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Abstract

Image editing is a commonly studied problem in computer graphics. Despite the presence of many advanced editing tools,
there is no satisfactory solution to controllably update the position of the sun using a single image. This problem is made
complicated by the presence of clouds, complex landscapes, and the atmospheric effects that must be accounted for. In this
paper, we tackle this problem starting with only a single photograph. With the user clicking on the initial position of the sun,
our algorithm performs several estimation and segmentation processes for finding the horizon, scene depth, clouds, and the
sky line. After this initial process, the user can make both fine-scale and drastic changes on the position of the sun: it can be
set beneath the mountains or moved behind the clouds practically turning a midday photograph into a sunset (or vice-versa).
We leverage a precomputed atmospheric scattering algorithm to make all of these changes not only realistic but also real-time.
We demonstrate our results using both clear and cloudy skies, showing how to add, remove, and relight clouds, all the while
allowing for advanced effects such as scattering, shadows, light shafts, and lens flares.

CCS Concepts
• Computing methodologies → Rendering; Image manipulation;

1. Introduction

Sunsets and sunrises are among the most popular photographic sub-
jects. However, capturing those moments are not simple especially
if the photographer is also concerned with adjusting other scene
elements to achieve a good composition. All important scene ele-
ments must be positioned properly and desired poses must be at-
tained for all live subjects. The camera parameters must be set cor-
rectly, all the while accounting for the overall appearance shifts due
to the continuous motion of the sun. Most importantly, decisions
must be made quickly as there is generally a limited time-frame
during which an ideal composition can be obtained. It is not un-
common for professional photographers to plan and wait for hours,
even days, to capture compelling sunset and sunrise pictures.

In this paper, we propose an image editing technique particularly
suited for modifying the appearance of images with large skies and
visible sun. With our technique, the position of the sun in the sky
can be updated freely, which allows for both small and large scale
modifications to the original picture (Figure 1). Small scale modi-
fications can be made if the user is generally satisfied with the pho-
tograph, but wants to make some subtle adjustments to the sun’s

position. Our technique also allows drastic modifications such as
moving the sun behind the horizon, mountains, and clouds, bring-
ing it back up, changing its both azimuth and elevation as well as
entirely removing the sun or adding it to a picture that is devoid
of it. Such modifications entail overall changes to the photograph
so that the entire photograph remains consistent with respect to the
sun’s updated state. We show that such effects are not only possible
but can be applied in real-time to allow an interactive solution.

Our algorithm is comprised of three key stages namely segmen-
tation, rendering, and recoloring. In the segmentation stage, the im-
portant components such as the foreground, sun, sky, and horizon
are detected, and a soft segmentation mask for the clouds are com-
puted. In the rendering stage, using the sun’s position and the es-
timated camera parameters, a precomputed atmospheric scattering
algorithm [Ele09] is applied to re-render the sky together with the
clouds [Sch16]. The recoloring stage involves color transfer from
the original sky and recoloring of the the foreground to make the
entire photograph consistent with the updated position of the sun
and the sky. With these three stages, the proposed algorithm can
produce compelling results for a wide range of input photographs.
To this end, the key contributions of the current work are:
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Input Image Our Results for Different Sun Positions

Figure 1: Our algorithm allows modifying the position of the Sun, as well as its size and several other parameters, in an input photograph.
The left-most image in this figure is the original photograph and the other images are our edits performed in real-time. The appearance of
the sky regions and the foreground is automatically updated to make it consistent with the updated Sun position. Input image kindly shared
at https://pixabay.com/en/patagonia-road-mountains-2428981.

• The first single-image-based sun position modification algo-
rithm,

• Realistic handling of various appearance effects that stem from
updating the sun’s position,

• A real-time implementation allowing all modifications to be
fully interactive.

In the following, we first review the related work followed by an al-
gorithmic overview and details of each step. We then demonstrate
our visual results, compare it with alternatives, discuss its limita-
tions, and outline future research directions.

2. Related Work

The proposed work is closely related to studies that aim to perform
advanced image editing tasks using a single image, such as Poisson
image editing [PGB03], image-based material editing [KRFB06],
time-of-day modification from a single picture [SPDF13], and sky
replacement [TSL∗16]. However, to our knowledge, the proposed
work is the first attempt to modify the sun’s position directly in a
picture in which the sun is directly visible.

Image editing, as it refers to altering the appearance of images
by inserting new objects and/or modifying and removing existing
ones, is an extensively studied subject within computer graphics.
A powerful technique for image editing involves solving Poisson
equations to perform seamless cloning between images or to per-
form seamless appearance edits within a single image [PGB03].
This technique is extended for homogeneous Poisson equations,
also known as Laplace equations, for seamless cloning [JCW09].
Other studies have shown that solving for Poisson equations are not
required for seamless cloning and edits as long as correct bound-
ary conditions and smooth changes within the interior regions are
satisfied [FHL∗09].

Existing image editing techniques are not directly applicable in
the case of solar modifications as proposed in the current paper.
This is because most image editing algorithms are concerned with
making static and local edits by means object insertions and/or re-
movals, whereas solar modifications require dynamic and global
changes as a result of the changing sun position.

Image Relighting and Recoloring. Related to image edit-
ing are techniques that involve relighting or recoloring the en-
tire image or selected parts of it to simulate various lighting

and material changes. These techniques range from advanced
methods that aim to separate an image into its intrinsic lay-
ers [ED04, BBS14, RDL∗15, MZRT16] to simple methods that up-
date pixel values using various heuristics. For relighting, some al-
gorithms require a second image as a source of illumination or col-
ors [RAGS01, WAM02]. Other algorithms require user strokes to
provide hints to allow relighting of different objects in different
a manner [LFUS06]. Auto-generated or user-assisted alpha mat-
tes are used to update the materials of objects and relight them
using their new material properties [KRFB06]. Lately, some re-
searchers also proposed deep learning based image relighting meth-
ods, which have the ability to modify the visual appearance of
the images of single objects [XSHR18], indoor [MGAD19] and
outdoor [PGZ∗19, YME∗20] scenes or portrait images [SBT∗19,
ZHSJ19]. However, all these recent techniques require a large set
of training images, which are photographed with some predeter-
mined lighting directions, and/or some auxiliary data such as depth
maps or 3d geometry.

Time of Day Modification. There are also several relighting
studies that simulate the effects of time-of-day on a captured photo-
graph. Chandra et al. developed a technique that can simulate time-
of-day variations in appearance of aerial images [CAT06]. Their
method, however, requires the orientation of the surfaces as well
as the location, date, and time at which the photograph was taken
to be known. Madsen and Laursen proposed a real-time technique
for image-based relighting [ML04]. However, their work also re-
quires a large amount of input information to be known such as
the 3D model of the scene that is registered to the input photo-
graph as well as the original lighting conditions of the scene. In a
more recent approach, Balci and Gudukbay proposed to track the
sun’s position from time-lapse videos and use this information to
insert virtual objects in real videos [BG17]. However, their method
requires a time-lapse video instead of a single image, as input. Fur-
thermore, some manual intervention is required to extract the scene
geometry from the input video. Here we should also note that there
are some recent studies that aim at generating a time-lapse video
from a single image [NMC∗19, CCC20, LSK∗20].

In another related study, Shih et al. [SPDF13] proposed an al-
gorithm to change the time of day of a photo. This algorithm
uses a data-driven approach. The color transfer from one frame of
the video (for example sunrise) to another (night) is learned by a
model. A matching time-lapse video is found for the input image

https://pixabay.com/en/patagonia-road-mountains-2428981


M. Türe, M. E. Çıklabakkal, A. Erdem, E. Erdem, P. Satılmış, & A. O. Akyüz / From Noon to Sunset 3

and the affine color transfer for that frame is applied to the input
image. More recently, Karacan et al. [KAEE19] and Anokhin et
al. [ASK∗20] have developed image-to-image translation methods
that are based on deep generative networks and have the ability to
make daytime changes to a given scene image.

Sky Replacement. As one of the most related algorithms to
the current work, Tsai et al. [TSL∗16] proposed an algorithm to
change the sky with another one from a suitable image. First,
the scene is segmented by a fully convolutional neural network
(FCNN) [LSD15]. Afterwards, the result of the FCNN is refined
to match it with the input resolution. Then, by using the semantic
information about the image, images with a matching sky box are
found to be used as a replacement for the sky in the original image.
To correctly update the color of the foreground, semantic data from
both images are used.

Similar to Tsai et al., Rawat et al. [RGSN18] also aimed to re-
place the sky of a photograph to make it visually more appealing.
However, different from the earlier work, their focus was finding
the most appropriate sky that would not require a color correction
to be performed after the sky replacement. More recently, Liu et
al. [LGZ∗20] proposed a learning based framework to disentangle
an input image into temporally-varying illumination and perma-
nent scene elements. It then becomes possible to change the tempo-
ral factors while keeping the permanent elements fixed. However,
this work is more suitable for city-scapes where time-lapse imagery
from Google Street View is available. It also does not aim to create
complex atmospheric scattering and cloud shading effects, as we
do in the current work.

Single-Image Depth Estimation. Some of the aforementioned
methods, as well as our method, require an estimate of the scene
depth for more accurate lighting computations. Predicting depth
from single view images has been one of the challenging prob-
lems in computer vision and has received much attention. Espe-
cially with the introduction of deep learning based methods, re-
searchers have been trying to solve this problem by casting it as an
image-wide regression problem [EPF14, LSL15, LRB∗16, RT16].
One of the most robust methods for this problem is the MegaDepth
algorithm [LS18]. The method differs from the other existing works
in several aspects. First and foremost, it is trained on a new large-
scale dataset, which is more suitable for estimating depth of nat-
ural scenes. The previous depth datasets such as NYU [SHKF12],
Make3D [SSN09], and KITTI [Gei12] contain depth images that
are captured via either RGB-D sensors such as Kinect, which is
limited to indoor use or laser scanning devices such as LIDAR
which results in sparse depth maps. On the other hand, MegaDepth
is collected from images with overlapping viewpoints that are avail-
able in photo collections found on the web. Specifically, the authors
proposed to employ structure-from-motion (SfM) and multi-view
stereo (MVS) methods to obtain dense depth maps for both indoor
and outdoor images. They also employ semantic segmentation to
remove noisy MVS depths especially in the foreground regions by
taking into account dynamic objects such as people, cars, etc. or
hard-to-reconstruct objects such as sky regions.

Sky Segmentation. Various algorithms have been proposed for
segmenting the sky from the foreground using a single image. Some
algorithms are not specific to skies but aim to perform per-pixel se-

mantic segmentation by using FCNNs [LSD15,ZZP∗17,ZSQ∗17].
Most of these techniques work at a lower resolution and require
a separate refinement stage. To this end, the initial segmentation
results can be refined by using a dense conditional random field
(CRF) model [KK11] or the GrabCut algorithm [RKB04]. How-
ever, as indicated by Mihail et al. [MWBJ16], the vast variation in
the sky due to lighting, presence and types of clouds, the effect of
the sun, flare, and other camera induced effects an entirely robust
solution is difficult to obtain. There are also some algorithms that
are designed to only separate the foreground from the sky region,
for example to be used in ground robot navigation [SW13]. These
algorithms are simpler and arguably more suitable for our purpose
as we require a bimodal separation between the sky and the fore-
ground, rather than a dense segmentation of the image into multiple
categories.

Cloud Detection. Blue light scatters more in the atmosphere,
which causes a high blue over red channel, B/R, ratio for the sky
pixels compared to the cloud pixels. Therefore, the B/R channel ra-
tio has been commonly used in literature to detect the cloud pixels
in the sky [JH87, KJS91, PML∗03]. There has been much research
to improve the classification accuracy based on this method such as
using B−R or normalized B/R ratio [HMS10, LLY11, YLMY12,
CNT∗15]. Some other techniques such as partial least squares re-
gression, bag-of-words, random forest, support vector machine,
and Bayesian classification have also been tried to improve the
cloud detection accuracy [YML∗16, DLW17, HYCL17]. However,
considering the sky lighting depends on many parameters such as
sky haziness, turbidity, sun direction, and ground reflectance, no
single solution produces accurate results on every cloudy image.

In summary, the analysis of the previous work reveals that
while there are various image editing, relighting, and recoloring
methods supported by various estimation and segmentation algo-
rithms, no algorithm has hitherto been proposed to modify the
position of the sun where the sun and clouds are directly visible
by using only a single image and to simulate relighting and re-
coloring effects that are necessitated by it. Furthermore, despite
producing appealing results, existing relighting methods such as
[PGZ∗19, YME∗20, IZZE17, ASK∗20] do not allow for fine-scale
modifications of the solar position. Instead they are designed to
change the entire illumination of the scene by replacing the sky
with a new one. In contrast, our approach allows for both fine-scale
modifications such as moving the sun by incremental amounts to a
desired target position (Figure 1) as well as large-scale modifica-
tions such as adding, removing clouds, and introducing advanced
lighting effects (Figure 18).

3. Algorithmic Overview

Our algorithm is composed of three stages: segmentation (Sec-
tion 4), rendering (Section 5), and recoloring (Section 6). Our al-
gorithm starts with a user click indicating the approximate position
of the sun in an input picture. Using this input, we detect the sun
pixels with a simple flood-fill algorithm, assuming that the sun is
initially not occluded by clouds. It is also possible to add sun to an
image that is devoid of it. The user presses another button to dis-
tinguish this case. This initial input also triggers a series of com-
putations during which the sky, clouds, foreground, depth, and the
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Figure 2: The main workflow of our algorithm: the input to our algorithm is a single image. With the user clicking on the sun position, we
perform a series of computations to segment important information about the image. Then as the user drags the sun across the sky, atmospheric
scattering and cloud rendering are simulated. Finally the results are merged, post-processed, and tone mapped for display purposes.

horizon line are detected along with the orientation of the camera
that captured the picture. This stage of the processing, which we
call preprocessing and segmentation, is the only stage that is not
interactive and may take up to several seconds depending on the
image resolution. The segmented data as well as the depth map is
used in this stage to create advanced lighting effects.

Once the previous information is computed, the next stage,
called rendering, begins with the user dragging the sun from its ini-
tial position to a different region in the sky. The user can move the
sun anywhere in the sky in an interactive manner; the occlusion be-
hind the clouds and the foreground are automatically computed by
our algorithm. The rendering stage involves a computer-generated
sky rendering based on physically-based precomputed atmospheric
scattering and cloud rendering algorithms. We provide the horizon
line and the camera parameters extracted in the previous stage to
this algorithm, which in turn renders both the sky, clouds, and the
sun in its new position. To achieve more plausible images, effects
such as light shafts and shadows can be introduced during this stage
by using the extracted depth map (Section 5.3).

The final stage involves merging the rendered sky with the exist-
ing one and recoloring the photograph. This stage involves several
computations such as transferring the colors from the original sky
to the rendered one to maintain consistency with the original pho-
tograph and recoloring of the foreground based on the updated sun
position and current sky color. The details of each step of our al-
gorithm are elaborated in the following sections. The overall work-
flow is depicted in Figure 2.

4. Preprocessing and Segmentation

4.1. Horizon Line Detection

This stage starts with detection of the horizon line. The horizon line
is defined as a set of pixels, p, whose backprojection on the camera
coordinate system is orthogonal to the gravity vector’s representa-
tion in this system [WZJ16]:

pT K−T
c Rc[0,1,0]T = 0, (1)

where Kc represents the intrinsic camera matrix and Rc is the cam-
era’s orientation matrix. Despite the availability of a multitude

Figure 3: Several horizon lines extracted using Workman et al.’s
method [WZJ16].

of techniques [LGvGRM14, Tar09, XOH13], we decided to use
a more recent deep learning based algorithm, which was trained
on a large database involving natural images with labeled horizon
lines [WZJ16]. This algorithm provides the location of the horizon-
tal line using two parameters, namely (θ,ρ), where θ is the angle
that it makes with the x-axis of the image and ρ represents the per-
pendicular distance from the image origin to the horizon line. Sev-
eral horizon lines extracted by this algorithm for our test images
are shown in Figure 3.

4.2. Estimating the Scene Depth

We use scene depth for casting the shadows of more distant ob-
jects on the objects that are closer to the camera. To estimate the
scene depth, we use a deep learning based method recently pro-
posed by Li and Snavely [LS18] for single view depth prediction.
This method is trained on a large scale dataset called MegaDepth,
which contains images with overlapping viewpoints that are avail-
able in photo collections found on the web. Two depth maps ex-
tracted using this method for our sample scenes are shown in Fig-
ure 4. As can be seen by these images, the method works robustly
for estimating the depth of natural scenes.

4.3. Camera Parameters

There are several camera parameters that effect the visual appear-
ance of the captured image. These include but are not limited to
the camera’s response curve, exposure time, aperture size, noise
characteristics, the altitude at which the image is taken, orientation,
focal length as well as the field-of-view. Although some studies
allow for estimating some of these parameters from a single im-



M. Türe, M. E. Çıklabakkal, A. Erdem, E. Erdem, P. Satılmış, & A. O. Akyüz / From Noon to Sunset 5

Figure 4: Two depth maps computed using Li and Snavely’s single-
view depth predictor [LS18].

(a) Initial sky rendering (b) Matching the horizon line

Figure 5: The camera is rotated such that the horizon line of the
rendered sky (a) matches the horizon line of the input image (b).

age [LFSK06, WGZ∗15, YZZ∗17, LP17, LLC∗20], estimating all
of them reliably is a significantly difficult problem.

Given that our goal is to re-render the sky using a modified sun
position, we note that accurate estimation of these parameters is
not critical. The most important camera parameter is the camera’s
orientation, which should match the orientation of the real camera
that captured the picture. We compute the camera orientation such
that the horizon line of the rendered sky matches the horizon line
computed from the image. To this end, we first rotate the camera
around the z-axis such that the rendered and real horizon lines be-
come parallel. We then rotate the camera around the x-axis to make
the horizon lines collinear. A sample result depicting the rendered
sky before and after this process is shown in Figure 5. In our cur-
rent implementation, we do not use field-of-view (FOV) estimation
for the camera. We experimentally set it to a fixed value of 80◦

vertically, which we found to yield plausible results.

4.4. Sky Segmentation

For segmenting the sky from the foreground, we use a sky seg-
mentation algorithm that was originally developed for ground robot
navigation [SW13] with some modifications. In this algorithm, the
goal is to find a sky border bt(x) that separates the image I into two
regions:

I(x,y) =

{
sky (s),y < bt(x),
ground (g),y ≥ bt(x),

(2)

Original border
Refined border

(a)

(b)

Ro
w

 In
de

x

Column Index

Input Image Original Gradients Refined Gradients

Figure 6: (a) By resetting the gradients caused by the clouds, we
obtain a more reliable sky border. (b) Median filtering the border
removes outliers further improving the skyline.

such that the separation maximizes the following energy function:

Jt =
1

γ|Σs|+ |Σg|+ γ|λs
1|+ |λg

1|
, (3)

where |Σs| and |Σg| represent the determinant of the covariance ma-
trices of sky and ground pixels and λ1’s representing their largest
eigenvalues. γ is a parameter that emphasizes the homogeneity in
the sky region and a value of 2 is proposed in the original algorithm.
Maximizing Jt corresponds to minimizing the intra-class variance
of sky and ground pixels.

The border function, bt(x), is found by detecting the first image
gradient whose magnitude is greater than t. To this end, for each
column x, the gradient image ∆I is traversed from top to bottom to
find the first row y such that ∆I(x,y) > t. The border value is then
set to this value: bt(x)= y. In the original algorithm, the threshold is
varied in range t ∈ [5,600] with a step size of 5. The threshold value
that yields the largest energy is taken to be the optimal threshold,
and the corresponding border function is used as the sky border:

bopt = argmax
bt

Jt . (4)

We observed although this algorithm works well for clear skies, the
presence of clouds often create strong gradients resulting in an in-
correct sky segmentation. Furthermore, because the border at each
pixel is computed independent of the neighboring pixels sudden
variations in the border values are possible. To counteract these two
problems, first we reset the image gradients to zero for which the
blue channel value exceeds a threshold. Secondly, we apply median
filtering on the sky border to remove outliers. The effect of these re-
finements are demonstrated in Figure 6 for a sample picture.

4.5. Cloud Detection

We perform cloud detection on the sky pixels after the sky has been
segmented. After experimenting with several algorithms, we found
the HYTA cloud segmentation algorithm [LLY11] to work suffi-
ciently well for our purposes. It is fast and has a single intuitive
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(a) Input image (b) Normalized B/R histogram (c) Cloud mask

Figure 7: This input image (a) has a bimodal normalized B/R his-
togram (b). As the standard deviation of the normalized ratio image
was greater Ts = 0.03, MCE thresholding was applied to obtain the
cloud mask in (c).

parameter that can be controlled by the user if the default segmen-
tation results are not satisfactory. This algorithm is based on com-
puting the normalized blue over red ratio,

λ =
B
R
, λN =

λ−1
λ+1

, (5)

such that sky pixels with λN < τ are assumed to represent clouds.
Note that in the above formulation, the red component’s value
is increased by one of it is equal to zero and therefore λN ∈
[−1,254/256]. Furthermore, the algorithm operates on display-
encoded (i.e. gamma-corrected) pixel values. The selection of the
threshold value follows a binary decision schema. If the standard
deviation of the λN image is less than or equal to Ts = 0.03, the
histogram is assumed to be unimodal and a fixed threshold of
τ = 0.250 is used. On the other hand, if the standard deviation is
larger, the histogram is assumed to be bimodal. In this case, the
threshold value is found such that the cross entropy between the
original image and the segmented image is minimized, an approach
known as minimum cross entropy (MCE) thresholding [LL93].

5. Rendering

The rendering process is comprised of two stages. The first stage
involves the rendering of the atmosphere with the sun in its new
position. This stage is intertwined with a second stage, which in-
volves rendering of the clouds – if clouds are present in the input
image. The reason for the interplay between these two stages is
that the lighting of the clouds depend on the sun position, but at the
same time presence of clouds induce certain effects such as light
shafts.

5.1. Precomputed Atmospheric Scattering

The color of the sky depends on the scattering of the sunlight
due to microscopic particles and molecules floating in the sky.
Two types of scattering phenomena are distinguished: Rayleigh
and Mie scattering [RKAJ08]. Rayleigh scattering is wavelength
dependent. The upper atmosphere contains relatively smaller parti-
cles and these cause blue light to be scattered and reach our eyes.
During sunset and sunrise, the optical path that must be traversed
by sunlight becomes larger. This causes the blue light to get scat-
tered to almost extinction and the sky takes a red/orange hue. Mie
scattering is caused by larger aerosol particles and it is responsible
for the overall lightening and darkening of the sky based on the sun
position.

Mathematically, the light arriving at a viewer at an altitude of
h(x) can be modeled as:

L = τLd +Lins, (6)

where Ld is the direct light, Lins is the in-scattered light, and τ is
the extinction factor. Both τ and Lins depend on the optical path, s,
of the sunlight that travels within the atmosphere:

τ(s) = exp
(
−

∫ s

0
βm(h(x))dx

)
exp
(
−

∫ s

0
βr(h(x))dx

)
, (7)

where the β coefficients represent the Mie and Rayleigh scattering
factors as a function of the altitude at which the scattering event
occurs. Scattering also has an angular dependency in addition to
altitude:

β(ωi,ωo,h(x)) = β
0(ωi,ωo)β(h(x)), (8)

where the angular and altitude dependencies are decoupled. The
angular dependency, β

0(ωi,ωo), is often termed as the phase func-
tion and it models how much of the light coming from direction ωi
is scattered toward the direction ωo. The amount of light scattered
at point x along ωo is then given by:

Lins(x) =βm(h(x))
∫

Ω

Ls(w)β0
m(ωi,ωo)dw+ (9)

βr(h(x))
∫

Ω

Ls(w)β0
r (ωi,ωo)dw, (10)

where Ls represents the inscattered light at that point. Integrating
this over the full optical path yields:

Lins =
∫ s

0
Lins(x)τ(s)dx. (11)

Precomputed atmospheric rendering techniques evaluate these in-
tegrals using ray marching techniques. The computed results are
stored in lookup tables for different observer altitudes and all pos-
sible sunlight and viewing directions. It then becomes possible to
use these tables as texture maps, and sample from them in real-time
based on the current sun position and view direction. Several meth-
ods exist in the literature. We used Elek’s approach [Ele09]†, which
is a simplification of Bruneton and Neyret’s [BN08] work.

5.2. Cloud Shading

For realistic cloud shading we used the method described by
Schneider [Sch16], which is originally designed for the game
“Horizon: Zero Dawn”. This method proposes a volumetric cloud
modeling using fractal Brownian motion (FBM). FBM involves
computing the sum of series of a noise function with increasing
frequency and decreasing amplitude. Different from the earlier ap-
proaches, it combines two noise types namely Perlin [Per85] and
Worley [Wor96] to create more realistic cloud shapes.

At the core of this algorithm lies a weather texture, comprised
of Cw, Rw, and Tw vectors. These vectors, which are stored as the
color channels of a three-channel texture image in (Cw, Rw, Tw)
order, control the following properties of the rendered clouds:

† We used Michal Skalsky’s implementation available at https://
github.com/SlightlyMad/AtmosphericScattering.

https://github.com/SlightlyMad/AtmosphericScattering
https://github.com/SlightlyMad/AtmosphericScattering
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Figure 8: A sample weather texture shown on the left, together with
rendered stratus (middle) and cumulus (right) clouds obtained by
changing the Tw value.

Cw: Percentage of cloud coverage in the sky
Rw: Probability of rain
Tw: Cloud type

Note that these are per-pixel maps. In our case, we already know
the location of the clouds therefore we set the Cw channel to one
for all pixels. This causes clouds to be rendered in the entire sky.
We then apply a mask to select the regions in which the original im-
age contains clouds. For realistic appearance, we use a soft cloud
mask as explained in the next section. We set the Rw channel to
zero as the scenes we deal with are typically not rainy. We leave
the cloud type Tw as a user-parameter for which the value of 0 in-
dicates stratus, 0.5 stratocumulus, and 1 cumulus clouds. A sample
weather texture is shown in Figure 8 together with rendered stra-
tus and cumulus clouds obtained by changing the Tw from 0 to 1.
The sampling of cloud density is based on ray marching, which is
typical for volumetric rendering algorithms‡.

5.2.1. Computation of Soft-cloud Mask

Using a binary cloud mask leads to an unrealistic transition be-
tween the sky and cloud regions. In contrast, simply blurring the
cloud mask produces clouds that are too smooth and unrealistic. To
compute a soft-cloud mask, we first blur the original cloud mask
using a Gaussian kernel with a large size. We then subtract the orig-
inal mask from the result to extract only the cloud boundaries. We
then create a Perlin noise texture and only select the parts that cor-
respond to these boundaries. We then multiply the boundary texture
with the Perlin noise texture to semi-randomly modulate the tran-
sition in the boundary regions. Finally, we recompose the cloud
mask texture by adding the modulated boundary texture. We show
the difference of this result from simply applying a Gaussian blur
to the cloud mask in Figure 9.

‡ We used Ben Hopkins’s implementation available at https://
github.com/kode80/kode80CloudsUnity3D.

(a) Gaussian blur (b) Our result

Figure 9: Softening the cloud boundaries is important for realis-
tic blending between clouds and sky. Naïve Gaussian blur causes
over-blurring (a), whereas our approach preserves the overall cloud
shape while producing a semi-random and smooth transition at the
border (b).

(a) Initial depth estimation (b) Refined and inverted depth map

Figure 10: We recompute the input depth map (left) so that the most
distant object is the sun, followed by the sky, clouds, and the fore-
ground. Note that depth values are inverted in the final depth map
(right) so that more distant pixels have higher values.

5.3. Creating Lighting Effects

The presence of the per-pixel depth information allows us to render
advanced effects such as light shafts and shadows. In Section 4.2,
we explained our method of depth estimation from a single im-
age. Although this method works well for foreground objects, it
fails to properly capture the depth of clouds. Despite their precise
depth not being important, clouds need to be positioned between
the sun and the foreground in order to be able to cast shadows on
the foreground. To achieve this, we define start and end values for
both the foreground and the clouds. We ensure that the start value
of the clouds exceeds the end value of the foreground. This makes
the foreground pixels closest to the viewer, followed by the clouds,
sky, and then the sun. Figure 10 shows the input and the final depth
maps using this technique. Note that the final depth map is inverted
so that distant pixels have higher values.

With the depth map available clouds and distant objects can be
made to cast shadows on the foreground using standard shadow
mapping techniques. If a pixel is under-shadow§, we march a ray
from the pixel’s reconstructed 3D position in the sun direction, at-
tenuating the light intensity based on the sampled cloud density

§ Whether a pixel is under shadow or not can be understood by comparing
the depth of this pixel with the value stored in the depth buffer, both with
respect to the sun position.

https://github.com/kode80/kode80CloudsUnity3D
https://github.com/kode80/kode80CloudsUnity3D
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along this ray. The limitation of our algorithm regarding the shad-
ows is that as we cannot remove the existing shadows, the user
would need to be careful to avoid introducing conflicting cues. This
could be problematic if the input image already has strong direc-
tional shadows that are cast in different directions than the newly
introduced ones.

It is also possible to add light shafts during the rendering of the
atmosphere. To achieve this, ray marching is performed in two di-
rections. For every pixel, we first march along the viewing ray and
at every step we march along the sun direction. If clouds are en-
countered the illumination is attenuated by using cloud density.

6. Recoloring

Rendering part of our algorithm deals with recomputing the colors
of the sky commensurate with the updated sun position. In the re-
coloring phase, we first update the statistical distribution of these
colors to match it with the distribution in the original image. Sec-
ondly, we update the colorfulness and contrast of the foreground to
match it with the final sky color.

6.1. Color Transfer

Color transfer algorithms aim to impart the color distribution of a
target photograph into a source one while preserving the content of
the latter [FPC∗14]. In our case, we do not know the colorimetric
and radiometric properties of the camera that captured the origi-
nal photograph. These properties may include the response curve,
white balance settings, and sensor sensitivities of the camera. When
we render the sky using a physically based atmospheric scattering
algorithm, it is implausible to expect that the colors of the rendered
sky match to those of the original photograph – even if the sun is at
the same position. To prevent this sudden change that would hap-
pen as soon as we switch from the input sky to the rendered one, we
decided to use Reinhard et al.’s [RAGS01] color transfer algorithm,
which suffices for our purposes.

This algorithm aims to match the statistical distribution (mean
and standard deviation) of colors between two images after trans-
forming them to the Lαβ color space [RCC98]. In our case, by
using our sky mask, we compute and transfer the distributions only
for the sky pixels. However, applying color transfer irrespective of
the sun’s new position would create incorrect colors; we want the
sky to change color based on the sun’s distance to the horizon. To
this end, we modulate the degree of this transfer based on the Eu-
clidean distance between the sun’s original and current position.
Assuming that Cs and Cr represent the original and rendered sky
colors, the final sky colors C′

s are computed as:

C′
s = tCr +(1− t) f (Cs,Cr), (12)

where f is the color transfer function and t ∈ [0,1] is a smoothly
varied distance measure between the original and updated sun po-
sition.

6.2. Foreground Colors

Until now, we focused on computing the sky colors. For a realistic
result, however, the foreground colors must be duly updated. Let C̄s

and C̄ f represent the mean colors of the sky and foreground regions
in the original picture, respectively. Denote their per-component ra-
tio by Q = C̄ f /C̄s. After updating the sky color as explained in Sec-
tion 6.1, we recompute the mean foreground color to preserve this
ratio, i.e. C̄′

f = Q×C̄′
s where × represents per-component multipli-

cation. To achieve this, we scale each foreground pixel by the factor
of C̄′

f /C̄ f :

C′
f =

(
C̄′

f

C̄ f
×C f

)
. (13)

This produces the desired darkening effect as the sun approaches
the horizon.

Another key observation about outdoor lighting is that the di-
rect sun contribution is much more powerful than the scattered sky
colors and the transmitted sun rays through the clouds. As a result,
when sun is occluded by clouds or sets toward the horizon, the over-
all color saturation of foreground objects decrease, an phenomenon
known as the Hunt effect [Fai13]. To model this phenomena, we
introduce a new variable s ∈ [0,1] which is a normalized cosine
multiplied power of the visible sun pixels. Then, we employ a col-
orfulness modulation formula inspired by tone mapping [Sch95] to
reduce the saturation of the final foreground colors:

C′′
f =

(
C′

f

L′
f

)s

L′
f , (14)

where L′
f is the luminance computed from the color C′

f after Equa-
tion 13. As the sun is occluded with clouds or approaches the hori-
zon, s < 1 will result in reduced colorfulness.

6.3. Postprocessing

After the recoloring stage, we merge the foreground layer with the
sky layer using Laplacian blending [BA83] to achieve a smooth
transition between the two layers. Furthermore, the rendering of the
sky and clouds take place in the linear high dynamic range (HDR)
domain. To make the input image compatible with linear lighting, it
is presented as an sRGB texture so that it will be linearized during
texture fetches. The final HDR result that is obtained after Lapla-
cian blending is tone mapped for display purposes. To this end,
any shader-friendly tone mapping operator (TMO) can be used. We
used the photographic TMO [RSSF02] as it can be easily imple-
mented in the pixel shader, and the quality of the results suffices
for our purposes.

7. Results

We present our results under several conditions that pose different
degrees of challenges for our algorithm. First, we share results for
clear-sky images with and without sun. These images are easier
to process due to lack of clouds. Second, we demonstrate results
for images with cloudy skies. Third, we present and discuss results
for advanced lighting effects that include shadows, sun-shafts, and
sun-flare.
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(a) Input (b) Sky mask (c) Depth (d) Sun at original position (e) Sunset

Figure 11: A sample result for an input image with clear sky. The horizon line is overlayed in red in (a) for visualization purposes. Two
outputs of our algorithm at different sun altitudes are shown in (d) and (e).

(a) Input image (b) After minimal sun movement

(c) Towards sunset (d) Sunset

Figure 12: Input image (top-left) and relighted outputs after incre-
mental sun movements.

7.1. Clear Sky

This setting represents the simpler case for our algorithm due to
the lack of clouds. We show a sample result in Figure 11. Here (a)
shows the input image with the horizon line in red for visualiza-
tion purposes. The sky and depth masks are shown in (b) and (c).
Two outputs of our algorithm for different sun elevation angles are
shown in (d) and (e). For this example, cloud masks were set to all
zeros.

We share another result in Figure 12. Here, the top-left image
is the original photograph and other images are our results for dif-
ferent sun positions. It can be seen that as the sun sets towards the
horizon, the sky as well as the foreground pixels take an orange
tint. This result also showcases a limitation of our algorithm. In
the real-world, the sea would take a more orange color due to its
highly reflective surface. We cannot account for this effect as we
do not further segment foreground object into different categories.

7.2. Cloudy Sky

This category represents the more difficult case for our algorithm.
It requires an accurate segmentation of cloud pixels as well as re-
alistic rendering of the sky and shading of the clouds. We share a
sample result for this case in Figure 13. It can be seen in this figure

(a) Input image (b) Initial rendering result

(c) Sunset toward open sky (d) Sunset behind the clouds

Figure 13: The input photograph is on the left and results with dif-
ferent sun positions are on the right. Note the realistic shading of
the clouds with respect to different sun positions.

(a) Input image (b) Our rendering result

Figure 14: Detection and rendering of thin clouds pose challenges
for our algorithm. The input image is on the left and our result is
on the right.

that the sky and clouds are realistically shaded and the foreground
colors are properly updated for different sun positions.

The most challenging part of cloudy skies is the difficulty of
matching the appearance of clouds to those in the original picture.
In our experiments we found it to be the most difficult to match the
appearance of thin clouds. An example is shown in Figure 14. In
this example, the rendered clouds fail to capture the appearance of
clouds in the original picture.
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(a) Input (b) Result without sun (c) Result with sun

Figure 15: The clouds in the input photograph (left) are removed
in the rendering results. The sun may be left outside (middle) or
inside (right) the scene.

(a) Input (b) Cloud mask (c) Result

Figure 16: The clear sky in the input image (a) can be turned into a
cloudy one (c) by adding clouds using a cloud mask (b).

7.3. Cloud Removal and Addition

Our algorithm also allows the removal and addition of clouds. Re-
moval of clouds is achieved by rendering only the sky and leav-
ing out the clouds. The sun may be positioned inside or outside
of the photograph as shown in Figure 15. Inserting clouds can be
achieved by first setting the desired parameters the clouds (Sec-
tion 5.2) and rendering them according to these parameters. A cus-
tom cloud mask can be used to specify where the clouds should be
present in the photograph. This is illustrated in Figure 16.

7.4. Advanced Lighting Effects

As explained in Section 5.3, previously estimated depth map can be
used to add plausible effects to the output image. Adding shadows
is one of them and, Figure 17 (a) and (b) show the difference be-
tween disabling and enabling shadows on the foreground. Another
effect which can be achieved is to add light shafts that creates dark
and light patterns on the sky pixels as can be seen in Figure 17 (c).

As a detailed illustration of both the merits and limitations of our
algorithm, we use an image captured by our own digital camera
(Figure 18). The top-left image (a) represents the input with the
horizon line overlayed in red. The depth map is shown to the right
(b). In the top-right corner (c), we can see the gradient map from
which the sky mask is computed. The sky mask shown in (d) fails
to capture some of the fine details of the tree branches – these parts
will be replaced with the rendered sky. (e) shows the initial result
that is computed without color transfer. Note the color difference of
the sky between (a) and (e). As shown in (f), the sky as well as the
foreground becomes closer to the input image after applying color
transfer. The bottom row shows the sun moved closer to the horizon
and with various effects enabled. Shadows are shown in (g). Note
that there is some inconsistency between the original shadows and
the rendered ones. Light shafts on the sky can be observed when
the sun sets behind the building (h). Finally, artistic effects such
as light shafts can be added using the shadow map texture and the
orientation between the sun position and the camera (i).

Operation Time (ms)
Precomputed atmospheric scattering 0.57

Volumetric cloud rendering 2.05
Light shaft computation 1.54

Shadow map computation 3.01
Mean sky color computation 123.34

Color transfer 0.41
Laplacian blending 1.01

Tone mapping 1.17
Other 4.21
Total 137.31

Table 1: Time taken by the different stages of the rendering and re-
coloring parts of our algorithm for an input image size of 1210×
907. Note that the majority of the time is spent on mean color com-
putation for color transfer, which is not a GPU-friendly operation.

7.5. Time-lapse Videos

Finally, using our algorithm we can create time-lapse videos by
varying the sun position at every frame. We invite the readers to
view several examples in electronic supplementary materials.

7.6. Run-time Performance

The run-time performance of our algorithm is high enough to allow
real-time frame rates. In our tests, we used a system that has an Intel
Core i7 CPU running at 3.60 GHz and Nvidia GTX 1050 Ti GPU.
The implementation was made on Unity3D version 2019.4.9f1. Ta-
ble 1 shows the time taken by different parts of our algorithm to
render a single frame of size 1210× 907 (Figure 18). As can be
seen from this table, the majority of the time is spent on computing
the mean sky color to be used in color transfer. Other parts of our
algorithm take only a few milliseconds each. The implementations
of all of these operations use either compute or pixel shaders.

7.7. Comparison

Our algorithm allows both small and large modifications of the sun
position to simulate the appearance of the same scene in different
times of the day. While we are not aware of any direct alterna-
tives to our work, in this section we compare our results with three
prominent works for day to night translation [IZZE17], style trans-
fer [ASK∗20], and scene relighting [YME∗20]. As can be seen in
Figure 19, despite producing appealing results, these algorithms do
not allow for the type of modifications that are possible with our
algorithm. In particular, the image in (c) appears too dark and the
sun is not visible. Moreover, it has nearly half the resolution of the
input image as the method accepts fixed size inputs. The image in
(d) looks more appealing but note that new clouds are introduced
and there is a false sun image at the original position of the sun.
The image in (e) fails to convey the sunset style of the style source
image. Note that for both (d) and (e) if a different style image was
used as input entirely different outputs would be obtained. In con-
trast, our results for the same scene shown in (f) as well as in Fig-
ures 13 and 17 suggest that more finely controlled modifications
that adhere to the original scene content can be achieved.
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Figure 17: Shadows and light shafts can be added to improve realism.

(a) Input (b) Depth Map (c) Gradient Map

(d) Sky Mask (e) Without Color Transfer (f) With Color Transfer

(g) Shadows (h) Shadows + Light Shafts (i) Shadows + Light Shafts + Lens Flare

Figure 18: A detailed example illustrating various stages of our algorithm. See the text for details.
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(c) Isola et al.(b) Style source image(a) Input

(d) Anokhin et al. (e) Yu et al. (f) Our result

Figure 19: (a) The input image. (b) Style source image. (c) The result of pix2pix algorithm by Isola et al. [IZZE17] using the
trained model of day2night. (d) The result of Anokhin et al. [ASK∗20] using the style source image. (e) The result of Yu et
al. [YME∗20] using the style source image. Our results for the same input image are shown in Figures 13 and 17. The aspect ratio
of (c) is different due to the model’s limitation. The style source image was kindly shared at https://www.pexels.com/photo/
brown-and-green-grass-field-during-sunset-1237119.

Finally, we compare our results against a ground-truth time-lapse
sequence. In Figure 20, the top-left image in (a) shows a real photo-
graph from a time-lapse sequence with sun having risen above what
is known as Ayers Rock in Uluru region of Australia. The top-right
image in (b) shows an earlier frame from the same sequence. This
is a typical application scenario of our algorithm: the photographer
misses the moment of a sunrise or sunset and wants to apply im-
age editing to recreate that missed moment. Our results are shared
in (c), (d), and (e). In (c), we render a clear sky to remain faithful
to the original sky in the input photograph. In (d) and (e), we add
different amounts of cloud coverage for artistic effects. While our
results are not identical to the ground-truth, they appear to create
plausible depictions of the input environment for different sun po-
sitions. In particular, a viewer without access to the ground-truth
image may not notice the difference between our results and real-
photographs of the scene.

7.8. Limitations

Since we do not perform a dense semantic segmentation of the fore-
ground into multiple object categories, we cannot distinguish shad-
ing differences between different scene elements. For example, we
cannot add specular highlights to water surfaces that are consis-
tent with the updated sun position, nor can we make such a surface
attain a dominantly orange hue akin to the sky. State-of-the-art se-
mantic segmentation models [ZSQ∗17, ZZP∗19, RBK21, LLC∗21]
may be employed to enable these effects. These algorithms may

also prove to be beneficial for segmenting of the sky from the fore-
ground as well as segmenting of the clouds from the sky.

As another limitation of our approach, we could not find a plau-
sible way to drive the rendered cloud density from the density of the
real clouds in the input image. This poses two challenges where one
first needs to estimate the original cloud density and then estimate
the parameters of the noise function so that the original density
constraints are satisfied. This is a challenging problem and some
solutions are outlined in a relevant survey of procedural noise func-
tions [LLC∗10].

Finally, as stated in Section 5.3, our algorithm cannot remove the
existing shadows before introducing new ones. Although this prob-
lem can theoretically be tackled with shadow detection and removal
algorithms [SSL12], a fully automatic solution that can work under
large disconnected shadow regions with arbitrary shapes appears to
be elusive [HZYG17].

8. Discussion and Future Work

In this paper, we attempt to address a difficult image editing prob-
lem, which is the modification of the sun position using a single
input image. To solve this problem, we need to solve multiple sub-
problems such as horizon line, sky, and cloud detection, depth es-
timation, precomputed atmospheric scattering, cloud shading, and
recoloring. As our algorithm depends on all of these techniques, it
also borrows the union of their parameters. However, in practice we

https://www.pexels.com/photo/brown-and-green-grass-field-during-sunset-1237119
https://www.pexels.com/photo/brown-and-green-grass-field-during-sunset-1237119
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(a) Frame 480 (input) (b) Frame 300 (ground-truth)

(c) Our result with clear sky (d) Our result with partly cloudy sky (e) Our result with overcast sky

Figure 20: (a) The input frame. (b) An earlier ground-truth frame. (c) Our result by moving the sun from the input frame location to the
ground-truth frame location. (d, e) Adding varying amounts of cloud coverage for artistic effects. The source time-lapse sequence was kindly
shared at https://www.videezy.com/abstract/45554-uluru-sunrise-australia.

found most of the algorithms to work with their default parameters
especially those based on deep learning such as the horizon line
and single image depth estimation.

As for sky segmentation, the only parameter that requires tweak-
ing is the gradient reset threshold explained in Section 4.4. Usually,
a default value of 128 works together with a median filtering size
of 3 pixels. Reducing this threshold clears more gradients pushing
the sky border lower in the vertical direction. Increasing it has the
opposite effect. The size of the median filter can be increased de-
pending on the width of the outliers (see Figure 6). However, sky
segmentation takes only a few seconds and therefore multiple set-
tings can be quickly tried.

Cloud detection is another part of our algorithm that may require
parameter tweaking. Automatically computed threshold values do
not always work, incorrectly labeling some sky pixels as clouds
or cloud pixels as sky. In this case, we set a user defined thresh-
old value. Increasing the threshold parameter marks more pixels as
clouds and decreasing it has the opposite effect (see Section 4.5).

As for the rendering of the sky and clouds, there are multiple pa-
rameters that may affect the quality of the results. These include but
are not limited to sunlight intensity, Rayleigh and Mie scattering
coefficients, phase function, cloud distance, the proportion of am-
bient to direct illumination, coverage texture, number of samples in
ray marching, shadow map resolution, tone mapping parameters,
etc. Because of a large number of parameters with confounding ef-
fects, we found it best to use the physically-based default values.

Given these issues, it usually takes less than five minutes to cre-
ate satisfactory results starting with a single input image. We be-
lieve this is still significantly faster and yields more realistic results
compared to those that can be obtained with existing image editing
tools. Furthermore, because the rendering and recoloring parts of

our algorithm are real-time, placing the sun to the desired part of
the photograph takes a negligible amount of time.

There are several future research directions that can improve the
realism of the results. First, we do not remove shadows on the fore-
ground. This may create conflicting cues when the sun is moved
to a new position as the new shadows may be cast in a different
direction than the existing ones. Secondly, we only approximate
the foreground lighting. It should be possible to use the gradient
of the depth image to create view space normals and then use this
information for more accurate foreground lighting. Finally, the cur-
rent algorithm cannot deal with surfaces with different reflective
properties in the foreground. For example, specular highlights on
the water surface will remain at the same position even if the sun
is moved. Accounting for these effects requires more accurate and
detailed partitioning of the foreground pixels into different object
categories.
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