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Abstract: With the economic crisis going around the world, a new approach, “build back better”, has
been adopted as a recovery package for various systems. The tsunami detection and warning system
is one such system, crucial for saving human lives and infrastructure. While designing a tsunami
detection system, the social, economic, and geographical circumstances are considered to be vital.
This research is focused on designing a low-cost early warning system mainly for underdeveloped
countries, which are more prone to tsunami damage due to a lack of any reliable early warning and
detection systems. Such countries require proper cost-effective solutions to address these issues.
Previous research has shown that the existing systems are either very costly or hard to implement
and manage. In this study, we present a wireless sensor networking model, which is an optimized
model in terms of cost, delay, and energy consumption. This research contemplates the techniques
and advantages of the intelligence of marine animals. We propose a fuzzy logic-based approach
for early tsunami detection, using electromagnetic and pressure sensors, based on the behavioral
attributes of turtles and real-time values of earthquakes and water levels.

Keywords: wireless sensor networks; fuzzy logic; marine behavior; tsunami alert system

1. Introduction

A tsunami is created by gigantic waves caused by a disturbance or seismic activities,
such as earthquakes, volcanic eruptions, landslides, or rock falls. Most recent tsunamis
around the world have been the result of earthquakes. Tsunamis can lead to massive
destruction and fatalities. The destruction of life and property they cause is huge, thus the
need for early detection systems. Table 1 shows an account of recent tsunamis and early
warning systems used in some underdeveloped countries. The comparison is merely to
highlight the reason/primary cause of the tsunami and the distance of the affected area
from the tsunami’s source, in addition to other related important issues.

In this technological era, it is possible to detect tsunamis and generate timely tsunami
updates. This tsunami management process can be facilitated by different techniques, such
as event-based sensor networks which are well-known for their strong link to disaster
management techniques. This IoT-based data collection technique backed by state-of-
the-art analysis can provide insights that can effectively reduce the potential damage
and loss of lives caused by natural disasters, such as volcanic eruptions, earthquakes,
tornados, and tsunamis [1]. IoT data sensing is an advanced technology that enables
taking measurements remotely from sensors distributed amongst areas of interest by
incorporating new technologies, such as machine learning, the Internet of Things, and big
data analytics [2]. Other techniques mainly depend on satellites to collect and analyze data
from remote sensors to give enough warning to mitigate the effect of a tsunami [3].
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Table 1. Comparison of tsunamis over recent years.

Year Location Primary
Cause

Earthquake
Magnitude

Distance
of Coastal
Area

Tsunami
Detection
System

Early Warning
System Comments

15 January
2022 Tonga Volcanic

eruption - 65 km No

No early
detection
warning
system for
volcanic
eruption

This tsunami opened
many questions for the
research/development
of tsunami
detection/warning
methods to build a
system for volcanic
eruption.

14 December
2021 Indonesia Earthquake 7.3 112 km No

Indonesian
Tsunami Early
Warning
System
(InaTEWS)

There is a need to build
a low-cost early
detection system, taking
the economy of
developing countries
into account.

14 August
2021 Haiti Earthquake 7.2 125 km No Siren warning

system

Another case where a
feasible system is
required for low-income
countries.

Though early detection systems have been made possible with technological ad-
vancements, such as sensor networks and machine learning, the data presented in Table 1
emphasizes the need for more research and state-of-the-art development of an early tsunami
warning and detection system, especially for low-income countries. This is because the
current advanced systems are either very expensive or require advanced management for
both developed and undeveloped countries. For instance, an earthquake of 7.5 triggered
by an underwater landslide caused a tsunami on 28 September 2018 in Indonesia; 22 buoys
connected to the seafloor had not been functioning for 6 years due to a lack of funding [4].
On the other hand, New Zealand has a DART sensor system of 12 sensors, which is further
connected to other global partners for the real transmission of data [5]. Although using
satellites is one of the commonly used technologies for tsunami detection, it can take up to
five minutes to issue an early warning after tsunami detection [6].

A tsunami warning system is broadly divided into two stages: upstream and down-
stream. The former is the detection of the earthquake and the prediction of a tsunami,
and the latter stage is the warning and evacuation of people [2]. A tsunami system does
require both technical and socio-economic factors for development [7]. Therefore, the
economic capacity of any country and/or region is an important factor when designing
and building a tsunami system considering all the requirements and countermeasures [8].
This calls for a potential need for collaboration and contribution among researchers and
hardware industries for innovation in the warning and detection model of Tsunami and
scalable devices since the devices are often imported from developed countries, which
renders the projects extremely expensive. We suggest that low-income countries design and
manufacture low-cost hardware based on new technologies such as fuzzy logic, machine
learning, and artificial intelligence.

We present an economical, optimized integrated system of wireless sensor network
and fuzzy logic to detect tsunamis and generate singles for a quick alert. Our alert and
no-alert system also takes advantage of partial aggregation and no aggregation for less
delay and low energy consumption.

The major contributions of this paper include:
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(1) Presenting a comprehensive survey of existing tsunami systems and identifying
the reasons for the lack of proper deployment of these systems in underdeveloped
countries.

(2) The paper presents a fuzzy logic approach that utilizes the effect of tsunamis on sea
turtles and the angle of their deviation or navigation direction, in addition to real-time
inputs, such as water level and earthquakes from a tsunami database.

(3) A cost-effective and optimized concept of fuzzy logic and a WSN-based model for
tsunami resiliency is proposed. The proposed concept offers a network of interlinked
pressure and electromagnetic sensors, and the fuzzy logic system has the potential
to facilitate the real-time processing of data streams to reveal new information, pat-
terns, and insights for effective tsunami management. Figure 1 illustrates the overall
workflow of the concept of the proposed model.

(4) The system is evaluated regarding cost, delay, and energy consumption. The results
demonstrate the comparison of different parameters and the efficiency of the system.

The remainder of this paper is organized as follows. Section 2 describes the related
research work in detail. Section 3 thoroughly describes the proposed model and its main
functions, i.e., data collection for the fuzzy logic system to detect a tsunami, energy saving
through partial data aggregation mode, and the early warning of a tsunami through
the no aggregation mode. Section 4 presents the results and discussion along with the
graphs of delay and energy for both modes of aggregation, i.e., no aggregation and partial
aggregation, co-efficient tables, and comparisons of delay and energy during a tsunami
and No Tsunami state. Finally, Section 5 presents the conclusions of this research.
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2. Related Work

Various studies have been carried out on finding gaps and proposing different models
for tsunami early warning and detection. Recent research [9] has proposed a detection
system for Japan using the sensing system of radar. This model is based on the radar bands
threshold value (q-factor). As the water propagates from the deep ocean towards the coastal
area due to the earthquake, the band value changes abruptly due to increased velocity. There
exists a relationship between the earthquake and the values of the band. So, a threshold
value of the band because of an earthquake before a tsunami is proposed as a q-factor value.
The velocity declines after this threshold value, indicating the tsunami’s arrival.

A network of sensors is an efficient and cost-effective enhancement to tsunami early
warning systems for the coastal area near an earthquake. As such, a regional network can
be designed using the global positioning system (GPS) for rapid and accurate tsunami
warning and tracking with a proper analysis system and real-time data [10].

A study in [6] used a particle swarm optimization algorithm and a 2D nonlinear
equation to place the sensor to reduce the detection time. The authors found an inverse
relation between tsunami detection time and the number of sensor nodes. However,
increasing cost is also important when considering the number of nodes. Tsunamis start
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with less unnoticeable magnitude, but their wavelengths are longer than normal seawater.
Another noticeable thing is that in-depth ocean tsunamis propagate faster with less energy
loss. So the tsunami’s strength is inversely proportional to the wavelength [11].

When it comes to efficient tsunami detection, one of the most expensive and well-
organized systems is DART (deep ocean tsunami assessment and reporting). The installa-
tion cost of DART is USD 0.5 M, and the yearly maintenance cost is USD 300,000. Ocean
DART is a buoy technology and was first developed by the Pacific Marine Environmental
Laboratory in the United States. DART buoys have seafloor pressure and moored surface
buoys, which help detect tsunamis and real-time communication.

DART has four generations. The first generation consisted of separate pressure buoys
and surface buoys with one-way communication. The second generation allowed two-way
communications with real-time data capture. In the third generation of DART, both buoy
parts were integrated into one. In the fourth generation, advanced pressure sensors are
used. A tsunami is measured close to the earthquake and surface, or moored buoys are
connected to the tsunami warning center and send high-resolution data, which is further
transferred to other stations via satellite [12]. Japan is another example of the world’s
largest and most expensive tsunami system. In Japan’s observation system, the cost of one
buoy is USD 3 million [13]. As discussed in the previous section, these costly systems are
not appropriate for developing countries, such as Haiti and low-income countries such
as Pakistan, Indonesia, etc., that require aid for developing low-cost and efficient tsunami
detection/ warning systems.

Tsunamis occur infrequently, and this might be a reason why little attention has
been given to the mitigation of this hazard in developing countries, such as Pakistan.
We argue that the coastlines need to be monitored with proper planning for tsunamis in
the provinces of Baluchistan and Sindh, which are adjacent to the Arabian Sea. Strong
awareness programs are required for the communities to be informed about evacuation
plans in case any such hazard occurs in the future [14]. Currently, the tsunami monitoring
system of the Pakistan meteorological department (PMD) has 20 stations consisting of 120
broadband sensors connected to the satellite communication system [15].

Indonesia, comparatively, is more prone to tsunamis due to active volcanoes. The early
warning system for tsunamis in Indonesia consists of tsunami seabed detectors. Research
on the advancement in Indonesia’s warning system began in December 2021. The authors
in [16] developed a new system consisting of underwater seismic sensors joined with an
ocean unit installed on the seabed and connected to the data center by fiber optic cable.
The data center provides power to the sensors. Solar panels are installed to provide energy
to the power plant. However, tsunami effects and deaths are still reported even though the
system is updated.

In another detection and warning system, the authors in [17] proposed using low-cost
autonomous underwater vehicles that use acoustic signals. Maintenance of the system is
also possible. To conserve energy, the vehicles will only be active for listening to tsunami
signals. This will require the batteries to recharge after several weeks for less disturbance
of the underwater biodiversity. The downside is that the estimated cost of one buoy is
USD 1000, which is still expensive when implementing such a model requires more than
one buoy.

Different wild and domestic animals can be used for monitoring different kinds
of natural hazards and are also useful in early warning of biological attacks. A native
animal can be used to monitor the infected area. For example, canaries are sensitive to
poisonous gases and react differently, so they are placed in mines to detect harmful gases
and help the miners evacuate on time. Similarly, oysters can help detect pollution. They
can bioaccumulate chemicals and this high concentration can be helpful in the detection of
pollution [18]. The surveillance using such animals can be both active and passive, where
active surveillance is used for control strategies and passive for elimination.

Recent research shows that tsunami warning systems can be classified based on
computation or mathematic calculations. Nature-based systems use ecology, such as
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unexpected behavior and response of animals or plants to the changes in water due to
seismic effects [19]. The authors used datasets of different marine animals and the ensemble
clustering technique to categorize this strange behavior. The best result was obtained from
turtle datasets [15].

In our work, datasets were collected from different attributes of turtles [20]. We used
fuzzy-based logic to connect a monitoring system with sensors to predict tsunamis. The
attributes are the count of turtles and the angle of deviation or navigation direction. The
outcomes of these were classified into three different classes for tsunami warning systems,
i.e., (1) alert, (2) pre-alert, and (3) no alert.

Observation of the seafloor in the northwest Pacific has shown that a tsunami creates
two phases of magnetic fields. The first one is weak, followed by a strong one due to the
coupling with seawater particles [21]. Electromagnetic fields impact aquatic species, such
as turtles, and any abnormality affects the marine animal’s direction. Strong exposure to
electromagnetic fields not only decreases the count of turtles but also affects their prey
tracking capabilities [22].

In the next section, we propose our model using the fuzzy logic technique with inputs
of the different attributes of turtles, the magnitude of the earthquake and water level, and
the magnetic field connected to the sensor networks for early detection. Our proposed
model can also maximize the lifetime of sensors and decrease the delay for early warning
as shown in Figure 1.

3. The Proposed Model

We define the complexity of our proposed system in terms of types and connecting
media. The proposed early warning system is designed using electromagnetic sensors,
pressure sensors, relay/aggregated sensors, and a gateway connected to the coastal area
using fiber optics cable as illustrated in Figure 1. We used these sensors because they are
easy to buy and maintain and can be purchased locally. The model used fiber optic cable for
connectivity which is the fastest for data transmission and is easily available. The hardware
and software specifications for the proposed model are given in Table 2.

Table 2. Hardware and software specifications.

Hardware and Software Specification

Pressure sensor BMP280 Barometric Pressure
Electromagnetic sensor HE950 Proximity Sensor
Aggregator sensors Zigbee
Gateway sensor Multi-channel ZigBee Sensor
Cable Fiber optic cable
Operating system Ubuntu 16.04 LTS
Protocol TDMA

Sensor nodes are linked in a tree-based structure and a query-driven-based approach
is used for data collection. In this approach, data are generated on the occurrence of an
event. In our proposed model, the electromagnetic sensors are used at the point of the
earthquake, and data are further hopped from these nodes towards gateway node using
pressure sensors and aggregator sensors [23].

The proposed system takes advantage of “no aggregation” and “partial aggregation”
concepts. The model is divided into three parts: data collection for the fuzzy logic system
to detect a tsunami or No Tsunami state, energy saving through partial data aggregation
mode, and the early warning of tsunami through no aggregation.

3.1. Data Collections for Fuzzy Logic System to Detect Tsunami or No Tsunami State

The electromagnetic and pressure sensors are installed on the seabed. The distance
between pressure sensors and the coastal area is 15 km. The reason for choosing this dis-
tance is based on the fact observed from previous incidents that showed that the minimum
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earthquake distance was 15–17 km [24]. The model is based on measuring the effects of
electromagnetic fields generated by tsunamis on the behavior of aquatic species, such as
turtles. The electromagnetic sensors detect the changes in the electromagnetic field and
the effect on the turtle’s count. The values of the turtle’s count and magnetic field are
further transmitted to the pressure sensors. Pressure sensors detect the values, such as
earthquake magnitude and water level, and feed all these values into the fuzzy logic system
for decision making for changing modes of partial aggregation indicating a No Tsunami
alert and no aggregation indicating a tsunami alert. For fuzzy input, we considered values
of the electromagnetic field and turtle count given in [20] and real-time values, such as
earthquake magnitude and water level from the Global Historical Tsunami database [25].
Moreover, streaming datasets from IoT devices can also be incorporated in the proposed
model with the inclusion of Apache Spark in the proposed framework [26]. Table 3 explains
the selected inputs for our fuzzy system. Table 4 shows the rules for fuzzy logic and
outcome generation. Figure 2 presents a graphical representation of one of the rules to
provide a general understanding. The pseudo-code of the proposed system is presented in
Algorithm 1.

Table 3. Inputs for fuzzy logic.

Name of Parameter Label for Rule Extraction Range of Values

Count of turtles = c Low
High

≤3
>3 & >8

Electromagnetic field = em Low
High

≤1 nTesla
≥1 nTesla till 4 nTesla

Earthquake value = p Low
High

<3.5 Mw
≥3.5 Mw

Water level = w Low
High

<1 m
≥1 m

Table 4. Rules for fuzzy logic and outcome.

Rule No. Rule Explained Output = X

R1 IF em € [low] ∩ c € [high] ∩ p € [low] ∩
w € [low] THEN Output = X Partial aggregation/No alert

R2 IF em € [low] ∩ c € [low] ∩ p € [high] ∩
w € [high] THEN Output = X No aggregation/Tsunami alert

R3 IF em € [high] ∩ c € [low] ∩ p € [high] ∩
w € [high] THEN Output = X No aggregation/Tsunami alert

R4 IF em € [low] ∩ c € [high] ∩ p € [high] ∩
w € [high] THEN Output = X No aggregation/Tsunami alert

R5 IF em € [low] ∩ c € [low] ∩ p € [high] ∩
w € [low] THEN Output = Y Partial aggregation/No alert



Sustainability 2022, 14, 14516 7 of 15

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 
Figure 2. Graphical representation of Rule 1. 

Algorithm 1 
Input c, em, p, w 
If em ≤ 1 and (c in range 3,8) and p < 3.5 and w < 1 
X = “Partial aggregation/No alert” 
return X; 
Else if em ≤ 1 and c < 3 and p ≥3.5 and w ≥ 1 
X = “No aggregation/Tsunami alert” 
return X; 
Else if (em ≥ 1 and em ≤ 4) and c < 3 and p ≥ 3.5 and w ≥ 1 
X = “No aggregation / Tsunami alert” 
return X; 
Else if em ≤ 1 and (c in range 3,8) and p ≥ 3.5 and w ≥ 1 
X = “No aggregation/Tsunami alert” 
return X; 
Else em ≤ 1 and c < 3 and p ≥ 3.5 and w ≤ 1 
X = “Partial aggregation/No alert” 
return X; 
End 

Figure 2. Graphical representation of Rule 1.

Algorithm 1: The pseudo-code of the proposed system

Input c, em, p, w
If em ≤ 1 and (c in range 3,8) and p < 3.5 and w < 1
X = “Partial aggregation/No alert”
return X;
Else if em ≤ 1 and c < 3 and p ≥ 3.5 and w ≥ 1
X = “No aggregation/Tsunami alert”
return X;
Else if (em ≥ 1 and em ≤ 4) and c < 3 and p ≥ 3.5 and w ≥ 1
X = “No aggregation / Tsunami alert”
return X;
Else if em ≤ 1 and (c in range 3,8) and p ≥ 3.5 and w ≥ 1
X = “No aggregation/Tsunami alert”
return X;
Else em ≤ 1 and c < 3 and p ≥ 3.5 and w ≤ 1
X = “Partial aggregation/No alert”
return X;
End

3.2. Energy Saving through Partial Data Aggregation Mode

In case of a No Tsunami detection, low seismic activity, or earthquake with low
magnitude, the relay nodes will be in full aggregation mode and hence will save the energy
of the sensor nodes. For this purpose, the magnitude should be less than 3.5. Data are
sent to relay/aggregators, which can relay and aggregate the information. Aggregated
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data are forwarded to the gateway sensor connected to the coast area with fiber optic cable.
It is worth noting that partial aggregation is an effective scheme for minimizing energy
consumption and delay compared to other aggregation schemes, such as no aggregation
and full aggregation [27]. The time division multiple access (TDMA) method is used to
allocate the time slot for data transmission of each node. Time division multiple access is a
well-known technology used in many wired and wireless transmission media. It effectively
allocates time to different nodes to send data using the link’s bandwidth.

3.3. Early Warning of Tsunami through No Aggregation

Once the earthquake magnitude increases over the threshold, i.e., 3.5, the relay nodes
will change their mode to no aggregation because a tsunami was detected, and they will
pass the data immediately to the gateway. The proposed approach will minimize the delay
without affecting the efficiency of the early warning system.

3.4. Analysis of the Proposed Model

Figure 3 presents the implementation framework of the proposed model. The pro-
posed model is a revised version of the work presented in an early study [28], where the
researchers presented a rather less expensive model compared to the currently available
systems employing underwater buoys, which usually require high maintenance costs [13].
We revised their work with more focus on the control of energy and delay, the two im-
portant factors of event-based sensor networks. The benchmarked model controlled the
energy-using relay nodes and focused on an early warning system. However, after ana-
lyzing that model, it can be concluded that the sensor will still receive the data in case of
no warning detection, hence consuming energy. On the other hand, if energy is controlled,
it can increase the chance of delay, which cannot be tolerated in case of an early warning
system for a tsunami. The estimated cost of our proposed system is approximately USD 800,
which low-income countries can easily afford. Our design also used instruments that can
be built within the country itself instead of importing them from developed countries.
Our proposed model offers a more optimal solution compared to the benchmarked model
due to optimized features and hardware. A detailed comparison of our model with the
benchmarked one is given in Table 5.
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Table 5. Comparison of benchmarked and proposed model.

Description Benchmarked
Model

Proposed
Model Description Benchmarked

Model
Proposed

Model

Number of
pressure sensors 2 6 Number of

gateway sensor 1 1

Number of
electromagnetic
sensors

0 6 Early tsunami
detection No Yes

Number of relay
sensor 0 3 Early tsunami

warning Yes Yes

Cable Fiber optic Fiber optic Delay
optimization Yes Yes

Fuzzy logic No Yes Energy
optimization No Yes

Data collection No Yes No aggregation Yes Yes

Optimization of
delay Yes Yes Partial

aggregation Yes Yes

Applied Cost More Less

4. Results

This section presents the evaluation and comparison of our proposed model. We used
MATLAB for implementation and SPSS to evaluate our proposed model. The simulation of
the model was performed using the following parameters as shown in Table 6.

Table 6. Parameters for evaluation.

Parameter Value

Time for simulation/No. of rounds (repetition of the algorithm) 40 min/50

Number of sensor nodes
Sink node: 1
Aggregator nodes: 3
Pressure nodes: 9

Threshold time for partial aggregation 30 ms

Protocol TDMA

Time for each slot 100 ms

We plotted graphs for the data generated to compare the output of energy and delay
and calculated the Pearson coefficient to analyze the results. For each graph, the X-axis
shows the number of rounds, which is the complete cycle of our algorithm. We have a
total of 50 rounds, so 50 rounds mean it ran 50 times. The Y-axis represents either energy
consumption in Joules or the delay measured in milliseconds.

Figure 4 depicts energy consumption during tsunami detection. The diagram indicates
a strong positive correlation between the two variables where the increase in the number of
rounds increases energy consumption during tsunami detection.
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Table 7 contains the results of the Pearson correlation, which indicates the high positive
correlation (r = 0.764) between the number of rounds and energy consumption in joules, and
the p-value (p < 0.01) is evidence of the significant association between the two variables.
The criterion for statistical significance is that the result will be significant if the p-value is
less than the level of significance (0.01 or 1%) in this study. So, we can see that the p-value
is (0.001), less than (0.01); hence, there is sufficient evidence of the significant association
between the two variables. Figure 4 portrays the positive correlation between the two
variables, the delay in observations during tsunami detection and the number of rounds
that increase proportionally during tsunami detection.

Table 7. Correlation for energy consumption during no aggregation.

No. of Rounds Energy Consumption

energy_r
Pearson Correlation 1 0.764 **
Sig. (2-tailed) 0.001
N 14 14

energy_c
Pearson Correlation 0.764 ** 1
Sig. (2-tailed) 0.001
N 14 14

** Correlation is significant at the 0.01 level (2-tailed).

Figure 5 shows the positive correlation between the two variables. When the number of
rounds increases, the estimated value of delay time also increases during tsunami detection.

In Table 8, the value of the Pearson correlation (r = 0.951) indicates a strong positive
correlation between the two variables, which means that with the increase in the number
of rounds, the estimated value of delay also increases, and the p-value (p < 0.01) shows a
significant association between the two variables. Figure 5 shows the positive correlation
between the two variables: the energy consumption during the No Tsunami alert and the
number of rounds.
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Table 8. Correlation for delay observations during no aggregation.

No. of Rounds Delay Observations

delay_r
Pearson Correlation 1 0.951 **
Sig. (2-tailed) 0.000
N 14 14

delay_c
Pearson Correlation 0.951 ** 1
Sig. (2-tailed) 0.000
N 14 14

** Correlation is significant at the 0.01 level (2-tailed).

Figure 6 shows the positive correlation between the two variables. When the number
of rounds increases, then the energy consumption also increases during the No Tsunami
alert. In Table 9, the value of the Pearson correlation (r = 0.960) indicates a strong positive
correlation between the two variables, which means that with the increase in the number of
rounds, the energy consumption in joules also increases, and the p-value (p < 0.01) shows a
significant association between the two variables. The criterion for statistical significance is
that the result will be significant if the p-value is less than the level of significance (0.01 or
1%) in this study. So, we can see that the p-value is (0.000), less than (0.01); hence there is
sufficient evidence of the significant association between the two variables.
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Table 9. Correlation for energy consumption during partial aggregation.

No. of Rounds Energy Consumption

energy1_r
Pearson Correlation 1 0.960 **
Sig. (2-tailed) 0.000
N 14 14

energy1_c
Pearson Correlation 0.960 ** 1
Sig. (2-tailed) 0.000
N 14 14

** Correlation is significant at the 0.01 level (2-tailed).

Figure 7 indicates another high positive correlation between two variables: the de-
lay in observations during the No Tsunami alert and the number of rounds increasing
proportionally.
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In Table 10, the value of the Pearson correlation (r = 0.935) tells that a strong positive
correlation between the two variables exists, which means that with the increase in the num-
ber of rounds, the estimated value of delay time during a No Tsunami alert also increases,
and the p-value (p < 0.01) shows a significant association between the two variables.

Table 10. Correlation for delay observations during partial aggregations.

No. of Rounds Delay Observations

delay1_r
Pearson Correlation 1 0.935 **
Sig. (2-tailed) 0.000
N 14 14

delay1_c
Pearson Correlation 0.935 ** 1
Sig. (2-tailed) 0.000
N 14 14

** Correlation is significant at the 0.01 level (2-tailed).

4.1. Comparisons of Energies during Tsunami Detection and No Alert

The pattern in Figures 4 and 6 indicates that when the number of rounds increases,
the energy consumption increases rapidly in case of no aggregation. On the other hand,
in the case of partial aggregation, the increase in energy consumption increases with the
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increase in the number of rounds, but the increasing trend in the case of partial aggregation
is less than that of no aggregation.

4.2. Comparisons of Delay during Tsunami Detection and No Alert

The pattern of Figures 5 and 7 indicates the upward trend, but for the sake of com-
parison, if we see the graphs critically, in the case of partial aggregation, when the number
of rounds increases, the estimated value of delay time increases rapidly. Moreover, in the
case of no aggregation, the estimated value of delay time increases very slowly with the
increase of the number of rounds. Hence, an increasing trend is high in the case of partial
aggregation compared to no aggregation.

4.3. Comparison of Correlations for Energies

Tables 7 and 9 show the values of the Pearson correlation in energy consumption dur-
ing tsunami detection when there is no aggregation and when there is partial aggregation.
The Pearson value is r = 0.764 when there is no aggregation and r = 0.960 when there is
partial aggregation, which indicates that the correlation between the number of rounds and
energy consumption with no aggregation is highly positive but not very close to a perfect
positive correlation. On the other hand, the correlation between the number of rounds
and energy consumption with partial aggregation is again highly positive but very close
to a perfect positive correlation. Hence, we can say that the correlation between the two
variables is higher when there is partial aggregation than the correlation when there is
no aggregation.

4.4. Comparison of Correlations for Delay

Tables 8 and 10 show the Pearson correlation values of several rounds vs. estimated
values of delay time when no aggregation and partial aggregation are r = 0.951 and r = 0.935,
respectively. The Pearson value (r = 0.951) shows a strong positive correlation and close to
perfect positive correlation between the number of rounds and delay time when there is no
aggregation. Similarly, the Pearson value (r = 0.935) indicates a strong positive correlation
between two variables with partial aggregation but not as close to a perfect positive
correlation as in the no aggregation case. So, we can say that the correlation between two
variables is stronger when there is no aggregation compared to partial aggregation.

4.5. Limitation of the Model

The proposed scheme can work for early warning detection of tsunamis because of
an earthquake with a specified low and high magnitude. However, the recent Tsunami
in Tonga resulted from the erupted volcano, and it presents a new challenge for Tsunami
alert and opened many questions in the research world to tackle. The proposed model
does not cover any Tsunami which is not a result of an earthquake. Further, due to a lack
of permission and the unavailability of deployed sensors and datasets, the impact of the
Tsunami on the behavior analysis of marines is still an open area of research.

5. Conclusions

The paper proposed and simulated an economical sensor network fuzzy-based model
with capabilities of low energy consumption, early tsunami detection, and data collection.
The cost of our model can be further reduced by designing multifunction sensors, thus
eliminating the need for different types of sensors, resulting in the most needed economic
impact for underdeveloped countries. We also incorporated no aggregation and partial
aggregation for optimizing two important factors, i.e., delay and energy. Our fuzzy-logic-
based algorithm takes input values, such as electromagnetic field, turtle count, earthquake,
and water level, and based on these values, real-time alerts of a tsunami are released, while
real-time data are stored in a database for future research.
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