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Abstract  

This paper reviews structural health monitoring (SHM) techniques of bridge structures based on 

machine learning (ML) algorithms. Regular inspections or using non-destructive testing are still the 

common damage detection methods; they are susceptible to subjectivity, human error, and prolonged 

duration. With emerging technologies such as artificial intelligence (AI) and the development of wireless 

sensors, SHM has shifted from offline model-driven damage detection to online/real-time data-driven 

damage detection. In this paper, both supervised and unsupervised ML algorithms are studied to 

determine which of the latest methods would be the most suitable and effective to be used for the SHM 

of bridge structures. This review paper investigates recent studies on data acquisition, data imputation, 

data compression, feature extraction, and pattern recognition using supervised/unsupervised ML 

algorithms. 
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1. Introduction 1 
Civil structures particularly bridges undergo harsh environmental loadings and impacts, hence, are 2 

subject to deterioration and damages such as cracks, corrosions, etc (R Farrar & Worden, 2007). If the 3 

damage is not identified and maintained, it may cause component failure or even the collapse of the 4 

structure (Flah et al., 2022). To remedy this issue, SHM has emerged as a powerful tool to identify such 5 

anomalies before any potential failure and inform asset owners for more efficient decision-making. This 6 

aids towards strategized cost-effective maintenance (Chen, 2018). Most SHM systems are composed 7 

of four main components: (1) data collection, (2) data processing, (3) damage identification strategy, 8 

and (4) decision-making (Malekloo et al., 2021). Figure 1 showcases the components of SHM which 9 

will be discussed in this paper. 10 

 11 

 12 

Figure 1. Components of SHM reviewed in this paper   13 

 14 

Regular inspections or using non-destructive testing are some old-fashioned examples of damage 15 

detection methods and are susceptible to subjectivity, human errors, and prolonged duration (Hull, 16 

2002). In the case of complex structures, particularly areas which are hard to reach, these techniques 17 

would be ineffective (Farrar & Worden, 2007). Hence, numerous offline/in-situ vibration-based methods 18 

were developed to identify damage in large-scale structures, where the structure is excited by an impact 19 

hammer, dynamic shaker, or controlled moving vehicle (Brownjohn, 2007; Caicedo & Dyke, 2005; 20 

Farrar et al., 2007). However, these methods require prior knowledge of the damaged structure, and a 21 

high-fidelity model of the structure (model-driven methods) is required to simulate the damaged state 22 

of the structure (Azimi et al., 2020). Additionally, these methods are incapable of continuous monitoring 23 

of the structure, to accurately estimate the initiation time of the damage, damage progression, and 24 

determine the remaining lifetime of the structure (He et al., 2009). With emerging technologies such as 25 

artificial intelligence (AI), SHM has shifted from offline model-driven damage detection to online/real-26 

time data-driven damage detection (Rosafalco et al., 2021). In this approach, SHM uses the real-time 27 

vibration measurement of the structure under operational loadings without any prior knowledge of the 28 

damaged structure to detect any anomaly or malfunction in the performance of the structure through 29 

unsupervised machine learning algorithms (Pimentel et al., 2014). If any damage is identified, a decision 30 

is then made on offline detection and maintenance methods.  31 
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Online data-driven SHM relies on statistical pattern recognition of the real-time measured vibration data 32 

with the use of unsupervised machine learning, meaning that training the pattern recognition model, 33 

i.e., identifying the models' parameters, needs only unlabelled data, i.e., raw data. Supervised ML 34 

techniques have also been explored in the field of bridge SHM, with supervised ML the data used to 35 

train the pattern recognition model need to be labelled meaning the data for both healthy and damaged 36 

states need to be available. This paper investigates the use of supervised and unsupervised ML 37 

techniques in structural health monitoring. This paper reviews the use of machine learning in different 38 

components of an SHM system: section 2 focuses on data acquisition, section 3 discusses data 39 

imputation, sections 4 and 5 talk about data compression and feature extraction, and section 6 looks at 40 

pattern recognition.  Many machine learning methods are reviewed, and their pros and cons are 41 

discussed. 42 

 43 

 44 

2. Data acquisition  45 

This section refers to how machine learning has been used to collect data efficiently.  A robust SHM 46 

requires a reliable and accurate set of response data. This can be achieved through optimal sensor 47 

placement (OSP) (Sun & Büyüköztürk, 2015). Genetic algorithm (GA) is a powerful tool to find OSP. 48 

GA is a search heuristic where it finds solutions, meaning an optimal sensor location, by creating small 49 

changes in the current solution (Leung et al., 2003). This method is based on Darwin’s theory of 50 

evolution; the population size represents the number of solutions. Each possible solution is represented 51 

by a vector, consisting of a set of parameters. It is encoding the placement of sensors in the same way 52 

chromosomes encode genetic information. The solutions’ fitness value is evaluated using a fitness 53 

function meaning a bigger fitness value suggests a better-quality solution. The fittest solutions go to a 54 

“mating pool” where each act as a parent and every two parents generate two offspring. Figure 2 55 

represents a flow chart of how GA works. 56 

 57 

 58 

Figure 2. Genetic algorithm 59 

  60 

 The offspring is expected to have better qualities than the parents. GA can take a large number of 61 

generations to find the global optimum and it can also face convergence problems. Banik & Das (2020) 62 

used the learning advantages of an artificial neural network (ANN) to overcome the drawbacks of GA’s 63 

convergence problems. They used a feedforward backpropagation neural network with supervised 64 

learning where the design variables and fitness values gathered from GA were used as the target and 65 

input vectors respectively. To put this model to test, a first-generation benchmark model of the Bill 66 

Emerson Memorial Bridge located in Cape Girardeau, Missouri, USA was utilised. This bridge has a 67 
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length of 1205.8 m with two towers and 128 cables. The model resulted in a fair distribution of sensors 68 

with greater fitness value and improved convergence. Therefore, to utilise GA for Optimal Sensor 69 

Placement, an accurate finite element (FE) model is required, and the success of the model depends 70 

on the parameters and design variables chosen for the ANN such as network architecture, training 71 

algorithm, performance function, transfer function, etc.   72 

 73 

 74 

3. Data imputation  75 

A high-quality dataset is essential for an SHM system to perform efficiently. Not all data gathered by 76 

the sensors are always suitable to be used, this could be due to many reasons such as sensor 77 

misplacement or malfunction (Z. Chen et al., 2019). In some events when the gathered data is unusable, 78 

it gets decimated. In some cases, there are missing trends in the data which the data gets imputed and 79 

recovered. Several ML techniques are used for replacing the missing data. It is known as data 80 

imputation. Bayesian temporal factorisation (BTF)  models are great for high-dimensional time series 81 

analysis (X. Chen & Sun, 2021). However, this method is not efficient since the model needs to be 82 

retrained with every new dataset. To overcome this, Ren et al. (2020) implemented an incremental 83 

approach to the Bayesian temporal factorisation model, in which the model is efficiently updated with 84 

the new data. This method was successfully tested to impute strain and temperature records of a 85 

concrete bridge.  Siahkoohi et al. (2018), used generative adversarial networks to reconstruct sub-86 

sampled seismic data. To implement this method, it is assumed the training data is available with a 87 

percentage of the shots to be fully sampled. The model created was an adaptive non-linear model and 88 

due to the data-driven nature of the method, high-quality reconstructed slices were generated. These 89 

data imputation techniques can be reliably used only if the available data is of high quality and the 90 

missing data is not over a continuous period (e.g., data missing for a day or consecutive days). 91 

 92 

 93 

4. Data Compression  94 

Data required for SHM is generated by various sensors with different sampling rates. Environmental 95 

and operational factors (EOFs) such as temperature and moving traffic add to the dimensions of the 96 

dataset (Jin et al., 2015). High dimensional data refers to when the number of features is larger than 97 

the number of independent samples. With the increase in the number of dimensions, the number of 98 

training data needed to achieve a reasonable and small error would also increase exponentially. This 99 

issue is also referred to as Bellman’s curse of dimensionality (Chang et al., 2011; Koppel et al., 2017). 100 

To overcome this, some techniques are applied to reduce the dimensions of the data points. The main 101 

goal is to ensure the significant features are restored and the learning ability of the model is not affected. 102 

Principal component analysis (PCA) is a widely used dimensionality reduction method (Richardson, 103 

2009). But, due to the non-linear behaviour of some EOFs such as temperature, linear PCA is not 104 

always the most effective method for dimensionality reduction. Temperature effects can cause 105 

significant changes in structural parameters, which mask changes caused by damage. Non-linear fitting 106 

methods such as auto-associative neural network (AANN) was studied by Flexa et al. (2019) and Zhang 107 



 

6 

 

et al. (2019). AANN was found to be computationally expensive as a large amount of data is needed 108 

for good performance (Malekloo et al., 2021). Flexa et al. (2019) ran some experiments based on data 109 

collected from the Z-24 bridge located between Zurich and Bern, Switzerland to compare the 110 

functionality of nonlinear principal component analysis (NLPCA) trained by AANN and PCA. The results 111 

indicated PCA had a lower percentage error (4.46%), for false damage denial compared to NLPCA’s 112 

(5.24%). However, NLPCA’s percentage error (2.16%) for false damage detection was considerably 113 

lower than PCA’s (30.95%).  Gu et al. (2017) studied an AANN-based NLPCA to train the model for 114 

damage detection in presence of high nonlinear environmental factors. The proposed model was limited 115 

to level 1 damage detection meaning it was only able to detect damage and was not able to locate the 116 

damage.  117 

 118 

 119 

5. Feature extraction  120 

Feature extraction is the process of identifying the damage-sensitive parameters and transforming the 121 

data to accommodate an easier damage identification for the ML algorithm. The two major techniques 122 

used for damage detection are model-driven and data-driven. To identify the damaged state, the 123 

undamaged state needs to be either developed or assumed. Furthermore, the extent of the damage 124 

can only be identified when the undamaged state is known. Many SHM cases model the structure 125 

typically using finite element (FE) modelling. The model is updated using measure values. This SHM 126 

implementation method is called model-driven. Structural complexities and the lack of data available 127 

for various joints and bonds can create model imperfections. Therefore, instead of using model-driven 128 

methods, data-driven methods use statistical pattern recognition to create a model of the structure’s 129 

healthy (undamaged) state. There are four main approaches to data-driven feature extraction, as shown 130 

in Figure 3: (1) time domain, (2) frequency domain, (3) time-frequency domain, and (4) ML algorithms 131 

(Malekloo et al., 2021).  132 

 133 

 134 

Figure 3. Main techniques in data-driven feature extraction 135 

 136 
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Time series approach is mainly used for data with low dimensions. Carden (2016) used the 137 

experimental data from the IASC-ASCE benchmark four-story frame structure, the Z24 bridge and the 138 

Malaysia-Singapore Second Link bridge; the responses created by random shocks in the time domain 139 

were fitted with autoregressive moving average (ARMA) models and the coefficients were then fed 140 

through the classifier. The ARMA model was successful at feature extraction; however, the data were 141 

recorded from forced excitation tests and this approach may not be suitable for structures where only 142 

ambient dynamic excitation is possible. Gil et al. (2015) used subspace system identification (SSI) 143 

method for a laboratory-scale composite bridge deck. The algorithm was able to successfully detect the 144 

damage to the structure; however, in a real-life scenario, this would have been difficult due to the high-145 

dimension nature of the data gathered from a large structure. 146 

To overcome high dimensionality frequency-domain methods can be used. Frequency response 147 

function (FRF), impulse response function (IRF) and frequency domain decomposition (FDD) are some 148 

examples used for feature extraction. The main drawback of using these methods is the inability to 149 

localise the damage and require a high quantity of data for sensitivity analysis as the reproducibility of 150 

the models in different time frames is inconsistent when factoring EOFs. (Malekloo et al., 2021). 151 

Unsupervised ML methods have also been studied to aid feature extraction. Unsupervised feature 152 

detection consists of two main methods: (1) filter method and (2) wrapper method (Solorio-Fernández 153 

et al., 2020).  154 

With the filter method, the most relevant parameters of the data are selected, and features are evaluated 155 

based on the intrinsic properties of the data without using any clustering algorithm. The main advantage 156 

of this method is its speed and scalability (Solorio-Fernández et al., 2020). The wrapper method, 157 

however, uses a clustering algorithm to feature subsets. The main disadvantage of this method is its 158 

expensive computational power requirement (Shokravi et al., 2020).  159 

 160 

 161 

6. Pattern recognition  162 

Pattern recognition (PR) is used to identify the healthy state of a structure. Within ML there are two 163 

basic approaches to train a model: supervised learning and unsupervised learning.  Supervised 164 

algorithms are mainly used when the damaged state data is available. Supervised learning methods 165 

use labelled data to train the model and are used for classification and regression problems. However, 166 

unsupervised learning methods do not need labelled data to train the model and are used for clustering, 167 

association, and dimensionality reduction problems (Zhao & Liu, 2007). In the case of SHM for a bridge, 168 

supervised methods require data on the damaged state of the bridge. This may not be possible in all 169 

scenarios, sometimes it is not feasible to gather damaged data; in these cases, unsupervised learning 170 

methods are used. The algorithm is chosen based on various factors such as the number of data points 171 

or the effects of EOFs on identifying damage. 172 

 173 

6.1 Decision tree 174 

Decision tree (DT) is a widely used algorithm for non-parametric supervised learning. This method is 175 

capable of tackling classification problems (damaged/undamaged) and regression problems (signal 176 
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comparison with the healthy state of the system (Mariniello et al., 2021). In DT algorithm, the first node 177 

is called the root node, and represents the input data. The root node splits into decision nodes. The 178 

nodes that do not split any further are called terminal nodes. The process of eliminating decision nodes 179 

to prevent overfitting is called pruning. The decision-making process is based on the threshold set by 180 

the algorithm to analyse the features. For each of the sub-nodes, information gain is calculated, 181 

information gain is the impurity of the node. This process is continued until a terminal node with the 182 

impurity of zero is calculated. The downside of this algorithm is when N multiple damage-sensitive 183 

features are available, this would make the selection of the root node difficult. A random selection of 184 

root node can lead to poor results (Gordan et al., 2021).  185 

Mariniello et al. (2021b) used the DT method to identify and localise damage in a structure. For this 186 

approach, a calibrated FE model, or laboratory tests are needed to generate numerous damage 187 

scenarios for the structure to train the model. This model was only tested on laboratory-scaled and 188 

numerical models and has not yet been tested on a real structure. 189 

Peng et al. (2021) studied a low-error SHM strategy by constrained observability method (COM) and 190 

DT. They used both an analytical model and a real bridge to validate the model. However, in their 191 

studies, modelling errors were not considered which can impact the results. Also, the operational loads 192 

such as the moving traffic on the bridge were not considered; these loads can change the modal 193 

parameters of the bridge and affect its behaviour.  194 

 195 

6.2 Random Forest  196 

Random forest (RF) is another supervised learning method which can solve regression and 197 

classification problems. This method can overcome the issues faced with DT when extensive features 198 

are present (Tufiși et al., 2021). RF is a collection of random DTs; this makes the model less sensitive 199 

to the training data. Each tree is made of a random set of the training dataset. Not all features would 200 

be used to train the trees, the features are also selected at random for each tree. Once each tree has 201 

been formed, to create a prediction, the new data points are passed through each tree. For example, 202 

in a case of a damaged/undamaged classification, if 6 trees are formed and the outcome of 4 trees 203 

predicts a damaged state, we can say the predicted outcome is ‘damaged’. In a review paper by Laory 204 

et al. (2014) different methodologies for predicting the natural frequency variation of a suspension 205 

bridge were studied and it was found that RF was a more suitable method compared to methods such 206 

as support vector regression (SVR) and artificial neural network (ANN) due to its nonlinear behaviour.           207 

It was also found that RF is computationally expensive and can take a long time to train. 208 

 209 

6.3 Support vector machine 210 

Support vector machine (SVM) is a supervised learning method. The data points are represented in a 211 

higher, constructed N-dimensional space and the coordinates are the features of the data point. This 212 

method classifies the points by drawing a hyperplane. The aim is to find the best hyperplane to separate 213 

the categories, in this case, damaged and undamaged. The distance between the hyperplane and the 214 

point of each category is called the margin, the maximum margin on both sides of the hyperplane leads 215 

to better classification and points that fall exactly on the margin are called the supporting vectors (Zhou 216 
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et al., 2021). Figure 4 demonstrates the hyperplane drawn with the attempt of having a maximum margin 217 

on both sides of the hyperplane.  218 

 219 

 220 

Figure 4. Classification using support vector machine  221 

 222 
When the data is non-linearly separable, or non-linearity is expected, the SVM relies on the Kernel trick. 223 

A kernel function maps the data into a higher dimensional features space, where drawing a hyperplane 224 

between classes becomes possible. When kernels are appropriately chosen, the mapping is 225 

computationally stable and inexpensive (Trick, 2014). Figure 5 illustrates the Kernel trick applied when 226 

the data is non-linearly separable. 227 

 228 

 229 

Figure 5- Kernel trick illustrated 230 

 231 
In SHM applications usually, the number of data points and dimensions is high and in a recent study 232 

carried out by Gordan et al. (2021) SVM was able to outperform the classification and regression tree 233 

(CART) method.  Although an increase in the number of training data for the SVM method leads to a 234 

more accurate model, it increases the training time exponentially (Laory et al., 2014). Satpal et al. (2016) 235 

applied SVM for damage identification and localisation in aluminium beams. They used both simulated 236 
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and experimental data to test the model. The model showed promising results with the simulated data 237 

but when noise was applied to the experimental set-up the prediction capability of SVM deteriorated 238 

showing that SVM is sensitive to noise present in the data.  239 

 240 

6.4  K-nearest neighbour  241 

K-nearest neighbour (KNN) is a traditional supervised machine learning algorithm which can solve both 242 

regression and classification problems. It classifies the input data based on their distance to the test 243 

dataset. Figure 6 shows how KNN classifies the new data point based on the distance between the new 244 

data point and the available classes.  245 

 246 

 247 

Figure 6.  Clustering-based classification using k-nearest neighbour 248 

 249 
 The selection of how many neighbours to consider is a function of noise in the data. In SHM the features 250 

have high dimensionality which makes KNN computationally expensive since a large dataset is needed 251 

to train the model (Malekloo et al., 2021). Li et al. (2020) compared deep learning algorithm against 252 

KNN, SVM and DT to identify damage to a cable-stayed bridge. The data was gathered via a 1:40 253 

scaled-down model where the deflection of the bridge was recorded at a sampling rate of 150 Hz. All 254 

machine learning methods were conducted under ten-fold cross-validation. The results show the 255 

average accuracy of automated detection of CNN model (96.9%) was better than RF (81.6%), SVM 256 

(79.77%) and KNN (77.7%). Figure 7 shows that KNN had the largest accuracy distribution between 257 

the four methods. This phenomenon may be related to the relatively lower algorithm complexity of KNN 258 

(Li et al., 2020; Thanh Noi & Kappas, 2017).    259 

 260 
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 261 

Figure 7. Accuracy distribution based on the detection method (Li et al., 2020) 262 

 263 

Feng et al. (2021), proposed a KNN algorithm for locating and quantifying stiffness loss in a bridge from 264 

forced vibration due to a truck crossing at low speed. The KNN algorithm was used to search for the 265 

patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to 266 

determine the location and severity of the damage. Results have shown that damage can be detected, 267 

and in optimal cases, located and quantified, with some noticeable unfavourable locations near the 268 

supports. However, overall accuracy has been compromised with an increase in speed and road 269 

roughness, which broadens the discrepancies between eigenvalue analysis and dynamic transient 270 

analysis.  271 

 272 
6.5  Bayesian 273 

Naïve bayes (NB) is a method based on Bayes’ theorem, it is assumed that no dependencies between 274 

the features. Mangalathu et al., (2020) studied eight ML methods including NB, KNN, DT and RF to 275 

identify the seismic failure mode of reinforced concrete (RC) shear walls. NB was ranked the sixth most 276 

accurate learning method in this study. The authors concluded the inaccuracy of the NB method was 277 

due to the existence of a nonlinear decision boundary between the failure methods.  278 

Nazarian et al. (2018) studied post-event assessment of damage in a turn-of-the-century six-story 279 

building with timber frames and masonry walls. The building was damaged due to the differential 280 

settlement of its foundation. The authors used FEM to generate stiffness and strain datasets. Sensor 281 

noise was also considered in training the model by simulation 1000 different versions of white noise of 282 

up to 10% of the extracted strains. They used neural network (NN), SVM and gaussian naïve bayes 283 

(GNB) to train the SHM model. Table 1 showcases the prediction accuracy of the three ML methods. 284 

Table 1 indicates NN was the most accurate and when the noise level reaches 10% the accuracy of all 285 

three methods dropped significantly; therefore, a noise level of up to 8% was used to train the model. 286 
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Table 1-. Prediction accuracy (Nazarian et al., 2018) 288 

Noise level (%) SVM prediction 

accuracy (%) 

NN prediction 

accuracy (%) 

GNB prediction 

accuracy (%) 

2 97 98 98 

4 96 96 96 

6 91 93 92 

8 86 90 88 

10 79 86 83 

 289 
 290 

6.6  Artificial neural network 291 

Artificial neural network (ANN) is a learning algorithm which loosely models the way nerve cells work in 292 

the human brain. This method consists of at least three layers, (1) input layer, (2) hidden layer(s), and 293 

(3) output layer.  294 

 295 

Figure 8- Schematic representation of a neuron in a neural network  296 

 297 
Each layer is made of a series of neurons which have several connections to the previous and next 298 

layer. Each connection has a ‘weight’ associated with it. Weight is a trainable factor of how much of the 299 

input to use. Weights get multiplied by the input, then all the input x weights values flow in one neuron. 300 

The values are then summed and a ‘bias’ is then added. Bias is another trainable parameter and is set 301 

to offset the output either positively or negatively (Kwon, 2011). Each node’s output is decided by its 302 

non-linear activation function.  303 

Figure 8 shows a schematic representation of a neuron and how the output of a neuron is decided. An 304 

activation function transforms the summed weighted input from the node into an output value fed to the 305 

next layer. As the training data set is fed through the model, the output is measured against the labelled 306 

data via an error propagation algorithm(Jiang et al., 2014). Figure 9 showcases a simple ANN model 307 

and how the layers are interconnected. With repetition, the value of the weights and biases of the model 308 

alter to create a model capable of correctly predicting the outcome of the input. This method requires a 309 
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labelled training dataset meaning this is a supervised ML method. Malekjafarian et al. (2019) used a 310 

two-stage machine learning approach for bridge damage detection using the responses measured on 311 

a passing vehicle. In the first stage, the ANN is trained using the vehicle responses measured from 312 

multiple passes over a healthy bridge. Root-mean-square was used to calculate the error between the 313 

predicted and the measured responses between each passage. The second stage consists of a 314 

Gaussian process to detect the changes in the disruption of the predicted errors. This is how the 315 

damage was detected. 316 

 317 

 318 

Figure 9- Basic ANN model and how the layers are connected 319 

 320 

6.7 Self-organising map 321 

Self-organising map (SOM) is an unsupervised learning approach. It uses for clustering, mapping, and 322 

dimensionality reduction techniques to map multidimensional data onto lower-dimensional whilst 323 

preserving the topological structure of the data. SOM uses competitive learning instead of error-324 

correction learning. SOM training is based on internal properties between inputs and does not require 325 

input-output samples (Tibaduiza et al., 2011). Avci et al. (2019), studied SHM with SOMs and ANNs. 326 

This technique used is also called autoencoder. Autoencoders have an hourglass-like structure and are 327 

made of three parts, encoder, code, and decoder. The encoder compresses the input data into an 328 

encoded representation which is several orders of magnitude smaller than the input data. Code contains 329 

the compressed knowledge. The decoder decompresses the data and reconstructs the data back from 330 

its encoded form. A loss function is then introduced to compare the reconstructed and actual data. This 331 

method can be used to create a reduced order model and allow focus only on areas of interest (Feijóo 332 

et al., 2021).    Figure 10 shows how SOM (encoder) was used to compress the input data and then 333 

with the aid of ANN (decoder), the input data is reconstructed.  The analytical data used for the study 334 

was based on a structure made up of six columns and two girders and seven cross beams. For the 335 

simulation, 21 accelerometers were assumed. The vibrations environment for the ambient condition 336 

was modelled as a stationary white noise signal in the gravity direction. The damage scenarios were 337 

simulated with a modification of the beams’ stiffness and changes in boundary conditions. They used 338 
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SOMs to process the ambient condition acceleration data in the time domain for a topology map for 339 

each joint, this creates topology maps for the undamaged state. For damage assessment, the 340 

measured topology maps are compared against the healthy state topology maps to determine the state 341 

of the structure. 342 

 343 

 344 

Figure 10. The autoencoder method used to regenerate the input from the encoding 345 

 346 
Several studies concluded that SOM has superiority over PCA in dimensionality reduction analysis. 347 

Reusch et al., (2007) have experienced overlapping of patterns using PCA due to its orthogonal 348 

constraint where SOM was more efficient in extracting patterns. SOM provides better results 349 

compared to PCA when the data is more complex and has nonlinear characteristics (Laitinen et al. 350 

2002; Aguado et al. 2008).  351 

 352 

 6.8 Gaussian mixture model 353 

Gaussian mixture model (GMM) assumes there are certain numbers of Gaussian distributions, where 354 

each distribution represents a cluster. This unsupervised learning method is capable of both hard and 355 

soft clustering (Y. Zhang et al., 2021). Figueiredo and Cross (2013) compared GMM with nonlinear 356 

principal component analysis (NLPCA), factor analysis, the mahalanobis squared distance (MSD), and 357 

principal component analysis (PCA) for bridge monitoring. This study was performed on data sets from 358 

the z-24 Bridge, Switzerland. Nonlinearity was present in the data set at times of freezing temperatures. 359 

It was found the GMM-based algorithm had the best classification performance in terms of the reduced 360 

number of false alarms. The study also showed PCA, and MSD-based algorithms are not suitable for 361 

long-term monitoring because are unable to remove nonlinear patterns from the baseline condition data 362 

during the training process which leads to a high number of false alarms. 363 

 364 

 365 

7. Conclusion 366 

To conclude this review, Table 2 shows some of the ML methods used in recent years in 367 

different areas of SHM. As can be seen, most of the studies were based on supervised learning 368 
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methods. Supervised learning methods need to have data for the damaged state of the structure which 369 

is a drawback. Therefore, exploring unsupervised methods can be beneficial for the SHM field as it is 370 

not feasible for most structures to be damaged for data collection purposes. Choosing the right method 371 

of ML mainly depends on the dimension, linearity, and availability of data, therefore before choosing a 372 

particular method these parameters should be considered. ML has the potential to uncover the influence 373 

of EOFs due to their multivariate encapsulation capabilities. Despite all the research done in this field, 374 

there is an apparent gap in unsupervised SHM frameworks. Unseen conditions of real damage obstruct 375 

training possibilities, which can be barely fulfilled by synthetic datasets or physical-based realizations. 376 

Nevertheless, further advancements with label-free approaches such as population-based SHM can 377 

find remedies to the ongoing learning problem in SHM systems. It is obsolete that a fully automated 378 

SHM relies on this direction yet has a long way to propose its globally accepted frameworks. 379 
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 380 

Table 2- Machine learning methods used in different areas of structural health monitoring 381 

Area in SHM ML method 
Supervised/ 

Unsupervised  
Aim Results 

Data 

acquisition 

Hybrid of Genetic 

Algorithm (GA) and 

Artificial Neural 

Network (Banik & Das, 

2020)  

Supervised To use Neuro- Genetic Algorithm in 

sensor optimisation for SHM.  

Neuro-GA hybrid showed better convergence and a minimal 

number of generations compared to regular GA.  

Data 

imputation 

Bayesian temporal 

factorisation (X. Chen 

& Sun, 2021 ; Z. Chen 

et al., 2019 ; Ren et al., 

2020) 

 

 

Generative 

adversarial networks 

(GAN) (Siahkoohi et 

al., 2018) 

Supervised  

 

 

 

 

 

 

Supervised  

Using Bayesian temporal factorisation 

to achieve efficient imputation and 

prediction of structural response in long-

term SHM. 

 

 

 

To reconstruct heavily sub-sampled 

seismic data using GAN  

This method was successfully tested to impute strain and 

temperature records of a concrete bridge.  

 

 

 

 

 

This model assumed that 5% of the gathered data is fully 

sampled. And with that, it was able to reconstruct all the other 

slices with 90% randomly or column-wise missing entries.  

Data 

Compression 

Auto-associative 

neural network 

(AANN), (Flexa et al., 

2019 ; Gu et al., 2017 

; H. Zhang et al., 2019) 

Unsupervised Data normalisation in SHM by using 

AANN  

The proposed model had a percentage error of 4.46% for false 

denial of damage and 2.16% for false indication of damage.  
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Feature 

extraction  

Autoregressive 

Moving Average 

(ARMA) (Carden, 

2016) 

 

 

Subspace System 

Identification (SSI) (Gil 

et al., 2015) 

Supervised 

 

 

 

 

 

Supervised  

ARMA was used to extract features of 

the Z24 bridge, the IASC-ASCE 

benchmark four-story frame structure 

and the Malaysia-Singapore Second 

Link bridge. 

 

To use SSI to detect damage from a 

laboratory-scale composite bridge  

The model was successful at feature extraction, but the downside 

of this method is the data from the bridges and the structure were 

from forced excitation and this approach may not be possible for 

other structures.  

 

 

The proposed model but successful, however, in a real-life 

scenario this method will not be feasible due to the high 

dimensionality of the data.  

Pattern 

recognition  

Decision tree 

(DT)(Gordan et al., 

2021 ; Mariniello et al., 

2021a) 

 

 

Support vector 

machine (SVM) 

(Gordan et al., 2021; 

Laory et al., 2014; 

Zhou et al., 2021) 

 

 

K-Nearest Neighbour 

(KNN)(Li et al., 2020; 

Thanh Noi & Kappas, 

2017) 

Supervised  

 

 

 

 

 

Supervised  

 

 

 

 

 

 

Supervised 

 

 

 

Damage detection and localisation 

using DT and vibration data 

 

 

 

 

Structural damage identification of 

composite bridge using SVM 

 

 

 

 

 

Comparison of KNN, SVM, CNN and DT 

to detect damage for a cable-stayed 

bridge 

 

The model attained 91%,87% and 84% mean accuracy for 

3%,6% and 9% noise and with an average localising error of 1.48 

m. This method relies on an accurate FE model of the structure.  

 

 

 

The SVM models were conducted using various kernel functions 

consisting of linear, sigmoid, polynomial, and radial basis function 

(RBF). And SVM-polynomial was the most accurate model.  

 

 

 

 

KNN had the largest accuracy distribution between the four 

methods. This could be due to its relatively lower algorithm 

complexity.  
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Bayesian (Mangalathu 

et al., 2020; Nazarian 

et al., 2018) 

 

 

 

Artificial neural 

network (ANN) 

(Malekjafarian et al., 

2019; Malekloo et al., 

2021) 

 

 

Self-organising map 

(SOM) (Avci et al., 

2020; Tibaduiza et al., 

2012) 

 

 

 

Supervised  

 

 

 

 

 

Supervised 

 

 

 

 

 

 

Unsupervised  

 

 

 

 

 

SHM model trained using NN, SVM and 

gaussian naïve bayes (GNB) with data 

gathered from a small-scale cable 

bridge  

 

 

Bridge damage detection using 

responses measured on a passing 

vehicle  

 

 

 

 

Damage detection based on the 

ambient response of a structure using 

SOM and ANN 

 

 

NN had the highest accuracy of the three with an accuracy of 86% 

when the noise level reaches 10%. GNB’s accuracy was 83% for 

the same noise level.  

 

 

 

The data gathered was through a FE model. The proposed 

method was able to identify damage; however, for real-world 

applications, a damage indicator must be introduced to the 

system due to other environmental factors which could also 

change the behaviour of the bridge.  

 

 

Nonparametric damage detection algorithm with trained SOMs 

was successful at quantifying structural damage; however, the 

distribution of the index values throughout the laboratory structure 

indicates that the algorithm was not able to localise the damage. 

Therefore, a pattern recognition neural network is trained to 

identify the pattern of the damage index magnitudes. The ANN 

improvement allowed the algorithm to be able to locate damage 

as well as identify it. 

 382 
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Table 3- List of used abbreviations 383 

Abbreviation Definition Abbreviation Definition 

AI Artificial 

intelligence 

KNN K-nearest 

neighbour 

ANN Artificial neural 

network 

ML Machine 

learning 

AANN Auto-

associative 

neural network 

MSD Mahalanobis 

squared 

distance 

ARMA Autoregressive 

moving 

average 

NB Naïve bayes 

BTF Bayesian 

temporal 

factorization 

NN Neural 

network 

CART Classification 

and regression 

tree 

NLPCA Nonlinear 

principal 

component 

analysis 

COM Constrained 

observability 

method 

OSP Optimal 

sensor 

placement 

DT Decision tree PR Pattern 

recognition 

EOF Environmental 

and 

operational 

factors 

PCA Principal 

component 

analysis 

FE Finite element RF Random 

forest 

FDD Frequency 

domain 

decomposition 

RC Reinforced 

concrete 

FRF Frequency 

response 

function 

SOM Self-

organising 

map 

GMM Gaussian 

mixture model 

SHM Structural 

health 

monitoring 
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GNB Gaussian 

naïve bayes 

SSI Subspace 

System 

Identification 

GAN Generative 

adversarial 

networks 

SVM Support 

vector 

machine 

GA Genetic 

algorithm 

SVR Support 

vector 

regression 

IRF Impulse 

response 

function 

  

  384 
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