communication Control and
Automation, ICCUBEA 2018, IEEE, 1–4. DOI:https://doi.org/10.1109/ICCUBEA.2018.8697733

[11] Harendra Chhekur. 2022. Colon IDE. Retrieved May 11, 2022 from https://github.com/Chhekur/colon-
ide

[12] Chris Creed, Ian Williams, and Maite Frutos-Pascual. 2019. Multimodal Gaze Interaction for Creative
Design. (2019). DOI:https://doi.org/10.1145/3313831.3376196

[13] Robert DeLine and Kael Rowan. 2010. Code canvas. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - ICSE ’10 (ICSE ’10), ACM, New York, NY, USA,
207–207. DOI:https://doi.org/10.1145/1810295.1810331

[14] Hartmut Glücker, Felix Raab, Florian Echtler, and Christian Wolff. 2014. EyeDE: Gaze-enhanced
software development environments. In Conference on Human Factors in Computing Systems -
Proceedings (CHI EA ’14), ACM, New York, NY, USA, 1555–1560.
DOI:https://doi.org/10.1145/2559206.2581217

[15] Quinn Hanam, Fernando S.De M. Brito, and Ali Mesbah. 2016. Discovering bug patterns in Javascript.
In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Association for Computing Machinery, 144–156. DOI:https://doi.org/10.1145/2950290.2950308

16

[16] Austin Z Henley and Scott D Fleming. 2014. The patchworks code editor: toward faster navigation with
less code arranging and fewer navigation mistakes. In Proc. CHI (CHI ’14), ACM, New York, NY, USA,
2511–2520. DOI:https://doi.org/10.1145/2556288.2557073

[17] Pranav Joshi and Doina Bein. 2020. Audible Code, a Voice-Enabled Programming Extension of Visual
Studio Code. In Advances in Intelligent Systems and Computing, Springer, 335–341.
DOI:https://doi.org/10.1007/978-3-030-43020-7_44

[18] Hyunhoon Jung, Seongeun So, Changhoon Oh, Hee Jae Kim, and Jinjoong Kim. 2019. TurtleTalk: An
educational programming game for children with voice user interface. In Conference on Human Factors
in Computing Systems - Proceedings, Association for Computing Machinery, New York, NY, USA, 1–6.
DOI:https://doi.org/10.1145/3290607.3312773

[19] Thorsten Karrer, Jan Peter Krämer, Jonathan Diehl, Björn Hartmann, and Borchers Jan. 2011.
Stacksplorer: Call graph navigation helps increasing code maintenance efficiency. In UIST’11 -
Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST
’11), ACM, New York, NY, USA, 217–224. DOI:https://doi.org/10.1145/2047196.2047225

[20] Yea Seul Kim, Mira Dontcheva, Eytan Adar, and Jessica Hullman. 2019. Vocal shortcuts for creative
experts. In Conference on Human Factors in Computing Systems - Proceedings, ACM.
DOI:https://doi.org/10.1145/3290605.3300562

[21] Benjamin P. Klein and Austin Z. Henley. 2021. CodeRibbon: More Efficient Workspace Management
and Navigation for Mainstream Development Environments. In 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 604–608.
DOI:https://doi.org/10.1109/ICSME52107.2021.00065

[22] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of
How Developers Seek, Relate, and Collect Relevant Information during Software Maintenance Tasks.
IEEE Trans. Softw. Eng. 32, 12 (December 2006), 971–987. DOI:https://doi.org/10.1109/TSE.2006.116

[23] Jan-Peter Krämer, Thorsten Karrer, Joachim Kurz, Moritz Wittenhagen, and Jan Borchers. 2013. How
tools in IDEs shape developers’ navigation behavior. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems - CHI ’13 (2013), 3073–3073.
DOI:https://doi.org/10.1145/2470654.2466419

[24] Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. 2012. Blaze: Supporting Two-
phased Call Graph Navigation in Source Code. In CHI ’12 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’12), ACM, New York, NY, USA, 2195–2200.
DOI:https://doi.org/10.1145/2212776.2223775

[25] Thomas D Latoza, Gina Venolia, and Robert Deline. 2006. Maintaining Mental Models: A Study of
Developer Work Habits. Retrieved from http://delivery.acm.org/10.1145/1140000/1134355/p492-
latoza.pdf?ip=134.225.30.51&id=1134355&acc=ACTIVE
SERVICE&key=3B621857D79A46E2.3B621857D79A46E2.7F82F319CD1C5BCF.4D4702B0C3E38B3
5&__acm__=1567591177_fde2357a954c9ec7f294e6bc257d8b64

[26] Yun Young Lee, Sam Harwell, Sarfraz Khurshid, and Darko Marinov. 2013. Temporal code completion
and navigation. In 2013 35th International Conference on Software Engineering (ICSE), 1181–1184.
DOI:https://doi.org/10.1109/ICSE.2013.6606673

[27] Rinor S. Maloku and Besart Xh. Pllana. 2016. HyperCode: Voice aided programming. IFAC-
PapersOnLine 49, 29 (January 2016), 263–268. DOI:https://doi.org/10.1016/J.IFACOL.2016.11.073

[28] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013. An empirical study of client-
side JavaScript bugs. In International Symposium on Empirical Software Engineering and
Measurement, 55–64. DOI:https://doi.org/10.1109/ESEM.2013.18

[29] Bharat Paudyal, Chris Creed, Maite Frutos-Pascual, and Ian Williams. 2020. Voiceye: A multimodal
inclusive development environment. In DIS 2020 - Proceedings of the 2020 ACM Designing Interactive
Systems Conference, 21–33. DOI:https://doi.org/10.1145/3357236.3395553

[30] David J. Piorkowski, Scott D. Fleming, Irwin Kwan, Margaret M. Burnett, Christopher Scaffidi, Rachel
K.E. Bellamy, and Joshua Jordahl. 2013. The whats and hows of programmers’ foraging diets. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13),
Association for Computing Machinery, New York, NY, USA, 3063–3072.
DOI:https://doi.org/10.1145/2470654.2466418

17

[31] Stevche Radevski, Hideaki Hata, and Kenichi Matsumoto. 2016. EyeNav. In Proceedings of the 9th
Nordic Conference on Human-Computer Interaction - NordiCHI ’16 (NordiCHI ’16), ACM, New York,
NY, USA, 1–4. DOI:https://doi.org/10.1145/2971485.2996724

[32] Lucas Rosenblatt, Patrick Carrington, Kotaro Hara, and Jeffrey P Bigham. 2018. Vocal Programming
for People with Upper-Body Motor Impairments. In W4A, 10–10.
DOI:https://doi.org/10.1145/3192714.3192821

[33] Korok Sengupta, Sabin Bhattarai, Sayan Sarcar, I. Scott MacKenzie, and Steffen Staab. 2020.
Leveraging Error Correction in Voice-based Text Entry by Talk-and-Gaze. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, (25/04/20 - 30/04/20), 1–11.
DOI:https://doi.org/10.1145/3313831.3376579

[34] Asma Shakil, Christof Lutteroth, and Gerald Weber. 2019. CodeGazer: Making Code Navigation Easy
and Natural With Gaze Input. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (CHI ’19), Association for Computing Machinery, New York, NY, USA, 1–12.
DOI:https://doi.org/10.1145/3290605.3300306

[35] David Shepherd, Kostadin Damevski, Bartosz Ropski, and Thomas Fritz. 2012. Sando: an extensible
local code search framework. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering (FSE ’12), Association for Computing Machinery, New York,
NY, USA, 1–2. DOI:https://doi.org/10.1145/2393596.2393612

[36] J. Smith, C. Brown, and E. Murphy-Hill. 2017. Flower: Navigating program flow in the IDE. In 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 19–23.
DOI:https://doi.org/10.1109/VLHCC.2017.8103445

[37] S. Stumpf, A. Peters, S. Bardzell, M. Burnett, D. Busse, J. Cauchard, and E. Churchill. 2020. Gender-
Inclusive HCI Research and Design: A Conceptual Review. Foundations and Trends in Human–
Computer Interaction 13, 1 (March 2020), 1–69. DOI:https://doi.org/10.1561/1100000056

[38] A. Teckchandani. 2018. Slack: A Unified Communications Platform to Improve Team Collaboration.
AMLE 17, 2 (June 2018), 226–228. DOI:https://doi.org/10.5465/amle.2018.0061

[39] Tobias Kahlert and Kay Giza. 2016. Visual Studio Code - Code Editing. Redefined. Mikrosoft 1, March
(2016), 1–26.

[40] Jessica Van Brummelen, Kevin Weng, Phoebe Lin, and Catherine Yeo. 2020. CONVO: What does
conversational programming need? In Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC, Institute of Electrical and Electronics Engineers (IEEE), 1–5.
DOI:https://doi.org/10.1109/VL/HCC50065.2020.9127277

[41] Amber Wagner and Jeff Gray. 2015. An Empirical Evaluation of a Vocal User Interface for
Programming by Voice. International Journal of Information Technologies and Systems Approach 8, 2
(2015), 47–63. DOI:https://doi.org/10.4018/IJITSA.2015070104

[42] 2018. Talon 0.0.7.7 documentation. Retrieved from https://talonvoice.com/docs/index.html#document-
index

[43] Cursorless - Visual Studio Marketplace. Retrieved March 26, 2022 from
https://marketplace.visualstudio.com/items?itemName=pokey.cursorless

[44] Serenade | Documentation. Retrieved from https://serenade.ai/docs/
[45] Dragon Speech Recognition - Get More Done by Voice | Nuance. Retrieved from

https://www.nuance.com/dragon.html
[46] Monaco Editor. Retrieved March 26, 2022 from https://microsoft.github.io/monaco-editor/
[47] Using the Web Speech API - Web APIs | MDN. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API
[48] Wit.ai. Retrieved from https://wit.ai/
[49] Atom. Retrieved from https://atom.io/
[50] Video Conferencing, Web Conferencing, Webinars, Screen Sharing - Zoom. Retrieved from

https://zoom.us/
[51] Microsoft Teams | Group Chat, Team Chat & Collaboration. Retrieved from

https://www.microsoft.com/en-GB/microsoft-teams/group-chat-software

