

April 2022

A Novel Virtual Product Modelling Framework for Design

Automation in a Knowledge-Based Engineering Environment

Guolong Zhong

A thesis submitted to Birmingham City University in partial fulfilment

for the degree of

DOCTOR OF PHILOSOPHY

Faculty of Computing, Engineering and Built Environment (CEBE)

Birmingham City University

Dedicated to

My parents Xinxiang Zhong and Juya Zhang

I

Abstract

Computer Aided Design (CAD) has been widely used for product modelling in the industry,

where multiple issues arise, such as lack of product data representation and capturing and

reusing the existing design knowledge in the modelling process. Existing CAD systems only

provide geometric data within the CAD models and require users to have knowledge of the

product to judge the correctness of the modelling process. Knowledge-Based Engineering

(KBE) has been introduced to assist product design with the capabilities of knowledge

capturing and reusing. However, there is always a “black box” problem in understanding the

existing KBE applications, and the substantiation steps for the implementation of KBE

frameworks are still limited. To address this, the author proposed and implemented a Virtual

Product Modelling (VPM) framework that helps capture and reuse existing product

information to enhance the modelling process for design automation. This framework was

built as a knowledge-based product modelling environment using a gaming engine. It was

further evaluated through three use cases, where the proposed framework was applied to

simple parts with primitive geometric features, a hex bolt, and a wheel assembly. The results

of the use case evaluation indicate that this framework satisfies all the identified

measurement parameters and achieves the aim of the research. This research enhances the

product modelling process with the capabilities of generative representation, knowledge

capturing and reusing. It provides design engineers with the knowledge reasoning capability

when they are making changes to the product model and, therefore, saves time and prevents

engineers from making mistakes. This research also presents a KBE implementation

framework with detailed substantiation steps, where the knowledge is structured and reusable

within the product model. Further, the findings of this research have shown the potential of

the developed VPM framework in aspects such as standard development in product

modelling, extending to non-engineers and integration with VR/AR visualisation techniques.

II

Acknowledgements

In the beginning, I would like to say a huge thank you to my supervisors, Dr Venkatesh Vijay

and Dr Noel Perera, for their tremendous support and guidance throughout my research

journey. This PhD would not have been achievable without their patient encouragement and

advice. In particular, my deepest gratitude goes to Vijay for motivating me and providing

endless support during my whole PhD research.

Also, I would like to express my sincere thanks to all the people who were part of the

research team at different times. That includes Professor Craig Chapman, Dr Raju

Pathmeswaran and Professor Illisa Oraifige. Their precious support and comments provided

me with a lot of helpful information and ideas to conduct this research and improve my work.

I am very grateful to Professor Craig Chapman and Dr Raju Pathmeswaran for

acknowledging my skills and offering me the opportunity to join the Knowledge-Based

Engineering (KBE) Lab in the UK. It was a great honour to work with them. Identifying the

scope of this research could not have been done without their vision and suggestions.

I am also thankful to Professor Peter Larkham and Sue Witton for their support in solving all

the administrative issues during my PhD studies. My special thanks also go to Professor

Lynsey Melville for her understanding and consistent support during my daily work. Without

her support, it would not have been possible for me to focus on and complete my thesis.

I would like to thank my friends Maxim Filimonov, Sherdon Niño Uy, Nuo Lin at

Birmingham City University for their continuous support and encouragement throughout

each stage of my research. Discussions with them helped me greatly in my academic and

scientific research growth. Finally, I would like to thank my parents for always supporting me

and providing me encouragement and motivation to accomplish my PhD study.

III

Table of Contents

Abstract ... I

Acknowledgements ... II

Table of Contents .. III

List of Figures .. X

List of Tables .. XVI

List of Publications ... XVIII

List of Abbreviations ... XX

1 Introduction and Background .. 1

1.1 Introduction ... 1

1.2 Problem Statement .. 2

1.3 Research Questions ... 4

1.4 Research Aims and Objectives .. 5

1.5 Structure of the Thesis... 6

1.6 Chapter Summary .. 7

2 Product Modelling and Design Engineering Automation .. 8

2.1 Introduction ... 8

2.2 Product Design for Product Development .. 8

2.2.1 Product Design: Advancement with Computer Aided Design (CAD) 11

2.2.2 From CAD to CAE .. 12

2.2.3 From CAD to CAM and CIM .. 12

2.2.4 From CAD to Computer Aided Product Modelling .. 13

2.2.5 Product Model .. 14

IV

2.3 Design Engineering Automation ... 15

2.3.1 CAD Models (Geometric Models)... 15

2.3.2 Automation with CAD Models .. 17

2.3.3 Extension of CAD Models ... 19

2.3.4 Product Data Management and Product Lifecycle Management 20

2.4 Product Modelling Methods .. 21

2.5 Product Model Development .. 24

2.6 Chapter Summary .. 28

3 Knowledge-Based Engineering Techniques, Product Modelling Tools and

Standards .. 30

3.1 Introduction ... 30

3.2 Knowledge-Based Engineering (KBE) ... 30

3.2.1 KBE and CAD ... 31

3.2.2 KBE Methods... 31

3.3 KBE with Model-Based Engineering .. 38

3.3.1 Model-Based Engineering Overview ... 38

3.3.2 Applying Key Concepts from MBE and MBSE into KBE 39

3.4 Standards and Formats in Product Modelling ... 41

3.4.1 Product Modelling Formats and Standards .. 41

3.4.2 Modelling with STEP - EXPRESS and EXPRESS-G 44

3.4.3 STEP Application Protocols - AP203, AP214 and AP242 44

3.4.4 Relevant Research Work in Product Modelling with STEP 46

V

3.5 Tools in Product Modelling... 48

3.5.1 Traditional CAD Software ... 49

3.5.2 Adaptive Modelling Language (AML) .. 51

3.5.3 Gaming Engines in Product Modelling.. 51

3.6 Key Concepts of DEA with KBE System Development .. 53

3.6.1 Multi-Fidelity ... 53

3.6.2 Generative Modelling .. 55

3.6.3 Common Computational Model .. 55

3.6.4 Design Optimisation .. 56

3.6.5 Applying Key Concepts in KBE Product Modelling System Development 56

3.7 Related Research Work in KBE Product Modelling Framework Development 57

3.8 Literature Synthesis ... 59

3.8.1 Literature Review Summary .. 59

3.8.2 Research Gap Summary ... 62

3.8.3 Need for Knowledge Capture and Reuse in Product Modelling and Expected

Contribution to Knowledge.. 63

3.9 Chapter Summary .. 65

4 Research Methodology .. 67

4.1 Introduction ... 67

4.2 Research Questions and Hypothesis Development ... 67

4.3 Research Plan .. 69

4.4 Research Phases .. 70

VI

4.4.1 Phase1: Literature Review ... 71

4.4.2 Phase 2: Research Design (Enabling Methods) ... 71

4.4.3 Phase 3: Development.. 79

4.4.4 Phase 4: Evaluation with Use Cases .. 80

4.5 Chapter Summary .. 83

5 Virtual Product Modelling Framework ... 84

5.1 Virtual Product Modelling Framework Development .. 84

5.1.1 Product Model Development ... 87

5.1.2 Knowledge Capture of Non-Geometric Information ... 88

5.1.3 Knowledge Capture of Geometric Information ... 90

5.1.4 Knowledge Mapping .. 91

5.1.5 Product Visualisation and Validation .. 93

5.2 Product Model Development in VPM ... 93

5.2.1 Meta Class of VPM .. 94

5.2.2 Description of VPM Knowledge Classes .. 97

5.2.3 VPM Data Exchange Method and Format ... 99

5.3 Overall Virtual Product Modelling Framework Implementation Methods 100

5.3.1 Knowledge Source ... 100

5.3.2 Knowledge Capture ... 101

5.3.3 Knowledge Store and Exchange .. 102

5.3.4 Knowledge Mapping .. 103

5.3.5 Visualisation .. 104

VII

5.4 Chapter Summary .. 106

6 Evaluation ... 108

6.1 Introduction ... 108

6.2 Evaluation Objectives ... 109

6.3 Use Case 1: Simple Part with Primitive Design Features 113

6.3.1 Use Case Overview .. 113

6.3.2 Simple Part – a Block Part ... 113

6.3.3 Simple Part – a Cylinder Part... 128

6.3.4 Simple Part – a Cone Part .. 136

6.3.5 Simple Part - a Sphere Part .. 145

6.3.6 Result Analysis and Use Case Discussion ... 153

6.4 Use Case 2: Basic Engineer Part – Hex Bolt .. 161

6.4.1 Use Case Overview .. 161

6.4.2 Measurement Parameters and Testing Scenarios ... 164

6.4.3 Virtual Product Modelling Framework Application .. 166

6.4.4 Result Analysis and Use Case Discussion ... 179

6.5 Use Case 3: Engineer Assembly – Wheel Assembly .. 187

6.5.1 Use Case Overview .. 187

6.5.2 Measurement Parameters and Testing Scenarios ... 193

6.5.3 Virtual Product Modelling Framework Application .. 195

6.5.4 Result Analysis and Use Case Discussion ... 216

6.6 Discussion and Findings.. 223

VIII

6.7 Chapter Summary .. 230

7 Conclusion and Recommendation .. 232

7.1 Introduction ... 232

7.2 Summary ... 232

7.3 Research Outcomes ... 240

7.3.1 Research Question 1 .. 240

7.3.2 Research Question 2 .. 241

7.3.3 Research Question 3 .. 242

7.3.4 Research Question 4 .. 243

7.3.5 Research Hypothesis 1 ... 244

7.3.6 Research Hypothesis 2 ... 244

7.3.7 Conclusions .. 245

7.4 Contribution to Knowledge ... 247

7.4.1 Virtual Product Modelling Framework .. 247

7.4.2 Virtual Product Modelling Structure ... 247

7.4.3 Knowledge Capture and Data Exchange Method .. 248

7.4.4 Substantiation for KBE System Implementation ... 249

7.5 Limitations of Research .. 249

7.6 Recommendations for Future Work .. 251

7.6.1 Improving the Knowledge-Based Product Modelling Tool............................. 251

7.6.2 Enhancing Data Exchange in Product Modelling with New Product Modelling

Standard AP242 ... 252

IX

7.6.3 Extending the Product Modelling Standards for Knowledge Capture and Reuse

Implementation .. 252

7.6.4 Implementing the Framework for Non-Engineers ... 253

7.6.5 KBE Application Development Using a Gaming Engine................................ 253

7.6.6 Product Modelling with Virtual Reality and Augmented Reality Technology 254

Reference .. 255

Appendix 1: Knowledge Capture Tool Interface Maximised View 270

Appendix 2: Scripts Used in Knowledge Mapping in Use Case 1 272

Appendix 3: Scripts Used in Knowledge Mapping in Use Case 2 280

Appendix 4: Scripts Used in Knowledge Mapping in Use Case 3 298

Appendix 5: Scripts Used in Parsing Data From Knowledge File 314

Appendix 6: Full-Text Papers of Publications .. 328

X

List of Figures

Figure 2-1: Four stages of the design process. Adapted from Gerhard Pahl and Wolfgang

Beitz (1988). .. 9

Figure 2-2: Manpower requirements in the evolution of an engineering design problem.

Adapted from Ross and Ward (1968). ... 11

Figure 2-3: The Evolution of Product Development. Adapted from Krause et al.(1993). 13

Figure 2-4: Development of PDM. Source: Moorthy and Vivekanand (2007) 21

Figure 2-5: Possible content of the Product Model. Adapted from Isaksson et al (2000). 25

Figure 3-1: KBE application lifecycle from MOKA. Source: Melody Stokes (2001). 32

Figure 3-2: The KNOPRESSA modelling set. Source: Lovett, Ingram and Bancroft (2000). 33

Figure 3-3: DEE process flow to support multidisciplinary design optimisation. Source:

Berends, Van Tooren and Schut (2008) ... 34

Figure 3-4: The KNOMAD Methodology. Source: Curran, Verhagen and Van Tooren (2010).

.. 35

Figure 3-5: The eleven KCM steps. Adapted from Terpenny, Strong and Wang (2000)........ 36

Figure 3-6: Converting HFM to LFM by different simplifications. Adapted from Fernández-

Godino et al. (2016). .. 54

Figure 4-1: Research plan .. 70

Figure 4-2: Implementation framework for the development .. 80

Figure 5-1: Virtual product modelling framework .. 85

Figure 5-2: Developed product model structure from VPM .. 88

Figure 5-3: Task flow of capturing the non-geometric information .. 89

Figure 5-4: Task flow of capturing the geometric information ... 91

XI

Figure 5-5: Knowledge mapping framework for knowledge reasoning 92

Figure 5-6: Example of the relationship between the assembly and parts of the product model

(named “Product A”) ... 94

Figure 5-7: Product model structure data from literature. Adapted from Fenves et al., (2004),

Siemens PLM (2019b) and Boy et al., (2015). .. 95

Figure 5-8: Description of VPM data exchange method ... 99

Figure 5-9: The developed knowledge capture tool interface (maximised view of this tool

interface is provided in Appendix) .. 102

Figure 5-10: Example of a simplified XML schema for the Knowledge File 103

Figure 5-11: Example of knowledge mapping logic for implementation 104

Figure 5-12: Example of visualisation in the developed knowledge-based product modelling

environment ... 106

Figure 6-1: Four simple parts with primitive design features (modelled in Siemens NX 10)

.. 113

Figure 6-2: VPM product model structure of the block part in UML diagram 116

Figure 6-3: Example - select the number of the parts being designed 117

Figure 6-4: Example - input the Product Information including name, description, and type

.. 117

Figure 6-5: Example - input the Design Intent and its description .. 118

Figure 6-6: Example - input the Function .. 118

Figure 6-7: Example - input the Form ... 118

Figure 6-8: Example - input the Material .. 119

Figure 6-9: Example - input the Behaviour ... 119

XII

Figure 6-10: Example - input the Rules ... 120

Figure 6-11: Example - input the Fit.. 120

Figure 6-12: Example - input the Relationship .. 121

Figure 6-13: Example - input the Dimension .. 121

Figure 6-14: Example - input the Key Parameters... 122

Figure 6-15: Example - input the Constraints .. 122

Figure 6-16: Example - part of knowledge file of the block part .. 123

Figure 6-17: VPM product model structure of the block part with captured knowledge 124

Figure 6-18: A block part model created in Siemens NX 10 ... 125

Figure 6-19: Part of the step file of block that exported from Siemens NX 10 125

Figure 6-20: Illustration of the knowledge mapping for the block part in use case 1 126

Figure 6-21: Block part model visualised in the developed knowledge-based product

modelling environment .. 127

Figure 6-22: Results of validation – use case 1: Block part .. 128

Figure 6-23: VPM product model structure of the cylinder part in UML diagram 130

Figure 6-24: Example - part of knowledge file of the cylinder part 131

Figure 6-25: VPM product model structure of the cylinder part with captured knowledge .. 132

Figure 6-26: A cylinder model created in Siemens NX 10 .. 132

Figure 6-27: Illustration of the knowledge mapping for the cylinder part in use case 1 133

Figure 6-28: Cylinder part model visualised in the developed knowledge-based product

modelling environment .. 134

Figure 6-29: Results of validation – use case 1: cylinder part ... 135

Figure 6-30: VPM product model structure of the cone part in UML diagram 138

XIII

Figure 6-31: Example - part of knowledge file of the cone part .. 139

Figure 6-32: VPM product model structure of the cone part with captured knowledge 140

Figure 6-33: A cone model created in Siemens NX 10 ... 141

Figure 6-34: Illustration of the knowledge mapping for the cone part in use case 1 142

Figure 6-35: Cone part model visualised in the developed knowledge-based product

modelling environment .. 143

Figure 6-36: Results of validation – use case 1: cone part .. 145

Figure 6-37: VPM product model structure of the sphere part in UML diagram 147

Figure 6-38: Example - part of knowledge file of the sphere part ... 148

Figure 6-39: VPM product model structure of the sphere part with captured knowledge 149

Figure 6-40: A sphere model created in Siemens NX 10 .. 150

Figure 6-41: Illustration of the knowledge mapping for the sphere part in use case 1 151

Figure 6-42: Sphere part model visualised in the developed knowledge-based product

modelling environment .. 152

Figure 6-43: Results of validation – use case 1: sphere part.. 153

Figure 6-44: A hex bolt modelled in Siemens NX 10 ... 161

Figure 6-45: 2D drawings of the hex bolt with dimensional descriptions 162

Figure 6-46: VPM product model structure of the hex bolt in UML diagram 166

Figure 6-47: Example - part of knowledge file of the hex bolt ... 167

Figure 6-48: VPM product model structure of the hex bolt with captured knowledge 168

Figure 6-49: Illustration of the knowledge mapping for the scenario one – changing L under

one D1 in use case 2... 170

XIV

Figure 6-50: Illustration of the knowledge mapping for the scenario one – changing b under

one D1 in use case 2... 171

Figure 6-51: Illustration of the knowledge mapping for the scenario one – changing b under

one D1 in use case 2... 172

Figure 6-52: Illustration of the knowledge mapping for the scenario two – changing D1 in use

case 2. ... 173

Figure 6-53: Hex bolt model visualised in the developed knowledge-based product modelling

environment ... 174

Figure 6-54: Results of validation – use case 2: hex bolt, scenario one - change L 175

Figure 6-55: Results of validation – use case 2: hex bolt, scenario one - change b 176

Figure 6-56: Results of validation – use case 2: hex bolt, scenario one - change k 177

Figure 6-57: Results of validation – use case 2: hex bolt, scenario one - change e 177

Figure 6-58: Results of validation – use case 2: hex bolt, scenario one - change s 178

Figure 6-59: Results of validation – use case 2: hex bolt, scenario two – change bolt thread

size D1 from M12 to M14 ... 179

Figure 6-60: A wheel assembly modelled in Siemens NX 10 ... 187

Figure 6-61: 2D drawings of the wheel part with dimensional descriptions 188

Figure 6-62: 2D drawings of the tyre part with dimensional descriptions 189

Figure 6-63: Virtual product model structure of the wheel assembly in UML diagram 198

Figure 6-64: Examples - parts of knowledge files of the wheel assembly, wheel part and tyre

part ... 200

Figure 6-65: Virtual product models of the wheel assembly, wheel part and tyre part in UML

diagram .. 203

Figure 6-66: Wheel part modelled in Siemens NX 10 ... 204

XV

Figure 6-67: Tyre part modelled in Siemens NX 10 .. 205

Figure 6-68: Illustration of the knowledge mapping for the wheel part rules 206

Figure 6-69: Illustration of the knowledge mapping for the tyre part rules 207

Figure 6-70: Illustration of the knowledge mapping for the wheel assembly rules 209

Figure 6-71: Illustration of the knowledge mapping for the testing scenario one and two in

use case 3 ... 210

Figure 6-72: Wheel assembly model visualised in the developed knowledge-based product

modelling environment .. 211

Figure 6-73: Functions of making possible changes to the wheel assembly model in the

developed knowledge-based product modelling environment .. 212

Figure 6-74: Results of validation – use case 3: wheel assembly, scenario one - change the

wheel part dimension - L1 parameter .. 214

Figure 6-75: Results of validation – use case 3: wheel assembly, scenario two – change of the

tyre part dimension – S2 parameter ... 216

XVI

List of Tables

Table 2-1: Existing product model development work to support generative representation . 26

Table 3-1: Focus areas of reviewed KBE methodologies .. 37

Table 3-2: Comparison between IGES, STEP and JT ... 43

Table 3-3: Reviewed traditional CAD software (version up to 2021) in this research............ 50

Table 3-4: Characteristics of a product modelling system from the KBE perspective 57

Table 4-1: Comparison of product modelling methods ... 73

Table 4-2: Key elements in related research work from literature .. 74

Table 4-3: Comparison between IGES, STEP and JT ... 75

Table 4-4: Reviewed implementation tools (version up to 2021) in this research 77

Table 4-5: Summary of solutions for solving the identified problems 78

Table 4-6: Design Evaluation Methods. Adapted from Hevner et al. (2004). 80

Table 5-1: Mapping between KCM steps and the VPM framework 87

Table 5-2: Illustration of implementation method of rules in this research 92

Table 5-3: External geometric classes mapping with STEP Entity. Adapted from (Siemens

PLM, 2019b) .. 96

Table 5-4: Explanation of VPM knowledge classes. ... 98

Table 6-1: Measurement parameters mapped with evaluation criteria 110

Table 6-2: Existing information of use case 1- primitive design feature: block part 114

Table 6-3: Measurement parameters and expected results of use case 1 115

Table 6-4: Existing information of use case 1- primitive design feature: cylinder part 129

Table 6-5: Existing information of use case 1- primitive design feature: cone part 136

Table 6-6: Existing information of use case 1- primitive design feature: sphere part 146

XVII

Table 6-7: Comparison of the use case 1 implementation results between the existing/legacy

CAD system and VPM... 158

Table 6-8: Hex bolt dimensions (in millimetres) – DIN 931 (partial) 162

Table 6-9: Existing information of use case 2 – hex bolt .. 163

Table 6-10: Measurement parameters and expected results of use case 2- hex bolt 164

Table 6-11: Comparison of the use case 2 implementation results between the existing/legacy

CAD system and VPM... 183

Table 6-12: Wheel assembly parameters and rules .. 189

Table 6-13: Existing information of use case 3 – wheel assembly .. 191

Table 6-14: Existing information of use case 3 – wheel .. 192

Table 6-15: Existing information of use case 3 – tyre ... 193

Table 6-16: Measurement parameters and expected results of use case 3 – wheel assembly194

Table 6-17: Comparison of the use case 3 implementation results between the existing/legacy

CAD system and VPM... 220

XVIII

List of Publications

Paper:

Zhong, G., Vijay, V. C. and Oraifige, I. (2021) ‘A Game-Based Product Modelling

Environment for Non-Engineer’, in ICSGGBL 2021 : 23rd International Conference on

Serious Games and Game-Based Learning.

Abstract:

Knowledge-Based Engineering (KBE) has shown its advantages in the last two decades in

product development in different engineering areas such as automation, mechanical, civil and

aerospace engineering in terms of digital design automation and cost reduction. However, in

the primary design stages, the descriptive information of a product is discrete and

unorganized, while knowledge is in various forms instead of pure data. Thus, it is crucial to

have an integrated product model which can represent the entire product information and its

associated knowledge at the beginning of the product design. One of the shortcomings of the

existing product models is a lack of required knowledge representation in various aspects of

product design and its mapping to an interoperable schema. This paper introduced a method

to provide a general product model as a generative representation of a product, which consists

of the geometric information and non-geometric information, through a product modelling

framework. The proposed method for capturing the knowledge from the designers through a

knowledge file provides a simple and efficient way of collecting and transferring knowledge.

Further, the knowledge schema provides a clear view and format of the data that needed to be

gathered to achieve a unified knowledge exchange between different platforms. This study

used a game-based platform to make the product modelling environment accessible for non-

engineers. Further, the paper goes on to test the use case based on the proposed game-based

product modelling environment to validate the effectiveness among non-engineers.

XIX

Paper (under review):

Zhong, G., Vijay, V. C. and Perera, N. (2022) ‘Enhancing Engineering Product Design using

a Knowledge Based Game Engine Platform’, Advances in Engineering Software.

Abstract:

Traditional CAD tools and systems cannot explain the real-world concepts by themselves and

require the users to have knowledge and design experience of the product in order to

understand design rules and judge the correctness of the changes. Knowledge-Based

engineering (KBE) has been introduced to address these issues; however, existing KBE

methodologies offer limited instantiation steps and enabling tools for implementation. In this

paper, a knowledge-based product modelling prototype system is proposed to overcome the

above problems. This system is developed based on the Virtual Product Modelling

framework using a game engine platform to aid in capturing, reusing, and exchanging the

existing product information and provide knowledge reasoning in the product modelling

process. Three different use cases were applied in the research to validate the effectiveness of

the proposed system. The use case evaluation has proved that the developed prototype system

can help save time and prevent engineers from making mistakes in the product design. The

findings of this research have shown the potential of integrating product modelling with

VR/AR visualisation techniques and applying this system to non-engineers.

XX

List of Abbreviations

3D = 3 Dimensional

AISI = American Iron and Steel Institute

AML = Adaptive Modelling Language

ASME = American Society of Mechanical Engineers

AP = Application Protocol

API = Application Programming Interface

AR = Augmented Reality

BOM = Bills of Material

B-rep = Boundary Representation

CAD = Computer Aided Design

CAE = Computer Aided Engineering

CAM = Computer Aided Manufacturing

CCM = Common Computational Model

CFD = Computational Fluid Dynamics

CIM = Computer Integrated Manufacturing

CPM = Core Product Model

CSG = Constructive Solid Geometry

DEA = Design Engineering Automation

DEE = Design and Engineering Engine

DIN = Deutsches Institut für Normung (German Institute for Standardisation)

EDO = Engineering Design Optimisation

ERP = Enterprise Resource Planning

XXI

FEA = Finite Element Analysis

GUI = Graphical User Interface

HFM = High-Fidelity Model

HTML = HyperText Markup Language

ICARE forms = Illustration, Constraint, Activity, Rules, and Entity forms

IGES = The Initial Graphics Interchange Specification

INCOSE = The International Council on Systems Engineering

ISO = International Organisation for Standardisation

JT = Jupiter Tessellation

KBE = Knowledge-Based Engineering

KCM = Knowledge Capture Methodology

KF = Knowledge File

KIC = Knowledge-Intensive CAD

KNOMAD = Knowledge Nurture for Optimal Multidisciplinary Analysis and Design

KOMPRESSA = Knowledge Oriented Methodology for the Planning and Rapid Engineering

of Small-Scale Application

LFM = Low-Fidelity Model

MBE = Model-Based Engineering

MBSE = Model-Based Systems Engineering

MOKA = Methodology and tools Oriented to Knowledge-based engineering Application

OMG = Object Management Group

OWL = Ontology Web Language

PACKS = The Parametric Composite Knowledge System

XXII

PDM = Product Data Management

PHP = Hypertext Preprocessor

PLM = Product Lifecycle Management

PMI = Product and Manufacturing Information

SCAD = The Steered Composite Analysis and Design System

SMEs = Small to Medium Enterprises

STEP = Standard for the Exchange of Product model data

SysML = System Modelling Language

UML = Unified Modelling Language

XML = Extensible Markup Language

VPM = Virtual Product Modelling

VR = Virtual Reality

1

1 Introduction and Background

1.1 Introduction

The rapid development of science and information technologies has generated higher

demands for industrial development capacity, productivity, and agile response to the market.

They all drive the industry to design and produce more complex products at lower costs and

with less time. Computer Aided Design (CAD) has been introduced as a Design Engineering

Automation (DEA) method for completing product design. Nonetheless, CAD tools and

systems cannot understand and explain real-world design concepts by themselves. To judge

the correctness of the design, CAD tools and systems require users to have sufficient

knowledge and design experience of the product. However, the knowledge of a product is

often discrete, unorganised and in various forms (Suresh and Egbu, 2006). There is a lack of

required knowledge representation in multiple aspects of product design.

Product modelling has been regarded as a pivotal role to develop product models. Successful

product modelling can support and improve the product development process chains

throughout the product life cycle, resulting in cost reduction and time optimisation. A product

model representing all detailed design information will enable designers to work on the

design tasks without previous design experience. Time and cost on tutorial sessions and

training for new designers could be saved. Existing research works show that there are two

challenges in integrating extra data with CAD models: capturing and managing the product

data in the complex product models using traditional CAD (Cooper, Fan and Li, 2001;

Chang, 2015) and the mismatch between the availability of information and the accessibility

of the appropriate information to designers (Blessing and Wallace, 1998). Thus, there is a

need to develop a product model which can capture and reuse complex product data and

provide accessible and appropriate information to designers.

2

In the last 20 years, Knowledge-Based Engineering (KBE) has shown its advantages in

product development in different engineering areas such as automation, mechanical

engineering, civil engineering and aerospace engineering in terms of modelling and cost

reduction. It helps automate the repetitive design tasks by capturing, integrating, utilising and

reusing existing knowledge required in various aspects of the product design (Chapman et al.,

2007; Rocca, 2012). The use of KBE methods and techniques has played an important role in

design engineering automation for the development of a product in the industry (Shehab and

Abdalla, 2001; Sanya and Shehab, 2014). The trend of product modelling for design

engineering automation has evolved from manual drafting to CAD, from CAD to Computer

Aided Product Modelling, and then to Knowledge-Based Product Modelling. The product

data involved in product modelling has been expanded from “geometry-only” to

“knowledge–integrated”. However, existing product models and CAD tools show limited

capabilities in capturing and reusing knowledge. Further, the substantiation steps for

implementing the current KBE methods and techniques for product modelling are usually not

available and understandable to users (Cederfeldt, Elgh and Rask, 2006; Fan and Bermell-

Garcia, 2008). Therefore, to overcome this “black-box” problem, it is necessary to develop a

KBE implementation framework along with use cases and enabling tools for the purpose of

capturing and reusing design knowledge in product modelling for design engineering

automation.

1.2 Problem Statement

In a traditional product modelling environment, the designer can create and provide the

visible geometry information in the product model. However, only geometry information is

not enough to describe a product model completely. The utilisation of the knowledge can

significantly reduce the unnecessary re-analysis, re-design, and re-planning, simplify the

modelling tasks and ensure the modelling quality. A generative and efficient representation of

3

a product requires detailed geometry information for visualisation and the associated

knowledge, such as function, form, behaviour, design rules, material, etc.

Capturing and transferring the knowledge of experienced designers are difficult. According to

Suresh and Egbu (2006), the main challenge existing in small and medium companies and

industries for implementing knowledge capture initiatives is a lack of awareness of

knowledge capture benefits. Due to this, individuals and small and medium enterprises are

lacking the vision and strategy and structure for knowledge capture. They have a strong

reliance on informal networks and collaboration to locate the repository of knowledge.

Therefore, a critical issue of knowledge-based product modelling is capturing, classifying,

structuring, and managing the captured knowledge. Since there is no clear formalised link

between a generic product model and an interoperable format in the KBE environment, it is

essential to provide well-defined knowledge classes and a formalised knowledge capture

method for individuals, enterprises and industries to capture and share knowledge instead of

using informal oral communication or notes and spreadsheets in different formats. In this

thesis, geometric data contained in a CAD file is regarded as “geometry information”, and

non-geometric information, such as experience, expertise and design rules, is called

“knowledge”.

This research aims to provide a product modelling framework and tool that could capture,

reuse and integrate the associated knowledge applied by designers into a generative product

model. To achieve this goal, three key factors were considered. Firstly, the generated product

model must have well-defined classes that can represent the entire product information and

its associated knowledge. Then, the product model needs to be represented in an

interoperable schema to ensure a steady data exchange between different product modelling

platforms and CAD software. Third, the captured knowledge could be reused to enhance the

product modelling process.

4

In this research, the author proposed and implemented a Virtual Product Modelling (VPM)

framework that help in capturing and reusing existing product information to enhance the

product modelling process for design automation. In contrast to the existing/legacy CAD

systems, the proposed VPM framework has shown its advantages in generative

representation, capturing, reusing and visualising the existing product knowledge to enhance

the product modelling process. It provides design engineers with capabilities of knowledge

reasoning when they are making changes to the product model to prevent them from making

mistakes in the modelling process. The geometric data and the existing product knowledge

are captured and integrated as one holistic product model through the use of VPM. Both the

geometric data and the knowledge are stored and transferred in interoperable and neutral

formats. This ensures that the captured knowledge can be exchanged along with the

geometric data in one product model between different platforms. Compared to the CAD

model generated from existing/legacy CAD systems, the design knowledge is structured and

reusable within the developed product model using VPM. This provides a clear

representation of the complex product knowledge and helps users understand the product and

identify and access the essential product information.

The rest of the thesis will discuss in detail how the design engineer’s knowledge is captured,

reused, and mapped into the framework to enhance the product modelling process for design

automation.

The following are the research questions and objectives to address the research challenges

mentioned above.

1.3 Research Questions

• How can the design knowledge be structured and represented through a product

model?

5

• How can this product model be implemented in a knowledge-based product modelling

environment?

• How can the principles and practice of knowledge-based engineering be applied to

capture and reuse the existing design knowledge for product modelling through a

knowledge-based product modelling framework?

• How can this framework be implemented and applied by designers to enhance product

modelling?

1.4 Research Aims and Objectives

This research aims to identify and develop methods and tools for capturing, reusing and

exchanging existing design knowledge to enhance the product modelling process for design

automation in a knowledge-based product modelling environment. The aim will be

accomplished through the successful achievement of the following research objectives:

• To establish the research scope by identifying and reviewing the features and issues

on product modelling for design engineering automation.

• To review methods, standards and tools used in product modelling for developing

product models.

• To distinguish appropriate enabling methods and tools for capturing and reusing

knowledge in product modelling.

• To develop methods of capturing, reusing, and exchanging design knowledge for

product modelling and to develop a knowledge-based product modelling environment

for applying these methods.

• To validate proposed methods of capturing, reusing and exchanging design

knowledge in product modelling and evaluate the performance of the developed

knowledge-based product modelling environment.

6

• To evaluate the modelling process within the developed knowledge-based product

modelling environment, in contrast to the modelling process in existing CAD systems.

• To generate implementation guidance on how to use the approach for capturing and

reusing existing product design knowledge to support design automation.

1.5 Structure of the Thesis

The structure of the thesis is described in this section. This thesis consists of seven chapters.

Chapter 1 of the thesis provides a brief introduction of the research background and states the

problems in the research field. This chapter also presents the research questions addressed by

the current work and the research objectives.

Chapter 2 of the thesis focuses on the literature review of the current methods in product

modelling and design engineering automation. It discussed the evolving process of the

product design for product development and its advancement with Computer Aided Design

(CAD) technology. The deployment and development of product models for design

engineering automation are also presented. Different product modelling and product models

are discussed and compared in this chapter.

Chapter 3 of the thesis extends the literature review to current knowledge-based engineering

techniques and product modelling tools and standards. This chapter discussed key concepts

and various methods for capturing and reusing knowledge in the product modelling process

and compared different potential product modelling tools and standards for implementation.

It also reviewed relevant research work in product modelling with STEP standards and

knowledge-based product modelling framework development. In the end, findings from the

literature review are summarised, and research gaps are identified. In conclusion, the need for

knowledge capture and reuse in product modelling and expected contribution to knowledge is

presented.

7

Chapter 4 presented a research plan to explain the research through four phases: literature

review, research design, development, and evaluation. This chapter also provides the

identified enabling methods for undertaking research development within the realm of

capturing and reusing existing product knowledge in product modelling of engineering

components. It explained the applied methods in this research with justifications and

explanations of why the selected methods best fit this research.

Chapter 5 of the thesis presents the virtual product modelling framework, which addresses the

research gaps identified in the previous chapters. It shows the development process of this

virtual product modelling framework and explains how it can be further implemented with

these identified enabling methods.

Chapter 6 shows the evaluation of the framework through the implementation of use cases.

Three testing use cases are selected from the literature to validate and evaluate the

effectiveness and efficiency of the proposed methodology. Detailed instantiation steps of this

virtual product modelling framework for each use case are presented. Discussions and

findings from the use case implementation and evaluation are also provided in this chapter.

Chapter 7 summarises the research outcome by aligning with research questions and

hypotheses based on the results. Further, it discusses the limitations of the research and

concludes the thesis. Recommendations for future work are presented at the end.

1.6 Chapter Summary

This chapter provides a brief introduction to this research area and explores the research

issues and challenges. It also outlines the research questions, aims and objectives for

conducting the study. The chapter concludes with the thesis structure showing how the

chapters were written and connected. Literature that related to key concepts and issues of the

research is discussed in the next chapter.

8

2 Product Modelling and Design Engineering Automation

2.1 Introduction

This research aims to develop a product modelling approach for capturing and reusing the

existing product knowledge to enhance the product modelling process for Design

Engineering Automation (DEA). Therefore, the area of this research is mainly focused on

four fields: Product Design, Design Engineering Automation, Product Modelling, and

Knowledge-Based Engineering. This chapter begins by providing an overview of various

aspects of product design to show a thorough understanding of product development. This

chapter then presents how the CAD models and existing knowledge are reused for design

engineering automation to state of the art. This identifies that there is a lack of required

knowledge representation in current CAD models and the reuse of the existing knowledge in

product modelling is limited. Next, different product modelling methods have been analysed

and discussed in this chapter. In the end, as the development of aimed product modelling

approach requires sufficient and accurate representation of the associated knowledge

involved in the product design process, Knowledge-Based Engineering (KBE) has been

identified as an appropriate method to help capture, integrate, utilise and reuse the existing

knowledge required in various aspects of the product design. This will lead to a further in-

depth discussion on knowledge-based engineering techniques in Chapter 3.

2.2 Product Design for Product Development

Product design concerns solving design problems from the initial design idea to the final

product. It is defined as

 “The activity in which ideas and needs are given physical form, initially as solution concepts

and then as a specific configuration or arrangement of elements, materials and components”

(Walsh, Roy and Bruce, 1988)

9

The design process of a product is mainly defined into four stages (Gerhard Pahl and

Wolfgang Beitz, 1988): (i) planning and clarification of the task, (ii) conceptual design, (iii)

embodiment design, (iv) detail design (see Figure 2-1). However, the boundary between each

stage of the design process always overlaps because of the iterative nature of the design

process.

Figure 2-1: Four stages of the design process. Adapted from Gerhard Pahl and Wolfgang

Beitz (1988).

Stage 1 involves the planning of the initial product by collecting information about customer

requirements. This stage results in initial product ideas and a detailed design specification

list. The concept design stage involves the establishment of function structures, the search for

solution principles and their combination into conceptual variants (Pahl et al., 2007). Since

the design specifications may range from a high-level abstract statement to detailed

documentation, the analysis of functional requirements or product function is very crucial at

this stage (Wang et al., 2002). Designers need to be critical in their decision making because

10

once all concepts have been determined, it is difficult to correct fundamental problems at the

later stages.

The concept design stage is followed by the embodiment design. In this stage, designers start

to develop the preliminary product architecture, determine the shape and general dimensions

or sizes of the design and develop the proposed technical product or system according to

technical and economic considerations. By the end of the embodiment stage, key design

parameters that could be controlled by the designer will be identified, for example,

dimension, tolerance, material, etc. (Pahl et al., 2007; Langeveld, 2011)

Detail design is the last stage in the product design process. Designers finalise design details,

such as geometry, material, tolerances of all the parts, and the structure of the product and

assembly in this stage (Pahl et al., 2007; Johnson and Gibson, 2014). Complete detailed

drafting and CAD/CAM models will be produced, which contain product shapes, forms,

dimensions and surface properties, etc.

Coons and Mann (1960) pointed out that the detail or element design would be the area that is

most conducive to machine assistance. Figure 2.2 shows the relationship between elapsed

time and manpower in the evolution of an engineering design problem of Massachusetts

Institue of Technology (MIT)’s Computer Aided Design project (Ross and Ward, 1968).

Proceeding from left to right in the time sequence, it can be seen from the figure that as the

design stage moves further, more and more manpower becomes involved in the project.

According to the design process defined by Gerhard Pahl and Wolfgang Beitz (1988), shown

in Figure 2-1, detail or element design is covered in the embodiment stage and detail design

stage. Thus, the most time-consuming parts of the design process are the embodiment design

and detail design (Langeveld, 2011).

11

Note: *Automatically Programmed Tools (APT) is used to program numerically-controlled machine tools to

create complex parts using a cutting tool moving in space.

Figure 2-2: Manpower requirements in the evolution of an engineering design problem.

Adapted from Ross and Ward (1968).

2.2.1 Product Design: Advancement with Computer Aided Design (CAD)

To reduce the elapsed time, manpower and resources expended in completing the design

process, computer systems have been introduced to ease the design of parts and tools for the

industry since the early 1960s (Carlson, 2017). The use of computers in creating, modifying,

analysing, or optimising a design was a revolutionary step in product design. The current

CAD tools and systems provide designers with a wide variety of functionalities, such as

creating 2D drafting and engineering drawings, building a 3D model of a product,

visualisation of the product’s 3D geometry shape, and the creating of assembly with product

components (Weisberg, 2008). CAD tools and systems also allow designers to create Bill of

Materials and engineering drawings that lay out all the required information of parts and

assembly for the further manufacturing process.

12

2.2.2 From CAD to CAE

Computer Aided Engineering (CAE) is a broad concept that means using computers in all

phases of engineering design work (Carlson, 2017). It involves not only the CAD but also

engineering analysis tasks, for example, finite element analysis (FEA), computational fluid

dynamics (CFD), product optimisation, etc. The key capability of CAE is in testing designs

by simulating real-world conditions. Thus, CAE tools have been developed and used to test

and analyse the performance of the designed product. However, a common CAD model is

always required and used as a core data repository and supply source of input for CAE tools

(G P Gujarathi and Ma, 2011). Simulation and analysis with CAD models have become a

crucial process in current high-tech industries such as aerospace and semiconductors.

2.2.3 From CAD to CAM and CIM

When the design goes to the manufacturing stage, CAD will always be linked to Computer

Aided Manufacturing (CAM). CAM is a subsequent process after CAD or CAE in most

computer-aided product development. It allows users to control, monitor, and adjust machine

tools in manufacturing workpieces (Carlson, 2017). CAM tools evolved from numerical

controlled (NC) programming tools, which could generate the tool path and code for CNC

machines and cutting tool parameters for machine operations. Modern CAM tools and

systems can automatically generate tool paths from a 3D CAD model and simulate the cutting

action.

With the increasing use of computers in design and manufacturing under CAD and CAM,

Computer Integrated Manufacturing (CIM) became an acronym for the area where tasks are

common to both CAD and CAM. CIM integrates the component data (geometry, tolerance,

etc.) that was created with CAD into a database so that it can be reused for the CAM

environment directly (Alavudeen and Venkateshwaran, 2008). Computerised information

from CAD plays a significant role in CIM. Bozdoc (2003) stressed that a highly developed

13

CIM system required the creation of a database where all the information for manufacturing

is stored in a form that can be retrieved and reused by anyone who needs it.

2.2.4 From CAD to Computer Aided Product Modelling

CAD tools and systems have shown great advantages in the creation, modification, analysis

or optimisation of a product. However, CAD tools and systems cannot understand real-world

concepts, such as the purpose of the product being designed or the function that the product

will serve (Salzman, 1989). CAD tools and systems require the designer to have knowledge

and design experience of the product to judge the correctness of the function and to

understand what is going on beyond that which is graphically shown on the computer screen.

Hence, there is a need to integrate product information such as the designer’s idea into a

formal product model through the design process while using CAD.

Figure 2-3: The Evolution of Product Development. Adapted from Krause et al.(1993).

The concept of computer aided product modelling was formed in the early 1990s (see Figure

2-3). With the growing capacities of software, computer aided technologies such as

knowledge processing and computer simulation have been used together with CAD in

14

different product lifecycle stages to support product design, planning, and manufacturing

since the 1980s. The communication among different software used at various stages of the

product lifecycle has become an important consideration for increasing the data exchange

efficiency and enhancing the performance of product development and manufacture. Many

approaches have been put forward to improve the data exchange, such as the interfacing

approach, standardised data format or common databases (Krause et al., 1993). However,

these standardised formats could only represent two- and three-dimensional geometrical

models at that time. Therefore, the demand to develop a unique and consistent system-

independent representation of a product that also enables data management of all relevant

product information led to the formation of the concept of computer-aided product modelling.

2.2.5 Product Model

In this thesis, a product model is defined as an information representation that provides data

contributing to build the form (geometry and topology), function (intent) and behaviour (load

resistance, etc.) of a product in a modelling process (Tolman, 1999). It is employed

throughout the entire lifecycle of a product to structure product data and design information.

Therefore, a product model that can represent all detailed design information will enable

designers to work on the design tasks without previous design experience. Time and cost on

tutorial sessions and training for new designers could be saved. Also, a product model that

captures all required design knowledge can perform as a knowledge base for different

elements, varying from originality to final product. In this manner, even a complex product,

which has features and structures that are special and cannot be modelled or physically

produced in a straightforward way, can be represented by a comprehensive model.

Companies and industries can achieve more sales and high revenues by offering multiple

product variants and options to customers. Design automation in product development is an

impactive differentiator among business competitors as a reduction in time and manpower

15

cost of a product will allow companies to make flexible business strategies and be price

competitive in the market. In other words, design automation enables companies and

industries to deal with customised products more quickly and efficiently by automating

repetitive design tasks in the existing product design processes. The next section discusses the

Design Engineering Automation technique and product models used in Design Engineering

Automation.

2.3 Design Engineering Automation

Design Engineering Automation is generally referred to as the reuse of engineering

knowledge to perform a design task in an automatic way. To support design engineering by

implementing and reusing knowledge in solutions, tools, or systems, Cederfeldt and Elgh

(2005) pointed out that two aspects need to be considered in design automation: information

handling and knowledge processing. In this research, information handling can be described

as the reuse of CAD models, and knowledge processing refers to the reuse of existing

knowledge, for example, rules and constraints; both aspects are incorporated to produce

design variants.

2.3.1 CAD Models (Geometric Models)

As mentioned in the previous Section 2.2.1, CAD has been introduced in product design

since the 1960s as a design automation technique to help reduce errors and time spent on

tedious design tasks and accelerate the design process. By the year 2020, numerous CAD

tools and software were developed by the CAD industry that allowed users to build 2D or 3D

computer models of configured products. According to the global CAD software market

research report (Research and Markets, 2020), 3D CAD software is being widely adopted

because of the rising number of professionals in design engineering fields. There are mainly

three types of 3D CAD models: wire-frame, surface and solid.

16

a) Wire-frame model

A “wireframe” is generally defined as a collection of curve segments that represent an

object’s edge (Tilove, 1981). A wire-frame model represents the shape of a solid object by

the network of vertices. In other words, the geometry of a product is described by its

characteristic line and points. A wire-frame model is the least complex model for

representing a 3D object; however, using a wire-frame model to represent a product is

sometimes ambiguous (Kellie, 2010) and verbose since users need to use a lot of low-level

data to describe a simple geometry such as a cube (Requicha and Voelcker, 1982). A wire-

frame model cannot represent an actual solid object because it does not define the volume or

surfaces of an object.

b) Surface model

A surface model is a 3D shell object with infinitely thin walls that do not have mass or

volume (Butorina and Vasilieva, 2018). It is used mainly to describe complex or specialised

surfaces and provide external aesthetics of a product such as turbine blades, car body panels,

boat hulls and aircraft fuselages (Cam et al., 1983; Yip-hoi, 2011). The surface model

eliminates the ambiguity in the wire-frame model by defining adequate data on a product’s

surface and by hiding lines not seen, but it provides no information about the inside of an

object which is similar to the wire-frame model.

c) Solid model

A solid model is generally referred to as an unambiguous computer representation of a

physical solid object created through solid modelling (Requicha and Rossignac, 1992). It uses

topological information in addition to geometrical information to represent the object. Based

on Shapiro’s research (Shapiro, 2002), a solid model is developed according to the following

principles:

17

• It should be valid and correspond to some real physical objects.

• It should represent the corresponding physical object unambiguously.

• It should support any geometric queries that may be asked of the corresponding

physical object.

The solid modelling technique will be further discussed in Section 2.4. A solid model

contains metrics and dimensions of the solid object and invisible topological information

such as the connectivity, neighbourhood, and relationship, etc. A solid model is different

from a surface model, even if they may look the same on-screen. For example, a solid model

can be cut and sliced open, while a surface model cannot because the surface model is

hollow. Additionally, a solid model must be modelled geometrically correct. In contrast, a

surface model could be geometrically and physically incorrect but still appears correct for

visualisation because no properties of mass and thickness (volumes) are defined in the

surface model.

2.3.2 Automation with CAD Models

In modern engineering and product development scenarios, the application of previous

designs and processes for the new generation of product variants has become a common and

essential factor (El Hani, Rivest and Maranzana, 2012). In the CAD domain, automation

refers to the reusability of the CAD modes where CAD data can be used or adapted to

different designs with minimal effort (Camba, Contero and Company, 2016). The

implementation of parametric modelling to develop CAD models has accelerated the product

development process by allowing designers to reuse and make alterations to existing models

in an efficient and easy manner.

Parametric modelling is a modelling method with the ability to change the geometry of the

model when the values of dimensions are changed. In parametric modelling, the geometric

model is developed and controlled by non-geometric features called parameters, which can be

18

further defined by dimensional, geometric, or algebraic constraints (Camba, Contero and

Company, 2016). The key advantage of parametric modelling is that, for modifying the

existing models or developing product variants, there is no need to redraw or recreate the

model from the beginning. The previous parametric models can be reused by changing the

dimension to achieve the new desired model. Moreover, parametric modelling also allows

users to create the algorithm of the model, which includes rules that occur when parameters

are defined and associated with each other. These rules can be further used for automation as

a restrictor or limit that determines the boundaries of an event (Kalkan, Okur and Altunışık,

2018).

Parametric modelling is available by using parametric tools in most modern CAD tools.

However, these parametric modelling tools are of limited use to users who do not understand

the design principles or do not have a solid 3D modelling foundation (Rynne and Gaughran,

2007). In the industry, to overcome this problem, internal CAD models and guidelines are

usually developed by previous/experienced designers and followed by all designers as

templates to ensure the quality of the modelling and standardisation. However, this solution is

restricted only to industry settings and is not applicable to general scenarios. The capability

of creating robust and reusable CAD models strongly depends on the user’s cognitive

abilities and skills to understand and break down the design (Rynne and Gaughran, 2007).

The automation with parametric CAD models has shown significant influence (G. P.

Gujarathi and Ma, 2011; Kedar et al., 2018; David, 2019) in the modern CAD domain in

terms of reusing parameters to generate the geometry; however, the information stored in the

CAD model is still limited to geometric data and parametric values. The associated

information, such as design intent and design rules, is not contained in the model and needs to

be provided separately.

19

2.3.3 Extension of CAD Models

Although parametric CAD models do not include design intent or design rules, the parametric

modelling method itself shows a potential way of enabling the addition of design semantics to

a CAD model. By editing some parametric values, design semantics could be translated into

the modification of existing models (Camba, Contero and Company, 2016).

Many efforts have been made by earlier researchers to extend the CAD models by integrating

CAD with CAE information. Knowledge-intensive CAD (KIC) is one of those early concepts

designed to address the issue of information exchange between various stages of product

development by taking advantage of knowledge flow (Tomiyama, Mäntylä and Finger,

1995). It focuses on integrating design lifecycle and engineering knowledge with CAD.

Shephard et al. (2004) proved that CAD models could be used for simulation-based design

under a controlled interactive design and analysis environment by simplification and data

management. Van der Velden (2007) pushed the integration of CAD and CAE a step further

by developing a Graphical User Interface (GUI) based system that could manage the

propagation of changes in CAD and change analysis along with meshing of the entire CAD

model without any geometry simplification. Xu and Chen (2009) pointed out that one

challenge of integrating CAD and CAE is to manage complex products that have more

detailed information. Another challenge of implementing KIC is the mismatch between the

availability of information and the accessibility of the appropriate information to designers

(Blessing and Wallace, 1998). Blessing and Wallace (1998) published an innovative method

of collecting and indexing knowledge based on context. They developed a process-based

support system (PROSUS) that provides designers with accessible and relevant life cycle

knowledge. All the captured knowledge in PROSUS can be further reused by other project

partners.

20

2.3.4 Product Data Management and Product Lifecycle Management

Large amounts of product information within different formats are generated at industrial

companies every day (Peltokoski, Lohtander and Varis, 2015). The increased amount of

product variants also leads to the increased complexity of product information. Product Data

Management (PDM) is a system that helps manage product data created during the design

processes (see Figure 2-4). The PDM system was first employed as a file-based system that

allows designers to save and retrieve their drawings and bills of material (BOM) (Wilson,

2006). Nowadays, the PDM system has been widely employed in industry to deal with the

increased amount of product-related information such as engineering drawings, geometry

data, part and assembly files, test and analysis data, BOM, etc. (Gao et al., 2003; Könst, La

Fontaine and Hoogeboom, 2009). Könst et al. (2009) pointed out that it is also important to

save information like “why a decision was made”, “what solutions were used” into the PDM

system; however, all these kinds of knowledge are often experienced-based and in heads of

the designers and also hard to capture and store during the design process. Abramovici et al.

(1997) assert that the aim of PDM is to serve as a product data repository which is accessible

to all designers. PDM itself cannot deal with product lifecycle information, and this is where

Product Lifecycle Management (PLM) comes in. PLM can be regarded as an extension of

PDM that handles the information of workflows after the product development process in the

product lifecycle, for example, shipment, maintenance, customer service, etc. (Peltokoski,

Lohtander and Varis, 2015).

21

Figure 2-4: Development of PDM. Source: Moorthy and Vivekanand (2007)

While PDM only focuses on design data management relevant to the product development

process, PLM focuses more on product development and manufacturing processes related to

product lifecycles. PDM relies on the improvement of product data management to improve

the efficiency of the existing product development process. In contrast, PLM uses PDM along

with other technologies, such as Supply Chain Management (SCM) system (Bouhaddou et

al., 2012) and Enterprise Resource Planning (ERP) system (Avvaru et al., 2020) to manage

product lifecycles and boost production.

2.4 Product Modelling Methods

In recent decades, industries have recognised that traditional CAD is only able to retain the

design results. Neither the design intent nor the methods will be captured or incorporated

when using traditional CAD (Cooper, Fan and Li, 2001). Product modelling plays an

essential role in product development activities, as it “generates an information technology

reservoir of complete product data to support various activities at different product

development phases” (Krause et al., 1993). The method to use in the product modelling

depends on design problems, the designer’s knowledge, experience and the requirement. In

the literature, various product modelling methods have been developed for the realisation of

22

different product models. Yang et al. (2008) categorised product modelling methods into four

categories: solid product modelling, feature-based product modelling, knowledge-based

product modelling and integrated product modelling. Since integrated product modelling can

be considered as a combination of the former three methods, three main types of product

modelling methodologies are reviewed in this section.

a) Solid product modelling

Over the last ten years, the term “solid modelling” has been associated with using CAD

systems to create the shape and form of product geometry and associated physical properties

for the purpose of engineering design automation (Chang, 2015). Solid product modelling

(Shapiro, 2002) is a technique that uses mathematical principles and computer modelling to

achieve precise representation of three-dimensional objects. It is now a mature tool widely

implemented in the product modelling field (Yang et al., 2008). There are two standard

methods of solid product modelling: boundary representation (B-rep) (Stroud, 2006) and

constructive solid geometry (CSG) (Shapiro, 2002). In the B-rep method, the product is

divided into a number of faces bounded by edges. In turn, the edges are bounded by two

vertices at last. The B-rep method provides a fast display of a product geometry with basic

information about the faces, edges and vertices (Stroud, 2006). The CSG method breaks the

product into a binary tree of basic solids, for example, cylinders, spheres, cones and cubes

etc. The product itself in CSG is considered as a combination of those basic solids by

utilising union, difference and intersection operations (Yang et al., 2008).

Therefore, it can be seen that both B-rep and CSG present a clear and simple data structure of

a product. However, Chen and Wei (1997) pointed out that the weakness of solid product

modelling lies in providing all necessary information for an entire product development

lifecycle. Solid product modelling works in a different way from a human product designer

because it can only create models with basic geometric information such as dimension,

23

tolerance etc. For a complete product lifecycle, more necessary information is still required,

for example, “how the product will be manufactured”, “what the function of the product is”,

etc.

b) Feature-based modelling

Feature-based product modelling (Chen and Wei, 1997) is seen as a well-developed extension

of solid product modelling. The “Feature” here is defined by Salomons et al. (1993) as

information sets that refer to aspects of form or other attributes of a part. These sets can be

used to reason the design, performance or manufacture of the part or assemblies they

constitute. Chen and Wei (1997) mentioned that feature-based product modelling shows great

advantages over conventional solid modelling methods, such as capturing design intents,

relating functionality with product geometry, working on high-level shapes instead of

geometric details, etc. In the past twenty years, much research has been conducted using

features to support product design (Michael J. Pratt, 1988; Wingård, 1991) and the

assembling process (Van Holland and Bronsvoort, 2000). However, a product from feature-

based modelling is not able to transfer knowledge such as expertise and experience to other

designers.

c) Knowledge-based product modelling

To automate repetitive design activities, the product needs to be modelled in a way that the

model can be computed automatically and then re-generated through programmes by

automating design routines. The methodology that provides a combination of object-oriented

programming, Artificial Intelligence techniques and computer-aided design technologies

(Chapman and Pinfold, 1999) is known as knowledge-based engineering or KBE. It aims to

reduce the time and costs of product development by automating repetitive design tasks and

optimising the design process in all aspects of the design process.

24

Knowledge-based product modelling is characterised by capturing and reusing engineering

knowledge such as human expertise and product and process knowledge in the modelling

process. In 1989, Lawrence et al. (1989) suggested a public recognition of the potential of

knowledge-based engineering - “Although it’s not yet widely known, knowledge-based

engineering is having a profound effect on how a few companies are speeding their products

to market”. In the 1990s, Salustri (1996) proposed a formal theory for knowledge-based

product model representation known as the axiomatic information model for design (AIM-D).

It aims to provide a strictly logical framework for specifying information about a product at

any point during its development. Jurit et al. (1990) integrated frame-based representation

and rule-based representation into a feature-based modelling system. It can be seen as an

early attempt to combine knowledge and expertise into a product modelling system. In the

last 20 years, KBE has shown its advantages in product development in different engineering

areas such as automation, civil engineering and aerospace engineering in terms of modelling

(Rosenfeld, 1995) and cost-saving (Reddy, Sridhar and Rangadu, 2015). By investigating a

range of KBE projects, Reddy et al. (2015) reported statistics of a number of KBE application

results. From Reddy’s work, it can be clearly seen that time and manpower costs are

significantly reduced at the design stage, resulting from knowledge reuse through KBE.

This section introduced the different product modelling methods that existed in the literature

for the development of a product model. The following section explores the product model

development concerning knowledge representation in recent decades.

2.5 Product Model Development

The use of KBE methods and techniques has played an important role in design engineering

automation for the development of a product in the industry (Shehab and Abdalla, 2001;

Sanya and Shehab, 2014). As discussed in Section 2.2.5, a product model that represents and

captures all required design information could be deployed as a knowledge base that provides

25

guidance for design engineers to work on the design tasks without previous design

experience. Cooper et al. (2001) put forward three key features of a knowledge-based product

model: the What, the How, and the Why of the design. The “What” provides definitions of a

product, such as its shape, components, configurations and features. The “How” refers to the

sequence of steps, actions and transformations required to derive a product configuration

based on input requirements. The “Why” reveals the design intent behind the single rule and

the chain of reasoning that led to the final design outcome.

Many research works have been done to provide a generative representation of a product

(listed in Table 2-1). Isaksson et al. (2000) provided a brief content structure for a general

product model for product modelling (shown in Figure 2-5). The product data will vary

depending on the availability of data, length of the product life cycle and complexity of the

product, etc. It was also highlighted that the development of digital product models will

reduce the need for physical prototypes and help share and reuse product data throughout the

product life cycle.

Figure 2-5: Possible content of the Product Model. Adapted from Isaksson et al (2000).

The Core Product Model (CPM) (Fenves, 2001) is one of the most acknowledged product

models for representing design information in the literature. CPM focuses on the

26

representation of product model data, including function, form, behaviour and material,

physical and functional decompositions, and relationships among these concepts. It has been

successfully used in different Engineering projects (Roy, U., R. Sudarsan, R. D. Sriram, K.

W. Lyons, 1999; Szykman, S., 1999). However, in the literature, this CPM is mainly used as

a data model for representing content-level design information. There is a lack of

substantiation that provides detailed implementation steps for applying this Core Product

Model through use cases and tools. The interaction between the product model geometry and

the design information remains unclear in the Core Product Model.

Table 2-1: Existing product model development work to support generative representation

Model or system developed
in literature

Adopted methods Reference

Featured-based and rule-
based knowledge
representation

Represent knowledge using
feature

(Jurit H., Saia, A. and De
Pennington, 1990)

Frame-rule structure for
mould product design
system

Represent knowledge using
numbers of frames related to
each other by relationship

(Lou, Jiang and Ruan, 2004)

Axiomatic information
Model for Design (Aim-D)

Formal basis and logic of
product structure

(Salustri, 1996)

Core Product Model (CPM) Non-geometric information
class

(Fenves, 2001)

Product Family Evolution
Model (PFEM)

Extend CPM by adding
rationale for design changes

(Wang et al., 2003)

Open Assembly Model
(OAM)

Extend CPM with assembly
relations

(Mehmet et al., 2005)

A unified central product
model in the Unified
Modelling Language (UML)

Extend CPM with assembly
relations

(Gross et al., 2009)

A simulating UML model of
the FireSat mission satellite

UML classes with CAD
model

(Gross and Rudolph, 2012)

Multi Model Generator for
Aircraft Design

UML
KBE Techniques

(Rocca, 2011)

27

A knowledge reasoning engine can be used to realise the inference mechanism to provide the

“How” and the “Why” for solving a posed problem in industry (Chiang, Trappey and Ku,

2004). As explained by Rocca (2011), the knowledge reasoning approach in the inference

mechanism can be performed by selecting, using and matching various rules. Isaksson (2000)

pointed out that it is important to define rules within the model to provide an interpretation

for both humans and computers to avoid misunderstandings and misuse of product models.

The rules are usually defined through the use of object-oriented language to handle semantics

and internal relations within the model. With the development of object-oriented techniques,

many languages have been adopted to handle rules in product model development. EXPRESS

(ISO, 1994) has been designed to describe product information under the Standard for the

Exchange of Product model data (STEP) (ISO 10303-1:1994, 1994). The Unified Modelling

Language (UML)/System Modelling Language (SysML) was a visual language generally

used in system development to display and describe the structure of systems. C# is an object-

oriented and component-oriented programming language designed by Microsoft to support

the development of robust applications where rules are programmed and executed. All these

languages are successful in modelling rules in their domains, and the choice of an appropriate

object-oriented language depends on the user’s preference based on the consideration of the

development environment and the availability of tools.

Engineering rules are often formed from product design and process knowledge (Melody

Stokes, 2001). Rocca (2011) mentioned that knowledge could be stored in the form of rules

to provide the inference mechanism for solving problems. In Rocca’s work, the design rules

for product modelling are defined into the following five different types:

• Logic rules – IF-THEN-ELSE rule and complex conditional expressions

• Math rules - mathematical rules including trigonometric functions and operators for

matrices and vectors algebra, etc.

28

• Geometry handling rules - the generation and manipulation of geometric entities and

parametric rules

• Configuration selection rules – a combination of mathematical and logic rules to

change and control the topology of the product model.

• Communication rules – specific rules that allow data communication and interaction

with other applications.

After reviewing state of the art in the product model development, it can be seen that the

development of a knowledge-based product model requires the fulfilment of the following

aspects:

• Providing a generative product representation that can provide all associated design

information for product modelling

• Providing the capability of knowledge reasoning with the captured design rules

Current research works show that design rules from the existing product design knowledge

can be used to build the interaction between geometry and design information and thus

provides the knowledge reasoning. The next chapter will explore the knowledge-based

engineering techniques, product modelling standards and tools to provide a deeper

understanding of how to capture and reuse product design knowledge for developing a

knowledge-based product modelling framework.

2.6 Chapter Summary

The chapter provides an overview of product design and modelling with an understanding of

the product design process for product development. This chapter further discussed the

advancement of product design with computer-aided technologies and presented a clear

understanding of DEA. It also highlighted the existing product models and techniques

presently available for product modelling for DEA. Also, different existing product

29

modelling methods were discussed. Based on the findings from the literature review, it was

identified that KBE methods were needed to support the design engineering automation for

the development of a product model. This leads to the next chapter, which further discusses

the state of KBE methods and techniques for capturing and reusing knowledge and introduces

product modelling standards and tools.

30

3 Knowledge-Based Engineering Techniques, Product Modelling Tools

and Standards

3.1 Introduction

This chapter discusses the different KBE techniques to provide a clear understanding of KBE

methods used to capture and reuse knowledge in the product modelling process. Knowledge

Capture Methodology (KCM) is identified as the best applicable KBE technique. In addition,

this chapter also discusses model-based engineering and model-based system engineering

concepts to explain how a product can be decomposed into modular components and how the

product data can be exchanged between different platforms. Next, product modelling

standards and tools are discussed to identify the most suitable interoperable standard and

development tools for this research. Further, research gaps are identified based on the

findings from the literature review in Chapter 2 and this chapter.

3.2 Knowledge-Based Engineering (KBE)

KBE is a relatively new engineering method (since 1992) that provides a combination of

object-oriented programming, Artificial Intelligence techniques and computer-aided design

technologies (Chapman and Pinfold, 1999). KBE systems were developed to capture the

product and process information to support the modelling of engineering or business

processes. The resulted model from KBE systems could be used to automate all or part of the

process, which will shorten the development of the product and help deliver the design faster

(Chapman et al., 2007). By explaining KBE from the perspectives of KBE stakeholders (a

company manager, a KBE developer, Engineers, Users, etc.), Rocca et al. (2012) presented

that KBE is a high potential technology to support product design through knowledge reuse

and design automation.

31

3.2.1 KBE and CAD

A misunderstanding that often arises with KBE is that it is an alternative to CAD. Cooper et

al. (Cooper, Fan and Li, 2001) presented in their work that KBE does not replace the need for

CAD, but it will help reduce the CAD activities that are needed for a particular task and free

up design engineers for other programmes. CAD will still be required to provide geometry

files to relate KBE application. Since KBE techniques are identified as enabling methods that

could be utilised to achieve knowledge capturing and reusing in the product modelling

process, a range of KBE methodologies is reviewed in the following Section 3.2.2 to

understand how they deal with knowledge capture and reuse and to identify the best

applicable KBE method.

3.2.2 KBE Methods

MOKA (Methodology and tools Oriented to Knowledge-based Applications) (Melody

Stokes, 2001) is one of the most successful KBE methodologies for capturing, structuring and

formalising knowledge in recent years. It splits the knowledge up and associates different

knowledge with predefined problem domains, allowing users from diverse technology

backgrounds to select and use it (Reddy, Sridhar and Rangadu, 2015). MOKA divides the

KBE application lifecycle into six phases (as shown in Figure 3-1).

32

Figure 3-1: KBE application lifecycle from MOKA. Source: Melody Stokes (2001).

MOKA methodology emphasises the capture (phase 3) and the formalising of the structured

knowledge (phase 4) through the use of informal and formal models. As explained by

Oldham, the “Capture” phase uses ICARE forms (Illustration, Constraint, Activity, Rules and

Entity forms) as an “Informal Model” to collect and structure the existing knowledge

(Oldham et al., 1998). In this way, the knowledge is represented so that users can understand

it without being experts in formalisation languages. The “Formalise” phase converts the

captured knowledge from the “Informal Model” into a “Formalised Model” using an

interoperable format that can be used by digital tools and software. MOKA has been regarded

as a successful methodology for the development of a KBE system (Gómez de Silva Garza

and Maher, 2000). It addresses two main focuses on the developing KBE system for design

engineering automation: “a common and unifying framework” and “the reuse of knowledge”

(Klein, 2009).

While MOKA was aimed at larger industrial KBE applications and relied on heavily

industrial involvement, Lovertt et al. (2000) proposed a methodology to support KBE

33

implementation in Small to Medium Enterprises (SMEs), namely KOMPRESSA (Knowledge

Oriented Methodology for the Planning and Rapid Engineering of Small-Scale Application).

Unlike MOKA, KOMPRESSA can satisfy end-user requirements through the entire

development process of KBE with the involvement of existing techniques and experience

from the enterprise to a great extent (Chapman et al., 2007). In KOMPRESSA, five key

requirements are listed for developing a KBE application: functionality, user interface,

information, knowledge elicitation and performance (Lovett, Ingram and Bancroft, 2000).

The KOMPRESSA modelling set is shown in Figure 3-2. KOMPRESSA shows the

capability of using graphical diagrams and supplementary text to capture knowledge from

end-users, although limited tools and techniques are proposed.

Figure 3-2: The KNOPRESSA modelling set. Source: Lovett, Ingram and Bancroft (2000).

DEE (Design and Engineering Engine) (Rocca and Tooren, 2007) is an overall

multidisciplinary design optimisation approach that is more powerful than MOKA due to its

advanced analysis mechanism and optimisation methods (Reddy, Sridhar and Rangadu,

2015). It extends MOKA by providing detailed multidisciplinary design analysis and

34

optimisation in the KBE application. The DEE methodology process flow is shown in Figure

3-3. However, Curran et al. (2010) indicated that the limitation of DEE exists in the lack of

methods for knowledge acquisition and transition.

Figure 3-3: DEE process flow to support multidisciplinary design optimisation. Source:

Berends, Van Tooren and Schut (2008)

KNOMAD (Knowledge Nurture for Optimal Multidisciplinary Analysis and Design) (Curran

et al., 2010) is a KBE methodology developed for multidisciplinary analysis and design by

utilising integrative knowledge in product design and manufacture. It was developed to

address the shortcoming in DEE and to support the requirements of knowledge maintenance

that are not available in MOKA. Figure 3-4 shows the KNOMAD Methodology framework.

35

Figure 3-4: The KNOMAD Methodology. Source: Curran, Verhagen and Van Tooren (2010).

Both DEE and KNOMAD are targeted for multidisciplinary knowledge representation to

improve the current KBE process. However, there is still a lack of substantiation for the

individual methodology steps with respect to implementation for product modelling.

KCM (Knowledge Capture Methodology) (Chapman et al., 2007) focuses on capturing

design knowledge and decomposing a product into parts with attributes and reorganised

knowledge. After classifying subcomponents and building relationships between them,

parameterisation is performed based on the application environment and constraints. As a

result, subcomponents can be reused in new product development (Terpenny, Strong and

Wang, 2000).

In KCM, there are eleven steps that guide the users from understanding the product model to

the decomposition of the product model and identifying the part, attribute and knowledge that

meet the requirements within a visualisation environment. Figure 3-5 shows a diagram of the

eleven steps provided by Terpenny, Strong and Wang (2000)

36

Figure 3-5: The eleven KCM steps. Adapted from Terpenny, Strong and Wang (2000).

According to Chapman et al. (2007), KCM is an appropriate method for product modelling as

it has evolved from a natural understanding of the way design engineers work and also

presents clearly how parts and their relationships to a product are generated from a designer’s

perspective. KCM is suitable for parametric geometry representation as components are

associated with parametric values in the KCM process (Terpenny, Strong and Wang, 2000).

All these reviewed KBE methodologies shared many main principles with MOKA and have

been created to serve different areas. Table 3-1 shows the focus areas of different KBE

methodologies.

37

Table 3-1: Focus areas of reviewed KBE methodologies

KBE methodologies Focus area

MOKA Capture and formalise knowledge for larger
KBE application

KOMPRESSA KBE application development for SMEs
DEE Multidisciplinary design optimisation

KNOMAD Multidisciplinary analysis and design

KCM Design knowledge capture and
decomposition

By comparing the methodologies introduced above, it can be seen that KCM has greater

compatibility with product modelling, especially in capturing, structuring and decomposing

design knowledge. Because in KCM, a product and its design knowledge are decomposed

into components. Each component is linked with an instance in the database. By defining the

relationship based on design rules and customer specifications, a component can be reused

and associated with new parameters in a new model. The knowledge capture and product

decomposition processes can be repeated to provide a comprehensive understanding of

necessary knowledge from each component of a product for reuse (Chapman et al., 2007).

The implementation of the KCM methodology in this research is further explained in Chapter

5.

Although these reviewed KBE methodologies have shown advantages in terms of knowledge

capture, structuring, and reusing, they still have some limitations. Studies from Fan and

Bermell-Garcia (2008) and Cederfeldt et al. (2006) show that there are “black-box” problems

in the communication between different KBE systems. Performed tasks and processes by the

KBE systems are implemented in a way that is not readable and understandable to the end-

users. The transparency of KBE systems is necessary to provide adaptable, structured and

reusable knowledge bases. Furthermore, Curran et al. (2010) pointed out that one major

shortcoming of existing KBE methodologies is the lack of substantiation steps. Limited

38

implementation advice and use cases with tools and techniques examples are provided and

discussed in the existing KBE methodologies.

All these limitations need to be addressed in this research for the development of a product

model and for the development and implementation of a KBE framework for the purpose of

capturing and reusing design knowledge in product modelling to support design engineering

automation. In agreement with Silva (2015), a model itself can be regarded as a system, with

its own identity, complexity, elements, relations, etc. Meanwhile, the implementation of the

KBE framework requires the development of a prototype KBE system. Therefore, in this

research, the development of a product model and the development and implementation of a

KBE framework can be considered from a Model-based Engineering view. The following

section explores KBE with Model-based Engineering to provide an understanding of the

development of a product model and to explore the methods of avoiding “black-box”

problems for the development and implementation of a KBE framework.

3.3 KBE with Model-Based Engineering

3.3.1 Model-Based Engineering Overview

In System Engineering, Model-based Engineering (MBE) is specialised in aspects including

system architecture, requirement traceability, performance analysis, simulation, etc. MBE is

“an approach to engineering that uses models as an integral part of the technical baseline that

includes the requirements, analysis, design, implementation, and verification of a capability,

system, and product throughout the acquisition life cycle”(NDIA Systems Engineering

Division M&S Committee, 2011). It is an emerging approach used to deal with the increasing

complexity of systems.

MBE is commonly classified as the model-based system engineering (MBSE) in the System

Engineering field. The International Council on Systems Engineering (INCOSE) defines

39

MBSE as the “formalised application of modelling to support system requirements, design,

analysis, verification and validation activities beginning in the conceptual design phase and

continuing throughout development and later life cycle phases.” (International Council on

Systems Engineering, 2007). It helps to improve interactions of stakeholders and developers

by providing better knowledge capture, domain information sharing and enhanced reuse of

artefacts (Rodrigues Da Silva, 2015).

3.3.2 Applying Key Concepts from MBE and MBSE into KBE

A product model itself can be regarded as a system. In KCM, a product model is decomposed

into atomic models with attributes and reorganised knowledge. This can be regarded as a

system with sub-systems under it in MBE. To deal with models and subdivided models in

KCM, some key concepts in MBE and MBSE are adapted in this research.

a) UML/SysML structure

A standardised and robust modelling language is the key enabler of MBSE (Soyler and Sala-

Diakanda, 2010). In order to make models more visual and intuitive, software and systems

engineers have developed various graphical modelling languages.

The Unified Modelling Language (UML) is a general-purpose graphical modelling language

that can be used to specify, visualise, construct, and document the artefacts of software

systems (Jon Holt, 2013). It was adopted by the Object Management Group (OMG) as a

standard in November 1997 (Rumbaugh, Jacobson and Booch, 1999). The UML defines

thirteen types of diagrams that capture decisions and understanding about a system and allow

the requirements, behaviour and structure of a system to be defined. UML has been widely

used among multiple application domains (Object Management Group, 2015).

The System Modelling Language (SysML) is an extension of UML that originated by

adapting the UML for System Engineering applications (Jon Holt, 2013). It provides an

additional set of modelling diagrams and constructs to model complex systems, including

40

hardware, software, data, procedures and other system components (Estefan, 2008). In

particular, as described by OMG, SysML provides graphical representations with “a semantic

foundation for modelling system requirements, behaviour, structure, and parametric, which is

used to integrate with other engineering analysis models” (Object Management Group, 2008).

Together, UML and SysML provide designers and users with a ready-to-use, expressive

visual modelling language so they can develop and exchange meaningful models. Although

UML and SysML are initially developed for System Engineering use, they are not attached to

any methodology or domains (Estefan, 2008). Many software engineering methodologies and

commercially-offered model-based systems incorporate the UML and SysML into specific

methods and artefacts produced as part of the methodology (Bajaj, 2008; Bajan et al., 2011).

Thus, the UML and SysML can be regarded as visual modelling languages applicable in this

research to represent product model structure.

b) Neutral standard

In MBE and MBSE, standards or Application Protocols are always required to enable data

exchange between different systems (Friedenthal, Griego and Sampson, 2007). Using neutral

standards in the development of systems provides unambiguous concepts and practical

support for the interoperability of tools. Thus, in this research, the product data and

knowledge from KCM need to follow an interoperable standard and format to enable steady

data exchange between different product modelling systems. The product model also needs to

be developed in a neutral format for the exchange of data between different product

modelling systems and related tools.

Therefore, two key concepts from MBE and MBSE are adopted in this research.

UML/SysML is employed as a standardised modelling language to represent the product

model structure. Meanwhile, in order to develop a product model that is interoperable

between different product modelling systems and tools, a neutral standard and format will be

41

adapted to support the exchange of data during the whole product development lifecycle and

to keep the product model in a consistent format for knowledge reuse.

The following sections explore the existing standards (Section 3.4) and tools (Section 3.5) in

product modelling with KBE to understand and also identify the most appropriate standard

and the available development and implementation tools.

3.4 Standards and Formats in Product Modelling

The following Section 3.4.1 reviews the existing formats and standards used for product

modelling with CAD software.

3.4.1 Product Modelling Formats and Standards

The formats of the product model have co-evolved along with the development of CAD

software. Generally, the formats of CAD files can be divided into two types which are native

and neutral. The native formats are based on and created by specific CAD software. These

native formats are regarded as copyrighted intellectual property of the CAD software for

which they are used. Therefore, the product data stored in native formats are only readable by

the respective programs. The exchange of these product data between different CAD software

within native formats is performed through direct data translation. However, direct data

translation is typically unidirectional, partially functional and not standardised because most

native formats are proprietary (Bondar et al., 2015). Examples of native formats from

literature include AutoCAD (.dwg), Blender (.blend), SolidWorks (.sldprt and .sldasm),

SketchUp (.skp), etc. However, since this literature review section focuses on identifying an

interoperable standard/format between different product modelling systems, the review of

native formats is beyond the scope of the current research.

42

Neutral formats are open-format and not proprietary. Neutral product modelling standards are

typically used as neutral 3D formats for sharing product data between different CAD

software. In this research, three neutral product modelling standards are reviewed.

a) IGES

The Initial Graphics Interchange Specification (IGES) is a neutral file format that enables

digital data exchange in CAD systems. IGES is the first standardised data exchange format

designed to meet the requirements of product definition data communication between

different CAD/CAM/CAE systems (Zha and Du, 2002). The IGES file has the format of .igs

and is based on ASCII standard code. The IGES file is written by sequence and is readable by

all text editors. However, after the initial release of STEP, the development of IGES started to

decline, and the last update of IGES was in 1996.

b) STEP

The word “STEP” is the acronym of the Standard for the Exchange of Product model data. It

is the general name of the international standard ISO-10303, which was approved in March

1994 (Tang et al., 2001). Gu and Chan (1995) described STEP as an internationally

recognised standard that provides a uniform data representation and information exchange

mechanism used in the product life-cycle. It also ensures a steady exchange format and

dependable application interfaces between different computer systems and CAD software

(Owen, 1997). The final aim of the STEP is to create a complete product representation in a

general and consistent format (ISO 10303-1:1994, 1994). STEP provides a neutral way of

describing information relevant to a product, all the steps of its life cycle, relying on a set of

general formalisms.

c) JT

JT (Jupiter Tessellation) is the common interoperable format used across all Siemens PLM

software. It became an ISO-standardized 3D data format (ISO 14306) in 2012. JT is used in

43

the industry for product visualisation, collaboration, CAD data exchange, and in some also

for long-term data retention. It stores faceted information, boundary representation surfaces

(B-Rep), Product and Manufacturing Information (PMI), and Metadata (textual attributes)

either exported from the native CAD system or inserted by a product data management

(PDM) system (Siemens PLM, 2019a).

Table 3-2: Comparison between IGES, STEP and JT

Standards Advantage Disadvantage Reference

IGES • Store drawing information in
an ASCII or binary neutral
format, which can be
exchanged between various
users easily.

• Decreasing usage
• Lack of formal

information model
• Problems during file

exchanges and
manipulation

• Hard to understand

(Bhandarkar
et al., 2000)

(Marjudi et
al., 2010)

(Zha and Du,
2002)

STEP • Steady data exchange
• High usage and wide

dissemination

• widely supported by
common CAD software

• Tedious classes
• High costing and skills

are needed for standard
exchange

(Gu and
Chan, 1995)

(Marjudi et
al., 2010)

(Owen,
1997)

JT • Increasing usage in
Automotive

• Digital mock-up (DMU)
analysis

• Lack of maturity in
existing converters and
software for data
exchange

(Fröhlich,
2011)

(Siemens
PLM, 2019a)

Table 3-2 shows a comparison between IGES, STEP and JT standards. By comparing these

three standards in product modelling, it can be seen that STEP is the appropriate neutral

standard to be used for developing an interoperable product model as it provides steady data

exchange and is also widely used in industry and supported by common CAD software. The

next sections 3.4.1 to 3.4.3 explore a deeper understanding of “how to model with STEP”,

44

and also provide an understanding of STEP Application Protocols and also review research

works that have been done in product modelling by the use of STEP in recent years.

3.4.2 Modelling with STEP - EXPRESS and EXPRESS-G

EXPRESS (ISO, 1994) language is used in STEP as a tool to define the product data in an

object-oriented and integrated environment (Peng and Trappey, 1998). It is an object-oriented

data descriptive language by which targets are classified and built based on their data entities,

attributes, relationships and constraints, etc. Moreover, it provides a mechanism to define

application protocols by adding specific subclass inheriting required information from their

superclass (S. Rahimifard, 1996; Peng and Trappey, 1998).

Usually, the EXPRESS information models within STEP application protocols can become

quite long and complex (Kahn et al., 2001). Hence, EXPRESS-G (STEP Tools Incorporated,

2008) is introduced as a formal graphical notation of EXPRESS that can assist users in

understanding and managing the complexity of large information models. EXPRESS-G

diagrams show relationships and structure of entities, attributes, type declarations and

hierarchies of inheritance more clearly than the plain EXPRESS text. Despite this, Arnold

and Podehl (1999) stated that EXPRESS-G could not reach the full expressiveness of

EXPRESS. There is still a lack of possibilities to visualise functional components, local or

global rules, and algorithms.

3.4.3 STEP Application Protocols - AP203, AP214 and AP242

As mentioned before in Section 3.4.1, STEP is the international standard for the exchange of

product model data. It addresses product model data from mechanical and electrical design,

geometric dimensions and tolerances, analysis and manufacturing, as well as additional

information specific to various industries such as automotive, aerospace, building

construction, ship, oil and gas, process plants and others (Curran et al., 2015). Due to the

complexity, STEP is divided into smaller component parts, including a series of ‘Application

45

Protocols’ or APs, each covering a particular industrial domain. And each AP is titled by the

domain that it applies to (Kc Morris, 1999).

Three Application Protocols are reviewed in terms of mechanical product design and

automation: AP203, AP214 and AP242. AP203 (Configuration Control Design) (Kc Morris,

1999) applies the domain of general Mechanical CAD. It is primarily supported by the

aerospace and defence industry (Ap242.org, 2016). This protocol is used to exchange data

describing designs represented as solid models and assemblies of solid models.

However, the limitation of AP203 lies in the fact that it still does not cover the data which is

not applied to the design phase, such as manufacturing data. In comparison to AP203, AP214

(STEP AP203 and AP214 Protocols, 2016) focuses more on automotive design. It contains

products such as mechanical parts, assemblies, and tools used by manufacturing (in principle

applied to the description of cars). The scope of AP214 (Core Data for Automotive

Mechanical Design Process) in Mechanical CAD is roughly equivalent to AP203.

Nevertheless, AP214 does not cover the parametric representation of shapes which is

required in this research.

AP242 (Managed model based 3D engineering) (STEP AP242 Project, 2014) is a newly

released standard in 2014 that combined the scope of AP203 and AP214 with other widely

used STEP protocols. It is designed by using a modular architecture that enables further

evolution and enhancements of the standard in a more flexible way. AP242 introduces a new

mechanism that allows describing references between elements of several models written on

separate files. This capability eases the CAD data exchange and archiving between some

different protocols and improves the efficiency of processes by integrating the various

enterprise functions (STEP AP242 protocol, 2014).

However, the implementation of AP242 in commercial CAD software is still very limited and

unspecific in the literature. Some CAD vendors claim to support AP242 functionalities;

46

however, those are mainly the ones that have been defined in AP203 and AP214 (Coronado,

2014). Schätzle (2016) pointed out that the CAD vendors provided broad descriptions about

the implementation level of AP242 only for advertising. There is a lack of detailed

implementation of AP242 within CAD systems and KBE applications. The following section

reviewed relevant research work in product modelling with STEP in recent years.

3.4.4 Relevant Research Work in Product Modelling with STEP

Many efforts have been made to utilise STEP to support product modelling in recent years.

Gu and Chan (1995) developed a STEP-based generic product modelling (GDM) system in

their research. In their work, five libraries (product and version, relationship, geometric item,

material, and tolerance) are used as integrated resources to model a product. It firstly shows

the capability of adapting integrated data sources to construct a product. Peng and Trappey

(1998) recognised that the STEP information model has a three-layer architecture: the

application, logical, and physical. The logical layer defines the product representation of

entities based on the entire product life-cycle. The application layer contains the necessary

models for specific applications. The physical layer provides information such as STEP file

format, data exchange, etc. The three-layer architecture is regarded as guidance for

developing STEP-based product modelling system architecture by other researchers (Tang et

al., 2001). Wu et al. (1992) successfully developed an information model based on STEP

entities to integrate CAD and CAE applications for mechanical systems. Tang et al. (2001)

presented a product modelling system for the stamped part and die development. EXPRESS

defined schemas are used to construct the logical layer, which includes all information related

to the stamped part and die, such as shape, manufacturing resource, tolerance and material.

Zha and Du (2002) developed a STEP-compatible model for a mechanical product assembly

planning system. They presented five fundamental product data categories for supporting a

particular knowledge-based application for assembling, which are the shape information, the

47

form feature information, the tolerance information, the mechanical part information and the

assembly information.

While the usage of STEP for product modelling was increasing, Männistö et al. (1998)

stressed that the potential of STEP is restricted when companies put forward new product

modelling concepts and specify more definitions. In STEP, a fixed standard data schema is

predefined for modelling single products. Products of a company are also represented as

instances of that schema. To be compatible with new product classes of a company,

redefinition of EXPRESS instances is required to describe new company-specified concepts

in terms of multiple variants of products. To overcome this problem, the company-specific

specialisation of the concepts can be treated as data exchanged between different systems

(Männistö et al., 1998). For example, a company can define an extension schema by using

subtypes of the existing concepts in the STEP application protocol. Nevertheless, this

approach may give rise to changes in the basic rules of STEP.

In the primary design stages, the descriptive information of a product is discrete and

unorganised, while knowledge is in various forms instead of pure data. As pointed out by

Fenves (2001), STEP is used to exchange information, which is the outcome of design

activities, rather than the information generated and used through the development of a

design. Therefore, STEP tends to be invoked when all design of a product is fixed and the

product is ready for manufacturing.

Kim et al. (2008) mentioned that one obvious drawback of the STEP format is that it does not

allow for the exchange of parameters, design intent and other data that may be associated

with the CAD models. To overcome this problem, some research work has been done to

enrich the product model data in STEP by mapping external data with STEP entities and

classes (Arnold and Podehl, 1999; Kahn et al., 2001; Barbau et al., 2012). However, Barbau

et al. (2012) stated that defective issues still exist in the integration of STEP data when

48

combined with other STEP or non-STEP product information. They presented an approach to

enable the translation of STEP and its instances to Ontology Web Language (OWL) (OWL

Web Ontology Language Overview, 2016). However, information structure translation

between different languages will always generate new problems such as data missing and

mismatching, and the mapping with the entire STEP standard is complicated and time-

consuming.

Although many research has been done on utilising STEP for product modelling in the last

two decades, Yang et al. (2008) pointed out that most of the existing research work are still

very limited in terms of how to perform the integration of STEP and product modelling

methodologies along with existing data resources to generate a completed product modelling

framework. Therefore, to address these limitations of STEP and avoid the complex and

tedious mapping process and avoid data missing and conversion errors, a new product

modelling and implementation method for integrating STEP and various product data is

required.

3.5 Tools in Product Modelling

During the past 50 years, various CAD software and tools have been developed to aid product

design and automate product modelling tasks. As discussed in Section 2.3 of Chapter 2, this

research aims to develop a method that supports DEA by reusing CAD models and capturing

and reusing the existing knowledge. Thus, a range of product modelling tools has been

reviewed to identify the best implementation tools which are not only capable of displaying

the CAD models but also capable of capturing and reusing the existing knowledge during the

product modelling process.

49

3.5.1 Traditional CAD Software

In this research, traditional CAD software is defined as commonly used CAD software and

tools that enable users to design or visualise engineering products in 3D within an integrated

graphical user interface on a computer system. Several traditional CAD software and tools

are reviewed in this research (see Table 3-3) in terms of the following aspects:

• Open Source – if the software is released under a license in which the copyright

holder grants users the rights to use, study, change, and distribute the software and its

source code to anyone and for any purpose.

• Geometry View – if the software can display the 3D geometry of imported CAD

models in the interface

• Structure View – if the software can display the product structure (hierarchy of

assembly) of the imported CAD model in the interface

• Application Development - if the software allows the users to develop applications by

coding in the software

• Interface Design - if the software allows the users to develop a user interface in the

software

• Data capture and reuse – if the software can capture the user’s input and store the data

and reuse the data.

• Availability - if the software is accessible to users

50

Table 3-3: Reviewed traditional CAD software (version up to 2021) in this research

Tools Open
Source

Geometry
View

Structure
View

Application
Development

Interface
Design

Data
Capture

and Reuse

Availability

AML x ✓ ✓ x ✓
Only in

proprietary
format

License
required

SolidWorks x ✓ ✓ x x
Only in

proprietary
format

License
required

CATIA x ✓ ✓ x x
Only in

proprietary
format

License
required

Siemens
NX

x ✓ ✓ x x
Only in

proprietary
format

License
required

Autodesk
Inventor x ✓ ✓ x x

Only in
proprietary

format

License
required

Creo x ✓ ✓ x x x Free

CAD
Exchanger x ✓ ✓ x x x Free

STP viewer x ✓ ✓ x x x Free

IDA-STEP x ✓ ✓ x x x Free

CAD
Assistant x ✓ ✓ x x x Free

Free CAD ✓ ✓ x x x
Only in

proprietary
format

Free

As can be seen from Table 3-3, the reviewed traditional CAD software are capable of

displaying CAD models in the user interface. However, the capability of capturing and

reusing user input data is limited to proprietary format only. None of these reviewed

traditional CAD software support application development or user interface design for

development purposes by end-users. Most industrial and commercial CAD software, such as

SolidWorks, CATIA, Siemens NX and Autodesk Inventor, are license-required.

51

Based on the above review, it can be seen that there are very limited tools that support the

interaction between end-users and the product modelling process through the development of

a user interface while using a generic format within an interoperable standard. In this

research, the interaction between end-users and the product modelling process is referred to

as knowledge capture and reuse of the existing design knowledge. The following Section

3.5.2 introduces Adaptive Modelling Language (AML) and discusses the availability of this

knowledge-based engineering modelling tool.

3.5.2 Adaptive Modelling Language (AML)

Adaptive Modelling Language (AML) is an object-oriented, knowledge-based engineering

modelling framework developed by Technosoft (Technosoft, 2013). AML application

enables multidisciplinary modelling and integration of the entire product and process

development cycle. AML provides the capability of user application developments which

enables the users to programme in the current modelling environment. In the AML

environment, a system can be integrated with multiple functions such as finite element

analysis, 2D/3D sketch, etc. For these reasons, AML can be considered as a computing

language to define product features, capture knowledge from the modelled domain and create

parametric models with that knowledge. In addition, by implementing a user case, a product

can be visualised through the integrated 3D graphical module in AML. However, due to its

limited accessibility, AML is not available to general users. Thus, in the following section,

alternative product modelling tools are reviewed in order to identify the most appropriate and

available tool that can provide product modelling interaction, the capability of visualising

CAD models and as well as capturing and reusing knowledge.

3.5.3 Gaming Engines in Product Modelling

The trend of product modelling for design engineering automation has evolved from manual

drafting to CAD, from CAD to Computer Aided Product Modelling, and then to Knowledge-

52

Based Product Modelling. This has required the product modelling software and environment

to provide more interaction between end-users and the product modelling process through the

reuse of existing knowledge to support the product modelling.

Barnes (2007) stated that the development of an interactive application consists of two main

components: the application and the content. The application aims to provide information in

real-time to end-users and the ways to interact with it. The content contains the information

through which the application navigates and provides a view to the users.

COLLADA technology (Khronos Group, 2004) has been developed and widely adopted in

the domain of interactive applications in the industry. The file extension for the COLLADA

format is “.dae”. Although being popular in the gaming industry, the original intention behind

the COLLADA format was to serve as an international standard for the 3D visualisation of

industrial data and digital assets exchange (ISO/PAS 17506, 2012). The announcement of the

COLLADA format becoming an ISO standard in industrial automation systems and

integration shows the potential of adopting elements from the gaming industry in

Engineering. According to the interactive qualifying project report from Haas (2014),

developers have recently realised that game engines can be successfully used for non-game

applications development such as architecture prototyping, interactive applications and

research data visualisation.

Gaming engines are generally used as an integrated development environment to enable the

rapid development of game applications and build interactive applications. Although several

gaming engines are in the market, Unreal and Unity are the two main gaming engines widely

used in the current gaming industry.

Unreal was first released in 1995 and has become one of the major game engines being

employed in the gaming industry. The Unreal gaming engine features fast rendering and

high-quality graphics; hence it is preferred for building large games.

53

Unity is a cross-platform game engine that was announced in 2005. It has become more

popular and adopted by a growing number of users in recent decades due to its easy

accessibility, user development support and strength in making 2D and 3D simulations

(Arora, 2021). Apart from the gaming industry, Unity is also used by industries such as

automotive, architecture, engineering, and construction (Juliani et al., 2018; Unity

Technologies, 2021). Hussain et al. ’s (2020) survey showed that Unity has been playing an

active role in the game development field, and the usage and industrial devotion to Unity is

increasing and amplifying.

After reviewing the standards and tools for product modelling in sections 3.4 and 3.5, the

following section explores some fundamental concepts of Design Engineering Automation

with KBE to identify key aspects that should be considered when modelling a product using

KBE system to support DEA.

3.6 Key Concepts of DEA with KBE System Development

For complex product design, the current engineering design process has shown an excessive

imbalance between the time spent on non-creative activities and the time available for design

innovation. It forces the KBE system to facilitate multi-fidelity, generative modelling of

complex products and optimisation in a reliable and time-efficient manner (La Rocca and

Tooren, 2012). The following sections provide a further review of different aspects that

should be considered for Design Engineering Automation using KBE techniques.

3.6.1 Multi-Fidelity

Fidelity is the level of accuracy or complexity of a product model (Fernández-Godino et al.,

2016). A high-fidelity model (HFM) contains more details and has higher complexity of a

product. As known, one common use of a product model is for simulations. Therefore,

performing a simulation with an HFM is more time-consuming and computationally

54

expensive. In contrast, using a low-fidelity model (LFM) for simulations could save

computation time, but the accuracy of the model itself may not meet the requirement.

In some simulation cases, surrogate models are built because the product data is too

expensive to obtain or because there are regions where the data is not available. In other

words, surrogate models are approximations that are fit to the available data of a phenomenon

and make a functional relationship between input variables and the output quantities of

interest. However, even for some high-fidelity models, performing simulations with fitted

surrogate models may also be too expensive. To overcome this problem, the multi-fidelity

model is utilised. It combines HFM and LFM to achieve proper accuracy at a reasonable cost.

An HFM can be simplified to realise the multi-fidelity of a model. The simplification can be

done in different ways, for example, by linearising the system, using averaged results in one

dimension, using simpler physics models, less refined domain, or partially converged results

(see Figure 3-6).

Figure 3-6: Converting HFM to LFM by different simplifications. Adapted from Fernández-

Godino et al. (2016).

55

3.6.2 Generative Modelling

As a product usually inherits a number of structures from the previous design, when

designing a new product, the lead-time required to determine a candidate model from

alternatives is always a bottleneck. Therefore, if the product is modelled with the knowledge

describing why and how the product is generated, the lead-time in design analysis and

evaluation can be saved (Isaksson, 2003). A generative model is not just a CAD model but

describes the engineering intent behind the geometric design. It captures the design strategy

required to generate a particular product from a specification (La Rocca, Krakers and van

Tooren, 2002). In terms of generative modelling, the framework developed in this research

can capture both geometrical information and its corresponding design knowledge. When

designing a product variant in a generative modelling environment, the designer can search

for a broader set of product design configurations rather than being restricted to simple

parameter changes. A generative model provides designers with a set of possibilities based on

the knowledge hierarchy from predefined products. This empowers designers to search for a

broader set of product design configurations rather than being limited to simple parameter

changes. For instance, pre-existing knowledge provides designers with the information

required to analyse why the product is generated. This could also help designers to trace how

the product is revised and updated. Consequently, the lead time will become shorter by using

pre-existing knowledge defined in the product model.

3.6.3 Common Computational Model

According to Gilkinson et al. (2015), generative modelling cannot achieve complete

integration of knowledge and design cycles by itself. To overcome this, common

computational models (CCMs) can be employed to represent the design intent by storing the

how, why and what of the design, connecting conceptual, preliminary and detailed models

with information on the product and process, as well as the multi-fidelity requirements of

56

associated applications (Chapman and Pinfold, 2001). Furthermore, common computational

models could allow seamless data exchange for all relevant engineering tools by providing a

common interface and following an interoperable standard.

3.6.4 Design Optimisation

When a product is created to satisfy the required function, the designer tries to find the best

solution for the task at hand. Hence engineering design optimisation (EDO) is performed, in

which certain parameters need to be determined to achieve the best measurable performance

under given constraints (Chang, 2016). And to perform EDO, knowledge about the design

status, design variables, conditions, and relationships between the design variables are usually

required (Roy, Hinduja and Teti, 2008). However, due to the lack of a detailed product

knowledge base that predefines all the design variables and shows the interaction between

different parameters and product performance, the optimisation process is often manual,

time-consuming and includes a step-by-step method to identify the best combination of the

product and driving parameters for the best solution. Thus, for saving time and manpower

costs in optimisation, it is necessary to design products that can provide a full solution space

based on existing design knowledge to automate the manual optimisation process.

After identifying key aspects that should be considered for developing a product model using

KBE for DEA, the following section reviewed the recent relevant research works that have

been done in KBE framework development and their implementation to support engineering

activity.

3.6.5 Applying Key Concepts in KBE Product Modelling System Development

Based on the review from the above sections, to achieve product design in a shorter time with

high quality and to support various applications of the product, the KBE system could take

into consideration the concepts of multi-fidelity, generative modelling, common

computational model and design optimisation (see Table 3-4). However, since this research

57

focuses on developing a method to enhance the product modelling process in product design,

the product modelling system to be developed in this research does not require multi-fidelity

for simulation. Nonetheless, the characteristic of multi-fidelity could still be achieved by

varying the knowledge embedded in the product model.

Table 3-4: Characteristics of a product modelling system from the KBE perspective

Characteristics Capability Benefits Reference

Multi-fidelity Vary product complexity Save time of

simulations

(Fernández-Godino

et al., 2016)

Generative

Modelling

Store design intent and

product configurations

information

Save lead-time in

design analysis and

evaluation

(La Rocca, Krakers

and van Tooren,

2002; Isaksson,

2003)

Common

Computational

Model

Provide a common

interface to connect

models with associated

applications tools

Save model

transferring time

between different

engineering tools

(Chapman and

Pinfold, 2001;

Gilkinson et al.,

2015)

Design

Optimisation

Integrate rules to help

identify the best

combination of the

product performance and

driving parameters and

avoid making mistakes

in engineering tasks.

Achieve the best

solution for

engineering tasks

(Roy, Hinduja and

Teti, 2008; Martins

and Lambe, 2013;

Chang, 2016)

3.7 Related Research Work in KBE Product Modelling Framework

Development

Many frameworks and applications have been developed to support engineering automation

through the application of KBE techniques in recent decades. Features and limitations of

58

KBE frameworks which are presented in the existing KBE methodologies (Lovett, Ingram

and Bancroft, 2000; Melody Stokes, 2001; Chapman et al., 2007; Rocca and Tooren, 2007;

Curran et al., 2010) have already been introduced and discussed in Section 3.2. This section

discussed some of the existing frameworks and applications that addressed product modelling

from the KBE perspective.

Hale (2002) introduced PACKS (The parametric composite knowledge system) and SCAD

(The Steered Composite Analysis and Design System) as two knowledge-based software

systems for composite design, analysis and manufacture. Even though these two systems are

successful in the aerospace industry and other manufacturing sectors, they mainly specialise

in composite structure design and fibre placement process. There is still a vacancy in the

geometry representation of product modelling within KBE systems.

Adaptive Modelling language (AML) is utilised in both PACKS and SCAD systems to

provide an object-oriented knowledge framework for representing products. It enables users

to “construct a class hierarchy in which complex classes inherit properties from simpler

classes” (Hale, 2002). However, as discussed in Section 3.5.2, AML software is not available

to general users due to its limited accessibility.

Sanya and Shehab (2014) proposed an ontology framework for developing a platform-

independent knowledge-based engineering system in the aerospace industry. It enables the

reuse of knowledge and eliminates platform-specific approaches in the development of KBE

systems. However, a limitation of their work is that the graphical display is limited to

primitive shapes rather than a complex engineering product. The integrated knowledge base

still needs improvement to capture the design rules of a complex product.

Many innovative KBE frameworks have been proposed to support manufacturing system

interoperability (Giovannini et al., 2012; Chungoora et al., 2013; Fortineau, Paviot and

Lamouri, 2013). However, these approaches are mainly focused on modelling manufacturing

59

engineering knowledge. Data transfer between CAD and KBE applications is mostly at the

theoretical level (Schätzle, 2016). There is still a lack of KBE approaches that focus on

modelling and transferring design engineering knowledge.

3.8 Literature Synthesis

3.8.1 Literature Review Summary

Chapters 2 and 3 conducted the literature review in the areas of Product Design, Design

Engineering Automation, Product Modelling and Knowledge-Based Engineering. The

literature review shows that embodiment design and detail design are the most time-

consuming stages in the product design process and are most conducive to machine

assistance. Computer aided tools and systems, such as CAD, CAE, CAM, and CIM, have

shown great advantages in reducing the elapsed time, manpower, and resources expended in

completing the embodiment design and detail design process for the creation and

modification, analysis or optimisation of a product. However, CAD tools and systems require

the designer to have knowledge and design experience of the product to judge the correctness

of the function and understand what is going on beyond what is graphically shown on the

computer screen. There is a need to integrate product design knowledge into a formal product

model through the design process while using CAD.

In the literature, it is evident that design automation could enable companies and industries to

deal with customised products more quickly and efficiently by automating repetitive design

tasks in the existing product design processes. CAD models have been widely used as

geometric product models for the automation of creating product variants in product

modelling. The automation with CAD models is implemented through the parametric

modelling method. However, the information stored in the CAD model is still limited to

geometric data and parametric values. Extensive research has been carried out in the past to

extend the CAD models by integrating CAD with CAE information. Two challenges in the

60

existing research are managing the product data in the complex products and the mismatch

between the availability of information and the accessibility of the appropriate information to

designers. There is a need to develop a product model which can capture and reuse complex

product data and provide accessible and appropriate information to designers.

Therefore, this research will develop a product modelling framework that can capture and

represent all required design knowledge in the product design process. The developed

product model from the framework will serve as an accessible knowledge base that enables

designers to work on the design tasks without previous design experience.

In the literature, various product modelling methods have been established to develop

different product models. This research focuses on knowledge-based product modelling since

it is characterised by capturing and reusing engineering knowledge such as human expertise

and product and process knowledge in the modelling process.

Further, the literature review explored different knowledge-based engineering techniques for

capturing and reusing knowledge. This research has chosen the knowledge capture

methodology (KCM) as the knowledge capturing and reusing method, as this method has

evolved from a natural understanding of the way design engineering work and presents

clearly how parts and their relationships of a product are generated from a designer’s

perspective. The decomposition of product and its design knowledge has given KCM better

capability with product modelling in terms of capturing, structuring and reusing design

knowledge. Therefore, in this research, KCM will be used to capture and reuse the existing

design knowledge in the product modelling process. However, one major shortcoming of the

KBE techniques is the “black-box” problem. There is a lack of substantiation steps, as

limited implementation advice and use case with tools and techniques examples are provided

and discussed in the existing KBE methodologies. KBE systems are implemented in a way

that is not readable and understandable to the end-users. Thus, there is a need to develop a

61

KBE implementation framework along with use cases and enabling tools for the purpose of

capturing and reusing design knowledge in product modelling to support design engineering

automation.

The conducted literature review further explored some key concepts in MBE and MBSE to

identify how to represent product models within a neutral format and how to exchange

product data through product models. This study will use UML/SysML to structure the

product data, as they have been widely used as a platform-independent visual modelling

language in various domains. In terms of product model data exchange, the STEP standard is

selected as a neutral product modelling standard as it has been highly used plus supported in

the industry and can provide steady data exchange among common CAD software. However,

STEP does not support the exchange of parameters, design intent and other associated

product model data. Although some research works have been done to enrich product model

data in STEP through mapping and translation methods, problems such as data missing and

conversion errors still exist. There is a lack of research on how to perform the integration of

STEP and product modelling methodologies along with existing data resources. Thus, there is

a need to develop a data exchange method that could not only enable product data exchange

with STEP but also avoid the complex mapping process of the tedious STEP classes with the

associated product model data (parameters, design intent, etc.) for product modelling.

Additionally, the conducted literature review explored existing product modelling and

development tools. The existing CAD software does not support the application development

and user interface development to apply KBE techniques, and AML is not available in this

research due to the limited accessibility of its licence. Hence, Unity was selected as the most

appropriate implementation tool for developing a product modelling environment using KBE

techniques for this research investigation.

62

The conducted literature review further discussed different aspects that should be considered

for Design Engineering Automation using KBE techniques. In this research, the product

modelling environment that was developed through the use of KBE techniques needs to

satisfy the following requirements from DEA perspective:

1) Generative modelling: store design intent and product configurations information

2) Common computational model: provide a common interface to connect models with

associated applications tools

3) Design optimisation: integrate rules to help identify the best combination of the

product performance and driving parameters and avoid making mistakes in

engineering tasks.

Finally, the conducted literature review explored some relevant research work for the

development of a product modelling framework using KBE techniques. The limitation of the

existing relevant research work lies in the capture of design rules of the product model, and

there is a lack of KBE approaches that focuses on modelling and transferring design

engineering knowledge of a product in KBE applications.

3.8.2 Research Gap Summary

The outcome of the conducted literature review has identified research gaps that need to be

addressed. A product model is seen as an information representation that provides data to

build a product in a modelling process. The survey through existing product modelling

methods, product model development and knowledge-based engineering techniques show

that major issues in the product modelling process are:

• Existing CAD models do not provide enough design information in the product

modelling process - lack of design knowledge representation of product model.

63

• Existing product models do not offer detailed implementation steps for the

application. The interaction between the product model geometry and the design

information remains unclear.

• Problem of availability and accessibility of design knowledge to designers - lack of

knowledge capture and reuse in the product modelling process.

• “Black box” problem – lack of understanding and substantiation steps for the

implementation of the KBE framework.

• Data transfer between CAD and KBE applications is mostly at the theoretical level -

lack of KBE approaches for transferring design engineering knowledge of a product

in KBE applications.

• Limited capability of knowledge capture and reuse in the existing CAD tools.

These identified research gaps from the literature have indicated the need for a knowledge-

based product modelling framework to enable knowledge capture and reuse in the product

modelling process.

3.8.3 Need for Knowledge Capture and Reuse in Product Modelling and Expected

Contribution to Knowledge

The trend of product modelling for design engineering automation has evolved from manual

drafting to CAD, from CAD to Computer Aided Product Modelling, and then to Knowledge-

Based Product Modelling. The scope of product model development has also changed from

single product design to product modelling for multiple product variants. The product data

involved in product modelling has been expanded from “geometry-only” to “knowledge–

integrated” as well.

As explained previously in Chapter 1, the higher demands of industrial development capacity,

productivity and agile response to the market have forced the design engineering toward a

shorter product development time. Therefore, less time is spent by experienced designers in

64

traditional mentorship and apprenticeship methods of design practice (Okudan and Zappe,

2006). The detailed literature review in chapters 2 and 3 has shown that the knowledge

involved in the product modelling could not be formally collected and passed from

experienced designers to new designers. Meanwhile, less-experienced designers are being

given increasing and complex design tasks (Okudan and Medeiros, 2005). However, most of

these less-experienced designers are not knowledgeable enough to undertake the design

responsibilities independently due to a lack of engineering knowledge of the product.

Moreover, the growing complexity of products has also driven the product development

process to involve multidisciplinary teams. According to the American Society of Mechanical

Engineers (ASME)’s article (Brown, 2020), during the new decade, design engineers have to

collaborate with non-engineers to add embedded capabilities to optimise the design to meet

other design requirements from different domains’ aspects. However, the retirement of the

last generation of design engineers adds more pressure on the less-experienced engineers in

the industry. This problem must be addressed in the coming decade by the engineering

profession.

In the literature, extensive research has been done to extend the current product models by

integrating more product data with existing CAD models. However, the detailed application

steps of these product models in the product modelling process are not provided in the

literature, and the interaction between the product model geometry and the design

information remains unclear. Different product modelling methods have been reviewed, and

knowledge-based product modelling is identified as the most appropriate method for

developing a knowledge integrated product model that can represent all required design

knowledge to assist product modelling. Knowledge-based engineering techniques provide the

capability of capturing and reusing knowledge in the product modelling process. However,

the literature review of the existing KBE methodologies shows that there is a “black box”

65

problem in understanding KBE applications, and the substantiation steps for the

implementation of the KBE framework are also limited.

The need for knowledge capture and reuse in product modelling is also addressed by Schätzle

(2016). Data transfer between CAD and KBE applications is mostly at the theoretical level.

Even though STEP has been widely used for data exchange between different CAD systems

as a product modelling standard, it is still limited in providing parameters, design intent and

other data for product modelling. Minimal research has been done in terms of how to perform

the integration of a product modelling standard and product modelling methodologies along

with existing design knowledge. There is a lack of KBE approaches for transferring design

engineering knowledge of a product into KBE applications.

With regards to implementing KBE with existing CAD tools, the literature review has found

that current CAD tools provide limited capability of enabling knowledge capture and reuse

for product modelling process. This further addressed the need to provide a KBE

implementation framework for knowledge capture and reuse in the product modelling

process.

3.9 Chapter Summary

This chapter reviewed knowledge-based engineering methods and provided a detailed

understanding of their utilisation for knowledge capture and reuse for product modelling.

KCM is identified as the most suitable approach for capturing and reusing knowledge for

product modelling. This chapter further discussed the key concepts that should be considered

for applying KBE techniques for product modelling, which are an exchangeable data

representation structure and a neutral standard. This chapter also reviewed the current product

modelling standard and tools and provided the selection process of the most applicable

product modelling standard and implementation tools for this research. Based on the

conducted literature review, six significant research gaps were identified. The need for

66

knowledge capture and reuse in product modelling is discussed based on the findings from

the literature, and the expected contribution to knowledge is presented. The next chapter

extends the outcomes and formulates the actual methodology based on the findings from

chapters 1-3.

67

4 Research Methodology

4.1 Introduction

This chapter first explains how the research questions and hypotheses are formed based on

the findings from chapters 1-3 to provide an understanding of how the presented research

methodology will address the identified research gaps. Also, this chapter includes a research

plan to explain the journey of this study in a systematic and logical way. This research plan is

further explained through four phases: literature review, research design, development, and

evaluation. This chapter also provides the identified enabling methods for undertaking

research development within the realm of reusing existing product knowledge into product

modelling of engineering components. It highlights the applied methods in this research with

justifications and explanations of why the selected methods best fit this research. This chapter

also explains the chosen use case evaluation method and presents the evaluation criteria for

this research.

4.2 Research Questions and Hypothesis Development

Chapter 3 has identified key research gaps that need to be addressed in this research. The

presented research methodology will address these research gaps in relation to the research

questions, objectives and hypotheses that have been established in this research. The research

questions are:

• How can the design knowledge be structured and represented through a product

model?

• How can this product model be implemented in a knowledge-based product modelling

environment?

68

• How can the principles and practice of knowledge-based engineering be applied to

capture and reuse the existing design knowledge for product modelling through a

knowledge-based product modelling framework?

• How can this framework be implemented and applied by designers to enhance product

modelling?

The following are the research objectives:

• To establish the research scope by identifying and reviewing the features and issues

on product modelling for design engineering automation.

• To review methods, standards and tools used in product modelling for developing

product models.

• To distinguish appropriate enabling methods and tools for capturing and reusing

knowledge in product modelling.

• To develop methods of capturing, reusing, and exchanging design knowledge for

product modelling and to develop a knowledge-based product modelling environment

for applying these methods.

• To validate proposed methods of capturing, reusing and exchanging design

knowledge in product modelling and evaluate the performance of the developed

knowledge-based product modelling environment.

• To evaluate the modelling process within the developed knowledge-based product

modelling environment, in contrast to the modelling process in existing CAD systems.

• To generate implementation guidance on how to use the approach for capturing and

reusing existing product design knowledge to support design automation.

The research hypotheses are:

Research hypothesis 1: The proposed methods and tools for product modelling in KBE can

improve the knowledge representation of product modelling by:

69

• Providing a generic knowledge integrated product model which can represent all

associated product information, including geometric data from CAD and non-

geometric information such as design intent, design parameters, design rules, etc.

Research hypothesis 2: The proposed methods and tools for product modelling in KBE can

improve the existing KBE techniques for product modelling to support design engineering

automation by:

• Formalising the product model in a neutral format and interoperable standard and

generating a new data exchange method for transferring design engineering

knowledge of a product in KBE applications.

• Enabling knowledge capture and reuse in the product modelling process through a

knowledge-based product modelling framework,

• Developing a KBE application implementation framework for product modelling

• Providing detailed substantiation steps for the implementation through use cases and

tools.

4.3 Research Plan

Before explaining the undertaken research methodology, it is important to outline a research

plan to provide a systematic and logical overview of this research.

This research plan consisted of the following four research phases: literature review, research

design, development and evaluation. The developed research plan is illustrated in Figure 4-1

and is further explained in the following Section 4.4.

70

Figure 4-1: Research plan

4.4 Research Phases

To achieve the aim and objectives of this research and to conduct the research smoothly, this

study has been split into four major phases (as shown in Figure 4-1). Phase one involved a

detailed review and analysis of the literature that related to the key issues of this research.

Phase two involved a research design that identified suitable enabling methods for this study.

Phase three involved the design and development of the virtual product modelling framework

and prototype system. Phase four involved the evaluation of the effectiveness of the

developed method with three use cases.

71

4.4.1 Phase1: Literature Review

Literature review brings clarity and helps establish a fundamental comprehension of the

current research methods and relevant work that have been done by other researchers on this

research topic. In this research, the literature review started from understanding the product

design process for product development to identify the key design stage that is most

conducive to machine assistance. This led to further exploration of product design

advancements with computer-aided technologies. Next, existing CAD models and methods

used in design engineering automation were reviewed to assess strengths and weaknesses of

integrating knowledge within the existing models. It helps to address the importance of

product modelling in providing a complete product data representation to support the product

design process. Later, different product modelling methods were studied and reviewed to

identify the most appropriate product modelling method as state of the art. Furthermore, a

detailed literature review was conducted to gain a deep understanding of the current

knowledge-based engineering techniques for capturing and reusing knowledge, product

modelling standards for product model development and tools for implementation.

Advantages and disadvantages of these methods and tools were presented and relevant work

in these areas were also reviewed and discussed. Finally, all of these reviewed studies,

methods and relevant work were analysed and synthesised to help narrow down the research

scope, formulate the research problems, identify the research gaps, address the need of this

research, and establish the research design with enabling methods.

4.4.2 Phase 2: Research Design (Enabling Methods)

In order to address the research questions and fulfil the research objectives listed in Chapter

1, certain enabling methods have been identified and adopted from literature and related

research work in these seven main topics: design engineering automation, product modelling,

model development, knowledge re-use, product model data exchange and knowledge sharing

72

method and tools for implementation. A more detailed discussion of these enabling methods

used in this research is presented as follows.

a) Design engineering automation

To support design engineering by implementing and reusing knowledge in solutions, tools or

systems, Cederfeldt and Elgh (2005) pointed out that two aspects need to be considered in

design automation, which are information handling and knowledge processing. In this

research, information handling can be described as the reuse of CAD models, and knowledge

processing refers to the reuse of existing knowledge, such as rules and constraints; both

aspects are incorporated to develop the proposed framework.

b) Product modelling method

Product modelling has been regarded as a key technique to develop reusable CAD models to

support design automation (Tay and Gu, 2002). The choice of a product modelling method to

develop a generic model that enables the knowledge to be reused for design automation has

been made by comparing the current product modelling methods from literature (Table 4-1).

It can be seen that knowledge-based product modelling has the advantages of capturing and

reusing the knowledge. However, limitations still exist in this method as the modelling

method is always developed for a particular product in a platform-specific expert system.

This could generate black-box problems when communicating between different systems

(Cederfeldt, Elgh and Rask, 2006; Fan and Bermell-Garcia, 2008). To overcome these

limitations, this research developed a generic product model that can serve as an adaptable,

structured and reusable knowledge base for different platforms.

73

Table 4-1: Comparison of product modelling methods

Product
Modelling
Methods

Characteristic Advantage Limitation

Solid Product
Modelling

• Use mathematical
principles

• Mature tools in
modelling three-
dimensional objects

• Only
geometric
information

Feature-based
Product Modelling

• Extension of solid
product
modelling.

• Relate design
intents and
functionality with
geometry

• Mature tools in
modelling high-level
shapes

• Not able to
transfer
knowledge
such as
expertise and
experience
to other
designers

Knowledge-based
Product Modelling

• Reusing
engineering
knowledge in the
modelling
process.

• Reduce unnecessary
re-analysis, re-
design, and re-
planning.

• Simplify the
modelling tasks and
ensure the modelling
quality

• Product and
platform-
specific

• Black-box
problems

c) Model development method

A range of product models and systems were studied in the literature to understand what the

general methods are to develop a model. A list of comparisons is shown in Table 4-2. It can

be seen that to develop and represent a product model with the existing knowledge, key

elements need to be considered and involved, such as relationship, logical frame or structure,

model class, rationale, knowledge-reuse, etc. These key elements were identified and used in

this research to develop a product model which could represent the product with existing

knowledge.

74

Table 4-2: Key elements in related research work from literature

Model or system
developed in

literature

Adopted methods Key elements Reference

Featured-based and
rule-based knowledge
representation

Represent knowledge
using feature

Feature of the
product

(Jurit H., Saia, A. and
De Pennington, 1990)

Frame-rule structure
for mould product
design system

Represent knowledge
using numbers of
frames related to each
other by relationship

 Relationship
between parts and
parameters

(Lou, Jiang and Ruan,
2004)

Axiomatic information
Model for Design
(Aim-D)

Formal basis and
logic of product
structure

Logical product
structure

(Salustri, 1996)

Core Product Model
(CPM)

Non-geometric
information class

Non-geometric
class

(Fenves, 2001)

Product Family
Evolution Model
(PFEM)

Extend CPM by
adding rationale of the
changes

Design intent and
rational

(Wang et al., 2003)

Open Assembly Model
(OAM)

Extend CPM with
assembly relations

Assembly
relationship

(Mehmet et al., 2005)

A unified central
product model in UML

Extend CPM with
assembly relations

Assembly
relationship

(Gross et al., 2009)

A simulating UML
model of the FireSat
mission satellite

UML classes with
CAD model

UML diagram (Gross and Rudolph,
2012)

Multi Model Generator
for Aircraft Design

UML
KBE Techniques

Knowledge
representation

(Rocca, 2011)

d) Knowledge re-use method

From the literature review and analysis, Knowledge-Based Engineering (KBE) has been

identified as an appropriate method that is applicable in developing the proposed virtual

product modelling framework for the benefits of capturing and reusing engineering

knowledge in the product modelling process. A range of KBE approaches has been developed

in the literature with the aim of reducing the time and costs of product developments by

automating the repetitive design tasks and optimising the design process in all aspects of the

design process. These methods, such as MOKA (Melody Stokes, 2001), KOMPRESSA

75

(Lovett, Ingram and Bancroft, 2000), KNOMAD (Curran et al., 2010) and KCM (Chapman

et al., 2007), have been successfully used in different engineering areas such as automation,

civil engineering and aerospace engineering in terms of modelling and cost-saving

(Rosenfeld, 1995). In this research, to overcome the deficiency of knowledge reuse and

availability for the end-user, KCM (Knowledge Capture Methodology) has been adopted as it

is suitable for parametric geometry representation where components are associated with

parametric values in the KCM process (Terpenny, Strong and Wang, 2000). The application

of KCM makes the dimension of the product constrained by the parameter values from the

existing knowledge, which help to maintain the design intent when design modifications are

performed. It also enables a flexible modelling process as the product model can be modified

by changing parameters for a quick generation of product variants.

e) Product model data exchange and knowledge sharing method

An international standard is followed in this research to improve the interoperability of the

product model among CAD software and avoid data conversion faults. By comparing three

international standardised formats (see Table 4-3), STEP has been identified as an

appropriate standard since it has been widely used in most the product modelling tools and

provides a standardised, comprehensive information representation for different engineering

application tools.

Table 4-3: Comparison between IGES, STEP and JT

Standard Usage Advantage Limitation
IGES CAD Data Exchange - Decreasing usage

STEP - 242 CAD/PLM Data
Exchange

Product
Manufacturing
Information (PMI)

Under development.
Rarely supported by
current CAD vendor.

STEP - 203 CAD/PLM Data
Exchange

High usage and wide
dissemination

Only non-geometric.
Tedious classes.

JT Data Exchange Fast Visualisation Binary Format.
Not readable.

76

Not widely used.

A new STEP Application Protocol AP242 (STEP AP242 Project, 2014) was released in 2014,

which was claimed to cover Product Data Management, 3D model-based design with Product

Manufacturing Information (PMI), etc. However, this new protocol is still under

development and is rarely supported by the current CAD vendors (Schätzle, 2016). An

obvious drawback of the STEP format is it does not allow for the exchange of parameters,

design intent and other data that may be associated with the CAD models. Moreover, the

readability of the STEP file is low for the end-users. Some research work has been done to

enrich the product model data in STEP by mapping data into STEP (Arnold and Podehl,

1999; Kahn et al., 2001; Barbau et al., 2012). However, mapping with the entire STEP

standard is complicated, time-consuming and results in data missing (Barbau et al., 2012).

Only mapping extra data with STEP does not help improve the re-usability of the knowledge

because non-geometric information is simply stored as context and not linked with geometry.

To address these limitations of STEP and avoid the complex and tedious mapping process,

this research provides a novel way of integrating product non-geometric information into the

product by using a knowledge file. STEP is only used as a format to store geometric data for

the representation of the shape of the product. All the key parameters, design intent and other

non-geometric data were classified and stored in a knowledge file in Extensible Markup

Language (XML) format, which could be used as an independent interoperable format to

facilitate the store, exchange and re-use of knowledge. This data exchange method will be

further explained in Chapter 5.

77

f) Tools for implementation

In order to implement the developed methodology, this research has reviewed current CAD

tools (see Table 4-4) to identify the best tools that could be used to visualise the developed

product model and develop a prototype system that could work as a proof-of-concept tool.

Table 4-4: Reviewed implementation tools (version up to 2021) in this research

Tools Open
Source

Geometry
View

Structure
View

Application
Development

Interface
Design

Data
Capture

and Reuse

Availability

AML x ✓ ✓ x ✓
Only in

proprietary
format

License
required

SolidWorks x ✓ ✓ x x
Only in

proprietary
format

License
required

CATIA x ✓ ✓ x x
Only in

proprietary
format

License
required

Siemens
NX x ✓ ✓ x x

Only in
proprietary

format

License
required

Autodesk
Inventor x ✓ ✓ x x

Only in
proprietary

format

License
required

Creo x ✓ ✓ x x x Free

CAD
Exchanger x ✓ ✓ x x x Free

STP viewer x ✓ ✓ x x x Free

IDA-STEP x ✓ ✓ x x x Free

CAD
Assistant x ✓ ✓ x x x Free

Free CAD ✓ ✓ x x x
Only in

proprietary
format

Free

Unity ✓ ✓ ✓ ✓ ✓
Through

Application
Development

Free

Unreal ✓ ✓ ✓ ✓ ✓
Through

Application
Development

Free

78

Finally, the developed methodology was applied to a KBE product modelling environment

developed in Unity 3D software. Unity 3D has a license-free version for personal

development, which provides an environment for the development of interactive 2D and 3D

content, including a rendering and physics engine and a scripting interface to program

interactive content (Unity Technologies, 2020). It allows the developers to export their

applications into all the mainstream operation systems (Windows, Mac, Linux, IOS, Android)

through multiple platforms (desktop, web, mobile).

Table 4-5 shows a summary of solutions with enabling methods for solving the identified

problems from the literature. These enabling methods were further applied in Phase 3 for the

development of the proposed virtual product modelling framework.

Table 4-5: Summary of solutions for solving the identified problems

Identified problems/research gaps Solution with enabling methods
Need for design engineering automation Information handling: re-use of CAD models

Knowledge processing: re-use of existing
knowledge

Only geometry information and limited
design intent could be transferred by the
traditional product modelling method.
Existing CAD models do not provide enough
design information in the product modelling
process - lack of design knowledge
representation of product model.

Knowledge-based product modelling method
to develop a generative product model with
knowledge classes

Problem of availability and accessibility of
design knowledge to designers - lack of
knowledge capture and reuse in the product
modelling process.

KBE technique - Knowledge Capture
Methodology

Existing product models do not offer detailed
implementation steps for the application.
The interaction between the product model
geometry and the design information remains
unclear.

Develop a generic and platform-independent
product modelling framework that enables
knowledge capture and reuse:

• To develop a generic model: key
elements need to be involved as
knowledge

• To drive the geometry by reuse of design “Black box” problem – lack of understanding

79

and substantiation steps for the
implementation of the KBE framework.

rules
• To enable cross-platform data exchange:

STEP and XML
• Provide detailed instantiation steps for

applying the framework with use cases
and enabling tools

Limitation of exchanging parameters, design
intent and other data in STEP. Low
readability of STEP file. Mapping with STEP
is complicated and results in data missing
Data transfer between CAD and KBE
applications is mostly at the theoretical level
- lack of KBE approaches for transferring
design engineering knowledge of a product in
KBE applications,

Data exchange method - Only geometry data
of the product model is stored in the STEP
file. Other knowledge would be stored in a
separate knowledge file.

Current implantation tools do not support
application development and interface design
or are not license-free.
Limited capability of knowledge capture and
reuse in the existing CAD tools.

Unity 3D and a knowledge capture tool

4.4.3 Phase 3: Development

The research design provides an in-depth understanding of the research issues and solutions

to address the research gaps in capturing and reusing knowledge for product modelling. The

enabling methods identified in Phase 2 are utilised in the development phase for

implementing the proposed solutions, as shown in Table 4-5. This phase aims to design and

develop a generic virtual product modelling framework that enables product modelling with

the utilisation of the integrated existing product design knowledge in it. The development

phase includes the following three stages:

• Development of a generic product model,

• Development of an implementation framework,

• Development of a knowledge-based product modelling environment as the proof-of-

concept tool (prototype system)

80

During the development phase, a knowledge-based product modelling environment that

enables capturing and reuse of the existing knowledge in product modelling is developed.

Figure 4-2 shows the implementation framework developed for the conduction of research

development. The development phase is discussed further in Chapter 5.

Figure 4-2: Implementation framework for the development

4.4.4 Phase 4: Evaluation with Use Cases

The main purpose of this evaluation phase is to assess and validate the effectiveness of the

developed product model, implementation framework and proposed knowledge-based

product modelling prototype system. The selection of a design evaluation approach is not

unique but depends on the designed artefact and selected evaluation metrics. There are

various evaluation approaches, including observational, analytical, experimental, testing and

descriptive (Alan Hevner, Jinsoo Park, 2004). Table 4-6 shows the summary of the available

evaluation methods identified from the literature.

Table 4-6: Design Evaluation Methods. Adapted from Hevner et al. (2004).

1. Observational Case Study: Study artefact1 in depth in business environment
Field Study: Monitor use of artefact in multiple projects

1 Artefact can be described as the product produced during the development process. In this research, artefact
refers to the product model, framework and prototype system.

81

2. Analytical Static Analysis: Examine the structure of artefact for static qualities
(e.g., complexity)
Architecture Analysis: Study fit of artefact into technical IS architecture
Optimisation: Demonstrate inherent optimal properties of artefact or
provide optimality bounds on artefact behaviour
Dynamic Analysis: Study artefact in use for dynamic qualities (e.g.,
performance)

3. Experimental Controlled Experiment: Study artefact in controlled environment for
qualities (e.g., usability)
Simulation – Execute artefact with artificial data

4. Testing Functional (Black Box) Testing: Execute artefact interfaces to discover
failures and identify defects
Structural (White Box) Testing: Perform coverage testing of some
metric (e.g., execution paths) in the artefact implementation

5. Descriptive Informed Argument: Use information from the knowledge base (e.g.,
relevant research) to build a convincing argument for the artefact’s
utility
Scenarios: Construct detailed scenarios around the artefact to
demonstrate its utility

Since this research is proposing an innovative virtual product modelling framework that

enables the reusability of knowledge in the product modelling process, there is currently no

such ready-to-use software or system to validate this work. To overcome this shortage of

tools, a knowledge-based product modelling environment was developed to apply this

framework and examine whether it will work in the proposed way. This validation requires

controlled experiments, simulation, functional testing, and structural testing. Therefore,

experimental and testing have been chosen as the evaluation methods in this research to

validate the proposed model and framework.

Experimental and testing use cases are currently widely adopted to evaluate various design

products such as virtual models (Isaksson, 2003; Cho et al., 2016), prototypes (Van Holland

and Bronsvoort, 2000; Yoshioka, 2001; van Tooren et al., 2005; Martínez-Pellitero et al.,

2011), scenarios (Haynes and Skattebo, 2004), systems (Chen and Wei, 1997; Lagos, 2007;

Al-ashaab et al., 2012) and interface (Bonnie E. John and Mashyna, 1997). In this research,

three use cases were selected according to the Use Case Evaluation (UCE) guideline

82

(Hornbæk et al., 2007) and employed to test the workability and effectiveness of the

framework and the usability of the developed prototype system. The evaluation examines

important aspects, including testing of generic representation of common engineering

products, workability of system and re-usability of the existing knowledge that is integrated

into the developed model in the product modelling process. The existing information

collected for identified knowledge source of each use case was utilised for the evaluation of

the proposed virtual product modelling framework.

Design work is complete and effective when it meets the requirements and constraints of the

problems it was meant to solve (Hevner et al., 2004). In this research, a Virtual Product

Modelling Framework (VPM) has been developed that enables the existing knowledge to be

captured and reused in the modelling process by applying the selected enabling methods to

solve the identified problems. Hence, based on the research aims and objectives, identified

research gaps and proposed solutions, the following criteria are derived and used to evaluate

the workability and effectiveness of this research work:

• The capability of generative representation of engineering product in VPM

• The capability of the VPM to capture the product geometry and its associated

knowledge from the existing product information

• The capability of the VPM to visualise the product geometry and its associated

knowledge against use case data

• The capability of the VPM to present every part of the product and the relationships

among them against use case data

• The capability of the VPM to propagate changes of parameters to drive and constrain

the product geometry by reuse of the existing knowledge

• The correctness of the changes applied to the product geometry by reuse of the

existing knowledge against use case data

83

• The capability and correctness of the product geometry data exchange between

different platforms against use case data

• The capability and correctness of the knowledge exchange through knowledge file

against use case data

The evaluation process was further explained in Chapter 6. As a result of the evaluation, the

proposed research framework was validated, and limitations of this research were identified

for future improvement.

4.5 Chapter Summary

This chapter outlined the research plan and provided a detailed explanation of how the

research was conducted through the research phases. This chapter also compared and

identified suitable methods to establish the research design from seven major topics: design

engineering automation, product modelling, model development, knowledge re-use, product

model data exchange and knowledge sharing method and tools. This research adopted testing

use case as the validation method for evaluation. The research design, research methodology

and the proposed implementation framework were established in this chapter. The next

chapter explains in detail the development of the proposed framework.

84

5 Virtual Product Modelling Framework

This chapter focuses on the explanation of the virtual product modelling framework for

design engineering automation. It shows the development process of this virtual product

modelling framework and explains how it can be further implemented with these identified

enabling methods. Further, it provides detailed implementation steps of this virtual product

modelling framework. Finally, a knowledge-based product modelling environment is

presented, which is developed based on the implementation framework.

5.1 Virtual Product Modelling Framework Development

A virtual product modelling framework for developing a knowledge-based product modelling

environment that enables existing knowledge to be captured and reused in product modelling

has been developed in this research, as shown in Figure 5-1. This framework consists of five

stages, namely:

1. Product model development

2. Knowledge capture of non-geometric information

3. Knowledge capture of geometry information

4. Knowledge mapping

5. Product visualisation and validation

In the first stage, a generic product model structure that can represent all required design

information of the product will be developed using the meta class of VPM. Further, non-

geometric information and geometry information of the product will be captured as existing

knowledge in the second and third stages. Then, the interaction between the non-geometric

information and geometry will be built in the knowledge mapping stage to provide the

knowledge reasoning for the product modelling process. At last, the developed product model

from VPM will be visualised and validated within a knowledge-based product modelling

85

environment through different testing use cases. Detailed explanations of these five stages are

provided in the later sections.

Figure 5-1: Virtual product modelling framework

86

This framework provides a set of activities for designer engineers to conduct for

implementing the knowledge-based engineering techniques in the modelling process. As

previously discussed in Chapter 3, KCM has been identified as the most appropriate method

for capturing product design knowledge in the product modelling process as it shows the

better capability of decomposing a product model and its design knowledge for knowledge

capturing and structuring. It also provides the ability for parametric geometry representation

as components are associated with parametric values after the KCM process. The eleven steps

of implementing KCM are (Terpenny, Strong and Wang, 2000):

1. Select a product or process to model.

2. Decompose the product into atomic components.

3. Assign attributes to atomic components.

4. Establish atomic instances in database or tabular data source.

5. Create component classifications for the atomic instances.

6. Create use cases by grouping atomic components into assemblies.

7. Introduce a use case for each existing component classification.

8. Define a set of relations and create relationships between considerations.

9. Use relationships between components to propagate parametric values and apply

selection constraints.

10. Associate parametric values of components for reporting and visualisation.

11. Repeat the process.

In order to deploy KCM in this research for capturing and reusing knowledge, each VPM

framework step is required to map with the above eleven KCM steps. Table 5-1 shows how

the developed VPM framework is mapped with KCM steps. Each step of the VPM

framework is further explained in the following sections.

87

Table 5-1: Mapping between KCM steps and the VPM framework

KCM steps VPM framework steps Outcome
1,2,3,5 Product model Development VPM product model structure

- UML diagram
3,4,5 Knowledge capture of non-

geometric information
Knowledge file
- generated from the developed
knowledge capture tool

3,4,5 Knowledge capture of
geometric information

STEP file
- exported from CAD

6,7,8,9 Knowledge mapping KBE product modelling tool
developed in Unity

10,11 Product visualisation &
validation

KBE product modelling tool
developed in Unity

5.1.1 Product Model Development

The product model structure (as shown in Figure 5-2) is a comprehensive and generative

representation of the product with all its essential non-geometric and geometric information.

It provides a data structure that includes all blocks describing a product from different

aspects. Moreover, this hierarchical product structure also possesses inheritance

characteristics as it is developed with the object-oriented concepts in UML. VPM meta

classes are defined to constitute the product model, and these VPM classes are further

explained in Section 5.2. A generic product model will be formed by integrating the

knowledge captured in the second and third stages into this product model structure.

88

Figure 5-2: Developed product model structure from VPM

5.1.2 Knowledge Capture of Non-Geometric Information

As discussed in the previous chapters, in this research, knowledge is classified into two

categories, which are non-geometric and geometry. The second stage of the methodology

framework is to capture the existing non-geometric knowledge of the product. It includes

identifying essential aspects that should be considered in the product modelling process,

defining meta classes for each non-geometric aspect, capturing the existing non-geometric

information, and breaking the non-geometric information down into the classified

components.

89

Tasks that need to be performed in this stage are listed below (also shown in Figure 5-3):

1. Identify the essential non-geometric information used to specify the product from the

existing design knowledge.

2. Decompose the non-geometric information into atomic classes.

3. Identify the rules that are applied in the design process of the product. Then the design

engineer can then model the interactions between the non-geometric information and

geometry.

4. Export the non-geometric information into a generalised format that can be reused and

transferred between different industry APIs.

Figure 5-3: Task flow of capturing the non-geometric information

90

After performing these tasks, a knowledge file containing well-decomposed non-geometric

classes and properties is generated. This knowledge file represents the product from non-

geometric aspects and can be used as a knowledge base to share the product’s information

between design engineers. It can be further utilised to enhance product modelling by

visualising the knowledge in a knowledge-based product modelling environment.

5.1.3 Knowledge Capture of Geometric Information

The next step in the virtual product modelling framework is to capture the geometric

information of the product. In Design Engineering Automation, the geometric information of

a product model can be automatically saved into a digital part file in the current CAD

platform/software. An international standard needs to be followed as an interoperable format

to allow geometric data exchange among different CAD platforms/software and to avoid data

conversion faults. As discussed in Chapter 4, the STEP standard has been identified and used

in this research as an interoperable format for exchanging product geometric information

among different CAD platforms/software. Tasks performed in this stage are shown below:

1. Model the product geometry in the CAD platform/software.

2. Export the product CAD model into an interoperable and standardised format.

The result of performing these tasks is the geometry file with the geometric data that

describes the product’s geometry and can be used to exchange among different CAD

platforms/software. Figure 5-4 describes the task flow of this stage, and the knowledge

capture process is further discussed in Section 5.3.2.

91

Figure 5-4: Task flow of capturing the geometric information

5.1.4 Knowledge Mapping

Knowledge Mapping is the most significant stage of the framework, which build the

connection and interaction between the non-geometric information and geometry. In this

stage, non-geometric information is transferred from the knowledge file to an object-oriented

programming environment, where key parameters and design rules are linked to the product

geometry. The data from the knowledge capture tool is exported into a knowledge file in an

XML format and parsed using object-oriented programming. XML has been widely used as a

generalised data format that is both human-readable and machine-readable for data exchange

between different Application Programming Interfaces (APIs) in the industry. As identified in

literature, knowledge reasoning can be achieved through the use of rules through object-

oriented techniques. Since various knowledge classes and properties have been defined in the

proposed virtual product modelling framework, object-oriented programming is employed as

a programming paradigm that provides high modularity and reusability for these knowledge

classes and properties. Table 5-2 shows how the rules are implemented in this research to

provide knowledge reasoning in the knowledge-based product modelling environment.

92

Table 5-2: Illustration of implementation method of rules in this research

Rules Description Implementation method
Logic rules IF-THEN-ELSE rules and

conditional rules
IF-THEN-ELSE statement in
object-oriented programming
in different testing scenarios

Math rules Mathematical rules,
including trigonometric
functions and operators for
matrices and vectors algebra

Mathematical rules in object-
oriented programming in
different testing scenarios

Geometry handling rules The generation and
manipulation of geometric
entities and parametric rules

Function of making change
to dimensions in the interface

Configuration selection rules Combination of
mathematical and logical
rules to change and control
the topology of the product
model.

Propagate the change of
dimensions with knowledge
reasoning text in the interface

Communication rules Specific rules that allow data
communication and
interaction with other
applications.

Adopting interoperable
standards and formats for
data exchange

Further, a knowledge mapping framework has been developed (as shown in Figure 5-3) to

explain how the knowledge reasoning is performed in this knowledge mapping stage.

Figure 5-5: Knowledge mapping framework for knowledge reasoning

93

5.1.5 Product Visualisation and Validation

The last step is the visualisation and validation stage, where the developed product model in

VPM is visualised and checked for the correct representation of the initial model. As

discussed in Section 4.4.4, testing use cases are selected to identify and evaluate the proposed

framework's effectiveness. Suppose the design engineer changes one dimension of the

geometry of the initial product model; in that case, the virtual product modelling framework

will check the rules that determine this geometry and propagates the rules and changes to the

design engineer. In this case, design engineers will know what will be affected if the

geometry is changed in this model and the constraints of these changes.

Visualisation is an integral part of the proposed framework as it provides a straightforward

and effective way of understanding the product model. The developed framework was

applied to a KBE product modelling prototype system developed in Unity 3D software. Unity

3D has a license-free version for personal development, which includes an environment for

the development of interactive 2D and 3D content, a rendering and physics engine and a

scripting interface to program interactive content (Unity Technologies, 2020). It allows the

users to export their applications into all the mainstream operation systems (Windows, Mac,

Linux, IOS, Android) through multiple platforms (desktop, web, mobile).

5.2 Product Model Development in VPM

As discussed in Chapter 4, to develop a generic product model that can represent all required

design information as a knowledge base that provides guidance for design engineers to work

on the design tasks without previous design experience, two key aspects need to be

considered which are: re-use of CAD model and re-use of existing knowledge. To create such

a generic product model, the following steps are followed in this research:

94

• To define meta class as the building block of the product model

• To apply an international standard and interoperable format so that the product model

can be exported and exchanged among different product modelling tools

The defined meta classes will be used to develop the structure of the product model, and the

existing design knowledge will be captured and decomposed as entities for these meta

classes. The following sections provide further explanation of the VPM meta class and show

how data represented by these meta classes are exchanged in this research.

5.2.1 Meta Class of VPM

a) Defining a product

From the literature, a product is defined as a physically realisable object that is produced by a

process. As this research focuses on product modelling for Design Engineering Automation,

the term product is defined as an engineering component produced by a process throughout

this thesis. A child product within a parent product is termed as a “part”, and the parent

product is termed as an “assembly”. In this research, a product model can be a representation

of either a single engineering component or an assembly that consists of different engineering

parts. Figure 5-6 below shows the relationship between an assembly product model and other

parts of the product model.

Figure 5-6: Example of the relationship between the assembly and parts of the product model

(named “Product A”)

95

b) Defining meta class

Since the current approach is used for product modelling for Design Engineering

Automation, extra supporting data need to be integrated to represent the product model. The

meta class sets defined for the present research (as shown in Figure 5-7) are derived from

literature review analysis and previous related research in product model development.

Figure 5-7: Product model structure data from literature. Adapted from Fenves et al., (2004),

Siemens PLM (2019b) and Boy et al., (2015).

The lower the pyramid, the more detailed product data it provides. In this research, a product

(top level of the pyramid) consists of two kinds of data which are geometric and non-

geometric (second level of the pyramid). The geometric data describes the product’s

geometry using a standardised format that is exported from CAD. The non-geometric data is

captured from the existing design knowledge to describe the product from different aspects of

the product. The captured non-geometric data will be decomposed into the meta classes in the

third level of the pyramid to provide a generic representation of a product. The bottom level

of the pyramids provides detailed entities for the meta classes. In this thesis, a product model

product

geometric,
non-geometric

function, behaviour, structure,
material, form,

design feature, rules,
dimension

id, name,
description,property,edge,face,surface,

length,width,height,radius,diameter, key
parameters,equatoin,formula,reference...

96

can be represented the following meta classes: Function, Behaviour, Form, Material, Design

Intention, Dimension, Rules, Fit, Constraint, Relationship. The “Structure” will be shown

through the composition of the developed product model structure itself.

c) Geometric classes for STEP entity

After defining the meta class of VPM, the next step is to determine the geometric classes for

the geometric data from STEP. As identified in the previous literature review, STEP has been

used as a steady exchange format and dependable application interface between different

computer systems and CAD software. Therefore, the geometric data of the product model can

be automatically stored into pre-defined STEP entities when exporting the CAD model into

STEP format. In this research, the geometric data is stored and exchanged through the STEP

file itself. The definition of geometric classes for STEP entities is not required. However, it is

still key to understand how the external geometric class can be mapped with the STEP entity

in the current CAD software. Table 5-3 shows an example of how the geometric class could

be defined and mapped with the STEP entity in a commercialised CAD software used in the

industry.

Table 5-3: External geometric classes mapping with STEP Entity. Adapted from (Siemens

PLM, 2019b)

Geometric
class

STEP entity

Solid body MANIFOLD_SOLID_BREP
Solid body with
voids

BREP_WITH_VOIDS

Sheet body MANIFOLD_SURFACE_SHAPE_REPRESENTATION
→SHELL_BASED_SURFACE_MODEL

Wire body GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATIO
N→GEOMETRIC_CURVE_SET

Shell CLOSED_SHELL (for solid bodies)

ORIENTED_CLOSED_SHELL (for B-rep with voids, the outer shell is a
ORIENTED_CLOSED_SHELL)

97

OPEN_SHELL (for sheet bodies)
Face ADVANCED_FACE
B-surface B_SPLINE_SURFACE
Cone CONICAL_SURFACE
Cylinder CYLINDRICAL_SURFACE
Plane PLANE
Sphere SPHERICAL_SURFACE
Torus TOROIDAL_SURFACE
Revolved surface B_SPLINE_SURFACE
Extruded surface B_SPLINE_SURFACE
Offset surface B_SPLINE_SURFACE
Blending surface B_SPLINE_SURFACE
Degenerate
(apple/lemon)

Torus

B_SPLINE_SURFACE

Loop FACE_BOUND→EDGE_LOOP

FACE_BOUND→VERTEX_LOOP (for loops with no edges)
Edge ORIENTED_EDGE→EDGE_CURVE
B-curve B_SPLINE_CURVE
Circle CIRCLE
Ellipse ELLIPSE
Parabola BSPLINE_CURVE
Hyperbola B_SPLINE_CURVE
Line LINE
Intersection curve B_SPLINE_CURVE
SP-curve B_SPLINE_CURVE
Trimmed curve B_SPLINE_CURVE
Vertex VERTEX_POINT
Point CARTESIAN_POINT

5.2.2 Description of VPM Knowledge Classes

The high-level concepts and meta classes explained in the previous sections formulate the

VPM knowledge classes in this research. The VPM knowledge classes are described and

explained in Table 5-4. The VPM knowledge classes are developed to represent all the

essential aspects that should be considered for modelling a product. In VPM, the captured

design knowledge will be decomposed into these classes to describe the product model. The

product model structure is also built through the atomic blocks named by the VPM

knowledge classes. The VPM knowledge classes form the fundamental principle of the data

exchange method in this research. All the captured non-geometric data is stored and

98

transferred through the use of a knowledge file which is developed based on the knowledge

classes. Moreover, VPM knowledge classes also provide a steady data exchange format for

knowledge store, reuse, and exchange within a knowledge-based product modelling

environment. The implementation of the knowledge store and exchange is further explained

in Section 5.3.3.

Table 5-4: Explanation of VPM knowledge classes.

Class Description
Product A Product means a physically realisable object that is produced by

a process. It contains the product name and its identification
number, and its description.

Feature A Feature is a prominent aspect of a product that has a specific
function. A product could have different design features. It can be
described as architecture on the surface of the intended part with
some engineering significance.

Function A Function describes what the product is supposed to do.
Behaviour Behaviour describes how the product implements its function.

Form The form can be considered as aspects that distinguish the product
by its substance, e.g., shape, contour, conformation, etc. In this
product model, Form consists of four characteristics: geometry,
material, mesh, and state.

Material Material is the description of the physical substance that
composites the product.

Design Intent Design intent contains reasons or a logical basis for making or
modifying a product.

Geometry Geometry is the spatial description of the product.
Dimension Dimension represents the Cartesian coordinates that determine a

position of a product in space, e.g., length or width or height or
radius.

Rules Rules contain principles, standards and guidelines that govern the
design of the product.

Fit Fit represents the right size of the product that satisfies an assembly
condition.

Constraint A constraint is determined by design rules that restrict the
product’s spatial motion in an assembly.

Relationship Relationship describes how two or more products are connected. In
this VPM representation, it consists of two aspects which are
Assembly and Reference.

Assembly Assembly shows the hierarchical information of the product in an
assembly. It can be further defined into “Parent” and “Children” to
describe the assembly relationship.

99

Reference Reference shows a mention or citation of the product.
Information Information contains contexts collected in the product design that

is not proven to be knowledge.

5.2.3 VPM Data Exchange Method and Format

The conducted literature in chapters 2 and 3 has identified that limitations still exist in the

current STEP for exchanging parameters, design intent and other non-geometric data. To

avoid the complex and tedious mapping process, data missing, and conversion errors, this

research presents a new method for exchanging the data stored in the VPM product model

(shown in Figure 5-8).

Figure 5-8: Description of VPM data exchange method

In the presented data exchange method, the STEP is only used for CAD model data

exchange. This process could be done directly by using either a STEP translator in most

existing CAD tools or a 3D data plugin. The captured knowledge (named non-geometric

data) is stored and exchanged through the interoperable and platform-independent XML

format. The implementation of this data exchange method is further explained in the below

section.

100

5.3 Overall Virtual Product Modelling Framework Implementation Methods

As discussed in previous Section 5.2, the Virtual Product Modelling framework consists of

five steps:

• Product model development

• Knowledge capture of non-geometric information

• Knowledge capture of geometric information

• Knowledge mapping

• Product visualisation & validation

This section will go through each step of this methodology and explain the techniques that

are developed and utilised for the implementation of this Virtual Product Modelling

framework in this research.

Section 5.1 shows how the knowledge classes are formulated and explains how a product

model can be developed and represented with the knowledge classes in VPM to provide a

generical product model structure. To provide data for this VPM product model, non-

geometric information needs to be captured, classified and decomposed into the atomic

blocks (as shown in Figure 5-2). The following sections 5.3.1 and 5.3.2 explain how the non-

geometric information is captured and then describe which tool is chosen and utilised for the

proof-of-concept implementation in this research.

5.3.1 Knowledge Source

To capture the non-geometric knowledge, it is essential to identify where the non-geometric

knowledge is stored. In the current research, the knowledge applied by a design engineer in

the modelling process is classified into four aspects: Standard, Specification, Experience, and

Expertise. The standard defines the standardised discipline of how a product is modelled with

generally accepted and uniform procedures, dimensions or materials. The specification is a

detailed description of a customised product from the customer’s point of view that describes

101

the design requirements in aspects such as function, dimensions, material, etc. Based on

different specifications, product variants can be generated from a standardised product.

Experience is the knowledge or skill obtained by the designers from the past modelling

process, and Expertise is a higher level of the knowledge or skill acquired from previous

experience, either theoretical or practical.

However, collecting, extracting, and verifying raw information and forming knowledge

sources lie beyond the scope of the research. This research is based on the assumption that

the knowledge of a product exists from the knowledge source.

5.3.2 Knowledge Capture

The term “knowledge capture” itself is a complex process that converts knowledge from tacit

to explicit (Herschel, Nemati and Steiger, 2001). In the current research, knowledge capture

is defined as a process that turns the knowledge from the existing knowledge source into an

explicit representation with VPM knowledge classes.

After identifying the knowledge source, the next step is to find the suitable tool for capturing

the non-geometric information. There are many PDM/PLM systems that provide the

capabilities for collecting, retrieving and storing product data. However, those PDM/PLM

systems are either heavy software packages that are enterprise-oriented and not free of charge

or not capable of classifying the product data or exporting the data by following user-defined

schema. In this research, a knowledge capture tool has been developed that allows designers

to input the non-geometric information utilised in the product modelling process. The non-

geometric information is then decomposed into the VPM classes, which are defined in the

previous Section 5.2.2.

Since most web browsers have a built-in XML parser to access and manipulate XML, in this

research, a web-based knowledge capture tool is developed using HyperText Markup

Language (HTML), JavaScript and Hypertext Preprocessor (PHP). XML DOM (Document

102

Object Model) parser is used as a JavaScript to XML parsing method. This method presents

an XML document as a clear tree structure and also enables programs to dynamically access

and update the content and structure of the XML document. The web-based knowledge

capture tool interface is shown in Figure 5-9.

Figure 5-9: The developed knowledge capture tool interface (maximised view of this tool

interface is provided in Appendix)

5.3.3 Knowledge Store and Exchange

All the captured non-geometric information from the knowledge capture tool is stored in an

XML document. To ensure the data structure of the XML document, an XML schema has

103

been developed based on the framework of VPM. This XML document is named Knowledge

File (KF) in this research and will be used for data exchange. The knowledge file contains all

the non-geometric information from the VPM, including the dimensions, key parameters, and

design rules of the product. An example of a simplified XML schema for the Knowledge File

data is shown in Figure 5-10.

Figure 5-10: Example of a simplified XML schema for the Knowledge File

5.3.4 Knowledge Mapping

To establish interaction between the non-geometric information and geometry and provide

knowledge reasoning in the product modelling process, rules and key parameters stored in the

knowledge file are used to map with the product’s dimension. Meanwhile, other aspects of

the VPM can also be constrained depending on the rule’s scope. Figure 5-11 shows a

knowledge mapping logic example of how a dimensional parameter can be mapped with the

knowledge. In this example, an M12 hex bolt has two parameters: b (thread length) and L

104

(bolt length). The existing standard has constrained the two parameters by the following

rules:

1) if L is less than 125 mm, then thread length b should be 30 mm.

2) if L is between 125 mm and 200 mm, the thread length b should be 36 mm.

3) if L is larger than 200 mm, the thread length b should be 49mm.

Therefore, this rule can be used to build the interaction between the dimensional parameters b

and L with the product modelling process (changing parameter b). Further, this rule also

provides the information for knowledge reasoning when b is adjusted to different values. This

process is performed within an object-oriented programming environment that automatically

selects the VPM knowledge classes, parses the stored data and shows all the reading results.

Figure 5-11: Example of knowledge mapping logic for implementation

5.3.5 Visualisation

The visualisation provides the ability to display the product model’s original geometry and

the possible changes that can be made, and the associated knowledge that constrains the

105

changes. According to the previous discussion, Unity3D is selected as the development tool

to develop a knowledge-based product modelling environment as a proof-of-concept tool, and

C# is used as an object-oriented programming language.

The first type of visualisation is shown in the tool by importing the geometry file of the

product into the interface through the Unity plugin. It provides a 3D view of the geometry of

the product model. An example is shown in Figure 5-12 (a). The second type of visualisation

is the text representation of all the non-geometric information stored in the knowledge file

(shown in Figure 5-12 (b)). This process is performed with object-oriented programming that

automatically analyses and displays all the acquired non-geometric information that is stored

in the knowledge file. The developed visualisation algorithm is performed by searching

through the XML tags. The third type of visualisation is the possible change of geometry.

However, due to the nature of STEP, there are no existing technologies that support editing

the geometry data in the STEP file and displaying the graphical changes directly in the

modelling environment. To develop such a method that can manipulate and visualise STEP

files is beyond the scope of this research. Instead of visualising the graphical changes in the

geometry, this research uses text visualisation to indicate the changes that are made to the

geometry (as shown in Figure 5-12 (c)).

The final stage of visualisation is to show the associated knowledge that is applied to make or

constrain the change of geometry. An example is shown in Figure 5-12 (d). This includes the

following:

• Dimensions that are affected by the changes,

• Key parameters that are affected by the changes,

• Design rules that constrain the changes,

• Other aspects that are affected by the changes.

106

The visualisation of the hex bolt model example in Figure 5-12 includes: (a) 3D view of the

bolt geometry and (b) visualisation of all the non-geometric information stored in the bolt

knowledge file, (c) Functions of making possible changes of bolt geometry, (d) visualisation

of the associated knowledge that is applied to constrain the change of geometry.

Figure 5-12: Example of visualisation in the developed knowledge-based product modelling

environment

5.4 Chapter Summary

This chapter presented and discussed each stage of the virtual product modelling framework

development. It explained the development of the product model in VPM and provided an

explanation of the VPM knowledge classes. The formulated VPM knowledge classes were

used to build the atomic product model structure in VPM and to form the knowledge store

(b) (a)

(c)

(d)

107

and exchange method used in this research. A knowledge schema was developed to provide a

steady format for knowledge exchange. In this research, the captured knowledge will be

stored and transferred using a knowledge file (under the knowledge schema) which was

created by using the developed knowledge capture tool. Further, the implementation methods

of this framework were provided based on the tool availability and research needs. The

developed product model structure, selected tools and formats, and the developed data

exchange methods were used to develop the knowledge-based product modelling

environment as a proof-of-concept tool. The five stages of VPM will be implemented with

use cases to validate the proposed framework. The following chapter presents the use case

evaluation of VPM by using the developed knowledge-based product modelling environment.

108

6 Evaluation

6.1 Introduction

In this research, this virtual product modelling framework is implemented through the

development of a knowledge-based product modelling system. As discussed in previous

chapters, limited studies have been done to implement and evaluate KBE frameworks. This

research addresses this identified research gap by not only providing a virtual product

modelling framework but also implementing the whole system within different use cases and

analysing the effectiveness and efficiency.

This chapter explains the evaluation of the virtual product modelling framework through

three test use cases. It provides detailed instantiation steps of this virtual product modelling

framework. In the development process of an interactive engineering system, use cases are

typically relevant to two key aspects, which are system development and user interface

design (Hornbæk et al., 2007). In the current research, system development is considered as

the development of the backend of the knowledge-based product modelling environment. It

includes the development of the product model itself and the development of the rules and

relationships between different atomic blocks in the VPM. User interface design is

considered as the development of the frontend of the modelling system. A product modelling

user interface is developed as the frontend to visualise the modelling process and for

knowledge representation.

As discussed in Section 4.3.4 of Chapter 4, use case evaluation is widely adopted to evaluate

various design products such as virtual models, prototypes, scenarios, systems, and interfaces.

In this chapter, three test use cases are selected to demonstrate and evaluate the effectiveness

and efficiency of the proposed methodology. Existing knowledge gathered in the use cases is

applied for the evaluation of the framework. Critical analysis and comparison between

109

existing/legacy product modelling systems and the VPM framework are also provided.

Discussion and findings from the use case evaluation are presented at the end of this chapter.

6.2 Evaluation Objectives

The objectives of the evaluation process are identified as follows:

• Perform different scenarios in the use cases to compare the actual results from

applying virtual product modelling framework for capturing and reusing design

knowledge against the identified evaluation criteria.

• Analyse the virtual product modelling framework results, compare, and contrast the

product modelling results from using the virtual product modelling framework with

the use of the current existing/legacy product modelling system for the same

circumstances.

As mentioned above, since there have been limited studies in implementing and evaluating

the KBE system, the evaluation criteria have been developed in Section 4.4.4 of Chapter 4

from the key challenges that have been identified in the existing CAD systems and KBE

methodologies. In order to prove the effectiveness and efficiency of the proposed

methodology and to analyse the difference in product modelling between current product

modelling methodologies/legacy product modelling systems and the virtual product

modelling methodology evaluation results, measurement parameters (shown in Table 6-1)

have been set up based on the evaluation criteria, and the findings from the literature review

synthesis (Section 3.8.3) of existing methodologies and relevant research work. The

parameters that will be used to measure the workability and effectiveness of the framework

are knowledge capture, product geometry and knowledge visualisation, product relationship

representation, knowledge reasoning and reuse, the correctness of the changes, data exchange

of geometry and data exchange of knowledge. The measurement parameters are further

explained in the later sections for each use case.

110

Table 6-1: Measurement parameters mapped with evaluation criteria

Measurement

parameter

Parameter description Evaluation

criteria

Criteria description

Generative

representation

If the VPM can develop

a model as a generative

representation of the

product

C1 The capability of generative

representation of engineering

products in VPM

Knowledge

capture

If the knowledge

capture tool can capture

the existing product

information as existing

knowledge and

generate a knowledge

file

C2 The capability of the VPM to

capture the product geometry

and its associated knowledge

from the existing product

information

Product

geometry and

knowledge

visualisation

If the interface can

visualise the part

geometry and its

associated knowledge

C3 The capability of the VPM to

visualise the product

geometry and its associated

knowledge

Product

relationship

representation

If the interface can

show the relationship

between part-part, part-

assembly

C4 The capability of the VPM to

present every part of the

product and the relationships

among them

Knowledge

reasoning and

reuse

If the product geometry

is constrained by rules

when the users change

the dimension of the

part in the product

modelling process

C5 The capability of the VPM to

propagate changes of

parameters to drive and

constrain the product

geometry by reuse of the

existing knowledge

Correctness of

the changes

If the interface can

drive and constrain the

C6 The correctness of the

changes applied to the

111

change of part

dimension through

rules and propagate the

changes correctly.

product geometry by reuse of

the existing knowledge

Data exchange

of geometry

If the geometry file can

be exchanged through

STEP file with CAD

platform.

C7 The capability and

correctness of the product

geometry data exchange

between different platforms

Data exchange

of knowledge

If the knowledge file

can be exchanged.

If the interface can

propagate the changes

of knowledge in the

knowledge file after

modifying the

knowledge file and re-

importing.

C8 The capability and

correctness of the knowledge

exchange through knowledge

file

The evaluation through use case is based on the data collected from the literature during the

literature review. The first use case is adapted from the primitive design feature examples for

the basic engineering feature modelling (Leu, 2016). This use case is selected because

primitive design features are the fundamental geometric features applied in the actual product

modelling process in general CAD environments. The second use case is a bolt example from

literature. Since bolts and nuts are the most basic components for mechanical engineering,

modelling these components can describe how engineering rules are applied in basic

engineering part modelling on a conceptual level. The third use case is a wheel assembly

example from literature. A wheel assembly with a wheel part and a tyre part is selected to

describe how two engineering parts are connected and constrained in one engineering

assembly.

112

As explained in previous Section 3.8.3, the virtual product modelling framework is developed

for capturing and reusing existing knowledge to support design engineering automation.

Therefore, when applying the virtual product modelling framework to one product, it is

assumed that the product model has already been created in the CAD software. So, before the

evaluation starts, all the use cases are pre-modelled in one of the current product modelling

legacy systems – Siemens NX 10 and the existing information are collected manually while

modelling these use cases. All these product models and existing information are then reused

as existing knowledge in the evaluation process. To evaluate the tool’s effectiveness, it is also

assumed that the existing information contains sufficient knowledge concerning the virtual

product modelling classes for the identified testing scenarios in each use case. Furthermore,

to specify a product or constraint different aspects of a product in the product modelling

process, design rules can be in various forms, such as text, equation, formula, etc.

Nevertheless, when performing these design rules through object-oriented programming, they

all constrain the product with programming logic. In other words, in the evaluation process of

this research, rules are converted into algorithms with programming logic, and all of the VPM

classes representing a product are treated as programming parameters, and these parameters

will be constrained by programming logic. Different rules are defined manually for each use

case to test the tool’s effectiveness with different scenarios. These rules are distinguished as:

• Rules that constrain a single parameter in one part. (Use Case 1)

• Rules that constrain parameters in one part. (Use Case 2)

• Rules that constrain parameters between parts in one assembly (Use Case 3)

113

6.3 Use Case 1: Simple Part with Primitive Design Features

6.3.1 Use Case Overview

In the first use case, four simple parts are selected based on the primitive design feature

example from literature (Leu, 2016) to evaluate different aspects of the proposed virtual

product modelling framework. Primitive features are basic geometric features from which

many other design features can be created. The basic primitive design features are block,

cylinder, sphere and cone. In this use case, the virtual product modelling approach is applied

to four simple parts that are formed from these primitive design features, which are a block

part, a cylinder part, a cone part, and a sphere part accordingly (shown in Figure 6-1).

Existing information of each simple part is discussed separately in sections 6.3.2, 6.3.3, 6.3.4

and 6.3.5.

 (a) a block part (b) a cylinder part (c) a sphere part (d) a cone part

Figure 6-1: Four simple parts with primitive design features (modelled in Siemens NX 10)

6.3.2 Simple Part – a Block Part

In this use case, existing information is collected from the part library of one of the current

product modelling systems – Siemens NX 10. However, the Siemens NX part library does

not provide all the information that fits the classified VPM classes. Hence, for some VPM

classes, such as material, behaviour, fit, and relationship, the entities are given as “None” or

“Not defined”.

114

Rules defined for the testing scenarios are regarded as the existing design rules. A list of

information of the block part is shown in the following Table 6-2. The listed product

information is assumed to be the non-geometric information that will be captured for VPM.

Table 6-2: Existing information of use case 1- primitive design feature: block part

VPM knowledge class Existing product information
Product Block
Feature Primitive design feature - block

Description The Block is a cube.
Function None

Behaviour None
Form Geometry: block

Material Not defined
Design intent Primitive design feature to create other design features.

Geometry From STEP file
Dimension Length =100mm, width =100mm, height=100mm

Rules Block Length L = Block Width W = Block Height H
Fit None

Constraint None
Relationship None

Reference None

6.3.2.1 Measurement Parameters and Testing Scenarios

Before applying the developed framework to the first use case, a list of measurement

parameters is set up based on the evaluation criteria (as shown in Table 6-3). Moreover, to

verify and validate the tool’s effectiveness, testing scenarios are also defined. The scenario

identified for this block part is “single dimension changed (block length) with single rule

applied”.

115

Table 6-3: Measurement parameters and expected results of use case 1

Measurement
parameter

Evaluation
criteria

Explanation Expected results

Generative
representation

C1 If the VPM can develop a
model as a generative
representation for each simple
part.

VPM product model
structure

Knowledge
capture

C2 If the knowledge capture tool
can capture the existing part
information as existing
knowledge and generate a
knowledge file for the part.

Knowledge file
generated in XML
format for each simple
part

Product
geometry and
knowledge
visualisation

C3 If the interface can visualise
each simple part geometry
(from the step file) and its
associated knowledge (from
the knowledge file)

Geometry visualisation
of the part in the
interface.
Knowledge
visualisation of the
knowledge file in the
interface.

Product
relationship
representation

C4 There is no relationship
between the part and other
parts because it is a single part
and does not belong to any
assembly

The product is shown
as a “part”

Knowledge
reasoning and
reuse

C5 If each simple part dimension
is driven and constrained by
rules with knowledge
reasoning.

Constrain the change
of dimension by rules
with knowledge
reasoning

Correctness of
the changes

C6 If the changes applied to the
part geometry through reuse
of the existing knowledge are
correct

Propagate the change
of dimension correctly

Data exchange
of geometry

C7 If the geometric data of each
simple part is exchanged
through the STEP file

Geometry visualisation
in the interface

Data exchange
of knowledge

C8 If the captured knowledge can
be exchanged through a
knowledge file.

Modify the knowledge
file, re-import it and
present the changes of
knowledge in the
knowledge file

116

6.3.2.2 Virtual Product Modelling Framework Application

After the existing information is collected, the next step is to utilise the current product model

data as the input to evaluate the virtual product modelling framework. The following sections

will focus on each step of the proposed virtual product modelling framework applied to this

use case - block.

a) Product model development

As explained in Chapter 5, a product model for representing a general product has been

developed in this research. Thus, in this use case, the block part can be represented using the

VPM product model structure to provide a clear picture of the atomic decomposition of

product knowledge (shown in Figure 6-2).

Figure 6-2: VPM product model structure of the block part in UML diagram

117

b) Knowledge capture of non-geometric information

In this step, all the existing information is regarded as design knowledge and captured using

the knowledge capture tool introduced in Section 5.3.2. The knowledge capture tool guides

the users to input their design knowledge by asking them to provide information on different

aspects of the product. This is a standard process that is required in the knowledge capture of

non-geometric information step for each use case. The following figures from Figure 6-3 to

Figure 6-15 explain each step of the knowledge capturing of non-geometric information of

the block part as examples of this process. The maximised view of the knowledge capture

tool is provided in the Appendix.

Figure 6-3: Example - select the number of the parts being designed

Figure 6-4: Example - input the Product Information including name, description, and type

118

 (a) Select the number of input (b) Input the name and description

Figure 6-5: Example - input the Design Intent and its description

 (a) Select the number of input (b) Input the information about the Function

 Figure 6-6: Example - input the Function

 (a) Select the number of input (b) Input the information about the Form

Figure 6-7: Example - input the Form

119

 (a) Select the number of input (b) Input the information about the Material

Figure 6-8: Example - input the Material

 (a) Select the number of input (b) Input the information about the Behaviour

Figure 6-9: Example - input the Behaviour

120

 (a) Select the number of Rules (b) Input the Rules

Figure 6-10: Example - input the Rules

 (a) Select the number of input (b) Input the information about Fit

Figure 6-11: Example - input the Fit

121

 (a) Select the number of input (b) Input the information about Relationship

Figure 6-12: Example - input the Relationship

Figure 6-13: Example - input the Dimension

122

 (a) Select the number of Key Parameters (b) Input the Key Parameters

Figure 6-14: Example - input the Key Parameters

Figure 6-15: Example - input the Constraints

123

After the existing information has been input into the knowledge capture tool, a knowledge

file in the format of XML will be generated. This knowledge file stores all the captured non-

geometric information (shown in Figure 6-16).

Figure 6-16: Example - part of knowledge file of the block part

By filling the captured knowledge into the atomic blocks of the VPM product model

structure, the block part can be further represented with supplementary knowledge (shown in

Figure 6-17).

124

Figure 6-17: VPM product model structure of the block part with captured knowledge

c) Knowledge capture of geometry information

To visualise the product represented by the VPM, geometry information of the part needs to

be extracted and stored in a STEP file. This is a typical process that is required in the

knowledge capture of geometry information step for each use case. This process is done

through the following steps:

• Pre-model the part in a CAD software Siemens NX 10 (example of a block part is

shown in Figure 6-18)

• Exported the part into a STEP file (Figure 6-19) using the export function in Siemens

NX 10.

125

Figure 6-18: A block part model created in Siemens NX 10

Figure 6-19: Part of the step file of block that exported from Siemens NX 10

d) Knowledge mapping

The rules stored in the knowledge file are used to map with the block dimension to establish

the link between the geometry information and the knowledge. In this block part use case, the

rule is defined as “Block Length (L) = Block Width (W) = Block Height (H)”. This mapping

is done through object-oriented programming in the implementation tool Unity. Thus, when

126

the user is trying to change the length of the block in the interface, the algorithm will run and

tell the user that the changes are affected by the defined rule. Figure 6-20 shows the mapping

process between the knowledge file and the user interface for visualisation. The detailed

codification can be found in Appendix.

Figure 6-20: Illustration of the knowledge mapping for the block part in use case 1

e) Visualisation & validation

The visualisation of results is performed both in text and 3D visualisation. After importing

the STEP file of the block part into the user interface, a 3D model of the block can be

visualised. By clicking the “Read Knowledge” button, the developed tool will automatically

parse the knowledge file and display all the captured information in the interface (see Figure

6-21).

127

Figure 6-21: Block part model visualised in the developed knowledge-based product

modelling environment

To validate the tool’s effectiveness, one testing scenario is defined previously in Section

6.3.2.1, which is “single dimension changed (block length) with single rule applied”. After

the user selects to change the block length by clicking the button “Change Length” in the tool

interface, the resulting changes will be shown in the “KBE Product Modelling Console”

panel. The results for this testing scenario with a single dimension changed are shown in

Figure 6-22. In the meantime, the “KBE Product Modelling Console” also indicates the rule

affecting the changes. For instance, when the user input 120 in the interface to change the

length from the original 100 to 120 (unit: mm), the “KBE Product Modelling Console” will

analyse if this change can be made by checking the rules. In this testing scenario, the rule that

has been applied to the block part is “Length(L) = Width(W) = Height (H)”. Therefore, the

128

width and height of the block are also changed to 120 automatically. And the affecting rule is

shown correctly in the “KBE Product Modelling Console”, which fulfils the knowledge

reasoning for this product modelling process. These results will be further discussed and

analysed at the end of this use case in Section 6.3.6.

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

Figure 6-22: Results of validation – use case 1: Block part

6.3.3 Simple Part – a Cylinder Part

Similar to the previous block part, the existing information of a simple cylinder part is

collected from the part library of Siemens NX 10. Information such as material, behaviour,

fit, and relationship is given as “None” or “Not defined” for this evaluation. A list of the

cylinder part information is shown in Table 6-4. The listed product information is assumed to

be the non-geometric information that is going to be captured for VPM.

129

Table 6-4: Existing information of use case 1- primitive design feature: cylinder part

VPM knowledge class Existing product information
Product Cylinder
Feature Primitive design feature - cylinder
Description Cylindrical part
Function None
Behaviour None
Form Geometry: Cylinder
Material Not defined
Design intent Primitive design feature to create other design features.
Geometry From STEP file
Dimension Diameter =50 mm, Height = 100mm.
Rules Rule 01: The height of cylinder should not be larger than

200.
Rule 02: The diameter of cylinder should not be larger
than 80.

Fit None
Constraint None
Relationship None
Reference None

6.3.3.1 Measurement Parameters and Testing Scenarios

Same measurement parameters for evaluation with use case 1 are used for this cylinder part

(as shown in Table 6-3). Testing scenarios are also defined to verify and validate the tool’s

effectiveness for this cylinder part as follows:

• Scenario One – single parameter of dimension changed (cylinder height), single rule

applied (cylinder rule 01),

• Scenario Two – single parameter of dimension changed (cylinder diameter), single

rule applied (cylinder rule 02).

These scenarios will be tested later in the following section.

130

6.3.3.2 Virtual Product Modelling Framework Application

The next step is to utilise the cylinder part data as the input to evaluate the virtual product

modelling framework. The following sections focus on each step of the proposed virtual

product modelling framework in application to this cylinder part.

a) Product model development

The cylinder part can also be represented by using the VPM product model structure to show

a clear structure of atomic decomposition of product knowledge (shown in Figure 6-23).

Figure 6-23: VPM product model structure of the cylinder part in UML diagram

131

b) Knowledge capture of non-geometric information

In this step, all the existing information is captured through the use of the knowledge capture

tool. The existing information is input into the knowledge capture tool, and then a knowledge

file (.xml) that stores all the captured non-geometric information is created (as shown in

Figure 6-24).

Figure 6-24: Example - part of knowledge file of the cylinder part

The cylinder part can be further represented with the expanded knowledge using VPM in the

UML diagram (shown in Figure 6-25).

132

Figure 6-25: VPM product model structure of the cylinder part with captured knowledge

c) Knowledge capture of geometry information

The process of extracting the geometry information of the cylinder remains the same as

explained in Section 6.3.2.2 (c). The pre-modelled cylinder part in Siemens NX 10 is shown

in Figure 6-26.

Figure 6-26: A cylinder model created in Siemens NX 10

133

d) Knowledge mapping

For this cylinder part, two rules are captured and stored in the knowledge file, which are:

• Rule 01: The height of the cylinder should not be larger than 200 (h <=200)

• Rule 02: The diameter of the cylinder should not be larger than 80.

These rules are further converted into programming logic that constrains the cylinder

dimension parameters. Thus, when the user is trying to change the height of the cylinder in

the interface, the algorithm will run and tell the user that the changes are affected by the

defined rule 01. Similarly, if the diameter of the cylinder is changed, the algorithm will show

that the change of diameter is affected by the defined rule 02. Figure 6-27 illustrates the

mapping process between the knowledge file and the user interface for visualisation. The full

codification is provided in Appendix.

Figure 6-27: Illustration of the knowledge mapping for the cylinder part in use case 1

134

e) Visualisation & validation

The visualisation is performed in the same way as explained in Section 6.3.2.2 (e) (as shown

in Figure 6-28).

Figure 6-28: Cylinder part model visualised in the developed knowledge-based product

modelling environment

Different from the previous block part, two testing scenarios are identified to test the tool’s

effectiveness of changing two parameters and applying two rules in one part, which are:

• Scenario One - single parameter of dimension changed (cylinder height), single rule

applied (cylinder rule 01),

• Scenario Two - single parameter of dimension changed (cylinder diameter), single

rule applied (cylinder rule 02).

135

After the users select to change the cylinder height by clicking the button “Change Height” in

the tool interface, the changes will be propagated in the “KBE product modelling console”

panel. The results of the two testing scenarios are shown in Figure 6-29. In the meantime, the

“KBE product modelling console” also shows the rule affecting the changes. These results

will be further discussed and analysed at the end of this use case in Section 6.3.6.

(a) Scenario One - change of height with rule 01

(b) Scenario Two - change of diameter with rule 02

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Red box -

propagated parameter (changes not allowed by rules); Blue box - knowledge reasoning.

Figure 6-29: Results of validation – use case 1: cylinder part

136

6.3.4 Simple Part – a Cone Part

Following the same process explained previously in Section 6.3.2, the existing information of

a simple cone part is collected and shown in Table 6-5. The listed product information is

assumed to be the non-geometric information that is going to be captured for virtual product

modelling.

Table 6-5: Existing information of use case 1- primitive design feature: cone part

VPM knowledge class Existing product information
Product Cone
Feature Primitive design feature - cone
Description Primitive Design Feature
Function None
Behaviour None
Form Geometry: cone. A circular base and one continuous curve.
Material Not defined
Design intent Primitive design feature to create other design features.
Geometry From STEP file
Dimension Base Diameter =10 mm, Height = 18mm.
Rules Rule 01:

The base diameter of cone should be among 10,16,18,20 mm
Rule 02:
If the diameter of cone is less than 16mm, the height should be
18mm. If the diameter of cone is equal to or larger than 16
mm, the height should be 24 mm.

Fit None
Constraint None
Relationship None
Reference None

6.3.4.1 Measurement Parameters and Testing Scenarios

Measurement parameters defined for the first use case evaluation are utilised for this cone

part (as shown in Table 6-3). The following two testing scenarios are identified for this cone

part to verify and validate the tool’s effectiveness:

137

• Scenario One - single parameter of dimension changed (cone base diameter), single

rule applied (cone rule 01),

• Scenario Two - single parameter of dimension changed (cone height), single rule

applied (cone rule 02).

These scenarios will be tested later in the following section.

6.3.4.2 Virtual Product Modelling Framework Application

The next step is to utilise the cone part data as the input to evaluate the virtual product

modelling framework. The following sections explain each step of the proposed virtual

product modelling framework in application to this cone part.

a) Product model development

Similar to the previous two simple parts, the cone part can be represented by using the VPM

product model structure to provide a clear structure of atomic decomposition of product

knowledge (shown in the following Figure 6-30).

138

Figure 6-30: VPM product model structure of the cone part in UML diagram

b) Knowledge capture of non-geometric information

The process of capturing the cone's existing non-geometric information is the same as has

been explained in Section 6.3.2.2 (b). The generated knowledge file from the knowledge

capture tool is shown in Figure 6-31.

139

Figure 6-31: Example - part of knowledge file of the cone part

The cone part can be further represented with the captured knowledge through VPM in the

UML diagram (shown in Figure 6-32).

140

Figure 6-32: VPM product model structure of the cone part with captured knowledge

c) Knowledge capture of geometry information

Extracting the geometry information of the cone part follows the same process explained in

Section 6.3.2.2 (c). The pre-modelled cone part in Siemens NX 10 is shown in Figure 6-33.

141

Figure 6-33: A cone model created in Siemens NX 10

d) Knowledge mapping

For this cone part, two rules are captured and stored in the knowledge file, which are:

• Rule 01: The base diameter of the cone should be 10,16,18,20 mm

• Rule 02: If the base diameter of the cone is less than 16mm, the height should be

18mm. If the base diameter of the cone is equal to or larger than 16 mm, the height

should be 24 mm.

These rules are further converted into object-oriented programming logic that constrains the

cone dimension parameters. Thus, when the user is trying to change the base diameter of the

cone in the interface, the algorithm will run and tell the user that the changes are affected by

the defined cone rule 01. If the base diameter of the cone is being changed to less than 16

mm, the algorithm will show that the height of the cone should be 18mm because of the

defined rule 02. Similarly, if the base diameter of the cone is being changed to equal to or

larger than 16 mm, the algorithm will tell that the height of the cone should be 24 mm under

the constraints of cone rule 02.

142

Another test is to change the height of the cone. With the constraint of cone rule 02, the

height of the cone is dominated by the base diameter. Therefore, when the user gives a height

value in the interface, the algorithm will run and check if the current diameter is less than,

equal to, or larger than 16mm. And the allowed height value would only be 18mm or 24 mm.

Figure 6-34 describes the mapping process between the knowledge file and the user interface

for visualisation. The detailed codification is provided in Appendix.

Figure 6-34: Illustration of the knowledge mapping for the cone part in use case 1

e) Visualisation & validation

The visualisation of this cone part (as shown in Figure 6-35) is performed in the same way as

been explained in Section 6.3.2.2 (e).

143

Figure 6-35: Cone part model visualised in the developed knowledge-based product

modelling environment

Two testing scenarios have been identified before as follows:

• Scenario One - single parameter of dimension changed (cone base diameter), single

rule applied (cone rule 01)

• Scenario Two - single parameter of dimension changed (cone height), single rule

applied (cone rule 02).

After the user selects to change the cone base diameter by clicking the “Change Diameter”

button in the tool interface, the changes will be reflected in the “KBE product modelling

console” panel. Similar, the user can change the height of the cone by clicking “Change

Height” in the tool interface. The results of the two testing scenarios are shown in Figure 6-

144

36. These results will be further discussed and analysed at the end of this use case in Section

6.3.6.

(a) Scenario One - change of base diameter

(b) Scenario One and Two - propagation of the change of base diameter to the change of

height

145

(c) Scenario Two - change of height against cone rule 02

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

Figure 6-36: Results of validation – use case 1: cone part

6.3.5 Simple Part - a Sphere Part

The existing information of a sphere part is collected from the part library of Siemens NX 10

by performing the same process as described in Section 6.3.2. A list of information on the

sphere part that will be captured for virtual product modelling is shown in the following

Table 6-6.

146

Table 6-6: Existing information of use case 1- primitive design feature: sphere part

VPM knowledge class Existing product information
Product Sphere
Feature Primitive design feature - Sphere
Description Primitive Design Feature
Function None
Behaviour None
Form Geometry: Sphere. Could be solid or hollow
Material 304 Stainless Steel
Design Intent Primitive design feature to create other design features.
Geometry From STEP file
Dimension Diameter =25 mm
Rules Rule 01:

The diameter of sphere should be among
19,20,21,22,25,30,35,40 mm
Rule 02:
The material of the steel ball should be among American Iron
and Steel Institute standard (AISI) 201, AISI 304, AISI 316
stainless steel

Fit None
Constraint None
Relationship None
Reference None

6.3.5.1 Measurement Parameters and Testing Scenarios

Measurement parameters for this sphere part are the same as described in Table 6-3. The

following two testing scenarios are identified for this sphere part to verify and validate the

tool’s effectiveness:

• Scenario One - single parameter of dimension changed (sphere diameter), single rule

applied (sphere rule 01)

• Scenario Two - single parameter of dimension changed (sphere material), single rule

applied (sphere rule 02)

These scenarios will be tested later in the following section.

147

6.3.5.2 Virtual Product Modelling Framework Application

Next, the sphere part data is used as the input to evaluate the virtual product modelling

framework. The following sections explain each stage of the proposed virtual product

modelling framework in application to this sphere part.

a) Virtual product model development

Like the previous simple part, the sphere part can also be represented by using the VPM

product model structure (shown in Figure 6-37).

Figure 6-37: VPM product model structure of the sphere part in UML diagram

148

b) Knowledge capture of non-geometric information

The process of capturing the sphere part's existing non-geometric information is the same as

explained in Section 6.3.2.1 (b). The knowledge file of the sphere created by the knowledge

capture tool is shown in Figure 6-38.

Figure 6-38: Example - part of knowledge file of the sphere part

The sphere part can be further represented with the captured knowledge in VPM using the

UML diagram (as shown in Figure 6-39).

149

Figure 6-39: VPM product model structure of the sphere part with captured knowledge

150

c) Knowledge capture of geometry information

The process of extracting the geometry information of the sphere continues as same as been

explained in Section 6.3.2.2 (c). The sphere is pre-modelled in Siemens NX 10 as shown in

Figure 6-40.

Figure 6-40: A sphere model created in Siemens NX 10

d) Knowledge mapping

For this sphere part, two rules are captured and stored in the knowledge file, which are:

• Rule 01: The diameter of sphere should be among 19,20,21,22,25,30,35,40 mm

• Rule 02: The material of the steel ball should be among AISI 201, AISI 304, and AISI

316 stainless steel.

These rules are further converted into programming logic constraining the sphere diameter

and material. Therefore, when the user inputs a new value of diameter and presses the

“Change Diameter” button in the interface, the unique algorithm will run and check with the

rule01 and then tell the user whether the change could be executed along with the reason. If

the user inputs a new material and presses the “Change Material” button, the algorithm will

examine if this material is applicable for the sphere based on rule 02. Figure 6-41 shows the

151

mapping process between the knowledge file and the user interface for visualisation through

object-oriented programming. The complete coding is attached in Appendix.

Figure 6-41: Illustration of the knowledge mapping for the sphere part in use case 1

e) Visualisation & validation

The visualisation of this sphere part is carried out in the same way as described in Section

6.3.2.2 (e). The visualisation result is shown in text and 3D visualisation (see Figure 6-42).

152

Figure 6-42: Sphere part model visualised in the developed knowledge-based product

modelling environment

Two testing scenarios are identified in Section 6.3.5.1 to test the tool effectiveness of

changing single parameters and applying rules in one part, which are:

• Scenario One - single parameter of dimension changed (sphere diameter), single rule

applied (sphere rule 01),

• Scenario Two - single parameter of dimension changed (sphere material), single rule

applied (sphere rule 02).

The results of the two testing scenarios are shown in Figure 6-43 and will be further

discussed and analysed at the end of use case 1 in the following section.

153

(a) Scenario One - change of diameter under rule 01

(b) Scenario Two - change of material under rule 02

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Red box -

propagated parameter (changes not allowed by rules); Blue box - knowledge reasoning.

Figure 6-43: Results of validation – use case 1: sphere part

6.3.6 Result Analysis and Use Case Discussion

After performing the complete cycle of the virtual product modelling framework

methodology application for the simple part with primitive design features use case, the next

evaluation objective is to analyse the virtual product modelling framework results critically

and then compare the product modelling results from using the virtual product modelling

154

framework with the use of current existing/legacy product modelling system for same

circumstances.

Based on the pre-defined measurement parameters in Table 6-3, it can be seen that the

framework satisfies all of these measurement parameters and shows all the expected results in

this first use case implementation.

1) Generative representation – C1

A VPM product model structure is developed for each part in this use case 1, to provide a

generative representation of the part by using the atomic blocks with the knowledge classes

that have been defined in Section 5.2 of Chapter 5. The developed VPM product model

structure showcases that it can capture both geometric information of the product and its

corresponding design knowledge. And the captured knowledge offers the potential of

showing a set of possibilities based on the knowledge hierarchy from predefined products.

For example, the knowledge stored in design intent will provide users with information

required to analyse why the product is generated.

However, the level of generalisation depends on the richness of product data. In this

particular use case, the existing product information and the product itself are simple. Only a

few parameters can be varied to provide different product design configurations. But this

does not limit the capability of VPM in providing the generative representation for an

engineering product. By giving sufficient data as existing design knowledge, it is possible to

capture and include the design strategy as “Rules” that are required to generate a particular

product from a specification using VPM.

2) Knowledge capture – C2

Firstly, the virtual product modelling methodology successfully captures all the collected

existing product information of the four simple parts in this use case 1, including simple rules

that constrain one or two parameters, basic descriptions, simple dimensional parameters, etc.

155

Secondly, a knowledge file in XML format is generated for each simple part storing all the

captured product information. Therefore, through the implementation of this virtual product

modelling methodology, the existing product design knowledge is captured, classified, and

stored in an exchangeable format. This allows the captured knowledge to be reused for

providing supporting data for less-experienced design engineers to understand the product

design. Moreover, the developed product model in VPM and the knowledge file can serve as

a knowledge reservoir that is accessible to users to provide available product data for other

activities at different product development phases.

3) Product geometry and knowledge visualisation – C3

The geometry of the four simple parts in use case 1 and the captured knowledge stored in the

knowledge files are visualised successfully in the interface. It proves that the developed

knowledge-based product modelling environment can visualise the geometry of these simple

parts along with their associated knowledge.

As discussed before in sections 5.1.5 and 5.3.5, visualisation in the developed knowledge-

based product modelling environment should provide the ability to view the product model’s

original geometry and the possible changes that will happen to the geometry and the associate

knowledge that constrains the changes. In this use case, the possible changes of dimensions

that the users in this interface can make are limited to the use case. And the results of changes

in length, width, height, diameter, and material are presented through the text description in

the interface. These results help recognise the limitation of the developed knowledge-based

product modelling environment in visualisation. The text description is not as effective as a

graphical 3D display in visualising geometry. This deficiency is caused by the lack of

available enabling technologies that support editing the geometry data in the STEP file and

displaying the graphical changes directly in the modelling environment. However, the

limitation in visualisation is acceptable as the system has shown its effectiveness in

156

propagating the changes of simple parts geometry by reusing the captured knowledge.

Visualisation of the original geometry allows the users to know the 3D shapes of the product

that they are modelling. The visualisation of knowledge provides them with additional

information about each simple part.

4) Product relationship representation – C4

In this use case 1, all the four parts are single parts, and they do not have relationships with

other parts. Therefore, to prove the effectiveness and correctness of the relationship

representation, all of the four parts are expected to be identified as “part” in the developed

knowledge-based product modelling environment before testing. The implementation results

verify that the relationship representation has been achieved for simple parts with primitive

design features.

5) Knowledge reasoning and reuse – C5

The results of use case 1 prove that, through object-oriented programming, the developed

knowledge-based product modelling environment shows the capability of changing

parameters of simple parts in context. All the captured rules are implemented and effectively

drive and constrain the targeted parameters. The changes of the affected parameters are

provided with reasons, and the propagation of affected changes is presented through text

indication in the interface.

In this use case 1, as the design parameters for these parts are simple, the resulted knowledge

reasoning and reuse in the modelling process are straightforward. For the block part, when

the users change the length of the block, the height and width will also be changed according

to the rules. It will save the time of making changes to the height and width separately. For

the cylinder part, as the rules have constrained the changes of height and diameter, the users

will know if the changes that they make are allowed by the rules. This will help them to avoid

making mistakes in the product modelling process. Similarly, for the cone part, when the

157

users change the base diameter, the developed product modelling environment will show if

the changes can be made with the reasons. In the meantime, it will also check and apply the

change of height as the height of the cone is constrained by the base diameter. This also helps

users save time on making changes to different parameters in the product modelling process.

For the sphere part, the knowledge reasoning and reuse can help prevent the wrong input of

the diameter value. Additionally, for the material of the cone part and sphere part, knowledge

reasoning and reuse in the developed product modelling environment helps the users to

identify the appropriate material that they can apply to the parts for manufacturing. In this

way, it can help avoid errors in other activities of the product development lifecycle, such as

product manufacturing, apart from the product modelling process.

6) Correctness of the changes – C6

By comparing the actual implementation results with the expected results from the pre-

defined rules, it can be seen that the changes applied to the geometry of the four simple parts

through the reuse of the existing knowledge are correct. This states that the developed

method will allow effective product modelling in the knowledge-based product modelling

environment.

7) Data exchange – C7 and C8

The visualisation of both the geometry and the associated knowledge of the four simple parts

also proves that the proposed VPM data exchange method (discussed in the previous sections

5.2.3 and 5.3.2) is successful in communicating with the CAD platform through STEP file

and in exchanging existing product information through a knowledge file. This shows that the

developed framework will ensure steady data exchange in the knowledge-based product

modelling environment.

The above analysis of the results from use case 1 proves that the virtual product modelling

methodology satisfies all the measurement parameters. Next, to evaluate the developed VPM

158

further, it is crucial to compare these implementation results with the modelling results from

using the current existing/legacy CAD system for the same circumstances. The comparison is

summarised in Table 6-7 based on the identified evaluation criteria from Section 6.2.

Table 6-7: Comparison of the use case 1 implementation results between the existing/legacy

CAD system and VPM

Evaluation Criteria Existing/legacy CAD
system implementation

Virtual Product Modelling
framework implementation

The capability of generative

representation of engineering

products in VPM

Use template design feature

model as a generative 3D

model of a product

(geometry representation

only and limited to

proprietary format).

Limited product information

is provided.

Develop a VPM product

model structure as a

generative representation of

the product (standardised

format - UML)

Can provide information,

such as design intent and

material, and design rules to

understand possible product

design configurations.

The capability of capturing

the product geometry and its

associated knowledge from

the existing product

information

Capture the product

geometry through

importing/exporting the

model into standardised

format.

Unable to capture the

existing associated product

knowledge during the

product modelling process.

Capture the product

geometry through importing

the model from CAD

systems in a standardised

format.

Capture existing associated

product knowledge during

the product modelling

process through the

knowledge capture tool.

The capability of visualising

the product geometry and its

associated knowledge

Visualisation of product

geometry only

Visualisation of the product’s

original geometry and its

associated knowledge. Text

visualisation of the changes

159

in geometry parameters.

The capability of presenting

every part of the product and

the relationships among them

In use case 1, the product is

shown as single part in the

modelling hierarchy tree and

there is no relationship with

other parts.

In use case 1, the product is

shown as “part” in the proof-

of-concept tool interface, and

there is no relationship with

the other parts.

The capability of propagating

changes of parameters to

drive and constrain the

product geometry by reuse of

the existing knowledge

Manual tracking of changes

of parameters.

The change of product

geometry is reflected in 3D

visualisation graphically.

No knowledge reasoning is

provided when changing

parameters in the existing

CAD systems. No rules are

embedded in template model.

Automatic tracking of

changes of parameters

through the reuse of rules.

Text visualisation of the

affected parameters in the

proof-of-concept tool

interface.

The change of product

geometry is reflected through

text description due to the

limited available enabling

tools.

Knowledge reasoning is

provided in the proof-of-

concept tool interface by

reuse of rules from the

existing knowledge

The correctness of the

changes applied to the

product geometry by reuse of

the existing knowledge

Manual check-up of the

correctness of changes is

required.

The changes applied to the

product geometry is

following the rules from the

existing knowledge. The

correctness is proved during

the validation stage.

The capability and

correctness of the product

geometry data exchange

The product geometry data is

exchanged in the format of a

STEP file.

The product geometry data is

exchanged in the form of a

STEP file. The correctness is

160

between different platforms proved during the

visualisation process.

The capability and

correctness of the knowledge

exchange through knowledge

file

The existing CAD systems

are not able to exchange

knowledge between each

other using a generalised

format.

The knowledge is exchanged

in a knowledge file in the

format of XML. XML is a

platform-independent neutral

format for data

communication.

Knowledge exchange is

proved during the

implementation and

validation stage.

The critical comparison between the product modelling in the existing CAD systems and the

proposed virtual product modelling framework implementation further proves the

effectiveness of the framework in the chosen simple part use case. However, the difference in

modelling simple parts between using VPM and existing/legacy CAD system may not be

evident as the existing product information of these simple parts in use case 1 are brief.

Moreover, since simple parts are mainly modelled from primitive design features, only a few

parameters could be used and varied to create product variants. The design rules involved in

the modelling process are limited to constraining a single parameter as the geometry of each

part is simple. Therefore, the developed product model using VPM for simple parts would

mainly contain geometric data as the knowledge that can be captured and reused for

knowledge reasoning is limited. Users may not need design knowledge to be captured and

reused as supplementary information to support their modelling process, as understanding

and modelling these simple parts is straightforward. In this case, knowledge capture and

reuse would not make product modelling using VPM show much distinction with

conventional modelling using existing/legacy CAD systems. Although VPM has shown

161

effectiveness in modelling simple parts in use case 1, modelling simple parts with primitive

design features and inadequate knowledge using VPM may not be as efficient as using the

existing/legacy CAD systems because these CAD systems offer mature functions in

geometric modelling and visualisation. The next use case selects a hex bolt that has more

knowledge to evaluate the effectiveness of VPM in application to an engineering part with

complex design rules.

6.4 Use Case 2: Basic Engineer Part – Hex Bolt

6.4.1 Use Case Overview

The second use case aims to validate the framework by implementing an engineering

component model which has more knowledge. In the second use case, a hex bolt from

literature has been chosen as the testing product model as it is one of the most widely used

basic engineering parts. Figure 6-44 shows a hex bolt product model from the Siemens NX

library.

Figure 6-44: A hex bolt modelled in Siemens NX 10

162

A hex bolt has a hexagonal head and external machine threads for a firm and rough handling.

Hex bolts are usually in a wide range of sizes for custom application on their dimensional

requirements. The material of hex bolts varies from steel, alloy steel, carbon steel and anti-

corrosion stainless steel, depending on the different application environments. Figure 6-45

shows the 2D drawings and the dimensional descriptions of the hex bolt.

Figure 6-45: 2D drawings of the hex bolt with dimensional descriptions

As the hex bolt is a standardised part, existing product information can be collected from the

existing hex bolt standard. In this use case, the hex bolt is selected from DIN (Deutsches

Institut für Normung or German Institute for Standardisation) 931 standard in the literature.

Table 6-8 shows the dimensions of the hex bolt in the DIN 931 standard.

Table 6-8: Hex bolt dimensions (in millimetres) – DIN 931 (partial)

Thread
size
D1

Threaded
shank
length

b
(L* < 125)

Threaded
shank
length

b
(L - 125 to
200)

Threaded
shank
length

b
(L > 200)

Head
depth

k

Width
across
corner

e

Width
across
flats

s
(preferred

size)
M10 26 32 45 6.4 18.9 17
M12 30 36 49 7.5 21.1 19
M14 34 40 53 8.8 24.49 22
M16 38 44 57 10 26.75 24
M18 42 48 61 11.5 30.14 27
M20 46 52 65 12.5 33.53 30

163

M22 50 56 69 14 35.72 32
M24 54 60 73 15 39.98 36

*L: Bolt length

For this use case implementation, an M12 hex bolt is selected with a bolt length of 80 mm.

According to DIN 931, the thread length b is 30 mm. If the D1 of this hex bolt is being

changed, all the other dimensional parameters have to be modified based on the standard

correspondingly. Two rules that constrained dimensional parameters are extracted from the

DIN 931 standard and defined as follows:

• Bolt rules 1 – when D1 is M12, k should be 7.5 mm, e should be 21.1 mm and s

should be 19 mm. If L is less than 125 mm, the thread length b should be 30 mm; if L

is between 125 mm and 200 mm, the thread length b should be 36 mm; if L is larger

than 200 mm, the thread length b should be 49mm.

• Bolt rules 2 – when D1 is changed to M14, k should be 8.8mm, e should be 24.49 mm

and s should be 22 mm. If L is less than 125 mm, the thread length b should be 34

mm; if L is between 125 mm and 200 mm, the thread length b should be 40 mm; if L

is larger than 200 mm, the thread length b should be 53 mm.

The existing information of an M12 hex bolt in this use case is shown in Table 6-9.

Table 6-9: Existing information of use case 2 – hex bolt

VPM knowledge class Existing product information
Product Hex bolt
Feature hexagonal head and external male thread
Description Fastener - hex bolt DIN 931
Function Fasten
Behaviour The bolt head locks the bolt in the place and nut is applied at

the end.
Form Cylinder with a hexagonal head and external male thread
Material Alloy steel
Design intent Fasten
Geometry From STEP file
Dimension D1: M12, L=80 mm, b =30mm, k=7.5 mm, e =21.1 mm, s=19

164

mm.
Rules Bolt rules 1 – when D1 is M12, k should be 7.5, e should be

21.1 and s should be 19 mm. If L is less than 125 mm, the
thread length b should be 30 mm; if L is between 125 mm and
200 mm, the thread length b should be 36 mm; if L is larger
than 200 mm, the thread length b should be 49mm.
Bolt rules 2 – when D1 is changed to M14, k should be 8.8, e
should be 24.49 and s should be 22 mm. If L is less than 125
mm, the thread length b should be 34 mm; if L is between 125
mm and 200 mm, the thread length b should be 40 mm; if L is
larger than 200 mm, the thread length b should be 53 mm.

Fit Fit with hole and nut.
Constraint None
Relationship None
Reference DIN 931

6.4.2 Measurement Parameters and Testing Scenarios

Similar to the previous use case, measurement parameters are defined for evaluation with the

hex bolt (as shown in Table 6-10).

Table 6-10: Measurement parameters and expected results of use case 2- hex bolt

Measurement
parameter

Evaluation
criteria

Explanation Expected results

Generative

representation

C1 If the VPM can develop a

model as a generative

representation of the hex bolt

VPM product model

structure of the hex

bolt

Knowledge

capture

C2 If the knowledge capture tool

can capture the existing hex

bolt information as existing

knowledge and generate a

knowledge file

Knowledge file in

XML

Product

geometry and

knowledge

visualisation

C3 If the interface can visualise

the part geometry (from the

step file) and its associated

knowledge (from the

Geometry visualisation

of the hex bolt in the

interface.

Knowledge

165

 knowledge file) visualisation of the

knowledge file in the

interface.

Product

relationship

representation

C4 There is no relationship

between this hex bolt and

other parts because it is a

single part and does not

belong to any assembly.

The hex bolt is shown

as a “part” in the

interface.

Knowledge

reasoning and

reuse

C5 If the hex bolt dimensions are

driven and constrained by

rules with knowledge

reasoning.

Constrain the change

of hex bolt dimension

by rules with

knowledge reasoning.

Correctness of

the changes

C6 If changes applied to the hex

bolt geometry through reuse

of the existing knowledge are

correct.

Propagate the change

of dimension correctly.

Data exchange

of geometry

C7 If the hex bolt geometric data

is exchanged through the

STEP file.

Geometry visualisation

in the interface.

Data exchange

of knowledge

C8 If the captured knowledge of

the hex bolt can be exchanged

through the hex bolt

knowledge file.

Modify the knowledge

file, re-import it and

present the changes of

knowledge in the

knowledge file

The following testing scenarios are identified to verify and validate the tool’s effectiveness:

• Scenario One – changing bolt length (L), threaded shank length (b), head depth (k),

width across corner (e), width across flats (s) while keeping the thread size (D1)

consistent.

• Scenarios Two – changing thread size (D1).

166

6.4.3 Virtual Product Modelling Framework Application

After defining the measurement parameters and testing scenarios, the next step is to utilise

the hex bolt data as the input to evaluate the virtual product modelling framework. The

following sections will focus on each step of the proposed virtual product modelling

framework in application to this hex bolt.

a) Product model development

As shown in Figure 6-46, the hex bolt can be represented using the VPM product model

structure in the same way described in use case 1.

Figure 6-46: VPM product model structure of the hex bolt in UML diagram

167

b) Knowledge capture of non-geometric information

The existing non-geometric information of the hex bolt is captured in the same way as

presented in Section 6.3.2.2 (b). The knowledge file of the hex bolt generated from the

knowledge capture tool is shown in Figure 6-47.

Figure 6-47: Example - part of knowledge file of the hex bolt

The hex bolt can be further represented with detailed knowledge (shown in Figure 6-48).

168

Figure 6-48: VPM product model structure of the hex bolt with captured knowledge

c) Knowledge capture of geometry information

The process of extracting the geometry information of the hex bolt is the same as described

before in Section 6.3.2.2 (c).

169

d) Knowledge mapping

For this hex bolt part, two rules are captured and stored in the knowledge file, which are:

• Bolt rule 1 – when D1 is M12, k should be 7.5 mm, e should be 21.1 mm and s should

be 19 mm. If L is less than 125 mm, the thread length b should be 30 mm; if L is

between 125 mm and 200 mm, the thread length b should be 36 mm; if L is larger

than 200 mm, the thread length b should be 49mm.

• Bolt rule 2 – when D1 is changed to M14, k should be 8.8mm, e should be 24.49 mm

and s should be 22 mm. If L is less than 125 mm, the thread length b should be 34

mm; if L is between 125 mm and 200 mm, the thread length b should be 40 mm; if L

is larger than 200 mm, the thread length b should be 53 mm.

The knowledge mapping is performed by converting these rules into object-oriented

programming logic that constrains the hex bolt dimension parameters. Later, the programmed

logic will be used as the backend of the user interface. The mapping process between the

knowledge file and the user interface for visualisation for “Scenario one – changing L under

one consistent D1” is shown in Figure 6-49. In this use case, the changing of parameter L is

mapped with the bolt rule 01. When the user changes the L value, the algorithm will check

the input L value with the L value from the pre-defined rule 01. Three conditions are set up in

the bolt rules. Based on bolt rule 01, if the input bolt length L value is less than 125, the

thread length b has to be changed to 30. Similarly, if the input L value is in the range between

125 and 200, the thread length b has to be changed to 36. If the input L value is larger than

200, the thread length b has to be changed to 49. Therefore, when the user is changing the L

parameter, the interface will indicate that the thread length b needs to be changed as well.

170

Figure 6-49: Illustration of the knowledge mapping for the scenario one – changing L under

one D1 in use case 2.

The knowledge mapping process for scenario one – changing b under on D1 is shown in

Figure 6-50. From the bolt rule 01, it can be known that the b value is constrained by the bolt

length L and should be either 30, 36 or 49 for an M12 DIN 931 hex bolt. When the users

change the b value in the user interface, the algorithm will check the b value against the bolt

rule 01. If the input b value is among 30, 36 and 49, the user interface will tell the users that

the bolt length L has to be changed accordingly. If the input b value is not in the given range

from the bolt rule 01, the user interface will show that the value is conflicting with the rule

through a warning text.

171

Figure 6-50: Illustration of the knowledge mapping for the scenario one – changing b under

one D1 in use case 2.

The knowledge mapping process of scenario one- changing k, e, s under one D1 in use case 2

is shown in Figure 6-51. This mapping process is straightforward since the k, e and s values

are all constants for an M12 hex bolt. If different values are given by the users, the algorithm

will indicate that values are not allowed because the k, e and s are constrained by the bolt rule

01.

172

Figure 6-51: Illustration of the knowledge mapping for the scenario one – changing b under

one D1 in use case 2.

The knowledge mapping process for scenario two is illustrated in Figure 6-52. When the user

inputs D1 values, the algorithm will check the k, e, s values from the embed rules. If the users

input k, e and s values, the algorithm will compare the input values with the values specified

in the rules and then suggest if the changes can be made. Similarly, the algorithm will check

the input L and b values with the rules, tell users whether these values are allowed by the

rules, and show the relevant reasons why the changes cannot be performed. The full

codification is provided in Appendix.

173

Figure 6-52: Illustration of the knowledge mapping for the scenario two – changing D1 in use

case 2.

The knowledge mapping process provides the capability of knowledge reasoning for the users

when they modify the hex bolt’s dimension. After the knowledge mapping between the

backend knowledge file and the frontend user interface, the next step is to visualise and

validate the implementation results of use case 2.

e) Visualisation & validation

The 3D model of this hex bolt is visualised after importing the STEP file of the part into this

tool. This visualisation process is completed the same way as described in Section 6.3.2.2 (e).

The result of visualisation is shown in the following Figure 6-53. Two testing scenarios for

this use case have been defined in Section 6.4.2 as follows:

• Scenario One – changing L, b, k e s under one consistent D1 (bolt rule 1).

• Scenarios Two – changing D1 (bolt rule 1 and rule 2).

174

Figure 6-53: Hex bolt model visualised in the developed knowledge-based product modelling

environment

The validation is performed along with the process of visualisation. For instance, after the

design engineer selects to change the bolt length by clicking the button “Change Bolt Length”

in the tool interface, the tool will indicate if the changes can be made and show the relevant

changes that need to be considered. The results of changing bolt length under three conditions

from bolt rule 01 are shown in Figure 6-54.

175

(a) L<125 mm (b) L between 125 and 200 mm

(c) L>200mm

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

Figure 6-54: Results of validation – use case 2: hex bolt, scenario one - change L

The validation of changing bolt threaded shank length b in scenario one is shown in Figure 6-

55. In this case, four conditions were tested, and the results are as same as what has been

claimed by bolt rule 01.

176

(a) b conflicts with rule (b) b =30 mm

(c) b =36 mm (d) b =49 mm

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

Figure 6-55: Results of validation – use case 2: hex bolt, scenario one - change b

The validation results of changing bolt head depth k in scenario one are presented in Figure

6-56. If the input k value differs from the value allowed by rule01, the tool will tell the users

that the change is not permitted.

177

(a) k conflicts with rule (b) k =7.5mm

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

Figure 6-56: Results of validation – use case 2: hex bolt, scenario one - change k

Similarly, the validation of changing bolt width across corners (e) and changing bolt width

across flats (s) have been done, and the results are shown in Figure 6-57 and Figure 6-58,

respectively.

(a) e conflicts with rule (b) e=21.1 mm

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

Figure 6-57: Results of validation – use case 2: hex bolt, scenario one - change e

178

 (a) s conflicts with rule (b) s=19 mm

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

Figure 6-58: Results of validation – use case 2: hex bolt, scenario one - change s

Scenario two was tested by changing thread size D1 from M12 to M14. As shown in Figure

6-59, only when the b, k, e and s are all changed to the values permitted by the rules will the

change of D1 from M12 to M14 be allowed to be performed.

(a) b, k, e, s values conflict with rule (b) b, k, e, s values allowed by rule

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Blue box -

knowledge reasoning.

179

Figure 6-59: Results of validation – use case 2: hex bolt, scenario two – change bolt thread

size D1 from M12 to M14

6.4.4 Result Analysis and Use Case Discussion

Similar to use case 1, the next evaluation objective is to critically analyse the virtual product

modelling framework results in use case 2 and then compare the product modelling results

from using the virtual product modelling framework with the use of the current

existing/legacy product modelling system for the same circumstances. The virtual product

modelling framework implementation in the hex bolt example further proves that the

framework satisfied all these measurement parameters identified before (shown in Table 6-

10).

1) Generative representation – C1

A product model structure is developed using VPM to provide a generative representation of

the hex bolt using the VPM knowledge classes (as shown in Figure 6-38). The developed

VPM product model structure shows the capability to capture and store the hex bolt's existing

information for knowledge reuse in the product modelling process. Different from the

previous use case, this hex bolt has more existing product information due to its complexity

and standardisation. Therefore, the VPM product model structure has shown a higher level of

generalisation of the hex bolt as more parameters of the hex bolt provide more product design

configurations. The integration of design rules from the hex bolt standard allows this product

model to be generalised to more product variants with different thread sizes, bolt lengths,

threaded shank lengths, etc. Using this VPM product model structure can help save the time

spent on designing hex bolt variants as the hex bolt model can be varied by changing

parameters for a quick generation of product variants that are accepted by the standard.

180

2) Knowledge capture – C2

The virtual product modelling methodology is successful in capturing all the existing product

information of the hex bolt example. Compared with the first use case, additional information

such as function, behaviour, and fit are captured because more data about the hex bolt is

available from the existing knowledge source. Further, more complex rules that define

different conditions for parameter changing of the hex bolt are also captured successfully into

the knowledge file. This proves that the VPM is capable of capturing complex rules and data,

given that they are provided in the existing design knowledge. The captured information such

as function, behaviour and fit help the users to understand these corresponding aspects of the

hex bolt. This knowledge capture process ensures that all the existing product information of

this hex bolt is captured and stored in a knowledge file. As a result, the design knowledge can

be integrated with the developed VPM product model structure, and the knowledge file can

be used as an accessible knowledge base that provides the users with available hex bolt data.

It provides well-defined knowledge classes and a formalised knowledge capture method for

users to capture and share knowledge instead of using informal oral communication or notes

and spreadsheets in different formats. This will help save the time of retrieving product data

from different knowledge sources.

3) Product geometry and knowledge visualisation – C3

The hex bolt geometry and the captured knowledge are visualised successfully in the

interface. This proves that the implementation of VPM on this hex bolt is effective in terms

of geometry and knowledge visualisation. The developed knowledge-based product

modelling environment using VPM shows the capability of visualising the geometry of basic

engineering components (imported from the STEP file) and the associated knowledge

(imported from the knowledge file).

181

The possible changes to the hex bolt dimensions that can be made by the users in this

interface are limited to the parameters that are collected from the standard for this particular

use case. Similar to use case 1, the results of changes in the hex bolt geometry are presented

through the text description in the interface. As analysed in Section 6.3.6, the compromise in

visualisation is due to the lack of available enabling technologies. However, this visualisation

result is acceptable as the developed product modelling environment has shown VPM’s

effectiveness in propagating the changes of hex bolt by reusing the captured knowledge.

Despite the limitation in graphically visualising the changes of hex bolt geometry, the

achieved knowledge visualisation can provide users with additional information about the

hex bolt, which would help them have a clearer understanding of the hex bolt besides viewing

the geometry. It could help save the time that users spend on knowing the hex bolt and the

relevant standard before starting the product modelling process.

4) Product relationship representation – C4

In this use case, the hex bolt is applied in VPM as a single part, and it does not have

relationships with other parts. As shown from the visualisation results in Figure 6-44, this hex

bolt is identified as a “part” in the developed knowledge-based product modelling

environment. This result proves the effectiveness and correctness of the relationship

representation of the hex bolt example.

5) Knowledge reasoning and reuse – C5

From the validation results of use case 2, it can be seen that the developed knowledge-based

product modelling environment shows the capability of changing bolt length (L), threaded

shank length (b), head depth (k), width across corner (e), width across flats (s) and thread size

(D1) of the hex bolt using text description. Rules from the existing standard are reused in

VPM for knowledge reasoning and are effective in driving and constraining the targeted

parameters of the hex bolt. Compared with the simple rules applied in the first use case, the

182

involved rules in the second use case are more complex as they constrain parameters with

different conditions. These complex rules show the internal connections and constraints

between various parameters of this hex bolt. One parameter may be constrained by different

parameters at the same time, and changing this parameter may require the changes of other

parameters as well. For example, to change the bolt thread size D1, other parameters such as

threaded shank length (b), head depth (h), width across corners (e) and width across flats (s)

are required to be changed accordingly (as shown in Figure 6-50). Moreover, the change of

the threaded shank length under one thread size is further constrained by the bolt length. The

propagation of the affected changes of the hex model is displayed in the tool interface, and all

the changes are provided with reasons. These reasons are based on the previously captured

rules from the existing product information. The knowledge reasoning and reuse allow these

internally constrained parameters of the hex bolt to be changed in one modelling process. It

can help users to check the changes according to the standard and eliminate errors that would

happen during the process of changing parameters that have different internal constraints

from other parameters.

6) Correctness of the changes – C6

The affected changes are reflected by text description due to the lack of enabling technology.

However, by comparing the resulted values in the text with the expected results from the pre-

defined rules, it can be seen that the changes applied to the geometry of the hex bolt through

the reuse of the existing knowledge are correct. This proves that the modelling of the hex bolt

through the implementation of VPM is effective. It ensures the correctness of the product

modelling by using the developed knowledge-based product modelling environment.

7) Data exchange – C7 and C8

The STEP file of the hex bolt model is imported into the developed tool and graphically

visualised in the tool interface. Similarly, the knowledge file is loaded by the tool, and the

183

associated knowledge is displayed in the tool interface correctly. Therefore, the data

exchange of the hex bolt geometry through the STEP file and the exchange of the hex bolt

knowledge through the knowledge file are proved to be successful in this use case. This will

guarantee that the hex bolt model developed from VPM can be used and transferred among

different knowledge-based product modelling environments.

The visualisation and validation results from use case 2 further prove that the proposed

virtual product modelling methodology satisfies all the measurement parameters.

Additionally, a comparison of product modelling results of a hex bolt using the current

existing/legacy CAD system and using VPM for the same circumstances is provided in Table

6-11.

Table 6-11: Comparison of the use case 2 implementation results between the existing/legacy

CAD system and VPM

Evaluation Criteria Existing/legacy CAD
system implementation

Virtual Product Modelling
framework implementation

The capability of generative

representation of engineering

products in VPM

Use template hex bolt model

as a generative 3D model

(geometry representation

only and limited to

proprietary format).

Limited product information

is provided.

Develop a VPM product

model structure as a

generative representation of

the hex bolt (standardised

format - UML).

Can provide information,

such as function, behaviour,

design intent, material, fit,

design rules to understand

possible product design

configurations.

The capability of capturing

the product geometry and its

associated knowledge from

the existing product

Capture the hex bolt

geometry through

importing/exporting the

model into standardised

Capture the hex bolt

geometry through importing

the model from the CAD

systems in a standardised

184

information format.

Unable to capture the

existing hex bolt knowledge

during the product modelling

process.

format.

Capture existing hex bolt

knowledge during the

product modelling process

through the knowledge

capture tool.

The capability of visualising

the product geometry and its

associated knowledge

Visualisation of hex bolt

geometry only

Visualisation of hex bolt

original geometry and its

associated knowledge. Text

visualisation of the changes

of the hex bolt geometry

parameters.

The capability of presenting

every part of the product and

the relationships among them

The hex bolt model is shown

as single part in the

modelling hierarchy tree and

there is no relationship with

other parts.

The hex bolt model is shown

as “part” in the proof-of-

concept tool interface and

there is no relationship with

other parts.

The capability of propagating

changes of parameters to

drive and constrain the

product geometry by reuse of

the existing knowledge

Manual tracking of changes

of parameters.

The change of hex bolt

geometry is reflected in 3D

visualisation graphically.

No knowledge reasoning is

provided when changing

parameters in the CAD

systems. Rules are embedded

in template model but not

available for reusing.

Automatic tracking of

changes of parameters

through the reuse of rules.

Text visualisation of the

affected parameters in the

proof-of-concept tool

interface.

The change of hex bolt

geometry is reflected through

text description due to the

limited available enabling

tools.

Knowledge reasoning is

provided in the proof-of-

concept tool interface by

185

reuse of rules from the

existing knowledge

The correctness of the

changes applied to the

product geometry by reuse of

the existing knowledge

Manual check-up of the

correctness of changes is

required.

The changes applied to the

hex bolt geometry is

following the rules from the

standard. The correctness is

proved during the validation

stage.

The capability and

correctness of the product

geometry data exchange

between different platforms

The hex bolt geometric data

is exchanged in the format of

a STEP file correctly.

The hex bolt geometric data

is exchanged in the format of

a STEP file. The correctness

is proved during the

visualisation process.

The capability and

correctness of the knowledge

exchange through knowledge

file

The existing/legacy CAD

systems are not able to

exchange knowledge

between each other using a

generalised format.

The knowledge is exchanged

in a knowledge file in the

format of XML. XML is a

platform-independent neutral

format for data

communication. Knowledge

exchange is proved during

the implementation and

validation stage.

The above critical analysis further proves the effectiveness of the framework in the chosen

basic engineering part use case. When the product becomes more complex, the difference in

product modelling between using VPM and existing/legacy CAD systems becomes more

apparent. In this use case 2, a hex bolt is selected as a basic engineering part to assess the

effectiveness of VPM. With richer data provided, the developed product model using VPM

has shown a higher level of generalisation of the hex bolt. Compared with the simple rules

utilised in the first use case, the applied bolt rules are more complex as they imply the

186

internal connections and constraints between different parameters of the hex bolt. Therefore,

through knowledge reasoning and reuse in VPM, the design rules from the hex bolt standard

are integrated into the developed hex model. And with richer product information captured,

this VPM hex bolt model can be generalised to more product variants with different

combinations of thread size, bolt length and threaded shank length, etc. Furthermore,

knowledge reasoning and reuse in VPM allow these internally constrained hex bolt

parameters to be changed in one modelling process. The affected change of the hex model is

propagated and visualised in the tool interface, and all the changes are provided with reasons.

This would help users check the correctness of changes according to the standard and

eliminate errors during the modelling process. Additionally, the captured knowledge,

including the rules, can be exchanged using a knowledge file generated by the knowledge

capture tool. This ensures steady data communication between different knowledge-based

product modelling environments. Moreover, the developed VPM hex bolt model with the

knowledge file can serve as an accessible knowledge base that provides the users with

available hex bolt data. It will help save the time of retrieving hex bolt data from different

knowledge sources. In real life design scenario, a hex bolt used in one product may vary from

the one used in the other product. With sufficient data captured, VPM can be used to develop

one unified hex bolt model that can be generalised to apply to different products. Users would

only need to choose different standards and set values according to their design

specifications. It would save the time of creating hex bolt variants for their applications in

different products.

These added values from using VPM show how modelling a hex bolt in VPM is different

from using the existing/legacy CAD systems and how VPM could enhance the hex bolt

modelling process to support design engineering automation. In the next section, a wheel

187

assembly will be used in case 3 to verify and validate the effectiveness of the virtual product

modelling framework implementation in engineering assembly.

6.5 Use Case 3: Engineer Assembly – Wheel Assembly

6.5.1 Use Case Overview

The third use case selects a wheel assembly as an engineering assembly to validate the

developed framework. A wheel assembly is a crucial part of most automotive and is typically

composed of a tyre and a wheel. In the literature, wheel assembly has been widely used as a

demonstrative model to explain the model structure, component relationships and complex

parameter configurations (Object Management Group, 2015). The implementation of a wheel

assembly model in this research aims to validate that the proposed virtual product modelling

framework can also be applied to the engineering part with assembly relationships and

internal and external parameter constraints. Figure 6-60 shows a wheel assembly modelled in

Siemens NX software.

Figure 6-60: A wheel assembly modelled in Siemens NX 10

188

In this use case, the wheel assembly consists of two basic parts, which are a tyre and a wheel.

In real life, when the tyre is inflated, the air pressure within the tyre keeps the tyre bead in the

groove of the wheel. Theoretically, when the wheel assembly is designed, the dimensions of

the tyre need to fit with the sizes of the wheel to ensure that these two parts are correctly

assembled. Thus, in this use case, the existing product information can be extracted from the

above theoretical assembling relations and dimensional parameters of the tyre and wheel

parts. The following figures 6-61 and 6-62 show the dimensional parameters of the wheel and

tyre parts, respectively.

Figure 6-61: 2D drawings of the wheel part with dimensional descriptions

189

Figure 6-62: 2D drawings of the tyre part with dimensional descriptions

As mentioned previously in this section, when the wheel part and tyre part are assembled, all

these assembling dimensions need to fit with each other. In this way, the rules of the wheel

assembly are derived. The collected dimensional parameters and assembly rules, and part

rules of the wheel assembly are shown in Table 6-12.

Table 6-12: Wheel assembly parameters and rules

Wheel
Assembly

Wheel Assembly
Parameter

Assembly Rules Part Rules

Wheel D1 D1=D3 -
D2 D2=D4 -
L L=S -
L1 L1=S1 L1=L4
L2 L2=S2 L2=L3
L3 L3=S3 L3=L2
L4 L4=S4 L4=L1

Tyre D3 D3=D1 -
D4 D4=D2 -
S S=L -
S1 S1=L1 S1=S4
S2 S2=L2 S2=S3

190

S3 S3=L3 S3=S2
S4 S4=L4 S4=S1

In this use case implementation, the collected assembly rules and part rules will be used later

in testing scenarios to validate the effectiveness of this framework. Wheel assembly rules are

defined as follows:

• Wheel assembly rules 1: D1 = D3, when D1 is changed, D3 needs to be changed as

well, and vice versa.

• Wheel assembly rules 2: D2 = D4, when D2 is changed, D4 needs to be changed as

well, and vice versa.

• Wheel assembly rules 3: L1 = S1, when L1 is changed, S1 needs to be changed as

well, and vice versa.

• Wheel assembly rules 4: L2 = S2, when L2 is changed, S2 needs to be changed as

well, and vice versa.

• Wheel assembly rules 5: L3 = S3, when L3 is changed, S3 needs to be changed as

well, and vice versa.

• Wheel assembly rules 6: L4 = S4, when L4 is changed, S4 needs to be changed as

well, and vice versa.

• Wheel assembly rules 7: L = S, when L is changed, S needs to be changed as well,

and vice versa.

Meanwhile, rules that should be applied when modelling each single part are defined and

shown below:

• Wheel rules 1: L1 = L4, when L1 is changed, L4 needs to be changed as well, and

vice versa.

191

• Wheel rules 2: L2 = L3, when L2 is changed, L3 needs to be changed as well, and

vice versa.

• Tyre rules 1: S1 = S4, when S1 is changed, S4 needs to be changed as well, and vice

versa.

• Tyre rules 2: S2 = S3, when S2 is changed, S3 needs to be changed as well, and vice

versa.

The existing product information of the wheel assembly is shown in Table 6-13.

Table 6-13: Existing information of use case 3 – wheel assembly

VPM knowledge class Existing product information
Product Wheel assembly
Feature Circular component, assembly
Description Assembly of a wheel part and a tyre part
Function Mounting and rotating for movement
Behaviour Keeps wheel attached to a hub and the car axle.
Form Circular
Material Mixed
Design intent Mounting and rotating for movement
Geometry From STEP file
Dimension D1:1884 mm D2:2046 mm D3:1884 mm D4:2046 mm

L:1045 mm S:1045 mm
L1:70 mm L2:160 mm L3:70 mm L4:160 mm
S1:70 mm S2:160 mm S3:70 mm S4:160 mm

Rules • Wheel assembly rules 1: D1 = D3, when D1 is
changed, D3 needs to be changed as well, and vice
versa.

• Wheel assembly rules 2: D2 = D4, when D2 is
changed, D4 needs to be changed as well, and vice
versa.

• Wheel assembly rules 3: L1 = S1, when L1 is changed,
S1 needs to be changed as well, and vice versa.

• Wheel assembly rules 4: L2 = S2, when L2 is changed,
S2 needs to be changed as well, and vice versa.

• Wheel assembly rules 5: L3 = S3, when L3 is changed,
S3 needs to be changed as well, and vice versa.

• Wheel assembly rules 6: L4 = S4, when L4 is changed,
S4 needs to be changed as well, and vice versa.

• Wheel assembly rules 7: L = S, when L is changed, S

192

needs to be changed as well, and vice versa.
Fit Tyre fits with wheel
Constraint Assembly constraints
Relationship Parent of the wheel part and tyre part
Reference None

As this wheel assembly consists of two parts, information about the individual wheel part and

tyre part is also collected and listed in Table 6-14 and Table 6-15. The existing knowledge of

wheel assembly provides general information about the wheel assembly itself, while the

existing data of each part offers more detailed information about the child part.

Table 6-14: Existing information of use case 3 – wheel

VPM knowledge class Existing product information
Product Wheel assembly part - wheel
Feature Circular component
Description Circular component in the wheel assembly.

In conjunction with axles to rotate.
Function rotating for movement
Behaviour In conjunction with axles to rotate; mount with tyre
Form Circular
Material Alloy steel
Design intent Mounting tyre and rotating for movement
Geometry From STEP file
Dimension D1:1884 mm D2:2046 mm

L:1045 mm
L1:70 mm L2:160 mm L3:70 mm L4:160 mm

Rules • Wheel rules 1: L1 = L4, when L1 is changed, L4 needs
to be changed as well, and vice versa.

• Wheel rules 2: L2 = L3, when L2 is changed, L3 needs
to be changed as well, and vice versa.

Fit Wheel fits with tyre
Constraint Assembly constraints
Relationship Children of the wheel assembly
Reference None

193

Table 6-15: Existing information of use case 3 – tyre

VPM knowledge class Existing product information
Product Wheel assembly part - tyre
Feature Circular component
Description Part of a wheel assembly, covering of a wheel.
Function Transfer load, support, provide traction and cushion.
Behaviour Surrounds a wheel to transfer a vehicle's load from the axle

through the wheel to the ground and to provide traction on the
surface over which the wheel travels; Also provide a flexible
cushion

Form Circular
Material Synthetic rubber, natural rubber and fabric and wire, etc;
Design intent Transfer load, support, provide traction and cushion.
Geometry From STEP file
Dimension D3:1884 mm D4:2046 mm

S:1045 mm
S1:70 mm S2:160 mm S3:70 mm S4:160 mm

Rules • Tyre rules 1: S1 = S4, when S1 is changed, S4 needs to
be changed as well, and vice versa.

• Tyre rules 2: S2 = S3, when S2 is changed, S3 needs to
be changed as well, and vice versa.

Fit Tyre fits with wheel
Constraint Assembly constraints
Relationship Children of the wheel assembly
Reference None

6.5.2 Measurement Parameters and Testing Scenarios

Measurement parameters are defined and explained in the following Table 6-16 for the

evaluation of VPM in application to assembly and parts that have both internal and external

parameter constraints.

194

Table 6-16: Measurement parameters and expected results of use case 3 – wheel assembly

Measurement
parameter

Evaluation
criteria

Explanation Expected results

Generative

representation

C1 If the VPM can develop a

model as a generative

representation of the wheel

assembly, wheel part and tyre

part.

VPM product model

structure of the wheel

assembly, wheel part

and tyre part

Knowledge

capture

C2 If the knowledge capture tool

can capture the existing wheel

assembly, wheel part and tyre

information as existing

knowledge and generate

knowledge files of them

Three knowledge files

in XML (for assembly,

wheel part and tyre

part)

Product

geometry and

knowledge

visualisation

C3 If the interface can visualise

the wheel assembly and parts’

geometry (from the step file)

and their associated

knowledge (from the

knowledge file)

Geometry visualisation

of the wheel assembly

(including the wheel

and tyre part) in the

interface.

Knowledge

visualisation of these

knowledge files in the

interface.

Product

relationship

representation

C4 If the interface can show the

assembly relationship of the

wheel assembly.

Show the assembly

relationship – wheel

assembly is shown as

“assembly” while the

wheel part and tyre

part are shown as

“part” in the interface.

Knowledge

reasoning and

C5 If the dimensions of the wheel

assembly (including parts) are

Constrain the change

of the wheel assembly

195

reuse driven and constrained by

rules with knowledge

reasoning.

(including parts)

dimension by rules

with knowledge

reasoning.

Correctness of

the changes

C6 If changes applied to the

wheel assembly geometry

(including parts) through

reuse of the existing

knowledge are correct.

Propagate the change

of dimension correctly.

Data exchange

of geometry

C7 If the geometric data of the

wheel assembly and parts is

exchanged through the STEP

file.

Geometry visualisation

in the interface.

Data exchange

of knowledge

C8 If the captured knowledge of

the wheel assembly (including

parts) can be exchanged

through knowledge files.

Modify the knowledge

file, re-import it and

present the changes of

knowledge in the

knowledge file

The following testing scenarios are identified to verify and validate the tool’s effectiveness:

• Scenario One – changing wheel part dimension (with internal constraints from the

wheel part itself and external constraints from the tyre part),

• Scenarios Two – changing the tyre part dimension (internal constraints from the tyre

part itself and external constraints from the wheel).

6.5.3 Virtual Product Modelling Framework Application

The overall VPM application steps in this use case are consistent with the steps described in

the previous two use cases, and each step of VPM in application to this use case 3 is

explained in the sections below.

196

a) Product model development

Similar to use cases 1 and 2, the wheel assembly can be represented with a VPM product

model structure. In this use case, the wheel assembly consists of a wheel part and a tyre part.

The UML diagram in Figure 6-63(a) shows the top level of the VPM product model structure

of the wheel assembly model. It can be seen from Figure 6-63(a) that the wheel assembly has

the assembly model itself as the parent and the wheel part and tyre part as children. The VPM

product model structure of the assembly model itself is developed and shown in Figure 6-

63(b). Moreover, a second level VPM product model structure that provides a detailed

structure of child parts is developed and shown in Figure 6-63(c). Therefore, the top level of

the wheel assembly VPM product model structure is expanded with the explicit atomic

decomposition of product knowledge.

(a) Top level structure

197

(b) VPM product model structure of the wheel assembly itself

198

(c) Second level VPM product model structure of the wheel assembly product model

Figure 6-63: Virtual product model structure of the wheel assembly in UML diagram

199

b) Knowledge capture of non-geometric information

As explained in the previous section, the wheel assembly product model is represented by

three VPM structures - the assembly model itself, the wheel part model and the tyre part

model under the assembly model. The existing information of the wheel assembly model is

input into the knowledge capture tool, and a knowledge file of the assembly in the format of

XML is generated afterwards. Besides the wheel assembly model itself, knowledge files are

also generated using the knowledge capture tool for the wheel and the tyre parts. The

knowledge files of the assembly model, the wheel part model and the tyre part model are

shown in Figure 6-64.

(a) Example - part of knowledge file of the wheel assembly

200

(b) Example - part of knowledge file of the wheel assembly part – wheel

(c) Example - part of knowledge file of the wheel assembly part – tyre

Figure 6-64: Examples - parts of knowledge files of the wheel assembly, wheel part and tyre

part

201

The VPM structure of the wheel assembly, wheel part and tyre part can be further developed

by adding detailed knowledge into different atomic blocks (as shown in Figure 6-65).

(a) Top-level assembly structure with captured knowledge

202

(b) VPM product model structure of the wheel assembly itself with captured knowledge

203

(c) VPM product model structure of the wheel part and tyre part with captured

knowledge

Figure 6-65: Virtual product models of the wheel assembly, wheel part and tyre part

in UML diagram

204

c) Knowledge capture of geometry information

To visualise the wheel assembly product model represented by VPM, geometry information

of the wheel assembly, wheel part and tyre part need to be extracted and stored into STEP

files. This process is done through the following steps:

• Pre-model the wheel part in a CAD software Siemens NX 10 (Figure 6-66)

• Pre-model the tyre part in a CAD software Siemens NX 10 (Figure 6-67)

• Pre-model the wheel assembly by using the modelled wheel part and tyre part from

the previous steps. (Figure 6-60)

• Export the wheel assembly model, wheel part model and tyre part model into STEP

files using the export function in Siemens NX 10.

Figure 6-66: Wheel part modelled in Siemens NX 10

205

Figure 6-67: Tyre part modelled in Siemens NX 10

d) Knowledge mapping

As explained in previous sections, the knowledge mapping process is performed by

converting rules into object-oriented programming logic that constrains the product model

parameters. In this use case 3, the knowledge mapping stage includes two steps. The first step

is to map the rules of individual parts in the assembly. For the wheel part, rules have been

captured as follows:

• Wheel rules 1: L1 = L4, when L1 is changed, L4 needs to be changed as well, and

vice versa.

• Wheel rules 2: L2 = L3, when L2 is changed, L3 needs to be changed as well, and

vice versa.

Figure 6-68 shows the knowledge mapping process of the wheel part rules.

206

Figure 6-68: Illustration of the knowledge mapping for the wheel part rules

For the tyre part, rules have been captured as follows:

• Tyre rules 1: S1 = S4, when S1 is changed, S4 needs to be changed as well, and

vice versa.

• Tyre rules 2: S2 = S3, when S2 is changed, S3 needs to be changed as well, and

vice versa.

The knowledge mapping of tyre part rules (shown in Figure 6-69) is similar to the wheel part

rule’s mapping process.

207

Figure 6-69: Illustration of the knowledge mapping for the tyre part rules

After mapping the individual part rules, the second step is to map the assembly rules of the

wheel assembly. The captured assembly rules are listed below:

• Wheel assembly rules 1: D1 = D3, when D1 is changed, D3 needs to be changed as

well, and vice versa.

• Wheel assembly rules 2: D2 = D4, when D2 is changed, D4 needs to be changed as

well, and vice versa.

• Wheel assembly rules 3: L1 = S1, when L1 is changed, S1 needs to be changed as

well, and vice versa.

208

• Wheel assembly rules 4: L2 = S2, when L2 is changed, S2 needs to be changed as

well, and vice versa.

• Wheel assembly rules 5: L3 = S3, when L3 is changed, S3 needs to be changed as

well, and vice versa.

• Wheel assembly rules 6: L4 = S4, when L4 is changed, S4 needs to be changed as

well, and vice versa.

• Wheel assembly rules 7: L = S, when L is changed, S needs to be changed as well,

and vice versa.

The knowledge mapping of wheel assembly rules is performed and explained in the

following Figure 6-70.

209

Figure 6-70: Illustration of the knowledge mapping for the wheel assembly rules

210

In testing scenarios one and two, the knowledge mapping process can be regarded as a

combination of the knowledge mapping of wheel assembly rules, wheel part rules and part

rules. This process is illustrated in the following Figure 6-71. The codification of knowledge

mapping in use case 3 is provided in Appendix.

Figure 6-71: Illustration of the knowledge mapping for the testing scenario one and two in

use case 3

211

e) Visualisation & validation

This visualisation process is completed the same way as described in Section 6.3.2.2 (e).

After importing STEP files into the tool, the developed product modelling environment

shows the ability to visualise the wheel assembly's original geometry, the wheel part's

original geometry, and the tyre's original geometry. The knowledge of the wheel assembly

stored in the knowledge file is also parsed and visualised in the tool interface (as shown in

Figure 6-72). Further, functions of making possible changes to geometry are developed and

shown in Figure 6-73. An example of the associated knowledge applied to constrain the

change of wheel assembly geometry is also shown in Figure 6-73.

Figure 6-72: Wheel assembly model visualised in the developed knowledge-based product

modelling environment

212

Figure 6-73: Functions of making possible changes to the wheel assembly model in the

developed knowledge-based product modelling environment

As described before in Section 6.5.2, two testing scenarios have been defined to verify and

validate the tool’s effectiveness which are:

• Scenario One – changing wheel part dimension (with internal constraints from the

wheel part itself and external constraints from the tyre part),

• Scenarios Two – changing the tyre part dimension (internal constraints from the tyre

part itself and external constraints from the wheel).

The validation results of scenario one are shown in Figure 6-74. When the users change the

L1 parameter of the wheel part, the tool interface shows that the S1 parameter in the tyre part

needs to be adjusted based on the wheel assembly rule 03. In the meantime, the L4 parameter

in the wheel part needs to be changed according to the wheel part rule 01, and the S4 needs to

213

be changed according to the tyre rule 01. Therefore, only when all the required changes are

applied will the tool allow the change of the L1 parameter to be made by the users.

 (a) input L1 and apply the change (b) input L1, S1 and apply the change

c

c

214

 (c) input L1, S1, S4 and apply the change (d) input L1, S1, S4, L4 and apply the change

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Purple box –

button pressed to apply the change; Blue box - knowledge reasoning.

Figure 6-74: Results of validation – use case 3: wheel assembly, scenario one - change the

wheel part dimension - L1 parameter

Similarly, the validation of scenario two was carried out, and the results are shown in Figure

6-75. If the users intend to change the S2 parameter in the tyre part, the tool will indicate that

this change is constrained by wheel assembly rule 04 in the “Knowledge Product Modelling

Console”. Thus, the users need to apply all the required modifications of other parameters

before performing the target change of the S2 parameter.

215

 (a) input S2 and apply the change (b) input S2, S3 and apply the change

 (c) input S2, S3, L2 and apply the change (d) input S2, S3, L2, L3 and apply the change

216

Note: Yellow box - user input; Green box - propagated parameter (changes allowed by rules); Purple box –

button pressed to apply the change; Blue box - knowledge reasoning.

Figure 6-75: Results of validation – use case 3: wheel assembly, scenario two – change of the

tyre part dimension – S2 parameter

6.5.4 Result Analysis and Use Case Discussion

Assembly organises child parts and part subassemblies to define more complex parts. The

deployment of the wheel assembly model aims to evaluate the effectiveness of the framework

for implementation with large amounts of product data and complex rules that constrain

parameters between parts in one assembly in the product modelling process. Like the

previous use cases, the next evaluation objective is to critically analyse the virtual product

modelling framework results in use case 3 and then compare the product modelling results

from using the virtual product modelling framework with the use of the current

existing/legacy product modelling systems for the same circumstances.

The virtual product modelling framework implementation in the wheel assembly example

further proves that the framework satisfied all these measurement parameters identified in

Section 6.5.2.

1) Generative representation – C1

VPM product model structures are developed for the wheel assembly and its parts to provide

a generative representation of the wheel assembly (as shown in Figure 6-56). These

developed VPM product model structures have also shown assembly relationships between

the assembly and the part. The generalisation of the wheel assembly in both assembly and

part levels can help users have a comprehensive understanding of the wheel assembly and its

parts and identify the required aspects that should be considered in designing the wheel

assembly. Since the wheel assembly parameters have been constrained by both part rules and

assembly rules, a variant model of the wheel assembly can be generated quickly by varying

217

parameters either in the wheel part or in the tyre. This would save the time of creating wheel

assembly product variants.

2) Knowledge capture – C2

The visualisation and validation results show that the virtual product modelling methodology

is successful in capturing all the existing product information of the wheel assembly use case.

Compared with use cases 1 and 2, more complex rules that define internal constraints and

external constraints of wheel assembly parameters are captured successfully into knowledge

files. All the captured knowledge of the assembly model and individual parts are converted

into knowledge files using the knowledge capture tool and represented later in the tool

interface. The results of visualisation and validation prove the effectiveness of the developed

knowledge-based product modelling environment in capturing complex assembly rules and

assembly information from the existing design knowledge.

3) Product geometry and knowledge visualisation – C3

The original geometry and the captured knowledge of the wheel assembly, wheel part and the

tyre part are visualised successfully in the interface. Moreover, the changes in the dimension

of the wheel part and tyre part are visualised through text description. It proves the capability

of the developed knowledge-based product modelling environment in visualising an

engineering assembly’s geometry and its associated knowledge. Although the visualisation of

geometry changes is limited to text, the developed knowledge-based product modelling

environment through VPM can still be used to help users realise the complex rules involved

in the modelling process of the wheel assembly. It could reduce the time users may spend

learning about each assembly component and its connections before starting the modelling

process.

218

4) Product relationship representation – C4

The product relationship representation is achieved during the implementation process. The

wheel assembly itself is identified as “assembly” in the developed knowledge-based product

modelling environment, and the individual wheel and tyre are identified and shown as “part”.

This result proves the correctness of the relationship representation of the wheel assembly

example.

5) Knowledge reasoning and reuse – C5

From the implementation results of use case 3, it can be seen that the developed knowledge-

based product modelling environment is capable of propagating changes in the parameters of

the wheel part and tyre part with knowledge reasoning through text visualisation. All the

captured rules, including assembly rules and part rules, are reused effectively in driving and

constraining the targeted dimensional parameters of the wheel assembly. Compared with the

rules involved in use case 2, the assembly rules and part rules implemented in this use case

are more complex. The change of one parameter of the wheel part is restricted by not only

internal parameters from the wheel part but also external parameters from the tyre part. As

shown from the validation results, a change of S2 in the tyre part will cause the change of S3

in the tyre part and changes of L2 and L3 in the wheel part. Only when S3, L2, and L3 are all

correctly set up would the tool allows the users to proceed with the change of S2. The reuse

of rules in the developed knowledge-based product modelling environment ensures that all

the changes are made correctly according to the assembly relations. And the knowledge

reasoning based on the rules provides the users with rationales behind each modelling process

that are not allowed by the developed knowledge-based product modelling environment. The

resulting knowledge reasoning and reuse in the modelling process of the wheel assembly and

its parts further validates that complex rules can be reused for knowledge reasoning and for

driving the changes of dimensions of an engineering assembly and its parts through the

219

application of VPM. Eventually, the knowledge reasoning and reuse for modelling this wheel

assembly within the developed knowledge-based product modelling environment would help

users save time and reduce errors in changing parameters of the wheel part and the tyre part

that are constrained both internally and externally.

6) Correctness of the changes – C6

The correctness of the changes made to the wheel assembly and its parts is proved during

visualisation and validation. Due to the lack of enabling tools, the affected changes are shown

through text visualisation. By checking the resulted values in the text with the expected

results from the pre-defined assembly rules, it can be seen that the changes applied to the

geometry of the wheel part and tyre parts are all correct. This guarantees that the wheel

assembly are modelled correctly after applying different changes to the parameters.

7) Data exchange – C7 and C8

Data exchange in use case 3 is implemented using STEP files and knowledge files of the

wheel assembly and its parts. The exchange of geometry and knowledge is validated by the

correct geometry visualisation and knowledge representation. This proves the effectiveness of

the proposed data exchange method in VPM in exchanging assembly data by using multiple

STEP files and knowledge files for the assembly and its parts, respectively.

The successful implementation of use case 3 further verifies that the VPM meets all the

derived measurement parameters from the evaluation criteria. Next, based on the evaluation

criteria, a comparison of product modelling results of a wheel assembly between using VPM

and using the current existing/legacy CAD systems for the same circumstances are

summarised in the Table 6-17.

220

Table 6-17: Comparison of the use case 3 implementation results between the existing/legacy

CAD system and VPM

Evaluation Criteria Existing/legacy CAD
system implementation

Virtual Product Modelling
framework implementation

The capability of generative

representation of engineering

products in VPM

Template model is not

available from the library.

Need to create the template

model separately (geometry

representation only and

limited to proprietary

format).

Limited product information

is provided.

Develop VPM product model

structures as generative

representation of the wheel

assembly, wheel part and tyre

part (in a standardised format

- UML)

Can provide information,

such as function, behaviour,

design intent, material, fit,

design rules to understand

possible product design

configurations.

The capability of capturing

the product geometry and its

associated knowledge from

the existing product

information

Capture the wheel assembly

geometry through

importing/exporting the

model into standardised

format.

Unable to capture the

existing wheel assembly

knowledge during the

product modelling process.

Capture the wheel assembly

geometry through importing

the models from the CAD

system in a standardised

format.

Capture existing knowledge

of the wheel assembly during

the product modelling

process through the

knowledge capture tool.

The capability of visualising

the product geometry and its

associated knowledge

Visualisation of the wheel

assembly, wheel part and tyre

part (geometry only)

Visualisation of the original

geometry of the wheel

assembly, wheel part and tyre

part and their associated

knowledge. Text

visualisation of the changes

221

of the wheel assembly

geometry parameters.

The capability of presenting

every part of the product and

the relationships among them

Representation of assembly

relationships in the hierarchy

tree.

The assembly is shown as

“assembly”, and the parts are

shown as “part” in the proof-

of-concept tool interface.

The capability of propagating

changes of parameters to

drive and constrain the

product geometry by reuse of

the existing knowledge

Manual tracking of changes

of parameters.

The change in wheel

assembly geometry is

reflected in 3D visualisation

graphically.

No knowledge reasoning is

provided when changing

parameters in the existing

CAD systems. Rules are not

available for reusing.

Automatic tracking of

changes of parameters

through the reuse of rules.

Text visualisation of the

affected parameters in the

proof-of-concept tool

interface.

The change of wheel

assembly geometry is

reflected through text

description due to the limited

available enabling tools.

Knowledge reasoning is

provided in the proof-of-

concept tool interface by

reuse of rules from the

existing knowledge

The correctness of the

changes applied to the

product geometry by reuse of

the existing knowledge

Manual check-up of the

correctness of changes is

required.

The changes applied to the

wheel assembly geometry

follow the rules derived from

the theoretical assembling

information. The correctness

is proved during the

validation stage.

The capability and

correctness of the product

The geometric data of the

wheel assembly, wheel part,

The geometric data of the

wheel assembly, wheel part

222

geometry data exchange

between different platforms

and tyre part are correctly

exchanged in the format of a

STEP file.

and tyre part are exchanged

in the format of a STEP file.

The correctness is proved

during the visualisation

process.

The capability and

correctness of the knowledge

exchange through knowledge

file

The existing/legacy CAD

systems are not able to

exchange knowledge

between each other using a

generalised format.

The captured knowledge is

stored and exchanged in

knowledge files in XML.

Knowledge files are created

separately for wheel

assembly, wheel, and tyre

parts.

Knowledge exchange is

proved during the

implementation and

validation stage.

The critical analysis and comparison further prove the effectiveness of the proposed VPM

framework in the chosen assembly use case. Modelling assembly brings more complexity to

VPM in terms of parameters, internal and external rule constraints and relations. As the wheel

assembly parameters have been constrained by both part rules and assembly rules in the

VPM, the generalisation of the wheel assembly using the VPM product model structure

allows users to quickly generate a wheel assembly variant model through varying parameters

either in the wheel part or in the tyre.

Also, the embedded knowledge in the VPM could help users have a comprehensive

understanding of both parent and child levels of the wheel assembly. Users would identify

aspects such as function, behaviour, and design intent of each part of the assembly from the

corresponding blocks in the VPM product model structure to learn “what the product is

223

supposed to do”, “how the product implements its function”, and “reasons for making or

modifying this product”.

Furthermore, knowledge reasoning and reuse in the modelling process of the wheel assembly

in VPM ensure that all changes made to each dimensional parameter of the wheel part and the

tyre part are in accordance with assembly rules and part rules. This would help users save

time and avoid making mistakes when modelling the wheel assembly and its part. The

knowledge exchange using knowledge files provides a formalised way of storing and

transferring the captured knowledge among different knowledge-based product modelling

environments through a platform-independent XML format.

Based on the results analysis and use case discussion that was carried out for each use case, a

further discussion and findings from the use case evaluation are provided in the next section.

6.6 Discussion and Findings

In comparison to the existing/legacy CAD systems, the developed VPM product modelling

environment has shown extended capabilities of generative representation, knowledge

capturing, reasoning, reuse, and exchange to enhance the product modelling process. The

successful implementation of three use cases has proved the effectiveness of VPM in

capturing and reusing the existing product information as knowledge to provide a product

model structure for the generative representation of a product and knowledge reasoning in the

product modelling process. The visualisation of product geometry and its associated

knowledge has validated the proposed data exchange method for exchanging the geometric

data and knowledge (non-geometric data) of a product.

From the result analysis and use case discussion of the first use case, it can be seen that there

is no significant distinction between modelling simple parts by using VPM and using

existing/legacy CAD systems due to the simplicity of the product and its associated

224

knowledge. Design rules involved in the modelling process are uncomplicated, and only a

few parameters could be used to vary the model. In this case, the effectiveness of knowledge

capture and reuse in the product modelling process through VPM may not be evident because

understanding the design rules and modelling these simple parts is straightforward; Users

would model the simple parts quickly and correctly even without the support of knowledge

reasoning and using the existing product information as guidance.

However, the result analysis and use case discussion of use cases 2 and 3 show that the

difference in product modelling between using VPM and existing/legacy CAD systems

becomes more evident when the product becomes more complex and has more design rules

and parameters. The level of generalisation using VPM depends on the richness of product

data. Given adequate existing product information, VPM could be used to develop a higher

level of generalisation for engineering parts and assembly. The explicit design knowledge

integrated with the developed VPM product model structure could help users such as less-

experienced design engineers, multidisciplinary teams involved in the product development

process, and non-engineers to understand the product better and identify the essential data

according to their design specification. The reuse of design rules that define connections and

constraints between different internal and external parameters would allow VPM to generate

more product variants with different combinations of parameters in an agile way. The

knowledge reasoning and reuse would help users automatically check the correctness of

changes according to the captured design rules. This would save the time needed for making

changes and eliminate errors during the modelling process. And the knowledge exchange

using knowledge files provides a steady data exchange method for storing and transferring

the captured knowledge between different knowledge-based product modelling platforms

through an interoperable XML format.

225

Therefore, the enhancement to the product modelling process by using VPM will become

more obvious when modelling products with more complexity regarding existing product

information, parameters, internal and external rule constraints and relations.

Critical analysis of the implementation results between product modelling in the

existing/legacy CAD systems and the proposed framework application proved the advantages

of this research and highlighted the capability of knowledge capture and reuse of the

developed knowledge-based product modelling environment. These include the following:

• Capture existing associated product knowledge during the product modelling process.

• Visualisation of product geometry and its associated knowledge.

• Automatic tracking of changes of parameters.

• Text visualisation of the changes between the original and modified product models

with the affected parameters.

• Knowledge reasoning by reuse of the existing knowledge.

• Knowledge exchange in a platform-independent neutral format for data

communication.

To ensure that the Virtual Product Modelling Framework shows full effectiveness, it was

essential to compare it against the KBE framework requirements identified in previous

Section 3.6.5. These requirements are as follows:

• Generative Modelling – this requirement states that the developed method should

provide a generic representation of a product that stores design intent and product

configuration information. This requirement was achieved through the use case

evaluation that involves the development of a VPM product model structure to

represent a generic product model based on the selected use case with all associated

information.

226

• Common Computational Model - this requirement states that the developed

framework should provide a data exchange method as a common interface to connect

models with associated applications tools. This requirement was achieved through the

use of neutral standards to represent product data. This will allow the generated

product model from the proposed framework to be interoperable between different

applications. The use case evaluation proved that the proposed knowledge exchange

method successfully exchanged product knowledge through a knowledge file in the

developed knowledge-based product modelling environment.

• Design Optimisation - this requirement states that the developed framework should be

able to integrate rules to help identify the best combination of the product

performance and driving parameters and avoid making mistakes in engineering tasks.

It was shown in the use case implementation that design rules were successfully

captured and reused in the developed knowledge-based product modelling

environment to provide knowledge reasoning for design engineers. The developed

knowledge-based product modelling environment has been proven to contain the

necessary capabilities to use rules to identify the constrained parameters and help the

design engineering avoid making mistakes during the product modelling process.

This section also compared the proposed VPM framework with existing product models and

KBE methodologies to show how VPM is different from them for enhancing the product

modelling process. Based on the literature review conducted in Section 2.3.1, it was

identified that existing CAD models do not provide enough design information in the product

modelling process, and there is a lack of design knowledge representation in existing product

models. The Virtual Product Modelling framework addresses this gap by presenting a product

model structure in UML for knowledge representation of a product. Previous researchers

have tried to develop generic product models and expand the product data representation by

227

adding textual information. Compared with the Core Product Model developed by Fenves

(2001), the proposed Virtual Product Modelling framework provides detailed implementation

steps for the application of the presented VPM product model structure. The Core Product

Model mainly provides content-level design information for users; in contrast, the developed

product model from VPM provides an inference mechanism between the product model

geometry and the design information through the use of the captured design rules. This

allows the model to be further implemented in the product modelling process. Wang et al.

(2003) and Mehmet et al. (2005) extended the Core Product Model (Fenves, 2001) by adding

different classifications such as design rationale and assembly relations to enhance the

existing product model; however, only text-based implementations were provided in their

research. This research adopted some of the concepts from their work to define meta classes

and structure the product model. Different from their work, additional visualisation capability

was provided to implement the developed model through the use of STEP file. This allows

the users to visualise the geometry of the product that is being modelled. In contrast to the

work of Jurit H., Saia, A. and De Pennington (1990), where knowledge reasoning techniques

are deployed for representing knowledge in the early product planning stage, the proposed

framework provides a generic model with the capability of knowledge reasoning in the

product modelling stage. This allows the methodology to be more adaptable for design

engineers in the product modelling process to avoid making mistakes. Compared to the

frame-rule structure used by Lou, Jiang and Ruan (2004), where the rules are represented and

used to reason the knowledge in mould-base design, this proposed methodology provides a

generic product modelling method that can be used to represent various engineering products.

In this proposed method, the product is not limited to a particular type, and a generic VPM

product model structure that represents all associated knowledge of the product is developed.

In contrast to the work of Salustri (1996), the proposed method provides a product model

228

along with an adaptable product modelling implementation framework which offers detailed

implementation steps for the application use. This allows the developed product model to be

further applied and implemented by users for their product modelling purposes. Compared to

the work of Gross et al. (2009) and Gross and Rudolph (2012), where a unified UML product

model is used to integrate domain-specific information of a satellite design, the current

research proposed a VPM product model structure that can be used to represent generic

products in UML. Gross et al. (2009) used UML instances to set the link between UML and

the CAD software. However, these UML instances are limited to CAD proprietary native

formats. Unlike other researchers’ work, this research provided a product model that uses the

neutral STEP file to link the geometry of the product model with CAD software and a

knowledge file to link the geometry with the stored knowledge. Both files follow

interoperable standards and are directly imported into the developed knowledge-based

product modelling environment. This allows the developed product model from VPM to be

exchanged across different platforms.

Rocca (2011) used DEE methods (explained in Section 3.2.2) to develop a generative aircraft

design. In Rocca’s work, a complex UML structure was used to represent a generative

aircraft model, and all the knowledge is structured and linked with the aircraft model for the

purpose of multidisciplinary design optimisation. In contrast to the work of Rocca, this

research focused on developing a product modelling methodology that enables the capturing

and reusing of existing product knowledge for product modelling to support design

engineering automation. Knowledge capturing and exchanging methods are provided in this

research, and these methods allow users to capture and transfer the existing design knowledge

in the product modelling process.

The literature review of existing product modelling methodologies has identified a lack of

knowledge capture and reuse in the product modelling process. Although knowledge-based

229

engineering techniques provide the capability of capturing and reusing knowledge (Chapman

et al., 2007; Rocca, 2012), the existing KBE methodologies show a “black box” problem in

understanding KBE applications and the substantiation steps for the implementation of KBE

frameworks are still limited. To overcome the “black box” problem in the existing KBE

methodologies, the current proposed framework provides a knowledge-based product

modelling environment that enables knowledge capture and reuse for the product modelling

process. It provides five implementation stages to substantiate this methodology with

enabling tools and data exchange methods. This would allow the framework to be adapted

and reused by users in accordance with different use cases and different requirements of

development. And the developed knowledge exchange method also addressed the need for

transferring design engineering knowledge of a product between KBE applications using a

formalised file.

The evaluation results also show that the existing/legacy CAD systems are limited in

capturing and visualising the existing design knowledge in the product modelling process.

Manual tracking of changes of parameters and manual check-ups of the correctness of

changes are required, and knowledge reasoning is not provided when changing parameters in

the existing/legacy CAD systems. Few CAD systems provide the capability of defining rules

and constraining the geometry by using the pre-defined rules, and those rules are limited to

simple logic expression and mathematical algorithms. Moreover, the existing/legacy CAD

systems are not able to exchange these rules through a generalised format.

Use case evaluation results of the proposed framework show limitations of the developed

product modelling environment in the functionality of making changes to product geometry

and 3D visualisation of the modified product model. The existing/legacy CAD systems

provided better functions in modelling and visualising the product’s geometry through the use

of the CAD native formats and mature CAD modelling engine. In the proposed knowledge-

230

based product modelling environment, the change of geometry was reflected through text

description. Modelling functions were limited to use case for making changes to the product

models. However, these limitations are acceptable as the system has demonstrated its overall

effectiveness in constraining and propagating the changes by reusing the knowledge. The

identified limitations are further discussed in Section 7.5.

Based on these findings discussed above, it can be concluded that the results of the virtual

product modelling framework implementation are adequate and viable. The proposed

methodology has addressed all the identified research gaps by providing a virtual product

modelling framework for capturing and reusing existing product knowledge for product

modelling to support design engineering automation. Future work and limitations are further

discussed in the conclusion chapter.

6.7 Chapter Summary

The developed virtual product modelling framework was applied to three different use cases,

and these use cases worked through the implementation framework. Different testing

scenarios were distinguished, and three use cases were verified and validated through their

application. This chapter presented the evaluation of the effectiveness of the proposed

framework. It showed that all the evaluation criteria and measurement parameters had been

matched based on the evaluation process through the use cases and the critical analysis

between the implementation results in existing/legacy CAD systems and the proposed

framework. The strength of product modelling with VPM was reflected in modelling

products with more complexity in terms of existing product information, parameters, internal

and external rule constraints and relations.

Next, discussion and findings were provided by further analysing and comparing the VPM

with existing product models, KBE methodologies and CAD systems. It showed VPM’s

advantages over the existing product models and KBE methodologies in terms of providing:

231

(i) an inference mechanism between the product model geometry and the design information

through the use of the captured design rules, (ii) an adaptable product modelling

implementation framework with detailed implementation steps and enabling tools for the

application use, (iii) a data exchange method that allows the geometric data and the captured

knowledge of a product model to be exchanged between different platforms, (iv) a knowledge

capturing and reuse method, for enhancing the product modelling process. It also showed that

the main differentiators of VPM with existing/legacy CAD systems are the capability of

generative product representation as well as capturing, reasoning, reuse, and visualising the

knowledge in the product modelling process for modelling products with more complexity in

terms of existing product information, parameters, internal and external rule constraints and

relations.

Based on the evaluation results, the next chapter discusses the research outcomes in more

detail, describes the limitation of the current work, provides recommendations for future

research, and draws overall conclusions about this research.

232

7 Conclusion and Recommendation

7.1 Introduction

The research has been successful in its development of the virtual product modelling

framework to enhance the product modelling process for design engineering automation in

the knowledge-based product modelling environment. This chapter first summarises the work

that has been done. Next, the research outcomes are discussed, showing how each research

question is answered and how each objective is addressed in this research. Furthermore, this

chapter states the contributions to knowledge and discusses the limitations of the study. At

last, this chapter provides possible directions for future work, such as product modelling

standard development and knowledge-based product modelling application development.

7.2 Summary

The aim of this research is to develop methods and tools for capturing and reusing the

existing product knowledge to enhance the product modelling process for design automation

in a KBE environment. To achieve that, this research has introduced a novel virtual product

modelling approach. As illustrated in Chapter 1, the aims and objectives of this research were

derived from the general limitations of traditional product modelling in terms of knowledge

utilisation for design engineering automation. The literature review of the current product

design and modelling methods in Chapter 2 explained how the product design has evolved

with computer-aided technologies since the early 1960s. The review of design engineering

automation with product models formed the basis of how automation can be achieved in

product modelling to support design engineering by implementing the reuse of knowledge.

Two key aspects of design engineering automation should be considered for product

modelling: reuse of CAD models and reuse of existing knowledge. Chapter 2 further

discussed different product modelling methods existing in the literature for the development

233

of the product model. It was identified that knowledge-based product modelling emerged as a

powerful technique to provide knowledge capturing and reusing capabilities in product

development to reduce the time and manpower cost in the design stage. Chapter 2 moved to

explore knowledge representation in product model development for knowledge capturing

and reusing and discussed the limitations in the product model development. These

limitations include a lack of substantiation for the application of the product model through

use cases and tools for the purpose of knowledge capturing and reusing in the product

modelling process and unclear interaction between the product model geometry and the

design engineering automation in the existing product models. Based on the literature, a

knowledge reasoning approach with rules was necessary to perform the inference mechanism

between users and product models. To take this further for product modelling, it was

necessary to use design rules for knowledge reasoning to achieve the inference/interaction

between geometry and design information in the product models. From the literature review

conducted in this chapter, it can be seen that the product model needs to provide a generative

product representation that can provide all associated design information for product

modelling and also offer the capability of knowledge reasoning with the captured design

rules. Knowledge-Based Engineering is a relatively new enabling method that provides a

combination of object-oriented programming, Artificial Intelligence techniques and

computer-aided design technologies for knowledge reuse and design automation. Since this

research focuses on knowledge-based product modelling methods in application to support

design engineering automation, distinguishing different knowledge-based engineering

techniques allowed the author to find the most applicable method for capturing and reusing

knowledge in product modelling.

Chapter 3 provided a further discussion about different knowledge-based engineering

techniques, product modelling standards, and tools to understand better how to capture and

234

reuse product design knowledge for developing a knowledge-based product modelling

framework. A range of KBE techniques have been reviewed, and KCM has shown its

advantages in capturing, structuring, and decomposing design knowledge for design

automation in product modelling. Studies carried out by researchers showed that KBE

systems can be developed to capture the product and process information to support the

modelling of engineering or business processes, and the resulted model from KBE systems

could be used to automate all or part of the process, which will shorten the development of

the product and help to deliver the design faster (Chapman et al., 2007; Rocca, 2012)

Even though KBE methodologies have been successful in dealing with knowledge capture,

structuring and reusing, researchers recognised that there are “black-box” problems in the

communication between different KBE systems (Cederfeldt, Elgh and Rask, 2006; Fan and

Bermell-Garcia, 2008). Performed tasks and processes by the KBE systems are implemented

in a way that is not readable and understandable to the end-users. The transparency of KBE

systems is necessary to provide adaptable and reusable substantiation steps. Limited

implementation advice, examples, use cases with enabling tools and techniques are provided

in the existing KBE methodologies (Curran, Verhagen and Van Tooren, 2010).

The literature review of KBE methodologies identified limitations that need to be addressed

in this research for the development of a product model. It emphasised the need to develop a

KBE implementation framework to capture and reuse design knowledge in product modelling

to support design engineering automation. Model-based engineering is an emerging approach

that uses models as an integral part of the technical baseline to deal with the increasing

complexity of systems. It includes the requirements, analysis, design, implementation, and

verification of a capability, system, and product throughout the acquisition life cycle. Since a

product model itself can be regarded as a system and the implementation of the KBE

framework requires the development of a prototype KBE system (proof-of-concept tool),

235

Chapter 3 further discussed the development of a product model and the development and

implementation of a KBE framework given aspects of model-based engineering. The

concepts of applying visual modelling languages (UML/SysML) to represent product model

structure and adopting a neutral standard and format to support product model data exchange

between different product modelling systems were identified as two key aspects of avoiding

the “black-box” problems in KBE system communication. Moreover, Chapter 3 also

provided a literature view of the product modelling formats and standards as well as tools.

The formats of product models have co-evolved along with the development of CAD

software. The literature review identified that neutral product modelling standards are not

proprietary and typically used as neutral 3D formats for sharing product data between

different CAD software. By comparing IGES, STEP and JT standards, it can be seen that

STEP is the most suitable neutral product modelling standard for developing an interoperable

product model as it provides steady data exchange and is also widely used in industry and

supported by common CAD software. STEP is an internationally recognised standard that

provides a uniform data representation and information exchange mechanism used in the

product life-cycle. However, based on the literature review, it can be identified that modelling

a product with the EXPRESS language is complex and time-consuming. Although

EXPRESS-G has been introduced in the literature as a graphical notation of EXPRESS

language, it cannot reach the full expressiveness of EXPRESS. There is a lack of possibilities

to visualise functional components, local or global rules, and algorithms when modelling

product data with EXPRESS and EXPRESS-G (Arnold and Podehl, 1999). STEP has

published different application protocols for data exchange in different industrial domains.

Among those application protocols, AP242 was claimed to be the latest standard by STEP,

which would allow the CAD data exchange and archiving between some different protocols

and improve the efficiency of processes by integrating the various enterprise functions.

236

However, the implementation of AP242 in commercial CAD software is still minimal and

unspecific in literature (Coronado, 2014; Schätzle, 2016). Even though many research have

been done by utilising STEP to support product modelling in recent years, one obvious

limitation of the STEP format is it does not allow for the exchange of parameters, design

intent and other data that may be associated with the CAD models (Kim et al., 2008). To

address this, some research work have been done to enrich the product model data in STEP

by mapping external data with STEP entities and classes; however, mapping between

different languages could generate new problems such as data missing and mismatching and

the mapping with entire STEP standard was complicated and time-consuming (Barbau et al.,

2012). There is still very limited research about how to perform the integration of STEP and

product modelling methodologies with existing data resources to generate a completed

product modelling framework (Yang et al., 2008). Hence, a need for a new product modelling

and implementation method for integrating STEP and various product data was identified.

Chapter 3 also provided a review of a range of product modelling tools to identify the best

implementation tools that are capable of displaying the CAD models and capturing and

reusing the existing knowledge during the product modelling process. Through the literature

review, it was identified that there are very limited tools that support knowledge capture and

reuse of the existing design knowledge for product modelling while using a generic product

model which consists of all the captured knowledge within an interoperable standard. It can

be understood that there is a need for the product modelling software and environment to

provide more interaction between end-users and the product modelling process through the

reuse of existing knowledge to support the product modelling. Hence, a review of interactive

application development was performed to understand what tools can be used as an integrated

development environment. Unity was identified as the most appropriate implementation tool

for developing a product modelling environment using KBE techniques. The conducted

237

literature review in Chapter 3 further discussed different aspects that should be considered for

design engineering automation using KBE techniques and KBE systems. By reviewing

existing frameworks and applications that have been developed for product modelling

through the use of KBE techniques in the recent decades, Chapter 3 presented that the

limitation of the existing relevant research work lies in the capture of design rules of the

product model and there is lack of KBE approaches that focus on capturing, modelling and

transferring design knowledge of a product for product modelling in KBE applications.

The outcome of the conducted literature review has identified research gaps (see Section

3.8.2) that need to be addressed in this research and stated the need for knowledge capture

and reuse in product modelling. In order to address this need, the current research proposed a

virtual product modelling framework. As presented in chapters 4 and 5, it was developed

through the selection of appropriate enabling methods and tools and was based on the

concepts of product design, product modelling, design engineering automation, and

knowledge-based engineering. In the end, the knowledge capture methodology was identified

and used for capturing and reusing knowledge, and STEP was selected as the most suitable

standard for representing the product geometry. To address the need to transfer design

engineering knowledge of a product in KBE applications, a data exchange method is

developed as the solution for exchanging non-geometric knowledge between the product

modelling environment and the knowledge-based product modelling environment. Further, a

knowledge-based product modelling environment was developed as a proof-of-concept tool

to show the effectiveness of the developed framework.

The proposed method is evaluated using three use cases from the literature. The full

evaluation of the framework is described in Chapter 6. The verification and validation

through use cases are based on the data collected from the literature. Four simple parts are

selected in the first use case to assess the effectiveness of VPM in application to simple parts

238

with primitive design features (block, cylinder, sphere, cone) and brief design knowledge. In

this use case, simple design rules that constrain single parameters were applied to test the

knowledge capture and reuse in VPM for modelling simple parts. The second use case is the

hex bolt example as a single basic engineering part. The hex bolt is selected as it is one of the

most widely used basic engineering parts in the industry. This use case tests a more complex

scenario where design rules are collected from industry standards and constraining internal

parameters of a part with different conditions. The third use case selects a wheel assembly as

a common engineering assembly to validate the developed VPM framework. A wheel

assembly is chosen as it is a crucial part of most automotive and has been widely used in the

literature as a demonstrative model to explain model structure, component relationships and

complex parameter configurations. In this use case, more complicated rules are applied to

evaluate the effectiveness of VPM in application to a product that has assembly relationships

and both internal and external parameter constraints.

Results from the use case evaluation showed that the developed knowledge-based product

modelling environment using VPM could automatically and correctly interpret and visualise

both the geometric data and the captured knowledge (non-geometric data) of the imported

product model. The tested product models were successfully represented by the captured

product knowledge with decomposed atomic blocks in a UML structure using the derived

VPM knowledge classes. Also, the developed knowledge capture tool and the

implementation of the developed knowledge exchange methods showcase the framework’s

capability of allowing the users to capture the existing product knowledge in the product

modelling process and store and transfer the knowledge through the use of a knowledge file.

It was demonstrated in a series of scenarios that the framework could reuse the captured

knowledge to support the product modelling. When changes are made by the users, the

framework successfully analyses and reuses the rules from the captured knowledge to

239

indicate if the changes can be made and also shows the reasons that are constraining the

changes. The changes in product model geometry are reflected through text visualisation, and

changes in parameters are propagated in the developed knowledge-based product modelling

environment correctly.

Discussion and findings from the use case evaluation were also presented in Chapter 6. There

is no evident distinction between modelling simple parts between using VPM and using

existing/legacy CAD systems due to the simplicity of the product and its associated

knowledge. The level of generalisation of a product and the completion of knowledge

reasoning and reuse in VPM depends on the richness of product data. Thus, the enhancement

to the product modelling process from using VPM will become more significant when

modelling products with more complexity in terms of existing product information,

parameters, internal and external rule constraints and relations. If there is sufficient product

design knowledge, VPM could be applied to develop higher level of generalisation for

engineering parts and assembly. The developed product model using VPM could provide

users such as less-experienced design engineers, multidisciplinary teams involved in the

product development process, as well as non-engineers with explicit essential design

knowledge engineers to have a comprehensive understanding of the product and identify the

required data based on their design specification. It would help to save time in retrieving

product data among different knowledge sources for learning the product. The reuse of design

rules that specify relations of parts and constraints between different internal and external

parameters would enable a quick generation of product variants using VPM. This would save

the time and manpower cost of creating product variants for design engineering automation.

Moreover, the knowledge reasoning and reuse would assist the users in automatically

checking if the changes they made are accepted by the captured design rules. It would

decrease the time needed for making changes to each parameter separately and avoid making

240

mistakes in changing product parameters during the modelling process. Furthermore, the

knowledge exchange using knowledge files provides a steady data exchange method for

storing and transferring the captured knowledge between different knowledge-based product

modelling platforms through an interoperable XML format.

Additionally, the proposed framework was discussed against the distinguished KBE

framework requirements. The requirements of generative modelling, a common

computational model and design optimisation by the KBE framework have been achieved by

the successful development of a VPM product model structure, a knowledge exchange

method and integration with design rules into the product modelling process during the

implementation of VPM. Also, comparisons between VPM and the existing product models,

KBE methodologies, and CAD systems in Chapter 6 show that VPM fully fills the research

gaps and addresses the need identified from the literature review in this research. As a result,

the application of VPM will enhance the product modelling process with the capability of

knowledge capturing and reuse and help users save time and manpower costs in the product

design stage.

7.3 Research Outcomes

With the support of the framework, the thesis answered the research questions and showed

how the existing product design knowledge could be captured and reused for product

modelling in a KBE environment to support design engineering automation. Research

questions and hypotheses were stated previously in Section 4.2. The following subsections

outline how each research question was addressed.

7.3.1 Research Question 1

Research question 1: How can the design knowledge be structured and represented through a

product model?

241

This research question was addressed by developing a product model using the proposed

method to provide a generative product representation that can provide all associated design

knowledge for product modelling and provide the capability of knowledge reasoning with the

captured design rules. This developed product model was structured with knowledge classes

derived from previous related research in product modelling. UML was used as a visual

modelling language to provide a comprehensive product model structure. The design

knowledge was broken down into atomic blocks in this UML structure, which describes the

product from different aspects. A knowledge schema was further derived based on the

knowledge classes, and a knowledge file would be generated using the knowledge schema

with the help of the developed knowledge capture tool to enable the knowledge exchange of

the product model.

7.3.2 Research Question 2

Research question 2: How can this product model be implemented in a knowledge-based

product modelling environment?

The conducted literature review showed that it was necessary to adopt a neutral standard and

format for product model data exchange to avoid the “black-box” problems in the KBE

system communication. This research question was first addressed by identifying the

appropriate product modelling standards and tools for implementation. STEP was used in this

research as the most suitable neutral product modelling standard for developing an

interoperable product model because it provides steady data exchange and is also widely used

in industry and supported by common CAD software. To overcome the difficulty of

integrating STEP with existing knowledge, in this research, STEP was used only to store and

transfer the geometric information of the product model. A knowledge exchanging method

was provided to enable non-geometric knowledge exchange by the author. The captured non-

geometric knowledge is stored and exchanged through the interoperable and platform-

242

independent format XML. After reviewing the current product modelling tools, it was

identified that there are limited tools that support the implementation of the proposed product

model. Further, to address this need, a gaming engine – Unity, was selected as the most

appropriate implementation tool for developing a knowledge-based product modelling

environment as a proof-of-concept tool. This implementation tool was developed by the

author using object-oriented programming, and the developed knowledge-based product

modelling environment was further tested with three use cases from the literature.

7.3.3 Research Question 3

Research question 3: How can the principles and practice of knowledge-based engineering be

applied to capture and reuse the existing design knowledge for product modelling through a

knowledge-based product modelling framework?

To answer this research question, different KBE techniques were reviewed, and KCM was

identified and then used as the enabling KBE methods for capturing, structuring, and

decomposing design knowledge for product modelling in this research. Five implementation

steps were presented (see Section 5.1) for capturing and reusing the existing design

knowledge for product modelling, and those steps were adapted from the eleven steps of

KCM implementation (Terpenny, Strong and Wang, 2000). The literature review also

identified that the limitation of the existing relevant research work lies in the capture of

design rules of the product model, and there is a lack of KBE approaches that focus on

capturing, modelling and transferring design knowledge of a product for product modelling in

KBE applications. To address these limitations, this study presented a knowledge capturing

method and tool (see Section 5.3.2) in this virtual product product modelling framework as

the solution for capturing design rules and a knowledge mapping step (see sections 5.1.4 and

5.3.4) as the solution for reusing design rules for knowledge reasoning. For exchanging non-

geometric knowledge between the product modelling environment and knowledge-based

243

product modelling environment, the research used STEP to transfer the geometric data and

developed a knowledge schema for a separated knowledge file that used to transfer the

existing design knowledge. All these proposed methods were further tested with three use

cases.

7.3.4 Research Question 4

Research question 4: How can this framework be implemented and applied by designers to

enhance product modelling?

To address this question, the overall implementation methods were presented by the author

(see Section 5.3). This proposed framework was implemented with three testing use cases

(see Chapter 6). The evaluation results showed that the captured knowledge was successfully

stored, transferred, and reused for product modelling in the developed knowledge-based

product modelling environment. When the design engineers changed one dimension of the

geometry of the initial product model, the tool would check the rules that determine this

geometry and tell the users if they can make the changes along with the reason and

constraining the rules. In such a way, design engineers would understand what will be

affected if the geometry is changed in this model and the constraints of these changes. This

would help them avoid making mistakes in the product modelling process. This proposed

framework can be further applied to different product models based on user’s need. The

applied standard and implementation tools can vary depending on the enabling technologies;

however, the fundamental principle and outcome of this methodology – capturing and reusing

existing knowledge for product modelling, will remain consistent.

It can be concluded that all the four research questions have been answered fully by the end

of this research. The following subsections further discuss the research hypotheses tested in

this research.

244

7.3.5 Research Hypothesis 1

Research hypothesis 1: The proposed methods and tools for product modelling in KBE can

improve the knowledge representation of product modelling by:

• Providing a generic knowledge integrated product model which can represent all

associated product information, including geometric data from CAD and non-

geometric information such as design intent, design parameters, design rules, etc.

The first hypothesis was retained as the developed framework has presented a generative

product model that represents all the associated product information and geometric data. The

overall virtual product modelling structure was represented using a UML structure. The

geometric data from CAD was stored in a STEP file, and the non-geometric information was

captured and stored in a knowledge file.

7.3.6 Research Hypothesis 2

Research hypothesis 2: The proposed methods and tools for product modelling in KBE can

improve the existing KBE techniques for product modelling to support design engineering

automation by:

• Formalising the product model in a neutral format and interoperable standard and

generating a new data exchange method for transferring design engineering

knowledge of a product in KBE applications.

• Enabling knowledge capture and reuse in the product modelling process through a

knowledge-based product modelling framework.

• Developing a KBE application implementation framework for product modelling.

• Providing detailed substantiation steps for the implementation through use cases and

tools.

245

This hypothesis was retained, as the implementation of three use cases has successfully met

the derived evaluation criteria and satisfied the defined measurement parameters. The chosen

STEP format for the STEP file and XML format for the knowledge file are all neutral and

interoperable. The STEP file was used to transfer the geometric data of the product model,

and the proposed knowledge exchange method for transferring existing knowledge has been

proved effective through the evaluation process. The evaluation results of the three use cases

have also shown that the adopted knowledge capture methodology was successful in

capturing the existing product knowledge from the knowledge source, and the captured

knowledge was reused for product modelling in the developed knowledge-based product

modelling framework through the knowledge mapping. Detailed implementation methods

were presented in Section 5.3, and substantiation steps for implementation were provided in

Chapter 6. Full codification for knowledge mapping in each use case was provided in

Appendix. Thus, both research hypotheses were correct and could be regarded as answers to

the research questions as well.

7.3.7 Conclusions

The following conclusions are drawn from the findings of this research:

1) Existing CAD systems have limited capability to capture and reuse the existing design

knowledge in the modelling process.

The review of existing CAD systems shows that they only provide geometric data within

CAD models and provide limited ability to capture and reuse the design knowledge in the

product modelling process.

2) The existing product design knowledge can be captured and stored through the use of

the developed knowledge capture tool based on KCM.

KCM can be adapted to decompose the captured knowledge and provide associated

parametric values for product modelling. The captured knowledge can be decomposed

246

and stored into a knowledge file in an XML format by using the knowledge capture tool

based on KCM.

3) Design knowledge can be structured and represented through a product model using

VPM.

The existing design knowledge can be decomposed into atomic VPM knowledge classes

and then used to develop a generative product model structure using UML. The

developed product model structure can help users better understand the product and

identify and access the essential data according to their design specifications.

4) The product model can be exchanged in a knowledge-based product modelling

environment through the use of neutral standards and formats.

STEP standard can be used to represent and exchange the geometric data of the product

model in a STEP file. The XML format can be used to store and exchange the non-

geometric product data in a knowledge file.

5) The existing product design knowledge can be captured and reused by using VPM to

enhance the product modelling process.

Rules from the existing product design knowledge can be captured and reused using VPM

to create the interaction between the geometry and the knowledge. It can provide

knowledge reasoning when users make changes to the product model, preventing them

from making mistakes. Captured product knowledge can be visualised along with the

product geometry in the developed knowledge-based product modelling environment

using VPM. Changes in parameters can be automatically tracked. Changes between the

original and modified product models with the affected parameters can be visualised in

text.

247

6) Gaming engine can be used to develop a knowledge-based product modelling

environment to provide the capabilities of knowledge capture, reuse, and visualisation

for product modelling.

This VPM framework can be built as a knowledge-based product modelling environment

using a gaming engine – Unity, as the development tool. The developed knowledge-based

product modelling environment shows extended capabilities of knowledge capturing,

reusing, reasoning, and visualising in the product modelling process.

7.4 Contribution to Knowledge

This research makes a noteworthy contribution to knowledge in the domain of Product

Modelling and Knowledge-Based Engineering, as outlined in the following subsections.

7.4.1 Virtual Product Modelling Framework

Existing product modelling systems are limited regarding capturing, structuring and reusing

existing product knowledge for product modelling. A novel virtual product modelling

framework is proposed to provide an approach for capturing the existing product knowledge

and reusing it in the product modelling process. The presented framework introduces a novel

concept for capturing and exchanging product data in product modelling to support design

engineering automation. It enhances the product modelling with the capabilities of generative

representation, knowledge reusing and provides a simplified way of capturing and

exchanging knowledge. It also provides design engineers the capability of knowledge

reasoning when they are making changes to product geometry and, therefore, can save time

and prevent engineers from making errors in the product modelling process.

7.4.2 Virtual Product Modelling Structure

The proposed methodology provides a generic structure that could represent the product with

all associated knowledge. The existing knowledge of the product is decomposed and

248

represented as atomic blocks in the structure. This results in a clear representation of the

complex product knowledge. And the explicit design knowledge integrated with the

developed structure could help users such as less-experienced design engineers,

multidisciplinary teams involved in the product development process, and non-engineers to

understand the product better and identify the essential data according to their design

specification. It will also save time on storing, accessing and retrieving the existing product

knowledge. This virtual product modelling structure is another significant contributor to the

knowledge.

7.4.3 Knowledge Capture and Data Exchange Method

The focus of this research is to contribute to the challenges in capturing and reusing existing

product knowledge for product modelling to support design engineering automation. As this

requires the capture of the existing product knowledge, this research adopts the knowledge

capturing methodology to capture the existing product knowledge. It presents a knowledge

schema in an interoperable and platform-independent format. The captured knowledge will

be stored in a knowledge file based on the knowledge schema. This approach allows the

captured knowledge to be transferred and exchanged across different platforms. This

knowledge capture and exchange approach can act as a useful tool for transferring non-

geometric information of a product as knowledge between different KBE applications. It

provides well-defined knowledge classes and a formalised method for individuals, enterprises

and industries to capture and share knowledge instead of using informal oral communication

or notes and spreadsheets in different formats.

To overcome the limitations in the existing STEP standards, the product geometry is

exchanged through the use of STEP file, and the non-geometric knowledge is exchanged

through the use of the knowledge file in this research. This work may be regarded as a step

249

toward developing a holistic product model that consists of interoperable geometry data and

reusable non-geometric knowledge classes.

7.4.4 Substantiation for KBE System Implementation

The proposed methodology presents a transparent KBE implementation framework where the

knowledge is adaptable, structured and reusable by others. It provides substantiation

procedures of how KBE systems can be implemented for product modelling. It incorporates a

schematic way of capturing and reusing knowledge and a knowledge mapping method

through the use of object-oriented programming to perform knowledge reasoning with

engineering rules. These novel methods allow the framework to be flexible so that uses can

make necessary adjustments or adapt them for further development needs. Therefore, this

proposed methodology can be viewed as a possible enhancement of existing KBE

methodologies and potential guidance for developing and implementing KBE systems for

product modelling.

7.5 Limitations of Research

The research addresses the aims and objectives and answers the research questions set in

Chapter 1. However, there are still some limitations to this work that are not considered.

The developed knowledge-based product modelling environment has shown the capability of

changing the dimensional parameters of product models. However, those changes are limited

to use case. The functionality of modelling geometry in the developed knowledge-based

product modelling environment is limited. Due to the nature of STEP, there are no existing

technologies that support editing the geometry data in the STEP file and displaying the

graphical changes directly in the modelling environment. In this current knowledge-based

product modelling environment, geometry changes mainly rely on text visualisation and

knowledge description. But this will not restrict the capability of the proposed modelling

250

method. This limitation is acceptable as the system has demonstrated its overall effectiveness

in propagating the changes by reusing the knowledge. New standards and advanced geometry

editing tools will accelerate the formation of a well-developed product modelling

environment, and the 3D visualisation of the product can be further improved with enabling

standards and tools in the future.

Secondly, the developed tool needs to be further developed to become more generic

regarding changing the different aspects of geometry for different use cases. However, this

would move the tools to the development of a much larger scale product modelling software,

and that would require more time and manpower involvement. Since the currently developed

tool has proved the effectiveness of this methodology in capturing and reusing knowledge

and reflecting changes made by users, developing such a large-scale software is not the focus

of this research.

Thirdly, design engineers need to spend extra time using the knowledge capture tool,

compared with modelling in a traditional product modelling environment (CAD). This mainly

happens at the first time when designers start to model without having a knowledge file.

However, it is necessary to spend such time capturing designer knowledge and building the

knowledge repository.

Fourthly, in this research, the author has developed a knowledge capture tool for capturing

knowledge and a knowledge-based product modelling environment for reusing knowledge for

product modelling as proof-of-concept tools. The knowledge capture tool is not integrated

within the knowledge-based product modelling environment, and the use of the knowledge-

based product modelling environment requires manually exporting and importing the STEP

file and knowledge file. However, this research focused on providing the capability of

capturing and reusing the existing knowledge for product modelling. The integration of tools

and automatic exporting and importing of files can be recommended for future work.

251

Lastly, the framework has provided a knowledge mapping method to achieve the knowledge

reasoning in the product modelling process. This procedure is done through the object-

oriented programming algorithm, which links the rules and the dimensional geometry. In the

current developed knowledge-based product modelling environment, the rules are written

manually into the object-oriented programming algorithm separately. However, this is due to

the limit of enabling tools. It can be argued that by using a product modelling environment

that can allow users to embed rules in the product modelling process, this limitation could be

overcome.

7.6 Recommendations for Future Work

Based on the findings of the research, serval recommendations can be derived for future

work. These can be summarised as follows.

7.6.1 Improving the Knowledge-Based Product Modelling Tool

As mentioned in the previous section, the developed knowledge-based product modelling

environment is limited in changing the geometry of the product models. Therefore, one of the

potential future work directions is to further improve and develop the tool and make it more

generic and be able to change any kind of product model geometry. Moreover, the concept of

using rules to provide knowledge reasoning for product modelling shows another possible

direction to improve the current product modelling legacy system. As mentioned in Chapter

3, there are limited tools that provide the capability of capturing and reusing existing product

knowledge for product modelling. Expanding this research outcome into the current CAD

product modelling legacy systems will help the development of a more functional and

powerful knowledge-based product modelling engine. The visualisation functionality of the

product model will also be extended through the use of a mature and commercialised CAD

engine.

252

7.6.2 Enhancing Data Exchange in Product Modelling with New Product Modelling

Standard AP242

Another possible direction for future work is to use the latest STEP AP242 standard (STEP

AP242 Project, 2014) to enhance data exchange in product modelling. The new AP242 was

released in 2014 to support the current STEP for exchanging product data; however, AP242

functionalities are not developed to the implementation level in commercial CAD software

up-to-date. Therefore, in the future, with the development of A242 functionalities in current

commercial CAD software, AP242 can be potentially applied to exchange all classified data

by STEP for the application of the knowledge-based product modelling framework.

7.6.3 Extending the Product Modelling Standards for Knowledge Capture and Reuse

Implementation

This research work also shows future work directions for current international organisations

for standardisation to extend their existing product modelling standards for knowledge

capture and reuse implementation. As mentioned in Chapter 3, STEP is used to exchange

information, which is the outcome of design activities, rather than for the information

generated and used through the development of a product. It is limited in exchanging

parameters, design intent and other data that may be associated with the CAD models. Some

efforts were made to combine STEP with non-STEP product data (Barbau et al., 2012).

However, mapping with the entire STEP standard is complicated and time-consuming. Data

missing and mismatching still exist in the current mapping methods. Therefore, another

potential future direction can be to apply the knowledge-based product modelling framework

to develop a product modelling standard that aims at the implementation of knowledge

capturing and reusing. This will provide a structured data format to integrate geometric and

non-geometric data for knowledge-based product modelling and a seamless way to exchange

product models as all data are stored in one standardised file.

253

7.6.4 Implementing the Framework for Non-Engineers

The findings of the research reveal that the proposed framework is capable of capturing and

reusing the existing product knowledge for product modelling to support design engineering

automation. Since the knowledge would be captured from experienced designers and be

accessible to new designers through the implementation of the framework, this methodology

can be considered to support non-engineers who lack the engineering background knowledge

to understand and learn product modelling. The developed KBE product modelling

environment has the potential of helping non-engineers to carry out design tasks in a more

user-friendly way. The captured knowledge in the proposed framework can also be used as a

knowledge repository that provides available and accessible product knowledge for non-

engineers to thoroughly understand the purpose of each design detail in the existing CAD

models and to unravel the complex design references created by other designers.

7.6.5 KBE Application Development Using a Gaming Engine

This research developed a knowledge-based product modelling environment as a proof-of-

concept tool through the use of a gaming engine. It has shown the potential of deploying

gaming engines to develop a knowledge-based product modelling platform as a KBE

application. In the existing CAD systems, most of the modelling process is performed

through the interaction with system GUI. However, developing a KBE application is 90%

about writing code and 10% interacting with GUI (Rocca, 2011). As mentioned in Section

3.5.3, gaming engines provide an integrated development environment for building

interactive application with GUI and programming the backend. They enable users to develop

cross-platform applications with customised interface that driven by object-oriented

programming codes. In recent decades, gaming engines have been adopted to build industrial

applications in various domains (Juliani et al., 2018; Hussain et al., 2020; Unity

254

Technologies, 2021). Therefore, gaming engines can possibly be used by researchers to

develop KBE applications in the future.

7.6.6 Product Modelling with Virtual Reality and Augmented Reality Technology

Virtual reality (VR) and augmented reality (AR) are new types of visualisation technologies

that have been rising rapidly in popularities across different domains and professions. VR

replaces the real-life surrounding environment through computer-generated signals (sight,

sound, touch, etc.), and AR augments the real-life surrounding by overlaying virtual elements

on the live view of the real world. With the utilisation of headsets, glasses, controllers and

sensors, these technologies provided an immersive way of visualisation and making

interaction with virtual and real environments. Some recent research work offers the potential

for the use of VR and AR technologies in the field of engineering design and modelling

(Huerta et al., 2019; Memarsadeghi and Varshney, 2020). Thus, the virtual product modelling

framework can possibly be applied together with VR and AR applications to enable design

engineers to visualise the product and perform the product modelling process in new ways.

255

Reference

Abramovici, M., Gerhard, D. and Langenberg, L. (1997) ‘Application of PDM technology for

Product Life Cycle Management’, in Life Cycle Networks. Springer, Boston, MA, pp. 17–31.

Al-ashaab, A. et al. (2012) ‘Knowledge-based environment to support product design

validation’, Knowledge-Based Systems, 26, pp. 48–60. doi:10.1016/j.knosys.2011.06.019.

Alan Hevner, Jinsoo Park, S.T.M. (2004) ‘Design Science in Information Systems Research’,

MIS Quarterly, 28(1), pp. 75–105.

Alavudeen, A. and Venkateshwaran, N. (2008) Computer Integrated Manufacturing. PHI

Learning Pvt. Ltd.

Ap242.org (2016) AP 242 – Why the convergence. Available at: http://www.ap242.org/why-

ap242;jsessionid=6bf16b5b3d7312345d84445206df (Accessed: 1 September 2016).

Arnold, F. and Podehl, G. (1999) ‘Best of both worlds - A mapping from EXPRESS-G to

UML’, The Unified Modeling Language. «UML»’98: Beyond the Notation, pp. 49–63.

doi:10.1007/978-3-540-48480-6_5.

Arora, S.K. (2021) Unity vs Unreal Engine: Which Game Engine Should You Choose?

Available at: https://hackr.io/blog/unity-vs-unreal-engine (Accessed: 6 December 2021).

Avvaru, V.S. et al. (2020) ‘Integration of PLM, MES and ERP Systems to Optimize the

Engineering, Production and Business’, in Nyffenegger, F. et al. (eds) Product Lifecycle

Management Enabling Smart X. Cham: Springer International Publishing, pp. 70–82.

Bajaj, M. (2008) KNOWLEDGE COMPOSITION METHODOLOGY FOR EFFECTIVE

ANALYSIS PROBLEM FORMULATION IN SIMULATION - BASED DESIGN. Georgia

Institute of Technology.

Bajan, M. et al. (2011) ‘Satellites to Supply Chains , Energy to Finance — SLIM for Model-

Based Systems Engineering Part 2 : Applications of SLIM’, INCOSE International

Symposium, (June), pp. 20–23.

Barbau, R. et al. (2012) ‘OntoSTEP: Enriching product model data using ontologies’,

Computer-Aided Design, 44, pp. 575–590. doi:10.1016/j.cad.2012.01.008.

Barnes, M. (2007) Introduction to Collada. Available at:

https://www.gamedeveloper.com/art/introduction-to-collada (Accessed: 6 December 2021).

256

Berends, J.P.T.J., Van Tooren, M.J.L. and Schut, E.J. (2008) ‘Design and implementation of

a new generation multi-agent task environment framework’, Collection of Technical Papers -

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

[Preprint], (April). doi:10.2514/6.2008-2142.

Bhandarkar, M.P. et al. (2000) ‘Migrating from IGES to STEP: One to one translation of

IGES drawing to STEP drafting data’, Computers in Industry, 41(3), pp. 261–277.

doi:10.1016/S0166-3615(99)00052-4.

Blessing, L. and Wallace, K. (1998) ‘Supporting the Knowledge Life-Cycle’, in Proceedings

of the IFIP TC5 WG5.2 Third Workshop on Knowledge Intensive CAD, pp. 21–38.

doi:10.1007/978-0-387-35582-5.

Bondar, S. et al. (2015) ‘Advances in parameterized CAD feature translation’, Advances in

Transdisciplinary Engineering, 2(July), pp. 615–624. doi:10.3233/978-1-61499-544-9-615.

Bonnie E. John and Mashyna, M.M. (1997) ‘Evaluating a multimedia authoring tool’,

Journal of the American Society for Information Science, 48(11), pp. 1004–1022.

Bouhaddou, I. et al. (2012) ‘PLM (Product Lifecycle Management) Model for Supply Chain

Optimization’, in Rivest, L., Bouras, A., and Louhichi, B. (eds) Product Lifecycle

Management. Towards Knowledge-Rich Enterprises. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 134–146.

Boy, J. et al. (2015) ‘Recommended Practices for AP242 Business Object Model XML

Assembly Structure’, CAx-IF Recommended Practices, pp. 1–184.

Bozdoc, M. (2003) Introducting CAM. Available at: http://mbinfo.mbdesign.net/CAM-

Intro.htm (Accessed: 1 November 2019).

Brown, A.S. (2020) 7 Biggest Trends for Engineering in the 2020s - ASME, ASME.org.

Available at: https://www.asme.org/topics-resources/content/7-biggest-trends-for-

engineering-in-the-2020s (Accessed: 10 August 2020).

Butorina, I. V. and Vasilieva, V.N. (2018) ‘Surface modeling in AutoCAD for architectural

and structural design’, IOP Conference Series: Materials Science and Engineering, 451(1).

doi:10.1088/1757-899X/451/1/012125.

Cam, C.A.D. et al. (1983) ‘Ship Hulls , B-Spline Surfaces ’, (December), pp. 37–45.

Camba, J.D., Contero, M. and Company, P. (2016) ‘Parametric CAD modeling: An analysis

257

of strategies for design reusability’, CAD Computer Aided Design, 74, pp. 18–31.

doi:10.1016/j.cad.2016.01.003.

Carlson, W.E. (2017) Computer Graphics and Computer Animation : A Retrospective

Overview. The Ohio State University.

Cederfeldt, M. and Elgh, F. (2005) ‘DESIGN AUTOMATION IN SMEs – CURRENT

STATE , POTENTIAL , NEED AND REQUIREMENTS’, pp. 1–15.

Cederfeldt, M., Elgh, F. and Rask, I. (2006) ‘A Transparent Design System for Iterative

Product Development’, Journal of Computing and Information Science in Engineering, 6, pp.

300–307.

Chang, K.-H. (2015) ‘Solid Modeling’, in e-Design. Academic Press, pp. 125–167.

doi:https://doi.org/10.1016/C2009-0-63076-2.

Chang, K.-H. (2016) e-Design: Computer-Aided Engineering Design. revised. Academic

Press.

Chapman, C. et al. (2007) ‘Utilising enterprise knowledge with knowledge-based

engineering’, International Journal of Computer Applications in Technology, 28(2–3), pp.

169–179. doi:10.1504/IJCAT.2007.013354.

Chapman, C.B. and Pinfold, M. (1999) ‘Design engineering - a need to rethink the solution

using knowledge based engineering’, Knowledge-Based Systems, 12(5–6), pp. 257–267.

doi:10.1016/S0950-7051(99)00013-1.

Chapman, C.B. and Pinfold, M. (2001) ‘The application of a knowledge based engineering

approach to the rapid design and analysis of an automotive structure’, Advances in

Engineering Software, 32(12), pp. 903–912. doi:10.1016/S0965-9978(01)00041-2.

Chen, Y.-M. and Wei, C.-L. (1997) ‘Computer-aided feature-based design for net shape

manufacturing’, Computer Integrated Manufacturing Systems, 10(2), pp. 147–164.

doi:10.1016/S0951-5240(97)00006-2.

Chiang, A.T.A., Trappey, A.J.C. and Ku, C.C. (2004) ‘Using Knowledge-Based Intelligent

Reasoning To Support Dynamic Collaborative Design’, in Proceedings of the Fifth Asia

Pacific Industrial Engineering and Management Systems Conference 2004, pp. 1–12.

Cho, J. et al. (2016) ‘KBE-PLM Integration Schema for Engineering Knowledge Re-use and

Design Automation’, (September 2017). doi:10.1007/978-3-319-54660-5.

258

Chungoora, N. et al. (2013) ‘A model-driven ontology approach for manufacturing system

interoperability and knowledge sharing’, Computers in Industry, 64(4), pp. 392–401.

doi:10.1016/j.compind.2013.01.003.

Coons, S. and Mann, R. (1960) Computer-aided design related to the engineering design

process / 8436-TM-5. Cambridge, M.I.T. Electronic Systems Laboratory.

Cooper, S., Fan, I. and Li, G. (2001) ‘Achieving Competitive Advantage Through

Knowledge-Based Engineering A Best Practice Guide’, p. 21.

Coronado, J. (2014) STEP standard support in Creo. Available at: http://www.asd-

ssg.org/c/document_library/get_file?uuid=f11b5a3a-5594-4f79-90be-

384f452ac94f&groupId=11317 (Accessed: 6 December 2021).

Curran, R. et al. (2010) ‘A multidisciplinary implementation methodology for knowledge

based engineering: KNOMAD’, Expert Systems with Applications, 37(11), pp. 7336–7350.

doi:10.1016/j.eswa.2010.04.027.

Curran, R. et al. (2015) Transdisciplinary Lifecycle Analysis of Systems, Proceedings o f the

22nd ISPE Inc. International Confer ence on Concurrent Engineering. ISO Press BV.

Curran, R., Verhagen, W.J.C. and Van Tooren, M.J.L. (2010) ‘The KNOMAD methodology

for integration of multi-disciplinary engineering knowledge within aerospace production’,

48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace

Exposition, pp. 1–16.

David, T. (2019) An Automated Method Mapping Parametric Features Between Computer

Aided Design Software. BRUNEL UNIVERSITY.

Estefan, J.A. (2008) Survey of Model-Based Systems Engineering (MBSE) Methodologies.

doi:10.1109/35.295942.

Fan, I.-S. and Bermell-Garcia, P. (2008) ‘International Standard Development for Knowledge

Based Engineering Services for Product Lifecycle Management’, Concurrent Engineering,

16(4), pp. 271–277. doi:10.1177/1063293X08100027.

Fenves, S.J. (2001) ‘A core product model for representing design information’, Technical

Report No. NISTIR 6736, National Institute of Standards and Technology [Preprint].

Available at: http://www.mel.nist.gov/msidlibrary/doc/ir6736.pdf.

Fenves, S.J. et al. (2004) ‘CPM 2: A Revised core product model for representing design

259

information’, Nistir 7185 [Preprint].

Fernández-Godino, M.G. et al. (2016) ‘Review of multi-fidelity models’.

doi:10.1016/j.jcp.2015.01.034.

Fortineau, V., Paviot, T. and Lamouri, S. (2013) ‘Improving the interoperability of industrial

information systems with description logic-based models-The state of the art’, Computers in

Industry, 64(4), pp. 363–375. doi:10.1016/j.compind.2013.01.001.

Friedenthal, S., Griego, R. and Sampson, M. (2007) ‘INCOSE model based systems

engineering (MBSE) initiative’, INCOSE 2007 Symposium [Preprint]. Available at:

http://www.incose.org/enchantment/docs/07docs/07jul_4mbseroadmap.pdf.

Fröhlich, A. (2011) ‘3D Formats in the Field of Engineering- a Comparison’, ProStep, pp. 1–

24.

Gao, J.X. et al. (2003) ‘Application of product data management technologies for enterprise

integration’, International Journal of Computer Integrated Manufacturing, 16(7–8), pp. 491–

500. doi:10.1080/0951192031000115813.

Gerhard Pahl and Wolfgang Beitz (1988) Engineering Design, A systematic Approach.

Edited by K. Wallace. London: The Design Council.

Gilkinson, N. et al. (2015) ‘Building information modelling: the tide is turning’, Proceedings

of the ICE - Structures and Buildings, 168(2), pp. 81–93. doi:10.1680/stbu.12.00045.

Giovannini, A. et al. (2012) ‘Ontology-based system for supporting manufacturing

sustainability’, Annual Reviews in Control, 36(2), pp. 309–317.

doi:10.1016/j.arcontrol.2012.09.012.

Gómez de Silva Garza, A. and Maher, M. Lou (2000) ‘Knowledge Modeling in Design - the

MOKA framework’, Artificial Intelligence in Design ’00, pp. 77–102. doi:10.1007/978-94-

011-4154-3.

Gross, J. et al. (2009) ‘An Executable Unified Product Model Based on UML to Support

Satellite Design’, in Proceedings of the AIAA SPACE Conference. doi:10.2514/6.2009-6642.

Gross, J. and Rudolph, S. (2012) ‘Generating simulation models from UML - A FireSat

example’, in Proceedings of the 2012 Symposium on Theory of Modeling and Simulation -

DEVS Integrative M&S Symposium, pp. 1–8.

Gu, P. and Chan, K. (1995) ‘Product modelling using step’, Computer-Aided Design, 27(3),

260

pp. 163–179. doi:10.1016/0010-4485(95)95867-E.

Gujarathi, G P and Ma, Y. (2011) ‘Parametric CAD / CAE integration using a common data

model’, 30, pp. 118–132. doi:10.1016/j.jmsy.2011.01.002.

Gujarathi, G. P. and Ma, Y.S. (2011) ‘Parametric CAD/CAE integration using a common

data model’, Journal of Manufacturing Systems, 30(3), pp. 118–132.

doi:10.1016/j.jmsy.2011.01.002.

Haas, J. (2014) ‘A History of the Unity Game Engine for An Interactive Qualifying Project’,

p. 44.

Hale, R. (2002) ‘Knowledge-Based Software Systems for Composite Design, Analysis and

Manufacturing’, SAE Technical Paper Series [Preprint], (724). Available at:

http://papers.sae.org/2002-01-1536.

El Hani, M.A., Rivest, L. and Maranzana, R. (2012) ‘Product data reuse in product

development: A practitioner’s perspective’, IFIP Advances in Information and

Communication Technology, 388 AICT, pp. 243–256. doi:10.1007/978-3-642-35758-9_21.

Haynes, S.R. and Skattebo, A.L. (2004) ‘Situating Evaluation in Scenarios of Use’, (May

2014). doi:10.1145/1031607.1031624.

Herschel, R.T., Nemati, H. and Steiger, D. (2001) ‘Tacit to explicit knowledge conversion:

Knowledge exchange protocols’, Journal of Knowledge Management, 5(1), pp. 107–116.

doi:10.1108/13673270110384455.

Hevner, A.R. et al. (2004) ‘Design Science in Information Systems Research’, 28(1), pp. 75–

105.

Van Holland, W. and Bronsvoort, W.F. (2000) ‘Assembly features in modeling and

planning’, Robotics and Computer-Integrated Manufacturing, 16(4), pp. 277–294.

doi:10.1016/S0736-5845(00)00014-4.

Hornbæk, K. et al. (2007) ‘Use Case Evaluation (UCE): A Method for Early Usability

Evaluation in Software Development’, in Human-Computer Interaction – INTERACT 2007,

pp. 578–591.

Huerta, O. et al. (2019) ‘Application of VR and AR Tools for Technical Drawing Education’,

(May), pp. 363–366. doi:10.14733/cadconfp.2019.363-366.

Hussain, A. et al. (2020) ‘Unity Game Development Engine : A Technical Survey’,

261

University of Sindh Journal of Information and Communication Technology (USJICT), 4(2),

pp. 73–81.

International Council on Systems Engineering (2007) ‘Systems Engineering Vision 2020’,

INCOSE-TP-2004. Available at:

http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf.

Isaksson, O. et al. (2000) ‘Trends in Product Modelling - an ENDREA perspective’, in

Proceedings Product Models 2000. Linköping, Sweden.

Isaksson, O. (2003) ‘A generative modeling approach to engineering design’, in Proceedings

of ICED 03.

ISO/PAS 17506 (2012) Industrial automation systems and integration — COLLADA digital

asset schema specification for 3D visualization of industrial data. Available at:

https://www.iso.org/standard/59902.html (Accessed: 6 December 2021).

ISO (1994) ‘ISO 10303-11:1994 The EXPRESS language reference manual’. Available at:

https://www.iso.org/standard/18348.html.

ISO 10303-1:1994 (1994) ‘Product data representation and exchange - Part 1: Overview and

fundamental principles’.

Johnson, A. and Gibson, A. (2014) ‘Chapter 4 - The Tools of the Design Process and

Management of Design’, in Sustainability in Engineering Design. Academic Press, pp. 113–

180.

Jon Holt, S.P. (2013) SysML for Systems Engineering: A Model-based Approach. Institution

of Engineering and Technology.

Juliani, A. et al. (2018) ‘Unity: A General Platform for Intelligent Agents’, (February).

Available at: http://arxiv.org/abs/1809.02627.

Jurit H., Saia, A. and De Pennington, A. (1990) ‘Reasoning about machining operations using

feature-based models’, THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH,

28, pp. 153–171.

Kahn, H. et al. (2001) ‘A generic framework for transforming EXPRESS information

models’, CAD Computer Aided Design, 33(7), pp. 501–510. doi:10.1016/S0010-

4485(01)00049-5.

Kalkan, E., Okur, F.Y. and Altunışık, A.C. (2018) ‘Applications and usability of parametric

262

modeling’, Journal of Construction Engineering, Management & Innovation, 1(3).

doi:10.31462/jcemi.2018.03139146.

Kc Morris, A.B.F. (1999) STEP, the grand experience. Edited by S.J. Kemmerer.

Gaithersburg: National Institute of Standards and Technology.

Kedar, S.D. et al. (2018) ‘Design And Drawing Automation Using Cad Model Application

Programming Interface And KBE System : A Review Paper’, International Journal of

Advance Research in Science and Engineering, 07(02), pp. 611–629.

Kellie, A.C. (2010) The Wireframe Model — Showing 3D Structure with Open Space.

Khronos Group (2004) COLLADA Overview. Available at:

https://www.khronos.org/api/collada (Accessed: 6 December 2021).

Kim, J. et al. (2008) ‘Standardized data exchange of CAD models with design intent’, 40, pp.

760–777. doi:10.1016/j.cad.2007.06.014.

Klein, R. (2009) ‘Knowledge Modeling in Design - the MOKA framework’.

doi:10.1007/978-94-011-4154-3.

Könst, J.S., La Fontaine, J.P. and Hoogeboom, M.G.R. (2009) Product Data Management –

A Strategic Perspective. 1st edn. Maj Engineering Publishing.

Krause, F.-L. et al. (1993) ‘Product Modelling’, CIRP Annals - Manufacturing Technology,

42(2), pp. 695–706. doi:10.1016/S0007-8506(07)62532-3.

Lagos, N. (2007) ‘Knowledge-based product support systems’, PQDT - Global, p. 288.

Langeveld, L. (2011) ‘Product Design with Embodiment Design as a New Perspective’,

Industrial Design - New Frontiers [Preprint], (November 2011). doi:10.5772/20579.

Lawrence, W. (1989) ‘Using Knowledge-Based Engineering’, Production, p. 74.

Leu, M.C. (2016) ‘NX10 FOR ENGINEERING DESIGN’, Design, p. 207.

Lou, Z., Jiang, H. and Ruan, X. (2004) ‘Development of an integrated knowledge-based

system for mold-base design’, Journal of Materials Processing Technology, 150(1–2), pp.

194–199. doi:10.1016/j.jmatprotec.2004.01.037.

Lovett, P.J., Ingram, A. and Bancroft, C.N. (2000) ‘Knowledge-based engineering for SMEs

- a methodology’, Journal of Materials Processing Technology, 107(1–3), pp. 384–389.

doi:10.1016/S0924-0136(00)00728-7.

263

Männistö, T. et al. (1998) ‘Modelling generic product structures in STEP’, CAD Computer

Aided Design, 30(14), pp. 1111–1118. doi:10.1016/S0010-4485(98)00067-0.

Marjudi, S. et al. (2010) ‘A Review and Comparison of IGES and STEP’, Proceedings Of

World Academy Of Science, Engineering And Technology, (January 2016), pp. 1013–1017.

Martínez-Pellitero, S. et al. (2011) ‘A new process-based ontology for KBE system

implementation: Application to inspection process planning’, International Journal of

Advanced Manufacturing Technology, 57(1–4), pp. 325–339. doi:10.1007/s00170-011-3285-

7.

Martins, J.R.R.A. and Lambe, A.B. (2013) ‘Multidisciplinary Design Optimization: A Survey

of Architectures’, AIAA Journal, 51(9), pp. 2049–2075. doi:10.2514/1.J051895.

Mehmet Murat Baysal, Utpal Roy, Rachuri Sudarasan, Ram D. Sriram, K.W.L. (2005)

‘Product information exchange using Open assembly model: issues related to representation

of geometric information’, in Proceedings of The 2005 ASME International Mechanical

Engineering Congress & Exposition. Orlando.

Melody Stokes (2001) Managing Engineering Knowledge: MOKA - Methodology for

Knowledge Based Engineering Applications. Wiley-Blackwell.

Memarsadeghi, N. and Varshney, A. (2020) ‘Virtual and Augmented Reality Applications in

Science and Engineering’, Computing in Science and Engineering, 22(3), pp. 4–6.

doi:10.1109/MCSE.2020.2987151.

Michael J. Pratt (1988) ‘Synthesis of an optimal approach to form feature modelling’, in

Proceedings of the 1988 ASME International Computers in Engineering Conference and

Exhibition, pp. 263–274.

Moorthy, A. and Vivekanand, S. (2007) ‘Integration of PLM with other concepts for

empowering business environments’, in Garetti, M. et al. (eds) Product Lifecycle

Management (PLM’07) Assessing the industrial relevance. Inderscience Enterprises Limited,

pp. 93–106.

NDIA Systems Engineering Division M&S Committee (2011) ‘Final Report of the Model

Based Engineering (MBE) Subcommittee’, pp. 1–26.

Object Management Group (2008) ‘OMG Systems Modeling Language (OMG SysML TM)’.

Object Management Group (2015) ‘OMG Unified Modeling Language’, Informatik-Spektrum

264

[Preprint]. doi:10.1007/s002870050092.

Okudan, G.E. and Medeiros, D.J. (2005) ‘Facilitating collaborative design: A review on

design representations and workstations’, Proceedings of the ASME International Design

Engineering Technical Conferences and Computers and Information in Engineering

Conference - DETC2005, 2 A, pp. 71–79. doi:10.1115/detc2005-85124.

Okudan, G.E. and Zappe, S.E. (2006) ‘Teaching product design to non-engineers: A review

of experience, opportunities and problems’, Technovation, 26(11), pp. 1287–1293.

doi:10.1016/j.technovation.2005.10.009.

Oldham, K. et al. (1998) ‘MOKA-A Methodology and tools Oriented to Knowledge-based

engineering Applications’, Proceedings of the Conference on Integration in Manufacturing.

Göteborg, Sweden, pp. 198–207.

Owen, J. (1997) STEP: an introduction. Information Geometers.

OWL Web Ontology Language Overview (2016). Available at: http://www.w3.org/TR/owl-

features/ (Accessed: 1 September 2016).

Pahl, G. et al. (2007) Engineering design: a systematic approach. doi:10.1007/978-1-84628-

319-2.

Peltokoski, M., Lohtander, M. and Varis, J. (2015) ‘The role of Product Data Management

(PDM) in engineering design and the key differences between PDM and Product Lifecycle

Management (PLM)’, in The 1st PDM forum for Finland-Russia collaboration.

Peng, T.-K. and Trappey, A.J.C. (1998) ‘A step toward STEP-compatible engineering data

management: the data models of product structure and engineering changes’, Robotics and

Computer-Integrated Manufacturing, 14(2), pp. 89–109. doi:10.1016/S0736-5845(97)00016-

1.

Reddy, E.J., Sridhar, C.N. V. and Rangadu, V.P. (2015) ‘Knowledge Based Engineering:

Notion, Approaches and Future Trends’, American Journal of Intelligent Systems, 5(1), pp.

1–17. doi:10.5923/j.ajis.20150501.01.

Requicha, A.A.G. and Rossignac, J.R. (1992) ‘Solid Modeling and Beyond’, IEEE Computer

Graphics and Applications, 12(5), pp. 31–44. doi:10.1109/38.156011.

Requicha, A.A.G. and Voelcker, H.B. (1982) ‘Solid Modeling: A Historical Summary and

Contemporary Assessment’, IEEE Computer Graphics and Applications, 2(2), pp. 9–24.

265

doi:10.1109/MCG.1982.1674149.

Research and Markets (2020) Global CAD Software Market (2020 to 2030) - by Technology,

Model, Deployment, Level and Application. Dublin.

Rocca, G. La (2011) Knowledge Based Engineering Techniques to Support Aircraft Design

and Optimization.

Rocca, G. La (2012) ‘Knowledge based engineering: Between AI and CAD. Review of a

language based technology to support engineering design’, Advanced Engineering

Informatics, 26(2), pp. 159–179. doi:10.1016/j.aei.2012.02.002.

La Rocca, G., Krakers, L. and van Tooren, M.J.L. (2002) ‘Development of an ICAD

Generative Model for Blended Wing Body Aircraft Design’, in 9th AIAA/ISSMO Symposium

on Multidisciplinary Analysis and Optimization, 4-6 September 2002, Atlanta, Georgia, pp.

1–10. doi:10.2514/6.2002-5447.

La Rocca, G. and Tooren, M. van (2012) ‘Knowledge based engineering to support complex

product design’, Advanced Engineering Informatics, 26(2), pp. 157–158.

doi:10.1016/j.aei.2012.02.008.

Rocca, G. La and Tooren, M.J.L. Van (2007) ‘Enabling distributed multidisciplinary design

of complex products : a Knowledge Based Engineering approach’, International Journal for

Design Research [Preprint].

Rodrigues Da Silva, A. (2015) ‘Model-driven engineering: A survey supported by the unified

conceptual model’, Computer Languages, Systems and Structures, 43, pp. 139–155.

doi:10.1016/j.cl.2015.06.001.

Rosenfeld, L.W. (1995) ‘Solid modeling and knowledge-based engineering’, in Handbook of

solid modeling. McGraw-Hill, Inc. New York, USA, pp. 91–911.

Ross, D.T. and Ward, J.E. (1968) INVESTIGATIONS IN COMPUTER-AIDED DESIGN FOR

NUMERICALLY CONTROLLED PRODUCTION.

Roy, U., R. Sudarsan, R. D. Sriram, K. W. Lyons, M.R.D. (1999) ‘Information Architecture

for Design Tolerancing: From Conceptual to the Detail Design’, in Proceedings of the 1999

ASME Design Engineering Technical Conferences (25th Design Automation Conference).

Roy, R., Hinduja, S. and Teti, R. (2008) ‘Recent advances in engineering design

optimisation: Challenges and future trends’, CIRP Annals - Manufacturing Technology,

266

57(2), pp. 697–715. doi:10.1016/j.cirp.2008.09.007.

Rumbaugh, J., Jacobson, I. and Booch, G. (1999) The UML reference manual, New York:

Addison-Wesley.

Rynne, A. and Gaughran, W. (2007) ‘Cognitive modelling strategies for optimum design

intent in parametric modelling (PM)’, ASEE Annual Conference and Exposition, Conference

Proceedings [Preprint], (January 2007).

S. Rahimifard (1996) ‘A methodology to develop EXPRESS data models’, International

Journal of Computer Integrated Manufacturing, 9(1), pp. 61–72.

S Shephard, M. et al. (2004) ‘Toward simulation-based design’, Finite Elements in Analysis

and Design, 40(12), p. Pages 1575-1598. doi:10.1016/j.

Salomons, O.W., van Houten, F.J.A.M. and Kals, H.J.J. (1993) ‘Review of research in

feature-based design’, Journal of Manufacturing Systems, 12(2), pp. 113–132.

doi:10.1016/0278-6125(93)90012-I.

Salustri, F.A. (1996) ‘A formal theory for knowledge-based product model representation’,

Manufacturing Systems, (519), pp. 1–19.

Salzman, H. (1989) ‘Computer-Aided Design : Limitations in Automating Design and

Drafting’, 36(4), pp. 252–261.

Sanya, I.O. and Shehab, E.M. (2014) ‘An ontology framework for developing platform-

independent knowledge-based engineering systems in the aerospace industry’, International

Journal of Production Research, 53, pp. 1–27. doi:10.1080/00207543.2014.965352.

Schätzle, J. (2016) Evaluate How the STEP Standard AP 242 Could Enable Knowledge

Transfer between CAD and KBE Environments. Norwegian University of Science and

Technology.

Shapiro, V. (2002) ‘Solid Modeling’, Handbook of computer aided geometric design, 20, pp.

473–518. doi:DOI: 10.1016/B978-044451104-1/50021-6.

Shehab, E.M. and Abdalla, H.S. (2001) ‘Manufacturing cost modelling for concurrent

product development’, Robotics and Computer-Integrated Manufacturing, 17(4), pp. 341–

353. doi:10.1016/S0736-5845(01)00009-6.

Siemens PLM (2019a) ‘Siemens JT Format Reference v10.5’.

Siemens PLM (2019b) STEP AP242 to NX geometry mapping. Available at:

267

https://docs.plm.automation.siemens.com/tdoc/nx/11/nx_help#uid:xid1128422:index_xid458

198:xid1182052:xid1182028 (Accessed: 1 January 2022).

Soyler, A. and Sala-Diakanda, S. (2010) ‘A model-based systems engineering approach to

capturing disaster management systems’, 2010 IEEE International Systems Conference, pp.

283–287. doi:10.1109/SYSTEMS.2010.5482340.

STEP AP203 and AP214 Protocols (2016). Available at:

http://www.datakit.com/en/step_protocols.php (Accessed: 30 August 2016).

STEP AP242 Project (2014). Available at: http://www.ap242.org/edition-2 (Accessed: 26

June 2020).

STEP AP242 protocol (2014). Available at: http://www.datakit.com/en/step_ap242.php

(Accessed: 1 September 2016).

STEP Tools Incorporated (2008) ST-Developer Tools Reference. Available at:

https://web.archive.org/web/20081109065451/http://www.steptools.com/support/stdev_docs/

devtools/devtools-7.html (Accessed: 1 September 2019).

Stroud, I. (2006) Boundary Representation Modelling Techniques. 1st edn. Springer-Verlag

London. doi:10.1007/978-1-84628-616-2.

Suresh, S. and Egbu, C. (2006) ‘Key issues for implementing knowledge capture initiatives in

small and medium enterprises in the UK construction industry’, in COBRA 2006 -

Proceedings of the Annual Research Conference of the Royal Institution of Chartered

Surveyors.

Szykman, S., J.W.R. and R.D.S. (1999) ‘THE REPRESENTATION OF FUNCTION IN

COMPUTER-BASED DESIGN’, in Proceedings of the 1999 ASME Design Engineering

Technical Conferences (11th International Conference on Design Theory and Methodology).

Tang, D. et al. (2001) ‘STEP-based product modeling for concurrent stamped part and die

development’, Computers in Industry, 46(1), pp. 75–94. doi:10.1016/S0166-3615(01)00116-

6.

Tay, F.E.H. and Gu, J. (2002) ‘Product modeling for conceptual design support’, Computers

in Industry, 48, pp. 143–155. doi:10.1016/S0166-3615(02)00014-3.

Technosoft (2013) Adaptive Modeling Language (AML),

Http://Www.Technosoft.Com/Aml.Php. Available at: http://www.technosoft.com/aml.php

268

(Accessed: 27 August 2021).

Terpenny, J., Strong, S. and Wang, J. (2000) ‘A METHODOLOGY FOR KNOWLEDGE

DISCOVERY AND CLASSIFICATION’, pp. 36–41.

Tilove, R.B. (1981) Exploiting spatial and structural locality in geometric modelling.

University of Rochester.

Tolman, F.P. (1999) ‘Product modeling standards for the building and construction industry:

past, present and future’, Automation in Construction, 8(3), pp. 227–235. doi:10.1016/S0926-

5805(98)00073-9.

Tomiyama, T., Mäntylä, M. and Finger, S. (1995) Knowledge Intensive CAD (Vol.1).

CHAPMAN & HALL.

van Tooren, M. et al. (2005) ‘Aircraft design support using knowledge engineering and

optimisation techniques’, 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics

and Materials Conference, 8, pp. 5074–5089. doi:10.2514/6.2005-2205.

Unity Technologies (2020) Unity User Manual, Unity Documentation. Available at:

https://docs.unity3d.com/Manual/index.html (Accessed: 18 June 2020).

Unity Technologies (2021) Unity solutions for architecture, engineering and construction.

Available at: https://unity.com/solutions/architecture-engineering-construction.

Velden, A. Van der (2007) ‘CAD to CAE Process Automation Through iSIGHT-FD’, in

Proceedings of the ASME Turbo Expo 2007, p. 87093.

Walsh, V., Roy, R. and Bruce, M. (1988) ‘Competitive by design’, Journal of Marketing

Management, 4(2), pp. 201–217.

Wang, F. et al. (2003) ‘Towards modeling the evolution of product families’, ASME

Computers and Information In Engineering Conference [Preprint].

Wang, L. et al. (2002) ‘Collaborative conceptual design - State of the art and future trends’,

Computer-Aided Design, 34(13), pp. 981–996.

Weisberg, D.E. (2008) The Engineering Design Revolution - The People, Companies and

Computer Systems That Changed Forever the Practice of Engineering.

Wilson, D.J. (2006) ‘How to Integrate Paper with CAD’. Open Archive white paper.

Wingård, L. (1991) Introducing form features in product models: a step towards CADCAM

269

with engineering terminology. PhD Dissertation, Computer System for Design and

Development.

Wu, J.K., Liu, T.H. and Fischer, G.W. (1992) ‘PDES/STEP-based information model for

CAE and CAM integration’, International Journal of System Automation: Research &

Application, 2(4), pp. 375–394.

Xu, B. and Chen, N. (2009) ‘An integrated method of CAD, CAE and multi-objective

optimization’, in 2009 IEEE 10th International Conference on Computer-Aided Industrial

Design & Conceptual Design, pp. 1010–1014.

Yang, W.Z. et al. (2008) ‘Recent development on product modelling: a review.’,

International Journal of Production Research, 46(21), pp. 6055–6085.

doi:10.1080/00207540701343895.

Yip-hoi, D.M. (2011) ‘Teaching Surface Modeling to CAD/CAM Technologists’,

Mechanical Engineering [Preprint].

Yoshioka, M. (2001) ‘Proposal of an Integrated Design Support Environment Based on’,

Design engineering technical conference and Computers and Information in Engineering

Conference [Preprint].

Zha, X.F. and Du, H. (2002) ‘A PDES/STEP-based model and system for concurrent

integrated design and assembly planning’, CAD Computer Aided Design, 34(14), pp. 1087–

1110. doi:10.1016/S0010-4485(01)00186-5.

270

Appendix 1: Knowledge Capture Tool Interface Maximised View

a) Knowledge capture tool interface - function select

271

b) Knowledge capture tool interface – knowledge capture

272

Appendix 2: Scripts Used in Knowledge Mapping in Use Case 1

Platform: Unity, Programming language: C#

a) Knowledge mapping of block rules

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System.Xml;
using UnityEngine.UI;
public class BlockRules : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 public Text length;
 public Text width;
 public Text height;

 public Text UpdatedL;
 public Text UpdatedW;
 public Text UpdatedH;

 public GameObject warning;
 public GameObject reason;

 public InputField Length;
 public InputField Width;
 public InputField Height;

 public Text warningtext;
 public Text reasontext;

 string rules01 = "Block Length L = Block Width W = Block Height H";

 public void checklength()
 {
 float l = float.Parse(Length.text.ToString());
 warningtext.text = "You have changed the length to " + l + "\n"+ " The width and height
are also changed to "+l+ "\n"+ "The change is affected by the following rule:";
 reasontext.text = KnowledgeFileStore.transfer.rules_k.ToString();

 UpdatedL.text = l.ToString();
 UpdatedW.text = l.ToString();
 UpdatedH.text = l.ToString();

273

 }
 public void checkwidth()
 {
 float w = float.Parse(Width.text.ToString());
 warningtext.text = "You have changed the width to " + w + "\n" + " The length and height
are also changed to " + w + "\n" + "The change is affected by the following rule:";
 reasontext.text = KnowledgeFileStore.transfer.rules_k.ToString();

 UpdatedL.text = w.ToString();
 UpdatedW.text = w.ToString();
 UpdatedH.text = w.ToString();

 }
 public void checkheight()
 {

 float h = float.Parse(Height.text.ToString());
 warningtext.text = "You have changed the height to " + h + "\n" + " The length and width
are also changed to " + h + "\n" + "The change is affected by the following rule:";
 reasontext.text = KnowledgeFileStore.transfer.rules_k.ToString();

 UpdatedL.text = h.ToString();
 UpdatedW.text = h.ToString();
 UpdatedH.text = h.ToString();
 }

 // Update is called once per frame
 void Update()
 {

 }
}

274

b) Knowledge mapping of cylinder rules

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System.Xml;
using UnityEngine.UI;
public class CylinderRules : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 public InputField Diameter;
 public InputField Height;
 public Text UpdatedDia;
 public Text UpdatedHeight;

 public GameObject warning;
 public GameObject reason;

 public Text warningtext;
 public Text reasontext;

 string rule01 = "Cylinder rule 01 : The height of cylinder should not be larger than 200.";
 string rule02 = "Cylinder rule 02 : The diameter of cylinder should not be larger than 80";

 public void checkheight()
 {

 float h = float.Parse(Height.text.ToString());

 if (h <= 200)
 {
 warningtext.text = "You can make this change. "+ "You have changed the height of
cylinder to " + h;
 reasontext.text = rule01;
 UpdatedHeight.text = h.ToString();
 }
 else
 {
 warningtext.text = "You cannot make this change.";
 reasontext.text = rule01;

 }
 }

275

 public void checkdiameter()
 {
 float d = float.Parse(Diameter.text.ToString());

 Debug.Log(Diameter.text.ToString());

 if (d <= 80)
 {
 warningtext.text = "You can make this change. " + "You have changed the diameter of
cylinder to " + d;
 reasontext.text = rule02;
 UpdatedDia.text = d.ToString();
 }
 else
 {
 warningtext.text = "You cannot make this change.";
 reasontext.text = rule02;

 }

 }
 // Update is called once per frame
 void Update()
 {

 }
}

276

c) Knowledge mapping of cone rules

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System.Xml;
using UnityEngine.UI;
public class ConeRules : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 public InputField Diameter;
 public InputField Height;

 public Text UpdatedDia;
 public Text UpdatedH;

 public GameObject warning;
 public GameObject reason;

 public Text warningtext;
 public Text reasontext;

 string rule01 = "Cone rule 01 : The base diameter of cone should be among 10,16,18,20 mm ";
 string rule02 = "Cone rule 02 : If the diameter of cone is less than 16 mm, the height should be
18 mm. If the diameter of cone is equal to or larger than 16 mm, the height should be 24 mm.";

 string[] diameterarray = { "10", "16", "18", "20" };

 public void checkdiameter()
 {

 float d = float.Parse(Diameter.text.ToString());
 string temp_d= d.ToString();

 foreach (string x in diameterarray){
 if (x.Equals(temp_d)){

 UpdatedDia.text = temp_d;
 if (d <= 16)
 {
 warningtext.text = "You can make this change. " + "You have changed the diameter
to " + d + "\n" + "According to the rule 02, the height should be 18 mm";

 reasontext.text = rule01 + rule02;
 UpdatedH.text = "18";

277

 }
 else
 {
 warningtext.text = "You can make this change. " + "You have changed the diameter
to " + d + "\n" + "According to the rule 02, the height should be 24 mm";

 reasontext.text = rule01 + rule02;
 UpdatedH.text = "24";

 }
 break;

 }
 else
 {

 warningtext.text = "You cannot make this change. According to the rule:";

 reasontext.text = rule01;

 }
 }
 }

 public void checkheight()
 {
 warningtext.text = "The height of this cone is dominated by the diameter" + "\n" +
"According to the following rules:";

 reasontext.text = rule02;

 }

 // Update is called once per frame
 void Update()
 {

 }
}

278

d) Knowledge mapping of sphere rules

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System.Xml;
using UnityEngine.UI;
public class SphereRules : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 public InputField Diameter;
 public InputField Material;

 public Text UpdatedDia;
 public Text UpdatedM;

 public GameObject warning;
 public GameObject reason;

 public Text warningtext;
 public Text reasontext;

 string rule01 = "Sphere rule 01 : The diameter of sphere should be among
19,20,21,22,25,30,35,40 mm.";
 string rule02 = "Sphere rule 02 : The material of the steel ball should be among AIS 201, AIS
304, AIS 316 stainless steel.";

 string[] diameterarray = { "19", "20", "21", "22", "25", "30", "35", "40" };
 string[] materialarray = { "AIS 201", "AIS 304", "AIS 316" };

 public void checkmaterial()
 {

 string m = Material.text.ToString();

 foreach (string x in materialarray)
 {
 if (x.Equals(m))
 {
 warningtext.text = "You can make this change. " + "You have changed the material to "
+ m;

 reasontext.text = rule02;
 UpdatedM.text = m;
 break;
 }

279

 else
 {
 warningtext.text = "You cannot make this change. According to the rule:";

 reasontext.text = rule02;

 }
 }

 }

 public void checkdiameter()
 {
 float d = float.Parse(Diameter.text.ToString());

 string temp_d = d.ToString();
 foreach (string x in diameterarray)
 {
 if (x.Equals(temp_d))
 {
 UpdatedDia.text = temp_d;
 warningtext.text = "You can make this change. " + "You have changed the diameter to "
+ d;

 reasontext.text = rule01;

 break;
 }

 else
 {
 warningtext.text = "You cannot make this change. According to the rule:";

 reasontext.text = rule01;

 }
 }

 }
 // Update is called once per frame
 void Update()
 {

 }
}

280

Appendix 3: Scripts Used in Knowledge Mapping in Use Case 2

Platform: Unity, Programming language: C#

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System.Xml;
using UnityEngine.UI;
using System.Linq;
public class BoltRulesNew : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 public string L;
 public string D1;
 public string b;
 public string k;
 public string s;
 public string e;

 public InputField BoltLength;
 public InputField ThreadSize;
 public InputField ThreadedShankLength;
 public InputField HeadDepth;

 public InputField WidthAcrossCorner;
 public InputField WidthAcrossFlats;

 public Text Updated_L;
 public Text Updated_D1;
 public Text Updated_b;
 public Text Updated_k;
 public Text Updated_s;
 public Text Updated_e;

 public bool check_k;
 public bool check_e;
 public bool check_s;
 public bool check_b;
 public bool check_L;

 public GameObject warning;
 public GameObject reason;

281

 public Text warningtext;
 public Text reasontext;

 string rule01 = "When D1 is M12, k should be 7.5 mm, e should be 21.1 mm and s should be
19 mm. If L is less than 125 mm, the thread length b should be 30 mm; if L is between 125 mm
and 200 mm, the thread length b should be 36 mm;if L is larger than 200 mm, the thread length b
should be 49mm.";
 string rule02 = "When D1 is changed to M14, k should be 8.8mm, e should be 24.49 mm and s
should be 22 mm.If L is less than 125 mm, the thread length b should be 34 mm;if L is between
125 mm and 200 mm, the thread length b should be 40 mm; if L is larger than 200 mm, the thread
length b should be 53 mm.";

 string[] diameterarray = { "19", "20", "21", "22", "25", "30", "35", "40" };
 string[] materialarray = { "AIS 201", "AIS 304", "AIS 316" };

 string[] rule1_b = { "30", "36", "49" };
 string[] rule2_b = { "34", "40", "53" };
 string rule1_k = "7.5";
 string rule1_e = "21.1";
 string rule1_s = "19";

 public void checkL()
 {

 L = BoltLength.text.ToString();

 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 string temp_D1 = ThreadSize.text.ToString();

 if (temp_D1 == "")
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 }
 else
 {
 D1 = temp_D1;

 }

 float Value_L = float.Parse(L.ToString());
 Debug.Log(Value_L);
 Debug.Log(D1);

 if (D1 == "M12")
 {

 if (Value_L < 125)
 {
 b = "30";

282

 Updated_L.text = L;
 Updated_b.text = b;
 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;

 reasontext.text = rule01;
 check_L = true;

 }

 if (Value_L > 200)
 {
 b = "49";
 Updated_L.text = L;
 Updated_b.text = b;
 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;
 reasontext.text = rule01;
 check_L = true;
 }

 if (Value_L <= 200 && Value_L >= 125)
 {
 b = "36";
 Updated_L.text = L;
 Updated_b.text = b;
 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;
 reasontext.text = rule01;
 check_L = true;
 }

 }

 }

 public void checkb()
 {
 b = KnowledgeFileStore.transfer.keyparap3_k.ToString();

 string temp_b = ThreadedShankLength.text.ToString();

 if (temp_b == "")
 {
 b = KnowledgeFileStore.transfer.keyparap3_k.ToString();

 }
 else
 {

283

 b = temp_b;

 }

 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 string temp_D1 = ThreadSize.text.ToString();

 if (temp_D1 == "")
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 }
 else
 {
 D1 = temp_D1;

 }

 if (D1 == "M12") {

 foreach (string x in rule1_b)
 {
 if (x.Equals(b))
 {
 check_b = true;

 }

 }

 if (check_b==true)
 {

 Debug.Log("CONTAINS B");

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "b value conflict with rule01";

 reasontext.text = rule01;

 check_b = false;

 }

 if (b == "30")
 {
 warningtext.text = "You can make this change. " + "You have to change L to less than
125 mm";

284

 reasontext.text = rule01;

 Updated_b.text = "30";

 check_b = true;

 }

 if (b == "36")
 {
 warningtext.text = "You can make this change. " + "You have to change L to between
125 and 200 mm";

 reasontext.text = rule01;
 Updated_b.text = "36";
 check_b = true;

 }

 if (b == "49")
 {
 warningtext.text = "You can make this change. " + "You have to change L to larger than
200 mm";

 reasontext.text = rule01;

 Updated_b.text = "49";
 check_b = true;

 }

 }

 if (D1 == "M14")
 {

 foreach (string x in rule2_b)
 {
 if (x.Equals(b))
 {
 check_b = true;

 }

 }

 if (check_b == true)
 {

 Debug.Log("CONTAINS B");

285

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "b value conflict with rule02";

 reasontext.text = rule02;

 check_b = false;

 }

 if (b == "34")
 {
 warningtext.text = "You can make this change. " + "You have to change L to less than
125 mm";

 reasontext.text = rule02;

 Updated_b.text = "34";

 check_b = true;

 }

 if (b == "40")
 {
 warningtext.text = "You can make this change. " + "You have to change L to between
125 and 200 mm";

 reasontext.text = rule02;
 Updated_b.text = "40";
 check_b = true;

 }

 if (b == "53")
 {
 warningtext.text = "You can make this change. " + "You have to change L to larger than
200 mm";

 reasontext.text = rule02;

 Updated_b.text = "53";
 check_b = true;

 }

 }

 }

286

 public void checkk()
 {

 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 string temp_D1 = ThreadSize.text.ToString();

 if (temp_D1 == "")
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 }
 else
 {
 D1 = temp_D1;

 }

 k = KnowledgeFileStore.transfer.keyparap4_k.ToString();

 string temp_k = HeadDepth.text.ToString();

 if (temp_k == "")
 {
 k = KnowledgeFileStore.transfer.keyparap4_k.ToString();

 }
 else
 {

 k = temp_k;

 }

 if (D1 == "M12")
 {
 if (k == "7.5")
 {

 warningtext.text = "You can make this change. ";

 reasontext.text = rule01;

 Updated_k.text = "7.5";

 }
 else
 {

287

 warningtext.text = "You cannot make this change. " + "k value conflict with rule01";

 reasontext.text = rule01;

 }

 }
 if (D1 == "M14")
 {
 if (k == "8.8")
 {

 warningtext.text = "You can make this change. ";

 reasontext.text = rule02;

 Updated_k.text = "8.8";

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "k value conflict with rule02";

 reasontext.text = rule02;

 }

 }

 }

 public void checke()
 {

 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 string temp_D1 = ThreadSize.text.ToString();

 if (temp_D1 == "")
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 }
 else
 {
 D1 = temp_D1;

288

 }

 e = KnowledgeFileStore.transfer.keyparap5_k.ToString();
 string temp_e = WidthAcrossCorner.text.ToString();

 if (temp_e == "")
 {
 e = KnowledgeFileStore.transfer.keyparap5_k.ToString();

 }
 else
 {

 e = temp_e;

 }

 if (D1 == "M12")
 {
 if (e == "21.1")
 {

 warningtext.text = "You can make this change. ";

 reasontext.text = rule01;
 Updated_e.text = "21.1";

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "e value conflict with rule01";

 reasontext.text = rule01;

 }

 }

 if (D1 == "M14")
 {

 if (e == "24.49")
 {

 warningtext.text = "You can make this change. ";

 reasontext.text = rule02;
 Updated_e.text = "24.49";

 }
 else

289

 {

 warningtext.text = "You cannot make this change. " + "e value conflict with rule02";

 reasontext.text = rule02;

 }

 }

 }

 public void checks()
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 string temp_D1 = ThreadSize.text.ToString();

 if (temp_D1 == "")
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 }
 else
 {
 D1 = temp_D1;

 }

 s = KnowledgeFileStore.transfer.keyparap6_k.ToString();

 string temp_s = WidthAcrossFlats.text.ToString();

 if (temp_s == "")
 {
 s = KnowledgeFileStore.transfer.keyparap6_k.ToString();

 }
 else
 {

 s = temp_s;

 }

 if (D1 == "M12")
 {

290

 if (s == "19")
 {

 warningtext.text = "You can make this change. ";

 reasontext.text = rule01;

 Updated_s.text = "19";
 }
 else
 {

 warningtext.text = "You cannot make this change. " + "s value conflict with rule01";

 reasontext.text = rule01;

 }

 }

 if (D1 == "M14")
 {
 if (s == "22")
 {

 warningtext.text = "You can make this change. ";

 reasontext.text = rule02;
 Updated_s.text = "22";
 }
 else
 {

 warningtext.text = "You cannot make this change. " + "s value conflict with rule02";

 reasontext.text = rule02;

 }

 }

 }

 public void checkD1()
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 string temp_D1 = ThreadSize.text.ToString();

291

 if (temp_D1 == "")
 {
 D1 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 }
 else
 {
 D1 = temp_D1;

 }

 k = KnowledgeFileStore.transfer.keyparap4_k.ToString();

 string temp_k = HeadDepth.text.ToString();

 if (temp_k == "")
 {
 k = KnowledgeFileStore.transfer.keyparap4_k.ToString();

 }
 else
 {

 k = temp_k;

 }

 e = KnowledgeFileStore.transfer.keyparap5_k.ToString();
 string temp_e = WidthAcrossCorner.text.ToString();

 if (temp_e == "")
 {
 e = KnowledgeFileStore.transfer.keyparap5_k.ToString();

 }
 else
 {

 e = temp_e;

 }

 s = KnowledgeFileStore.transfer.keyparap6_k.ToString();

 string temp_s = WidthAcrossFlats.text.ToString();

 if (temp_s == "")
 {
 s = KnowledgeFileStore.transfer.keyparap6_k.ToString();

292

 }
 else
 {

 s = temp_s;

 }

 L = KnowledgeFileStore.transfer.keyparap1_k.ToString();

 string temp_L = BoltLength.text.ToString();

 if (temp_L == "")
 {
 L = KnowledgeFileStore.transfer.keyparap1_k.ToString();

 }
 else
 {
 L = temp_L;

 }

 float Value_L = float.Parse(L.ToString());

 b = KnowledgeFileStore.transfer.keyparap3_k.ToString();

 string temp_b = ThreadedShankLength.text.ToString();

 if (temp_b == "")
 {
 b = KnowledgeFileStore.transfer.keyparap3_k.ToString();

 }
 else
 {

 b = temp_b;

 }

 if (D1 == "M12")
 {

293

 if (k == "7.5")
 {

 check_k = true;

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "k value conflict with rule01";

 reasontext.text = rule01;

 check_k = false;

 }
 if (e== "21.1")
 {
 check_e = true;

 }
 else
 {
 check_e = false;

 warningtext.text = "You cannot make this change. " + "e value conflict with rule01";

 reasontext.text = rule01;

 check_k = false;

 }
 if (s=="19")
 {

 check_s = true;

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "s value conflict with rule01";

 reasontext.text = rule01;

 check_s = false;

 }

294

 if (check_k&&check_e&&check_s&&check_b&&check_b == true)
 {
 warningtext.text = "You can make this change. ";
 reasontext.text = rule01;

 }
 else
 {

 warningtext.text = "You cannot make this change. ";
 reasontext.text = rule01;

 }

 if (Value_L < 125)
 {
 b = "30";
 Updated_L.text = L;
 Updated_b.text = b;
 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;

 reasontext.text = rule01;
 check_L = true;

 }

 if (Value_L > 200)
 {
 b = "49";
 Updated_L.text = L;
 Updated_b.text = b;
 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;
 reasontext.text = rule01;
 check_L = true;
 }

 if (Value_L <= 200 && Value_L >= 125)
 {
 b = "36";
 Updated_L.text = L;
 Updated_b.text = b;
 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;
 reasontext.text = rule01;
 check_L = true;
 }
 }

 if (D1 == "M14")
 {

295

 if (Value_L < 125)
 {
 b = "34";

 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;

 reasontext.text = rule02;
 check_L = true;

 }

 if (Value_L > 200)
 {
 b = "53";

 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;
 reasontext.text = rule02;
 check_L = true;
 }

 if (Value_L <= 200 && Value_L >= 125)
 {
 b = "40";

 warningtext.text = "You can make this change. " + "You have changed L to " + L + "
.You have to change the b to " + b;
 reasontext.text = rule02;
 check_L = true;
 }

 foreach (string x in rule2_b)
 {
 if (x.Equals(b))
 {
 check_b = true;

 }
 else
 {

 }
 }

 if (check_b == true)
 {

 Debug.Log("CONTAINS B");

296

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "b value conflict with rule02";

 reasontext.text = rule01;

 check_b = false;

 }

 if (k == "8.8")
 {

 //warningtext.text = "You can make this change. ";

 //reasontext.text = rule01;

 //Updated_k.text = "7.5";
 check_k = true;

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "k value conflict with rule01";

 reasontext.text = rule02;

 check_k = false;

 }
 if (e == "24.49")
 {
 check_e = true;

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "e value conflict with rule01";

 reasontext.text = rule02;

 check_e = false;

 }
 if (s == "22")
 {

297

 check_s = true;

 }
 else
 {

 warningtext.text = "You cannot make this change. " + "s value conflict with rule01";

 reasontext.text = rule02;

 check_s = false;

 }

 if (check_k && check_e && check_s &&check_b == true)
 {
 warningtext.text = "You can make this change. ";
 reasontext.text = rule02;

 Updated_D1.text = "M14";

 }
 else
 {

 warningtext.text = "You cannot make this change. ";
 reasontext.text = rule02;

 Debug.Log(k+e+s+b+L);

 }

 }

 }

 // Update is called once per frame
 void Update()
 {

 }
}

298

Appendix 4: Scripts Used in Knowledge Mapping in Use Case 3

Platform: Unity, Programming language: C#

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System.Xml;
using UnityEngine.UI;
using System.Linq;
public class WheelAssemblyRulesNew : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 public string D1;
 public string D2;
 public string D3;
 public string D4;
 public string L1;
 public string L2;
 public string L3;
 public string L4;

 public string S1;
 public string S2;
 public string S3;
 public string S4;

 public string L;
 public string S;

 public InputField Input_D1;
 public InputField Input_D2;
 public InputField Input_D3;
 public InputField Input_D4;

 public InputField Input_L1;
 public InputField Input_L2;
 public InputField Input_L3;
 public InputField Input_L4;

 public InputField Input_S1;
 public InputField Input_S2;
 public InputField Input_S3;
 public InputField Input_S4;

 public InputField Input_L;

299

 public InputField Input_S;

 public Text Updated_D1;
 public Text Updated_D2;
 public Text Updated_D3;
 public Text Updated_D4;

 public Text Updated_L1;
 public Text Updated_L2;
 public Text Updated_L3;
 public Text Updated_L4;

 public Text Updated_S1;
 public Text Updated_S2;
 public Text Updated_S3;
 public Text Updated_S4;

 public Text Updated_L;
 public Text Updated_S;

 public GameObject warning;
 public GameObject reason;

 public Text warningtext;
 public Text reasontext;

 string Assembly_rule01 = "D1 = D3, when D1 is changed, D3 needs to be changed as well, and
vice versa.";
 string Assembly_rule02 = "D2 = D4, when D2 is changed, D4 needs to be changed as well, and
vice versa.";
 string Assembly_rule03 = "L1 = S1, when L1 is changed, S1 needs to be changed as well, and
vice versa.";
 string Assembly_rule04 = "L2 = S2, when L2 is changed, S2 needs to be changed as well, and
vice versa.";
 string Assembly_rule05 = "L3 = S3, when L3 is changed, S3 needs to be changed as well, and
vice versa.";
 string Assembly_rule06 = "L4 = S4, when L4 is changed, S4 needs to be changed as well, and
vice versa.";
 string Assembly_rule07 = "L = S, when L is changed, S needs to be changed as well, and vice
versa.";

 string Wheel_rule01 = "L1 = L4, when L1 is changed, L4 needs to be changed as well, and vice
versa.";
 string Wheel_rule02 = "L2 = L3, when L2 is changed, L3 needs to be changed as well, and vice
versa.";

 string Tire_rule01 = "S1 = S4, when S1 is changed, S4 needs to be changed as well, and vice
versa.";

300

 string Tire_rule02 = "S2 = S3, when S2 is changed, S3 needs to be changed as well, and vice
versa.";

 string warningY = "You can make this change.";
 string warningN = "Warning! You cannot make this change!";

 string[] diameterarray = { "19", "20", "21", "22", "25", "30", "35", "40" };
 string[] materialarray = { "AIS 201", "AIS 304", "AIS 316" };

 string[] rule1_b = { "30", "36", "49" };
 string[] rule2_b = { "34", "40", "53" };
 string rule1_k = "7.5";
 string rule1_e = "21.1";
 string rule1_s = "19";

 public void checkD1D3()
 {

 D1 = KnowledgeFileStore.transfer.keyparap1_k.ToString();
 string temp_D1 = Input_D1.text.ToString();

 if (temp_D1 == "")
 {
 D1 = KnowledgeFileStore.transfer.keyparap1_k.ToString();

 }
 else
 {
 D1 = temp_D1;

 }

 D3 = KnowledgeFileStore.transfer.keyparap3_k.ToString();
 string temp_D3 = Input_D3.text.ToString();

 if (temp_D3 == "")
 {
 D3 = KnowledgeFileStore.transfer.keyparap3_k.ToString();

 }
 else
 {
 D3 = temp_D3;

 }

 if (D1 == D3)
 {
 Updated_D1.text = D1;
 Updated_D3.text = D3;
 warningtext.text = warningY;

301

 reason.SetActive(true);
 reasontext.text = "Allowed by rules:" + Assembly_rule01;

 }
 else
 {

 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Assembly_rule01;

 }

 }

 public void checkD2D4()
 {

 D2 = KnowledgeFileStore.transfer.keyparap2_k.ToString();
 string temp_D2 = Input_D2.text.ToString();

 if (temp_D2 == "")
 {
 D2 = KnowledgeFileStore.transfer.keyparap2_k.ToString();

 }
 else
 {
 D2 = temp_D2;

 }

 D4 = KnowledgeFileStore.transfer.keyparap4_k.ToString();
 string temp_D4 = Input_D4.text.ToString();

 if (temp_D4 == "")
 {
 D4 = KnowledgeFileStore.transfer.keyparap4_k.ToString();

 }
 else
 {
 D4 = temp_D4;

 }

 if (D2 == D4)
 {

 Updated_D2.text = D2;
 Updated_D4.text = D4;

302

 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = "Allowed by rules:" + Assembly_rule02;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Assembly_rule02;

 }

 }

 public void checkL1S1()
 {

 L1 = KnowledgeFileStore.transfer.keyparap5_k.ToString();
 string temp_L1 = Input_L1.text.ToString();

 if (temp_L1 == "")
 {
 L1 = KnowledgeFileStore.transfer.keyparap5_k.ToString();

 }
 else
 {
 L1 = temp_L1;

 }

 S1 = KnowledgeFileStore.transfer.keyparap9_k.ToString();
 string temp_S1 = Input_S1.text.ToString();

 if (temp_S1 == "")
 {
 S1 = KnowledgeFileStore.transfer.keyparap9_k.ToString();

 }
 else
 {
 S1 = temp_S1;

 }

 L4 = KnowledgeFileStore.transfer.keyparap8_k.ToString();
 string temp_L4 = Input_L4.text.ToString();

303

 if (temp_L4 == "")
 {
 L4 = KnowledgeFileStore.transfer.keyparap8_k.ToString();

 }
 else
 {
 L4 = temp_L4;

 }

 S4 = KnowledgeFileStore.transfer.keyparap12_k.ToString();
 string temp_S4 = Input_S4.text.ToString();

 if (temp_S4 == "")
 {
 S4 = KnowledgeFileStore.transfer.keyparap12_k.ToString();

 }
 else
 {
 S4 = temp_S4;

 }

 string temp_reason =""+"\n";
 bool temp_warning_condition1;
 bool temp_warning_condition2;
 bool temp_warning_condition3;

 if (L1 == S1)
 {

 reason.SetActive(true);

 temp_warning_condition1 = false;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);

 temp_reason = temp_reason + Assembly_rule03;

 temp_warning_condition1 = true;

 }

304

 if (L1 == L4)
 {

 reason.SetActive(true);

 temp_warning_condition2 = false;
 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);

 temp_reason = temp_reason + Wheel_rule01;

 temp_warning_condition2 = true;
 }

 if (S4 == S1)
 {

 reason.SetActive(true);

 temp_warning_condition3 = false;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);

 temp_reason = temp_reason + Tire_rule01;

 temp_warning_condition3 = true;
 }

 if(temp_warning_condition1 == true || temp_warning_condition2 == true ||
temp_warning_condition3 == true)
 {
 warningtext.text = warningN;
 reasontext.text = temp_reason;

 }
 else
 {

 Updated_L1.text = L1;
 Updated_S1.text = S1;
 Updated_S4.text = S4;
 Updated_L4.text = L4;

305

 warningtext.text = warningY;
 reasontext.text = "Allowed by rules:" + Assembly_rule03+ Wheel_rule01+ Tire_rule01;
 }
 }

 public void checkL2S2()
 {

 L2 = KnowledgeFileStore.transfer.keyparap6_k.ToString();
 string temp_L2 = Input_L2.text.ToString();

 if (temp_L2 == "")
 {
 L2 = KnowledgeFileStore.transfer.keyparap6_k.ToString();

 }
 else
 {
 L2 = temp_L2;

 }

 S2 = KnowledgeFileStore.transfer.keyparap10_k.ToString();
 string temp_S2 = Input_S2.text.ToString();

 if (temp_S2 == "")
 {
 S2 = KnowledgeFileStore.transfer.keyparap10_k.ToString();

 }
 else
 {
 S2 = temp_S2;

 }

 L3 = KnowledgeFileStore.transfer.keyparap7_k.ToString();
 string temp_L3 = Input_L3.text.ToString();

 if (temp_L3 == "")
 {
 L3 = KnowledgeFileStore.transfer.keyparap7_k.ToString();

 }
 else
 {
 L3 = temp_L3;

 }

306

 S3 = KnowledgeFileStore.transfer.keyparap11_k.ToString();
 string temp_S3 = Input_S3.text.ToString();

 if (temp_S3 == "")
 {
 S3 = KnowledgeFileStore.transfer.keyparap11_k.ToString();

 }
 else
 {
 S3 = temp_S3;

 }

 string temp_reason = "" + "\n";
 bool temp_warning_condition1;
 bool temp_warning_condition2;
 bool temp_warning_condition3;
 bool temp_warning_condition4;

 if (L2 == S2)
 {
 //warningtext.text = warningY;
 reason.SetActive(true);
 // reasontext.text = Assembly_rule04;
 temp_warning_condition1 = false;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 // reasontext.text = Assembly_rule04;

 temp_reason = temp_reason + Assembly_rule04;

 temp_warning_condition1 = true;
 }

 if (L2 == L3)
 {

 reason.SetActive(true);

 temp_warning_condition2 = false;

 }
 else
 {
 warningtext.text = warningN;

307

 reason.SetActive(true);

 temp_reason = temp_reason + Wheel_rule02;
 temp_warning_condition2 = true;

 }

 if (S2 == S3)
 {

 reason.SetActive(true);

 temp_warning_condition3 = false;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 // reasontext.text = Tire_rule02;

 temp_reason = temp_reason + Tire_rule02;
 temp_warning_condition3 = true;

 }

 if (S3 == L3)
 {

 reason.SetActive(true);

 temp_warning_condition4 = false;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);

 temp_reason = temp_reason + Assembly_rule05;
 temp_warning_condition4 = true;

 }

 if (temp_warning_condition1 == true || temp_warning_condition2 == true ||
temp_warning_condition3 == true || temp_warning_condition4 == true)

308

 {
 warningtext.text = warningN;
 reasontext.text = temp_reason;

 }
 else
 {

 Updated_S2.text = S2;
 Updated_S3.text = S3;
 Updated_L3.text = L3;
 Updated_L2.text = L2;
 warningtext.text = warningY;
 reasontext.text = "Allowed by rules:" + Assembly_rule04 + Wheel_rule02 + Tire_rule02
+ Assembly_rule05;
 }

 }

 public void checkL3S3()
 {

 L3 = KnowledgeFileStore.transfer.keyparap7_k.ToString();
 string temp_L3 = Input_L3.text.ToString();

 if (temp_L3 == "")
 {
 L3 = KnowledgeFileStore.transfer.keyparap7_k.ToString();

 }
 else
 {
 L3 = temp_L3;

 }

 S3 = KnowledgeFileStore.transfer.keyparap11_k.ToString();
 string temp_S3 = Input_S3.text.ToString();

 if (temp_S3 == "")
 {
 S3 = KnowledgeFileStore.transfer.keyparap11_k.ToString();

 }
 else
 {
 S3 = temp_S3;

 }

 if (L3 == S3)
 {

309

 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = Assembly_rule05;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Assembly_rule05;

 }

 L2 = KnowledgeFileStore.transfer.keyparap6_k.ToString();
 string temp_L2 = Input_L2.text.ToString();

 if (temp_L2 == "")
 {
 L2 = KnowledgeFileStore.transfer.keyparap6_k.ToString();

 }
 else
 {
 L2 = temp_L2;

 }

 S2 = KnowledgeFileStore.transfer.keyparap10_k.ToString();
 string temp_S2 = Input_S2.text.ToString();

 if (temp_S2 == "")
 {
 S2 = KnowledgeFileStore.transfer.keyparap10_k.ToString();

 }
 else
 {
 S2 = temp_S2;

 }

 if (L2 == L3)
 {
 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = Wheel_rule02;

310

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Wheel_rule02;

 }

 if (S2 == S3)
 {
 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = Tire_rule02;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Tire_rule02;

 }

 }

 public void checkL4S4()
 {

 L4 = KnowledgeFileStore.transfer.keyparap8_k.ToString();
 string temp_L4 = Input_L4.text.ToString();

 if (temp_L4 == "")
 {
 L4 = KnowledgeFileStore.transfer.keyparap8_k.ToString();

 }
 else
 {
 L4 = temp_L4;

 }

 S4 = KnowledgeFileStore.transfer.keyparap12_k.ToString();
 string temp_S4 = Input_S4.text.ToString();

 if (temp_S4 == "")
 {
 S4 = KnowledgeFileStore.transfer.keyparap12_k.ToString();

311

 }
 else
 {
 S4 = temp_S4;

 }

 if (L4 == S4)
 {
 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = Assembly_rule06;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Assembly_rule06;

 }

 L1 = KnowledgeFileStore.transfer.keyparap5_k.ToString();
 string temp_L1 = Input_L1.text.ToString();

 if (temp_L1 == "")
 {
 L1 = KnowledgeFileStore.transfer.keyparap5_k.ToString();

 }
 else
 {
 L1 = temp_L1;

 }

 S1 = KnowledgeFileStore.transfer.keyparap9_k.ToString();
 string temp_S1 = Input_S1.text.ToString();

 if (temp_S1 == "")
 {
 S1 = KnowledgeFileStore.transfer.keyparap9_k.ToString();

 }
 else
 {
 S1 = temp_S1;

 }

312

 if (L1 == L4)
 {
 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = Wheel_rule01;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Wheel_rule01;

 }

 if (S1 == S4)
 {
 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = Tire_rule01;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Tire_rule01;

 }

 }

 public void checkLS()
 {

 L = KnowledgeFileStore.transfer.keyparap13_k.ToString();
 string temp_L = Input_L.text.ToString();

 if (temp_L == "")
 {
 L = KnowledgeFileStore.transfer.keyparap13_k.ToString();

 }
 else

313

 {
 L = temp_L;

 }

 S = KnowledgeFileStore.transfer.keyparap14_k.ToString();
 string temp_S = Input_S.text.ToString();

 if (temp_S == "")
 {
 S = KnowledgeFileStore.transfer.keyparap14_k.ToString();

 }
 else
 {
 S = temp_S;

 }

 if (L == S)
 {
 warningtext.text = warningY;
 reason.SetActive(true);
 reasontext.text = Assembly_rule07;

 }
 else
 {
 warningtext.text = warningN;
 reason.SetActive(true);
 reasontext.text = Assembly_rule07;

 }

 }
 // Update is called once per frame
 void Update()
 {

 }
}

314

Appendix 5: Scripts Used in Parsing Data From Knowledge File

Platform: Unity, Programming language: C#

a) Storing data from knowledge file

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class KnowledgeFileStore : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {

 }

 public static KnowledgeFileStore transfer;

 public string id_k = "";
 public string name_k = "";
 public string description_k = "";
 public string product_type_k = "";
 public string design_intention_k = "";
 public string function_k = "";
 public string form_k = "";
 public string behaviour_k = "";
 public string fit_k = "";
 public string relation_k = "";
 public string material_k = "";
 public string rules_k = "";
 public string dimension_k = "";
 public string length_k = "";
 public string width_k = "";
 public string height_k = "";
 public string diameter_k = "";
 public string radius_k = "";
 public string keyparameter_k = "";

 public List<string> keyparalist;

 public string keyparap1_k = "";
 public string keyparap2_k = "";
 public string keyparap3_k = "";
 public string keyparap4_k = "";
 public string keyparap5_k = "";
 public string keyparap6_k = "";
 public string keyparap7_k = "";
 public string keyparap8_k = "";
 public string keyparap9_k = "";
 public string keyparap10_k = "";
 public string keyparap11_k = "";

315

 public string keyparap12_k = "";
 public string keyparap13_k = "";
 public string keyparap14_k = "";

 public string keyparap1v_k = "";
 public string keyparap2v_k = "";
 public string keyparap3v_k = "";
 public string keyparap4v_k = "";
 public string keyparap5v_k = "";
 public string keyparap6v_k = "";
 public string keyparap7v_k = "";
 public string keyparap8v_k = "";
 public string keyparap9v_k = "";
 public string keyparap10v_k = "";
 public string keyparap11v_k = "";
 public string keyparap12v_k = "";
 public string keyparap13v_k = "";
 public string keyparap14v_k = "";

 public string keyparap1v_o = "";
 public string keyparap2v_o = "";
 public string keyparap3v_o = "";
 public string keyparap4v_o = "";
 public string keyparap5v_o = "";
 public string keyparap6v_o = "";
 public string keyparap7v_o = "";
 public string keyparap8v_o = "";
 public string keyparap9v_o = "";
 public string keyparap10v_o = "";
 public string keyparap11v_o = "";
 public string keyparap12v_o = "";
 public string keyparap13v_o = "";
 public string keyparap14v_o = "";

 public string keypara_userinput1 = "";
 public string keypara_userinput2 = "";
 public string keypara_userinput3 = "";
 public string keypara_userinput4 = "";
 public string keypara_userinput5 = "";
 public string keypara_userinput6 = "";
 public string keypara_userinput7 = "";
 public string keypara_userinput8 = "";

 public string keypara_userinput9 = "";
 public string keypara_userinput10 = "";
 public string keypara_userinput11 = "";
 public string keypara_userinput12 = "";
 public string keypara_userinput13 = "";
 public string keypara_userinput14 = "";

 public string formula_k = "";
 public string equation_k = "";

316

 // Update is called once per frame

 void Awake()
 {
 if (transfer == null)
 {
 DontDestroyOnLoad(gameObject);
 transfer = this;
 }
 else if (transfer != this)
 {
 Destroy(gameObject);
 }
 }
 void Update()
 {

 }
}

317

b) Parsing data for visualisation

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System.Xml;
using UnityEngine.UI;

public class XMLparse_WheelAssembly : MonoBehaviour
{

 public TextAsset xmlRawFile; // Knowledge File
 public Text RuleNumberText;
 public Text uiText2;

 string productid = "";
 string productname = "";
 string productdescription = "";
 string producttype = "";

 string total_designintention = "";
 string total_designintention2 = "";
 string total_rules = "";
 string total_rules2 = "";
 string total_function = "";
 string total_function2 = "";
 string total_form = "";
 string total_form2 = "";
 string total_behaviour = "";
 string total_behaviour2 = "";
 string total_material = "";
 string total_material2 = "";
 string total_fit = "";
 string total_fit2 = "";
 string total_relation = "";
 string total_relation2 = "";

 string total_dimension = "";
 string total_dimension2 = "";

 string total_keypara = "";
 string total_keypara2 = "";

 string id_tok = ""; // id stored in knowledge file
 string name_tok = "";
 string description_tok = "";
 string product_type_tok = "";
 string designintention_tok = "";
 string rules_tok = "";

318

 string function_tok = "";
 string form_tok = "";
 string behaviour_tok = "";
 string fit_tok = "";
 string relation_tok = "";
 string material_tok = "";
 string dimension_tok = "";
 string keypara_tok = "";
 //This variables are for Knowledge tab
 //public Text IDtextHere;

 // dimensions*************** //

 string p_length = "";
 string p_width = "";
 string p_height = "";
 string p_radius = "";
 string p_diameter = "";
 string p_material = "";

 string p_keypara_1 = "";
 string p_keypara_2 = "";
 string p_keypara_3 = "";
 string p_keypara_4 = "";
 string p_keypara_5 = "";
 string p_keypara_6 = "";

 string p_keypara_7 = "";
 string p_keypara_8 = "";
 string p_keypara_9 = "";
 string p_keypara_10 = "";
 string p_keypara_11 = "";
 string p_keypara_12 = "";

 string p_keypara_13 = "";
 string p_keypara_14 = "";

 // Interface************************//
 public InputField IDPropertyField;
 public InputField NamePropertyField;
 public InputField DescriptionPropertyField;
 public Text ProductTypeField;

 public InputField DesignIntentionPropertyField;
 public InputField FunctionPropertyField;
 public InputField FormPropertyField;
 public InputField FitPropertyField;
 public InputField MaterialPropertyField;
 public InputField BehaviourPropertyField;
 public InputField RulesPropertyField;
 public Text RulesNumber;
 public InputField RelationPropertyField;

 public InputField DimensionPropertyField;
 public InputField LengthPropertyField;

319

 public InputField WidthPropertyField;
 public InputField HeightPropertyField;
 public InputField DiameterPropertyField;
 public InputField KeyparaPropertyField;
 public InputField FormulaPropertyField;
 public InputField EquationPropertyField;

 // Interface - Change //
 public InputField Length_oPropertyField;
 public InputField Width_oPropertyField;
 public InputField Height_oPropertyField;
 public InputField Diameter_oPropertyField;
 public InputField Radius_oPropertyField;

 public InputField Keypara_op1PropertyField;
 public InputField Keypara_op2PropertyField;
 public InputField Keypara_op3PropertyField;
 public InputField Keypara_op4PropertyField;
 public InputField Keypara_op5PropertyField;
 public InputField Keypara_op6PropertyField;
 public InputField Keypara_op7PropertyField;
 public InputField Keypara_op8PropertyField;
 public InputField Keypara_op9PropertyField;
 public InputField Keypara_op10PropertyField;
 public InputField Keypara_op11PropertyField;
 public InputField Keypara_op12PropertyField;
 public InputField Keypara_op13PropertyField;
 public InputField Keypara_op14PropertyField;

 public InputField Keypara_userinput1_PropertyField;
 public InputField Keypara_userinput2_PropertyField;
 public InputField Keypara_userinput3_PropertyField;
 public InputField Keypara_userinput4_PropertyField;
 public InputField Keypara_userinput5_PropertyField;
 public InputField Keypara_userinput6_PropertyField;
 public InputField Keypara_userinput7_PropertyField;
 public InputField Keypara_userinput8_PropertyField;

 public InputField Keypara_userinput9_PropertyField;
 public InputField Keypara_userinput10_PropertyField;
 public InputField Keypara_userinput11_PropertyField;
 public InputField Keypara_userinput12_PropertyField;
 public InputField Keypara_userinput13_PropertyField;
 public InputField Keypara_userinput14_PropertyField;

 public InputField Material_oPropertyField;

 // Use this for initialization
 void Start()
 {

320

 total_designintention = "";
 total_rules2 = "";
 total_function2 = "";
 total_form2 = "";
 total_behaviour2 = "";
 total_fit2 = "";
 total_relation2 = "";
 total_material2 = "";
 total_dimension2 = "";
 total_keypara2 = "";
 }

 public void parseXml_File(string xmlData)

 {
 total_designintention = "";
 total_rules2 = "";
 total_function2 = "";
 total_form2 = "";
 total_behaviour2 = "";
 total_fit2 = "";
 total_relation2 = "";
 total_material2 = "";
 total_dimension2 = "";
 total_keypara2 = "";

 XmlDocument xmlDoc = new XmlDocument();
 xmlDoc.Load(new StringReader(xmlData));
 // xmlTag for searching *****************************//
 string xmlTag = "//knowledge"; //this is the search tags
 string xmlTag_product = "//knowledge/product";
 string xmlTag_designintention = "knowledge/product/design_intention";
 string xmlTag_rules = "//knowledge/product/rules";// search product tag 可以用
 string xmlTag_function = "//knowledge/product/function_";// search product tag 可以用
 string xmlTag_form = "//knowledge/product/form";
 string xmlTag_behaviour = "//knowledge/product/behaviour";
 string xmlTag_material = "//knowledge/product/material";
 string xmlTag_fit = "//knowledge/product/fit";
 string xmlTag_relation = "//knowledge/product/relationship";
 string xmlTag_dimension = "//knowledge/product/dimension";
 string xmlTag_keypara = "//knowledge/product/dimension/keyparameter";

 // XmlNodelist **//

 XmlNodeList rulesnodes = xmlDoc.SelectNodes(xmlTag_rules);
 XmlNodeList productnodes = xmlDoc.SelectNodes(xmlTag_product);
 XmlNodeList designintentionnodes = xmlDoc.SelectNodes(xmlTag_designintention);
 XmlNodeList functionnodes = xmlDoc.SelectNodes(xmlTag_function);
 XmlNodeList formnodes = xmlDoc.SelectNodes(xmlTag_form);

321

 XmlNodeList behaviournodes = xmlDoc.SelectNodes(xmlTag_behaviour);
 XmlNodeList materialnodes = xmlDoc.SelectNodes(xmlTag_material);
 XmlNodeList fitnodes = xmlDoc.SelectNodes(xmlTag_fit);
 XmlNodeList relationnodes = xmlDoc.SelectNodes(xmlTag_relation);
 XmlNodeList dimensionnodes = xmlDoc.SelectNodes(xmlTag_dimension);
 XmlNodeList keyparanodes = xmlDoc.SelectNodes(xmlTag_keypara);
 // prduct id name description and type
**//
 foreach (XmlNode node in productnodes)
 {

 XmlNode product_id = node["id"];
 XmlNode product_n = node["name"];// 可以用
 XmlNode product_d = node["description"];

 productid = product_id.InnerXml.ToString();
 productname = product_n.InnerXml.ToString();
 productdescription = product_d.InnerXml.ToString();

 }

 producttype = xmlDoc.SelectSingleNode(xmlTag_product).Attributes["type"].Value;
 ProductTypeField.text = producttype.ToString();
 IDPropertyField.text = productid;
 NamePropertyField.text = productname;
 DescriptionPropertyField.text = productdescription;

 KnowledgeFileStore.transfer.id_k = productid;
 KnowledgeFileStore.transfer.name_k = productname;
 KnowledgeFileStore.transfer.description_k = productdescription;
 KnowledgeFileStore.transfer.product_type_k = producttype;
 Debug.Log(producttype + productid + productname + productdescription);

 // rules**//
 foreach (XmlNode node in rulesnodes)
 {

 XmlNode rulesn = node["name"];
 XmlNode rulesd = node["description"];
 XmlNode rulesf = node["formula"];
 XmlNode rulese = node["equation"];

 total_rules = "Name:" + rulesn.InnerXml.ToString() + "\nDescription:" +
rulesd.InnerXml.ToString() + "\nFormula:" + rulesf.InnerXml.ToString() + "\nEquation:" +
rulese.InnerXml.ToString() + "\n";

 //Debug.Log(total_rules);
 total_rules2 = total_rules2 + total_rules;
 total_rules = "";

322

 rules_tok = total_rules2.ToString();

 }

 RulesPropertyField.text = rules_tok;
 KnowledgeFileStore.transfer.rules_k = rules_tok;
 Debug.Log(rules_tok);

 // Count the rules number***

 int rules_nodeCount = rulesnodes.Count;
 RulesNumber.text = rules_nodeCount.ToString();
 Debug.Log("rules number count: " + rules_nodeCount);
 //

 // design intent**//

 foreach (XmlNode node in designintentionnodes)
 {

 XmlNode designintention_n = node["name"];
 XmlNode designintention_d = node["description"];

 total_designintention = "Name:" + designintention_n.InnerXml.ToString() +
"\nDescription:" + designintention_d.InnerXml.ToString() + "\n";

 //Debug.Log(total_rules);
 total_designintention2 = total_designintention + total_designintention2;
 total_designintention = "";

 designintention_tok = total_designintention2.ToString();

 }

 DesignIntentionPropertyField.text = designintention_tok;
 KnowledgeFileStore.transfer.design_intention_k = designintention_tok;
 Debug.Log(designintention_tok);

 // function**//

 foreach (XmlNode node in functionnodes)
 {

 XmlNode function_n = node["name"];
 XmlNode function_d = node["description"];
 XmlNode function_p = node["property"];

 total_function = "Name:" + function_n.InnerXml.ToString() + "\nDescription:" +
function_d.InnerXml.ToString() + "\nProperty:" + function_p.InnerXml.ToString() + "\n";

323

 //Debug.Log(total_rules);
 total_function2 = total_function + total_function2;
 total_function = "";

 function_tok = total_function2.ToString();

 }

 FunctionPropertyField.text = function_tok;
 KnowledgeFileStore.transfer.function_k = function_tok;
 Debug.Log(function_tok);

 // form**//

 foreach (XmlNode node in formnodes)
 {

 XmlNode form_n = node["name"];
 XmlNode form_d = node["description"];

 total_form = "Name:" + form_n.InnerXml.ToString() + "\nDescription:" +
form_d.InnerXml.ToString() + "\n";

 total_form2 = total_form2 + total_form;
 total_form = "";

 form_tok = total_form2.ToString();

 }

 FormPropertyField.text = form_tok;
 KnowledgeFileStore.transfer.form_k = form_tok;
 Debug.Log(form_tok);

 // behaviour ***//

 foreach (XmlNode node in behaviournodes)
 {

 XmlNode behaviour_n = node["name"];
 XmlNode behaviour_d = node["description"];
 XmlNode behaviour_p = node["property"];

 total_behaviour = "Name:" + behaviour_n.InnerXml.ToString() + "\nDescription:" +
behaviour_d.InnerXml.ToString() + "\nProperty:" + behaviour_p.InnerXml.ToString() + "\n";

 total_behaviour2 = total_behaviour2 + total_behaviour;
 total_behaviour = "";

 behaviour_tok = total_behaviour2.ToString();

 }

324

 BehaviourPropertyField.text = behaviour_tok;
 KnowledgeFileStore.transfer.behaviour_k = behaviour_tok;
 Debug.Log(behaviour_tok);

 // fit ***//

 foreach (XmlNode node in fitnodes)
 {

 XmlNode fit_n = node["name"];
 XmlNode fit_d = node["description"];
 XmlNode fit_p = node["property"];

 total_fit = "Name:" + fit_n.InnerXml.ToString() + "\nDescription:" +
fit_d.InnerXml.ToString() + "\nProperty:" + fit_p.InnerXml.ToString() + "\n";

 total_fit2 = total_fit2 + total_fit;
 total_fit = "";

 fit_tok = total_fit2.ToString();

 }

 FitPropertyField.text = fit_tok;
 KnowledgeFileStore.transfer.fit_k = fit_tok;
 Debug.Log(fit_tok);

 // relationship ***//

 foreach (XmlNode node in relationnodes)
 {

 XmlNode relation_p = node["parent"];
 XmlNode relation_c = node["children"];
 XmlNode relation_r = node["reference"];
 XmlNode relation_d = node["description"];

 total_relation = "Parent:" + relation_p.InnerXml.ToString() + "\nChildren:" +
relation_c.InnerXml.ToString() + "\nReference:" + relation_r.InnerXml.ToString() +
"\nDescription:" + relation_d.InnerXml.ToString() + "\n";

 total_relation2 = total_relation2 + total_relation;
 total_relation = "";

 relation_tok = total_relation2.ToString();

 }

 RelationPropertyField.text = relation_tok;
 KnowledgeFileStore.transfer.relation_k = relation_tok;
 Debug.Log(relation_tok);

 // material ***//

325

 foreach (XmlNode node in materialnodes)
 {

 XmlNode material_n = node["name"];
 XmlNode material_d = node["description"];
 XmlNode material_p = node["property"];

 total_material = "Name:" + material_n.InnerXml.ToString() + "\nDescription:" +
material_d.InnerXml.ToString() + "\nProperty:" + material_p.InnerXml.ToString() + "\n";

 total_material2 = total_material2 + total_material;
 total_material = "";

 material_tok = total_material2.ToString();
 p_material = material_n.InnerXml.ToString();
 }

 MaterialPropertyField.text = material_tok;
 Material_oPropertyField.text = p_material;
 KnowledgeFileStore.transfer.material_k = material_tok;
 Debug.Log(material_tok);

 foreach (XmlNode node in dimensionnodes)
 {

 XmlNode unit = node["unit"];
 XmlNode length = node["length"];
 XmlNode width = node["width"];
 XmlNode height = node["height"];
 XmlNode radius = node["radius"];
 XmlNode diameter = node["diameter"];
 XmlNode keypara = node["keyparameter"];

 total_dimension = "Unit:" + unit.InnerXml.ToString() + "\nlength:" +
length.InnerXml.ToString() + "\nwidth:" + width.InnerXml.ToString() + "\nheight:" +
height.InnerXml.ToString() + "\nradius:" + radius.InnerXml.ToString() + "\ndiameter:" +
diameter.InnerXml.ToString() + "\nkey para:" + keypara.InnerXml.ToString() + "\n";

 //Debug.Log(total_rules);
 total_dimension2 = total_dimension2 + total_dimension;
 total_dimension = "";

 dimension_tok = total_dimension2.ToString();

 p_length = length.InnerXml.ToString();
 p_width = width.InnerXml.ToString();
 p_height = height.InnerXml.ToString();
 p_radius = radius.InnerXml.ToString();
 p_diameter = diameter.InnerXml.ToString();

326

 KnowledgeFileStore.transfer.length_k = length.InnerXml.ToString();
 KnowledgeFileStore.transfer.width_k = width.InnerXml.ToString();
 KnowledgeFileStore.transfer.height_k = height.InnerXml.ToString();
 KnowledgeFileStore.transfer.diameter_k = diameter.InnerXml.ToString();

 }

 Length_oPropertyField.text = p_length;
 Width_oPropertyField.text = p_width;
 Height_oPropertyField.text = p_height;
 Diameter_oPropertyField.text = p_diameter;

 DimensionPropertyField.text = dimension_tok;
 KnowledgeFileStore.transfer.dimension_k = dimension_tok;
 Debug.Log(dimension_tok);

 // keypara ***//
 foreach (XmlNode node in keyparanodes)
 {

 XmlNode keypara_name = node["name"];
 XmlNode keypara_value = node["value"];

 string value = keypara_value.InnerXml.ToString();
 total_keypara = "Name:" + keypara_name.InnerXml.ToString() + "\nValue:" +
keypara_value.InnerXml.ToString() + "\n";

 //Debug.Log(total_rules);
 total_keypara2 = total_keypara2 + total_keypara;
 total_keypara = "";

 keypara_tok = total_keypara2.ToString();

 KnowledgeFileStore.transfer.keyparalist.Add(value);

 }

 KeyparaPropertyField.text = keypara_tok;
 KnowledgeFileStore.transfer.keyparameter_k = keypara_tok;

 Keypara_op1PropertyField.text = KnowledgeFileStore.transfer.keyparalist[0];
 Keypara_op2PropertyField.text = KnowledgeFileStore.transfer.keyparalist[1];
 Keypara_op3PropertyField.text = KnowledgeFileStore.transfer.keyparalist[2];
 Keypara_op4PropertyField.text = KnowledgeFileStore.transfer.keyparalist[3];
 Keypara_op5PropertyField.text = KnowledgeFileStore.transfer.keyparalist[4];
 Keypara_op6PropertyField.text = KnowledgeFileStore.transfer.keyparalist[5];

 Keypara_op7PropertyField.text = KnowledgeFileStore.transfer.keyparalist[6];
 Keypara_op8PropertyField.text = KnowledgeFileStore.transfer.keyparalist[7];
 Keypara_op9PropertyField.text = KnowledgeFileStore.transfer.keyparalist[8];

327

 Keypara_op10PropertyField.text = KnowledgeFileStore.transfer.keyparalist[9];
 Keypara_op11PropertyField.text = KnowledgeFileStore.transfer.keyparalist[10];
 Keypara_op12PropertyField.text = KnowledgeFileStore.transfer.keyparalist[11];
 Keypara_op13PropertyField.text = KnowledgeFileStore.transfer.keyparalist[12];
 Keypara_op14PropertyField.text = KnowledgeFileStore.transfer.keyparalist[13];

 KnowledgeFileStore.transfer.keyparap1_k = Keypara_op1PropertyField.text;
 KnowledgeFileStore.transfer.keyparap2_k = Keypara_op2PropertyField.text;
 KnowledgeFileStore.transfer.keyparap3_k = Keypara_op3PropertyField.text;
 KnowledgeFileStore.transfer.keyparap4_k = Keypara_op4PropertyField.text;
 KnowledgeFileStore.transfer.keyparap5_k = Keypara_op5PropertyField.text;
 KnowledgeFileStore.transfer.keyparap6_k = Keypara_op6PropertyField.text;
 KnowledgeFileStore.transfer.keyparap7_k = Keypara_op7PropertyField.text;

 KnowledgeFileStore.transfer.keyparap8_k = Keypara_op8PropertyField.text;
 KnowledgeFileStore.transfer.keyparap9_k = Keypara_op9PropertyField.text;
 KnowledgeFileStore.transfer.keyparap10_k = Keypara_op10PropertyField.text;
 KnowledgeFileStore.transfer.keyparap11_k = Keypara_op11PropertyField.text;
 KnowledgeFileStore.transfer.keyparap12_k = Keypara_op12PropertyField.text;
 KnowledgeFileStore.transfer.keyparap13_k = Keypara_op13PropertyField.text;
 KnowledgeFileStore.transfer.keyparap14_k = Keypara_op14PropertyField.text;

 Debug.Log(keypara_tok);

 }

 public void ReadKnowledge()
 {

 string data = xmlRawFile.text;
 parseXml_File(data);

 }

}

328

Appendix 6: Full-Text Papers of Publications

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

