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Abstract—This paper proposes an architecture of a data 

validation system for Water distribution system (WDS) 

utilising machine learning as two consensus mechanisms 

instead of the typical consensus mechanism based on the 

hashing function. The two consensus mechanisms are called 

Proof-of-single-learning (PoSL) and Proof-of-multiple-

learning (PoML) in which the data is validated based on the 

learning. These two novel methods are compared with the 

other five hashing-based consensus mechanisms: Proof-of-

Work (PoW), Proof-of-Trust (PoT), Proof-of-Vote (PoV), 

Proof-of-Assignment (PoA), and proof-of-Authentication 

(PoAuth) for evaluation. Five case studies of WDS are applied 

and three performance metrics, and two data conversion 

methods are utilised. Throughput, latency and operations per 

transaction (OpT are investigated to evaluate the proposed 

system. 
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I.  INTRODUCTION 

Recent research and development of blockchain 
technologies have led to the realization that blockchain has 
great potential to reinforce the next generation of water 
distribution systems (WDS) with redundancy and 
immutability of the stored data [1].  Also, it verifies the data 
before transmission to ensure that the original data have not 
been corrupted. In addition to improving automation in 
water distribution systems, blockchains facilitate peer-to-
peer trading systems to reduce water losses and deliver a 
transparent and fair water distribution system. In 
Blockchain, data is transferred in a decentralised network, 
aiming to facilitate information sharing. These data have 
been aggregated and timestamped into linked, chain-like 
blocks, known as ledgers [2]. The ledger consists of digital 
transactions, records of data, and executions by smart 
contracts, along with blockchain algorithms and consensus 
mechanisms as described in [3]. An algorithm for securing 
digital transactions is the blockchain algorithm, which is 
said to be a digital self-executing agreement between 
network peers (e.g., sensors). As discussed earlier, smart 
contracts run on top of a blockchain algorithm which is a 
virtual machine to perform further functions [4]. It is 
thought that Ethereum Virtual Machine (EVM) systems are 

the most popular type of smart contract supporting 
infrastructure and Industrial Internet of Things (IIoT) 
systems. With the consensus mechanism, information is 
validated using the hash function to reach the required 
agreement. It is possible to prove this agreement through 
one or multiple nodes during the validation process, and the 
selection of these nodes should also be considered during 
the algorithm development process. A hash function 
involves the mapping of arbitrary data to fixed-size values, 
and it is also not possible to invert or reverse the 
computation [5]. As a simple definition, the blockchain is a 
data structure that includes interconnections and nodes 
distributed throughout the network. Changes to data are 
regarded as a new block in a data structure. Accordingly, 
the existing data block is not affected. Furthermore, 
blockchain nodes will be able to store data in a distributed 
manner. Blocks are generated following a consensus 
algorithm. Among the consensus algorithms, it provides 
mechanisms to insert blocks into the blockchain, which 
have been accepted by the distributed nodes. As an 
example, a blockchain node initiates a transaction that is 
broadcast to other nodes in the blockchain for validation 
according to the consensus mechanism. It is proposed to 
eliminate the role of the trusted third parties (TTP) by 
implementing it within the blockchain algorithm. This 
would remove the need for intermediaries. Thus, the 
blockchain system is both tamper-resistant and self-
enforcing, since it is installed on partners that have 
sufficient computing resources. As an entity, TTP assists in 
the exchange of information between parties that trust one 
another.  

Blockchain can be implemented as a means of 
automating water management and trading systems, 
thereby supporting operational functions without relying on 
centralized providers. In wastewater applications, the use-
cases are similar; they offer fair trading of untreated water 
and a seamless, secure process for measuring water quality 
[6]. Despite the fact that these applications in the water 
sector are still in the conceptual stage, only a few have 
succeeded in developing prototypes. Blockchain has the 
potential to improve water scarcity, fairness, and system 
security in a very significant way, and both markets and 
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management systems related to water are promising 
applications. The Water Market is an extension of the 
existing concept of a tradable commodity to enable the 
exchange of water without centralized intervention or 
centralisation. Another topic discussed in the article is the 
fair distribution of water based on demand called water 
rights. It is through the development of water management 
systems that bursts in water can be detected and operational 
and information technologies are improved. With these two 
use cases in mind, it is possible to implement secure 
communication and data exchange using blockchain 
technologies and other standard security measures (for 
example, two-factor authentication, and white and 
blacklisting). We proposed in our previous work an open-
source simulation system for the validation system of data 
held in WDS using blockchain [7] and proposed a data 
aggregation system using the blockchain-based on the hash 
function and bloom filter to maintain the anonymity of the 
transferred data by representing network 
peers using pseudonyms as described in [8]. To the best of 
our knowledge, no study focused on developing a data 
validation system using blockchain for WDS except our 
paper [6].  

On the other hand, learning machine learning (ML) 
models can be computationally and memory intensive [9], 
which may require hardware acceleration. Hence, the 
concept of crowdsourcing has been developed in the 
literature to let the users that have the capabilities to process 
data for benefit tasks online. Data validation in the 
blockchain can be considered as an example of those data 
that requires computations and analyses. Therefore, the 
weak coin concept is introduced in the literature to utilise 
the crowdsourcing technology for validating the 
transmitted cryptocurrency called Proof-of-Learning (PoL) 
[8][9]. The PoL approves the transmitted data by learning, 
in the contrast Proof-of-work (PoW) matches the hash 
puzzle to achieve consensus, and Proof-of-vote (PoV) 
matches the hash puzzle and computes voting to confirm 
the validation. By the same approach as PoL, the 
crowdsourcing technology can be implemented on 
validating the transmitted data and information in the water 
distribution system. Therefore, proposing an architecture 
that utilises machine learning in the data validation system 
instead of the hashing function is essential for the water 
distribution system. As mentioned, this proposal is inspired 
by Wekacoin [9] [10] which utilises machine learning in 
validating and approving cryptocurrency. In this study, two 
consensus mechanisms utilizing machine learning are 
proposed, called Proof-of-single-learning (PoSL) and 
Proof-of-multiple-learning (PoML). These two novel 
methods are compared with the other five hashing-based 

consensus mechanisms for evaluation. These consensus 
mechanisms are Proof-of-Work (PoW), Proof-of-Trust 
(PoT), Proof-of-Vote (PoV), Proof-of-Assignment (PoA), 
and proof-of-Authentication (PoAuth). Five case studies of 
WDS are utilised, three performance metrics, and two data 
conversion methods are utilised. Throughput, latency and 
operations per transaction (OpT), in addition to others, are 
investigated to evaluate the proposed system. This work is 
considered the extension of our previous work called 
WDSchain [6]. This paper is organised as follows: Section 
II discusses and proposes the methodology including the 
proposed architecture, considered case studies, and the 
performance metrics realized in this work. Section III 
analyses and discusses the results. Section IV concludes the 
work. 

II. METHODOLOGY 

A. Proposed Architecture 

By using machine learning methods to validate the 
transferred data, the PoL approach differs from other 
hashing mechanisms (See Figure 1). Four steps are 
discussed in the validation process; initiating a transaction, 
selecting the dataset and ML algorithm, processing the 
dataset, and comparing the hashed value (See Figure 1). In 
a validation, either one validator would be used as the Proof 
of Single-node Learning (PoSL) or multiple validators 
would be used as the Proof of Multiple-node Learning 
(PoML). In PoSL, one blockchain node is selected at 
random to validate the data with a machine learning model 
by learning the dataset: in PoML, several nodes are used for 
validation with the same technique as in Proof-of-stake 
(PoS) or Proof-of-trust (PoT) with a voting system (see 
Algorithms 1 and 2). A random dataset and machine 
learning model are selected by the initiating node to analyse 
the data, and the hash value of the results of the analysis is 
sent. In addition to the hashed results, the selected datasets, 
and the machine learning model are also included as a 
number along with the data and preceding block hash value. 
Based on the machine learning algorithm, the validator(s) 
compare the hash value of the transmitted results with the 
hash value of the selected dataset. The transaction is 
authorised to join the chain if the hash values of both 
transactions are identical. Taking advantage of earlier 
linked water facility datasets, the processing of these 
models aims to train and fine-tune the attack detection 
model in the cloud (assuming there is a second layer of 
security that has an attack detection system in the cloud). 
Additionally, it ensures that the original transaction has not 
been changed during transmission between blockchain 
nodes. 

 

FIGURE 1   PROPOSED FRAMEWORK OF THE PROOF-OF-LEARNING (POL) 



 

 

B. Case Studies 

There have been two critical uses of blockchain in water 
systems discussed according to research on the topic: water 
trading and water management. Water management 
systems are divided into three subsystems depending on the 
supply and demand aspects of the system: water supply, 
water treatment, and water distribution. The study discusses 
the process of distributing water on the supply side. The 
treated water and reservoirs are supplied with water via 
water storage tanks (with level sensors), valves, pumps, and 
pipelines. To obtain hydraulic data for water distribution on 
the supply side, the EPANET software is employed. Five 
case studies are used to assess the validity of data in two 
types of static and dynamic blockchains (See Table I). An 
example of C-Town is presented (see Figure 2). These 
analyses are run on an i5-6200U processor that runs at 2.4 
GHz with 8192 MB of RAM. Based upon a top-down 
simulation, the results are verified by peers on the network. 
Similarly, the system does not simulate peer-to-peer 
communication. This means that the time spent 
transmitting data is ignored. 

 

 

TABLE I.  SPECIFICATIONS OF THE CONSIDERED CASE STUDIES. 

# WDS Description Specifications 

1 D-Town A residential district 

in the Eastern part of 
Exeter city. 

407 nodes, 443 pipelines, 

11 pumps, 7 tanks, and 1 
reservoir. 

2 C-Town A residential district 

in the Eastern part of 
Exeter city. 

396 nodes, 429 pipelines, 

11 pumps, 7 tanks, and 1 
reservoir. 

3 Net3 EPANET Example. 97 nodes, 119 pipelines, 2 

pumps, 3 tanks, and 2 
reservoirs. 

4 Richmond District in Town in 

the UK 

872 nodes, 957 pipelines, 

7 pumps, 6 tanks, 1 valve, 

and 1 reservoir. 

5 BWSN A real WDS is 

“twisted” to 

preserve their 
anonymity. 

129 nodes, 169 pipelines, 

2 pumps, 2 tanks, 46 

valves, and 1 reservoir. 

 

 

 
FIGURE 2 C-TOWN DISTRIBUTION MODEL; AN EXAMPLE OF THE CASE 

STUDIES. 

C. Performance Metrics 

Several performance indicators are considered to assess 
the complexity of the system: latency, the number of 
operations per transaction (OpT), and throughput. A 
transaction takes a certain amount of time to become 
irreversible and verified, which is called latency. It is based 
on two coefficients: time spent producing a data block tG 

and time spent verifying the data block ( 𝑇𝛿 ) where 𝛿 
denotes the consensus mechanism used 𝛿 𝜖  [0, 1, 2, 3, 4] 
for the five consensus mechanisms. It is indicated by: 

𝑡𝐿 = 𝑇𝐺 + 𝑇  𝛿 (1) 

OpT indicates the number of operations that need to be 
performed to verify the data. Measurement of OpT helps 
determine the complexity of the consensus mechanism. 
Transactional throughput (ST) is estimated by counting the 
number of transactions per second. By definition, 
throughput is based on both the number of transactions (NT) 
and the latency (TL). It is defined as: 

 

𝑆𝑇 =
𝑁𝑇

𝑇𝐿
 

(2) 
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When it comes to security, most consensus mechanisms 
such as Proof-of-Work (PoW) and PoT are designed to give 
a high probability of security, since the network might be 
vulnerable if a disproportionate amount of the mining 
power is possessed. Moreover, if a significant proportion of 
the mining power is biased (more than 33.3%), there might 
be clear biasing for a Proof-of-Vote (PoV) method. The 
following steps can be employed, therefore, to ensure that 
any consensus method ( 𝛿 ) is secure from malicious 
verifiers (vM): 

 

𝑣𝑀 ≤ 𝑣𝑇,𝛿  (3) 

𝑣𝑇,𝛿 = ⌊
𝑁 − 1

3
⌋ 

(4) 

Based on the definition described above, 𝑣𝑇,𝛿 denotes 
the number of true validators for certain consensus 
mechanisms (𝛿), and N signifies the number of nodes or 

validators. Despite the relatively small possibility (
1

𝑁
) that 

a malicious verifier will utilize Proof-of-Assignment 
(PoA), it is a fair idea to develop this method as it requires 
one of the least amounts of computing resources. 

III. RESULTS AND DISCUSSION 

However, even though mining with POSL and POML 
requires more time, and the system is more 
sophisticated, compared to current PoW systems, these 
consensus techniques give significant job opportunities in 
mining calculations. These two methods are assessed by 
Latency, OpT and throughput in five case studies in water 
models (see Table II). PoSL and PoML reduce latency and 
throughput by 25% and 63%, respectively, in comparison 
with PoW (See Figures 3-6). In the same approach, the 
throughput of other consensus mechanisms such as PoW 
and PoV is better than PoSL and PoML. The PoML method 
requires the machine learning model to be run twice and 
doubles the number of blockchain nodes, so the mining 
time is generally larger. Also, the mining time of the PoML 
and PoSL may vary, since the dataset is randomly selected, 
and the machine learning model is chosen at random. Our 
datasets and the complexity of the machine learning models 
are designed to enable rapid processing; however, the size 
of the datasets and the size of the models vary from small 
to medium-sized. Furthermore, the datasets employed for 
the computation puzzles are identical to those used for the 
detection model, enabling further tuning of the attack 
detection model. 

Among datasets, the OpT measure is the same since it 
is fixed for all PoML and PoSL by 23 transactions and from 
23 to 89 depending on the number of blockchain nodes, 
respectively. There can be demonstrated that the OpT of 
PoSL is equal to that of PoW, however, the PoML method 
requires more operations in each transaction (see Figure 5). 
Depending on the randomly selected dataset and machine 
learning method, the miners' lowest and highest average 
mining times for each block range from 0.15 to 1.9 minutes 
and 0.22 to 2.9 minutes, respectively (see Figure 6). These 
two techniques are less efficient than the others, but they 
entail that mining computations are spent on meaningful 
tasks in the form of training and fine-tuning the detection 
model and ensuring that there is no one point of trust in the 
system. Moreover, if the link between the initiating node 

and the other blockchain peers is compromised, the 
transaction will be rejected. PoML offers lower 
performance while providing greater security, since each 
node of the blockchain utilizes its own randomly selected 
datasets and machine learning algorithm. In order to 
achieve these objectives, it can use a crowd-sourcing model 
in which blockchain nodes communicate with an Internet 
public database to solve computational puzzles, such as 
Kaggle. 

 

FIGURE 3 EVALUATION OF THE THROUGHPUT FOR POSL AND POML 

WITH THE OTHERS. 

 

FIGURE 4 EVALUATION OF THE OPT FOR POSL AND POML WITH THE 

OTHERS. 

 

FIGURE 5 THE MINIMUM AND MAXIMUM MINING TIME FOR ONE 

TRANSACTION IN THE DATA 



 

FIGURE 6 EVALUATION OF THE LATENCY FOR POSL AND POML WITH 

THE OTHERS. 

TABLE II.  PERFORMANCE EVALUATION OF THE POSL AND POML 

MECHANISMS. 

WDS Consensus 

Mechanis
m 

𝑵𝑻 𝑻𝑮 

(s) 

𝑻 𝜹 

(s) 

𝑻𝑳 

(s) 

𝑺𝑻  

(TPS

) 

Op

T 

D-town PoSL 7 0.0

7 

1.1 1.2 5.52 23 

POML 9.3 9.3 2.74 89 

C-Town PoSL 7 0.0
7 

5.6 5.7 1.21 23 

POML 16.

0 

16.

1 

0.43 89 

Net3 PoSL 3 0.0

3 

0.3 0.4 6.96 23 

POML 1.9 1.9 1.55 45 

Richmon

d 

PoSL 6 0.0
6 

5.3 5.3 1.11 23 

POML 7.6 7.6 0.78 78 

BWSN PoSL 2 0.0

2 

0.9 1.0 1.99 23 

POML 1.3 1.3 1.42 34 

 

IV. CONCLUSION 

In validation of data transmission for WDS, two 
consensus mechanisms having machine learning features 
such as categorization are developed in this study. The 
objective of this procedure is to convert the effort invested 
in the mining computations into something useful for 
training and tuning the attack detection model in the cloud. 
Further, it is designed to prevent the creation of a single 
point of trust throughout all systems. 

Among the suggested techniques are PoSL and PoML, 
which involve delivering a randomly selected dataset, a 
machine learning model, and a hashed value of the 
processing result. Regarding PoSL and PoML, the 
calculation is completed by one random node or by several 
random nodes. Despite the low performance of the two 
previously mentioned consensus methods compared to the 
present consensus mechanism, this mechanism has the 
advantage of enabling a significant amount of work to be 
accomplished through mining computing. In addition to the 
immutability, decentralisation, and transparency that 

blockchain technology provides, it also enhances the 
automation of the WDS. Automating the process of water 
delivery will allow the monitoring and minimization of 
water bursts and pollution. To evaluate system complexity, 
three performance metrics are analysed: latency, OpT, and 
throughput, as well as two additional coefficients to 
quantify system complexity by comparing mining 
consensus mechanisms. 
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