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Abstract: This paper presents a set of methods, jointly called PGraphD*, which includes two new
methods (PGraphDD-QM and PGraphDD-SS) for drift detection and one new method (PGraphDL)
for drift localisation in business processes. The methods are based on deep learning and graphs, with
PGraphDD-QM and PGraphDD-SS employing a quality metric and a similarity score for detecting
drifts, respectively. According to experimental results, PGraphDD-SS outperforms PGraphDD-QM
in drift detection, achieving an accuracy score of 100% over the majority of synthetic logs and an
accuracy score of 80% over a complex real-life log. Furthermore, PGraphDD-SS detects drifts with
delays that are 59% shorter on average compared to the best performing state-of-the-art method.

Keywords: process mining; business process management; graph streams; concept drift detection;
concept drift localisation; deep learning; long short-term memory

1. Introduction

Businesses go through daily processes to accomplish their mission; the better their
processes, the more profitable the organisation [1]. Business process management (BPM)
comprises techniques and tools for identifying, analysing and monitoring business pro-
cesses to optimise their performance [2]. BPM is considered as a continuous cycle com-
prising several phases: design, model, execute, monitor and optimise [3]. Process mining
emerged from BPM as a distinct field focusing on helping organisations discover, assess
and improve workflows. Process mining extracts knowledge from event data captured by
various information systems to find pitfalls in an organisation. These pitfalls, if addressed,
improve the organisation’s performance and productivity [4]. Since its emergence, process
mining has made the BPM life cycle more effective and efficient.

The dynamics of life have a significant impact on the way business processes are
being executed. Many factors such as seasonal effects, legislation changes, technological
advances and unexpected events (e.g., the coronavirus pandemic) lead to changes (or drifts)
in business processes over time. It can be expected that events logged over a certain period
will differ from those logged over another period. This behavioural change in process
execution occurring at some point in time is referred to as concept drift. Concept drift is
said to occur when a change is observed in the process while it is being analysed [5,6].

Identifying concept drifts is a relevant problem in different domains, including busi-
ness process analysis. Organisations always try to adapt and evolve their business processes
to handle different situations. Process mining techniques are expected to consider the con-
cept drift challenge to allow process analysis in evolving businesses [7]. In particular, the
process mining manifesto [8] identifies dealing with concept drifts in process mining among
the main challenges in BPM.

Concept drifts are either planned (e.g., regulatory changes) or unexpected (e.g.,
changes in resource capacity) [9]. Detecting unexpected drifts can be of great benefit
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to businesses. It can lead to extracting the actual truth on process execution, combating
risks and enhancing operational processes. Concept drifts can occur from four process
mining perspectives: control-flow/behavioural, organisational, case and time. They can
also be divided into four types: sudden, gradual, recurring and incremental [6]. The sudden
concept drift occurs when dynamic changes happen during process execution, i.e., a current
process is substituted with a new process, and the new process takes over in subsequent
process executions. This type of drift can occur as a result of a change in the law. The
gradual concept drift occurs when two or more versions of a process co-exist, i.e., a new
process exists along with an old process over a certain period of time, making it possible to
execute both process versions, until the old process is gradually discontinued. For example,
an organisation might introduce a new delivery process; however, the process is set to be
applicable to future orders only, and all previous orders still have to follow the former
delivery process. The recurring concept drift happens when a set of processes are changed
back and forth between each other. This type of drifts are either periodic or non-periodic
and are often induced by changes in the external environment, in which a business process
operates. An example is sales happening in shops during certain periods of the year. The
incremental concept drift occurs when a change is introduced incrementally into the running
process until the process reaches the desired version. This class of drift is more common in
organisations that follow agile business process management methodology [6].

When dealing with concept drifts in process mining, three main problems can be
considered [10]: (i) drift detection (identifying whether a change has occurred), (ii) drift
localisation and characterisation (identifying what has changed), and (iii) drift process
discovery (discovering the evolution of the process change and how it affects the model
over time). Furthermore, there are two major ways of dealing with concept drifts when
analysing event logs: offline and online analysis [11]. Offline analysis refers to a scenario,
where changes are discovered using historical data. In this case, the entire event log is
made available to the analyst. This is appropriate for future analysis, e.g., when designing
or improving processes for later deployment. Online analysis refers to a scenario, where
changes need to be discovered in near-real-time. In this case, the analyst must deal with
continuously incoming data or event streams. This type of analysis can be useful for
organisations interested in learning behavioural changes with regards to their customers or
changes in demand as they happen [6].

A number of techniques have been proposed for detecting business process drifts,
e.g., [6,9,11–16]. The main objective of these techniques is to extract features, such as
patterns from the process behaviour recorded in event logs and perform certain analysis to
detect drifts. While some of these methods have been reported to perform well, they have a
number of limitations. In particular, the majority of existing methods are designed to detect
drifts that occur in event logs only (i.e., complete process execution); they do not work in
online settings, where streams of events incrementally record the executions of a business
process. Some of the approaches that work in online settings detect drift with a long delay
as they need to wait for the trace to complete. Furthermore, since many methods rely on
statistical tests over trace distributions, which may not have sufficient data samples when
there is high variability in the log, they tend not to perform well on unpredictable processes
whose logs contain a high number of distinct traces compared to the total number of traces.

This paper presents two new methods called PGraphDD-QM and PGraphDD-SS
(where ‘P’ stands for process, ‘DD’ for drift detection, ‘QM’ for quality metrics and ‘SS’ for
similarity score) for detecting sudden concept drifts in business processes from a control-flow
perspective in an online scenario while considering the following two challenges: (1) change
detection and (2) change localisation. The proposed methods represent business processes
as graphs and thus address the task of detecting drifts in graph streams. In a graph stream,
it is assumed that individual graph objects are received continuously over time. Unlike
existing methods performing statistical analysis over features extracted from event logs,
the proposed methods are based on deep learning. In particular, a long short-term memory
(LSTM) model trained on a stream of logged events covering a previous period of time is
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applied to a newly generated stream of events as they occur. Graph streams representing
the process behaviour of different time periods (i.e., the previous and new time periods) are
generated using the decisions of the LSTM model about the most probable business process
flow. According to the first proposed method, PGraphDD-QM, the model performance
is then separately estimated over the previous and new graph streams using the F-score
metric, and the two sets of measures are compared. The change in values of the two sets of
measures is assumed to be indicative of concept drift. According to the second proposed
method, PGraphDD-SS, the directly-follows graphs (DFGs) generated based on the LSTM
model decisions for two different time periods are used to verify the drift, both visually by
detecting structural changes and by measuring the similarity score between the adjacency
matrices of the two different graphs to estimate the number of changes observed in the
business process after the drift has occurred. The performance of the proposed methods is
evaluated on a synthetic event log for assessing loan applications and the real-life BPIC15
dataset [17]. The latter includes five different event logs, each reflecting changes in the
process of applying for a building permit performed by the Dutch municipality.

The rest of this paper is organised as follows. Section 2 discusses related work.
Section 3 presents the proposed methods for detecting and localising business process
drifts. Section 4 outlines the experiments performed to evaluate the proposed methods
using synthetic and real-life event logs. Section 5 discusses the results of the experiments.
Section 6 concludes the paper and outlines future work.

2. Related Work

The majority of the state-of-the-art methods for concept drift detection in business
processes use the windowing technique to select traces from an event log to consider
for drift analysis, alongside statistical hypothesis testing as a solution [6,9,12,14,16,18].
Some studies used clustering-based techniques to find groups of traces sharing similar
characteristics that can be generalised and employed to detect drifts [11,19–22]. Other
studies used graph-based analysis techniques [9,23,24] or model-to-log alignment [25,26].

Bose et al. [6] presented a method for detecting changes in business processes and
identifying the regions of change. First, the authors extracted feature sets from event
logs and compared their values over different windows. Then, they applied statistical
hypothesis testing to investigate a significant difference between two successive windows.
Martjushev et al. [16] extended the method proposed by Bose et al. [6] by using an adaptive
window strategy and presented an approach to automatically detect change points by
comparing significant values of two windows produced using hypothesis analysis against
a predefined threshold.

Manoj Kumar et al. [15] proposed a similar method for capturing sudden concept
drifts in business processes. In particular, the authors assumed that the representative
appearance of feature values changes before and after the occurrence of drift. They applied
a windowing strategy to select the instances for detecting and localising drifts, taking
note of the sequential order of process instances in the log. The authors used statistical
hypothesis testing to examine differences between successive feature values obtained using
event class correlation determined by scanning the entire log, beginning with a matrix
set with zero values and then updating for every next relation found while traversing the
log. The look-forward window size was used to calculate each event that followed the
reference event.

Maaradj et al. [14] proposed a method for detecting both sudden and gradual drifts
from execution traces. The authors performed statistical hypothesis testing over the distri-
bution of runs in two consecutive time windows. They presumed that if a drift occurred at
a given time point, the distribution of runs before and after would statistically differ, and
the statistical hypothesis testing could expose the difference. The authors used an adaptive
window technique to automatically adjust the size of the sliding window, striking a good
trade-off between accuracy and drift detection delay.
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Similar to Maaradj et al. [14], Ostovar et al. [18] also used an adaptive window tech-
nique but in an online setting. Their approach involves dividing new observed events
into reference and detection windows. The set of events within each window is used
to build a corresponding sub-log. A contingency matrix is constructed using relations
and frequencies extracted from the sub-log. The G-test of independence [27] is applied to
the matrix to obtain the significance probability (p-value). A p-value below a predefined
threshold suggests a drift.

Carmona et al. [12] presented an online technique for dealing with concept drifts. First,
the authors applied the theory of abstract interpretation to learn an internal representa-
tion of an event log based on a polyhedron. Then, they estimated the soundness of the
representation using an adaptive window technique to detect concept drifts automatically.

Li et al. [28] proposed an extensible feature that uses the sliding window technique
and heuristic miner to detect and locate concept drifts in incomplete event logs. The authors
further improved the Genetic Process Mining (GPM) method [29] using Weight Heuristic
Miner (WHM) [30] and Differential Evolution (DE) [31] to discover the new process model
of evolving processes.

Zheng et al. [11] proposed a three-stage method for detecting process drifts from event
logs. First, the authors represented each trace of an event log as multiple relations such as
direct succession and weak order. Then, for each relation, they inspected and partitioned
the variation trend. Finally, they clustered all change points revealed by each relation to
getting the final result.

Yeshchenko et al. [19] proposed a method that involves the following three steps:
(i) splitting an event log into sub logs based on predefined window size and mining declar-
ative (DECLARE) process constraints, (ii) extracting the time-series of the characteristics of
the discovered constraints, (iii) clustering the series and detecting change point over them.
The final step involves visualising drifts using drift maps and charts.

Seeliger et al. [9] used an adaptive window technique to split an event log into a
reference window and a detection window. The authors discovered process models for
both windows using the Heuristic Miner algorithm [32]. Then, they applied a statistical
significance test over different graph metrics to determine the deviation of both observed
process models. Using the graph metrics, the authors described changes in the process
model to identify process drifts in the event log. They also performed the statistical G-test
to determine whether the detection window’s process model is significantly different from
that of the reference window.

Hassani et al. [13] used an adaptive window method and a modular ensemble of
reasonable distance measures to detect drifts in event streams. The authors proposed the
StrProMCDD algorithm that collects a batch of events in a pruning period, computes the
frequency list for these events, and includes the new frequency list in a temporally ordered
list used by ADWIN [33]. The window increases in size for steady process behaviour and
shrinks for diverting processes, thus indicating a drift.

De Sousa et al. [22] proposed an online trace clustering approach to detect and localise
drifts in online trace streams. According to this approach, traces are mapped into a
vector representation used as input to a trace clustering algorithm. The resulting cluster
information is used for drift detection and localisation. The authors assumed that each
feature representing a significant group of traces should remain stable according to the
traces’ process behaviour. Hence, to detect a drift, their method verifies whether the current
value has undergone a significant variation. The method iterates over any of the clustering
evolution features over time. The feature value is compared to an estimated tolerance
boundary in each iteration. A value outside the tolerance boundary represents a significant
behaviour shift from earlier measurements. After each detection, the drift localisation
procedure is initiated, and a list of the clustering indexes where drifts have been detected
is returned.

Liu Na et al. [34] presented an online framework for detecting concept drifts in
event streams based on the relationship between each pair of activities in the process.
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The framework involves initialising the current model, which is used as a benchmark
to compare with every event trace of the upcoming event streams. Next, adjacency and
footprint matrices are extracted for each new trace. The matrix of the new trace is then
compared with the matrix of the current model to identify differences. A metric named
process model precision is calculated. A difference between the matrices indicates a drift.
The method returns the activities and the difference to localise and characterise the drift,
indicating if the drift is sudden or recurring.

While many of the above-reviewed methods were reported to perform well, they have
limitations. For example, the windowing technique used in many concept drift detection
algorithms is highly dependent on the right choice of the window size; a wrong window
size can result in a high number of false negatives and false positives. Some methods, such
as the one proposed in [12], are not able to locate the exact moment of a drift. The method
reported in [6] is not automated; it requires human involvement in feature selection and
change point recognition, making it impractical. The approach proposed in [22] is capable of
dealing with drifts only presentable through trace clustering. Thus, the approach is subject
to the limitations of the trace vector representation and clustering algorithms. Finally, the
majority of the existing methods for detecting concept drifts in business processes are
designed to work offline; i.e., they require the entire event logs featuring cases from both
before and after a drift has happened. Some methods that work online detect drifts with
a long delay, while others do not perform well on processes whose logs display a high
number of distinct executions. Thus, detecting drifts in the online scenario (i.e., as they
happen) remains a challenge.

It should be noted that drift detection in business processes is different from identifying
structural changes in financial time-series data. Zarei et al. [35] define a structural change
as a “disturbance that tweaks the data set substantially away from its normal path when
such off-normal disturbances occur”. Several test models for structural change exist, which
can be routinely applied in finance research to statistically identify structural breakpoints
in financial time-series data. For example, Dong et al. [36] employed the cumulative sum of
squared residuals (CUSUM) test [37] based on GARCH residuals to identify the locations
of breaks or sudden changes in the volatility of gold and USD exchange rate markets. The
method assumes that the given time series consists of a stable sub-series and captures
the change points during market volatility. The approach involves dividing the whole
time period into several sub-sample periods with different market volatilities based on the
change points and analysing the relationship between gold and USD for different market
periods. In general, methods developed for identifying structural changes deal with simple
data structures such as numerical or categorical variables and vectors. In contrast, business
processes are represented as more complex structures capturing behavioural relationships
between tasks such as concurrency, conflicts and loops. As such, test models for identifying
structural changes cannot be readily transferred to detecting drifts in business processes.
Similarly, the methods proposed in this paper are designed to work over complex graphs
rather than simple time series.

3. Proposed Methods: PGraphDD-QM, PGraphDD-SS and PGraphDL
3.1. Concept Drift in Graph Streams

Below, we introduce some basic concepts used as the basis for defining concepts
related to the proposed methods in the following sections.

Definition 1. Drift detection in business processes. Drift detection is a procedure of establishing
whether a change has occurred in a process, i.e., whether the process follows a different sequence of
activities in the next time period compared to that in the previous time period.

Definition 2. Drift localisation and characterisation. Drift localisation is a procedure of identifying
the region(s) of change in a process model. A change localisation method should identify the exact
point in the model where the detected drift happens, e.g., between activities A and B, without
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requiring a process model as input. Change characterisation involves defining the perspective of
change and determining the type of drift, e.g., sudden, gradual or incremental.

Definition 3. Drift process discovery. Drift process discovery presents the complete change process
based on drift detection, localisation and characterisation using tools that exploit and relate these
discoveries. This leads to unravelling the evolution of the process change and how it affects the model
over time, e.g., if a process reoccurs every season. Annotations can be used to visually demonstrate
the performance of a process at different time instances, thus highlighting the process evolution.

Definition 4. Trace, event stream. Let A be a set of activities and A+ be a set of all nonempty
finite sequences of activities from A. σ ∈ A+ is called a trace when σ represents a firing activity
sequence of a process model. An event stream S is a multi-set of infinite event traces from A+.

In the context of process mining, a business process can be represented as a graph
built using an event stream, with nodes representing activities and edges representing the
transitions between the activities. The dynamism of a business process (i.e., changes in the
activities and transitions between them) can be represented as a graph stream.

Definition 5. Graph stream. A graph stream Gs is a sequence of elements e = (x, y; t), where x
and y are node labels, and edge (x, y) happens at a time period t. A stream Gs = 〈e1, e2, . . ., em〉
typically defines a graph G = (V, E), where V denotes a set of nodes (or vertices) and E denotes a
set of edges.

The problem of detecting a concept drift in a graph stream can be formulated as
locating a point p, when there is a difference between the observed behaviour before and
after p. The basic idea behind detecting concept drifts is that the characteristics of the graph
stream before the change point differ from the characteristics of the graph stream after the
change point.

Definition 6. Concept drift in graph streams. Let Gs = (σ1, σ2, . . ., σn) be a graph stream,
S0, S1, . . .∞ be an indefinite number of different graph streams and T0 < T1 < . . . < ∞ be an
indefinite number of time periods. Gs(Ti) = Gsi represents the graph being used at Ti. S(T0) = S0
is the initial graph. When a time period Ti(0 < i ≤ ∞) arrives, the current graph will change
into Gsi instantly, and traces will still be updated in the same event stream. Such a phenomenon is
referred to as a concept drift. T1, . . ., T∞ are called change points. Figure 1 illustrates a concept drift
occurred at change point T1.

Figure 1. Concept drift phenomenon in process mining.

Given a graph stream Gs = (σ1, σ2, . . ., σn), the aim is thus to detect the moments,
when changes happen in the stream. According to Definition 6, the model behaviour
before a change is not the same as after that change. Consider the example in Figure 1. If
traces from T0 and T1 are collected, it will be noticed they are different from each other.
Therefore, the natural idea will be to compare traces before and after a candidate change
point to detect a drift. Bose et al. [6], Maaradj et al. [14] and Martjushev et al. [16], all
adopted this solution. However, this solution is susceptible to the following two challenges:
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(i) how to measure the differences between two sets of traces and (ii) how many traces to
collect for testing (i.e., deciding the window size). To overcome the first challenge, these
authors used feature extraction and statistical hypothesis testing, both of which are time
and resource-consuming. To overcome the second challenge, they employed fixed and
adaptive window size strategies, making the performance of their respective methods
heavily dependent on the choice of the window size. In particular, the wrong window
size or step of its adaptation can lead to false negatives and false positives, thus making it
difficult to locate the exact point of a drift. This paper proposes an entirely different concept
to avoid these disadvantages.

3.2. Proposed Approach to Concept Drift Detection

This study presents several new methods for addressing concept drifts in two ways:
(i) drift detection—decide whether the new or recently observed process behaviour shows
significant changes as compared to the previously observed process behaviour and (ii)
drift localisation—identify the parts involved in the change of behaviour before and after
the drift. Solutions for both tasks depend on the proper representation of the process
behaviour in consecutive periods. The incoming event traces are represented as graph
streams employing the decision of an LSTM model about the most probably next activity
in the process.

In particular, the proposed drift detection and localisation methods are based on the
approach introduced by the authors in [38]. According to that approach, an LSTM model is
first trained on an event log as detailed in Section 3.3. The trained model is then employed
to find probabilities for each event present in the log to appear in the business process
next. Finally, these probabilities are used to generate a DFG as detailed in Section 3.4,
representing the likely business process model as believed by the LSTM model.

3.3. Long Short-Term Memory for Process Mining

According to the approach proposed by the authors in [38], an LSTM model is trained
to establish the most likely activity to come next in a given event sequence over time.
The model’s training process was improved by broadening the context and phrasing the
problem so that multiple previous time steps are considered when predicting the next
time step. Specifically, event logs are pre-processed according to the following protocol
and definitions.

A NULL label is used to mark the start of each case (or process instance). It becomes
the first input activity x0 at the current time t0, and the target activity y0 becomes the
activity at time t1 (this is the first activity occurring in each case of the event log). The next
input activity sequence x1 becomes the activity at the prior times {t0, t1}, and the target
y1 becomes the next activity at time t2. The next input activity sequence x2 becomes the
activity at the prior times {t0, t1, t2}, and the target y2 becomes the next activity at time
t3; and so on. The inputs X build-up for each next input sequence as prior activities join
the current activity. The targets Y are always the activities at the next time-step tn+1 until
the last input sequence contains all the activities at prior time steps, including the current
activity. At this point, the END label is added to mark the end of a case. This procedure is
repeated until all cases in the event log are pre-processed.

Definition 7. Predicting the next activity. Given a trace of activities t = a1, a2, . . ., at, the output
of the predictive model is the next activity {at+1}.

Definition 8. Predicting complete traces. Given the prefix of a trace t = a1, a2, . . ., at and END
value to mark the end of each case, the output of the predictive model is the sequence of activities
{at+1, at+2, . . ., END/at}.

The input sequences are encoded using the Tokenizer class from the Keras library. The
tokeniser maps each activity in an event log to a unique integer creating a sequence of
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integers.The prepared sequences are padded to the left using the pad sequences() function
from Keras. This function finds the longest sequence and uses its length as a standard
to pad other sequences to have the same length. The targets are dummy-encoded using
the pd.get_dummies() function from the Pandas library. The function converts categorical
values into dummy numerical values.

Next, a unidirectional LSTM model is defined, compiled and fitted using the pre-
processed event log. The model is composed of an embedding layer (which serves as an
interface between the input and LSTM layers of the network), a single LSTM layer and a
fully connected dense layer as the output layer (which uses the softmax activation function
to ensure the output takes the form of probability distributions). The trained LSTM model
is then used to predict each next activity in the business process. A prediction probability
matrix for the succeeding activity predictions is constructed. These probabilities are used
to generate a visually explainable process model graph in the form of a DFG representing
the decision-making process of the LSTM model about the likely business process.

3.4. Directly-Follows Graph for Process Mining

A DFG is a directed graph whose nodes represent activities and edges represent
directly follows relations between these activities. Each edge in the DFG is annotated with
a directly-follows probability, denoting the LSTM model’s next activity prediction.

Definition 9. Directly-follows graph. Given a directly follows prediction probability matrix, its
DFG is a directed graph G = (i, o, N, E), where i denotes the start event, o denotes the end event,
N denotes a non-empty set of nodes and E ⊆ (x, y)|x, y ∈ N denotes a set of edges.

Definition 10. Directly-follows probability. Given a sequence of activities a1, a2, . . ., an in a trace,
the directly-follows probability P between a1 and a2 is the LSTM model’s next activity probability
assignment for a2.

A DFG is generated based on the probabilities output by the LSTM model. In [38], a
DFG is used to explain the decision-making process of the LSTM model when predicting
the subsequent events in a business process. The DFG is constructed by traversing each
row in the prediction probability matrix, picking the column with the highest probability,
which becomes the most likely next activity, and then creating a transition between each
preceding and succeeding activity by drawing an edge between the nodes. The procedure
is repeated until all rows in the matrix are visited. The outcome is a process graph, which
can be used to analyse the performance of the LSTM model and to identify cases that are
difficult for the model to deal with so that measures can be taken to improve the model
performance in such cases. A probability threshold is introduced as a parameter to allow
tuning the complexity of the graph, making it possible for the level of detail in the graph to
be adjusted. The graphs generated this way can also be used to perform various process
mining tasks such as model discovery, conformance checking and investigating cases of
non-compliance. This paper extends the work in [38] by demonstrating how the graphs
constructed based on LSTM predictions can additionally be used to detect concept drifts in
business processes.

3.5. Drift Detection: PGraphDD-QM and PGraphDD-SS

Figure 2 summarises the proposed methods for detecting concept drifts in graph
streams that represent changing business processes. According to the first method
(PGraphDD-QM) illustrated in Figure 2a, an LSTM model is first trained using refer-
ence traces (i.e., traces from the previous time period or stream). This LSTM model is then
applied to a newly generated stream of traces. The model’s performance over the old and
new streams is compared in terms of the F-score metric, which is the harmonic mean of
fitness and precision. Fitness or recall is the ability of the model to reproduce the behaviour
contained in the stream of traces. Precision is the ability of the model to generate only
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the behaviour found in the stream of traces. Intuitively, if a change was introduced to a
process, an LSTM model trained on traces representing the old process (i.e., process before
the change) would perform poorly on traces representing the new process (i.e., process
after the change). To quantify this deterioration in performance, a threshold is introduced.
The value of the F-score performance metric over the newly generated stream of events
below this threshold indicates the presence of drift. In contrast, those above the threshold
indicate no drift. Algorithm 1 lists the pseudo-code of PGraphDD-QM, which includes the
following steps:

(a) (b)

Figure 2. Proposed approach to detecting and localising concept drifts in business processes:
(a) PGraphDD-QM; (b) PGraphDD-SS.

1. Split the recently observed stream of traces into two windows (lines 6–13): the detec-
tion window D (most recent traces) and the reference windowR (older traces).

2. Preprocessing (namely, encoding and padding) the traces from both the detection and
reference windows as described in Section 3.3 (line 15).

3. Define and compile an LSTM model µ and train it on the preprocessed traces from
the reference windowR as described in Section 3.3 and [38] to obtain fitted model µ′
(line 16).

4. Apply LSTM model µ′ trained on the traces from the reference window R to both
reference windowR and detection window D to make predictions of the complete
trace of each process instance (lines 18–19).

5. Construct prediction probability matrices Pi jR and Pi jD for reference and detection
windows, respectively, as described in Section 3.3 and [38] (lines 21–22).

6. Generate two DFG process models GR and GD using the PR
ij and PD

ij , respectively, as
described in Section 3.4 and [38] (lines 23–24).

7. Calculate two sets of performance metrics (fitness, precision and F-score) based on
the predictions (lines 26–29).
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8. Compare metrics of the detection window with the threshold φ. The threshold is set
based on the F-score values obtained for the reference window. An F-score below a
threshold signals a drift presence (line 30).

9. Localise the process drift by inspecting the detection window (lines 31–32).
10. Repeat the whole process for each new run read from the stream by sliding both

reference and detection windows to the right until the end of the stream is reached.

Algorithm 1 PGraphDD-QM: concept drift detection using quality metrics

Require: Event stream: S , LSTM model: µ, Threshold: φ
1: f ScoreLog← [], Dri f tLog← []
2: {read event stream, split windows, prepare data, train LSTM model and make predictions}
3: e← f etch(eventStream)
4: w←WinSize {the window size}
5: parts← splitLog(e, w)
6: for all i in range(0, parts) do
7: j← i + 1
8: if i = parts− 1 then
9: j← 0

10: R ← part(i), D ← part(j)
11: end if
12: while w 6= 0 do
13: prepare(R,D)
14: µ′ ← (µ,R) {train an LSTM model on the reference window}
15: {Apply the trained model to both reference and detection windows}
16: Rpred ← predict(µ′,R)
17: Dpred ← predict(µ′,D)
18: {build next event prediction probability matrices, construct graphs}
19: PR

ij ← generate(Pred_Prob_Mat, Rpred)

20: PD
ij ← generate(Pred_Prob_Mat, Dpred)

21: GR ← drawGraph(i, o, N, E, PR
ij , Rpred)

22: GD ← drawGraph(i, o, N, E, PD
ij , Dpred)

23: {calculate the quality metrics}
24: p← per f ormance()
25: f itness← p. f itness()
26: precision← p.precision()
27: f Score← p. f Score( f itness, precision)
28: if f Score ≤ φ then
29: print(“dri f t f ound in window′′ + str(j))
30: Report← (i, j, f Score)
31: end if
32: end while
33: end for

Fitness is the ability of a model to reproduce the behaviour contained in the log. This
study employs the fitness measure proposed in [39]. It indicates the degree to which each
trace in the log can be aligned with a corresponding trace produced by the process model
(DFG in our case). A fitness score of 1 means that the model (DFG) can reproduce all traces
in the log.

Definition 11. Fitness. A Fitness or recall measure f itness ∈ L×M→ [0, 1] aims to quantify
the fraction of observed behaviour that is allowed by the model. Let l ∈ L and m ∈ M be an event
log and a process model, and T be a set of traces. Then,

Fitness =
|T(l) ∩ T(m)|
|T(l)| . (1)
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Precision is the ability of a model to generate only the behaviour found in the log.
This study employs the precision measure proposed in [39]. A precision score of 1 indicates
that any trace produced by the process model (DFG in our case) is contained in the log.

Definition 12. Precision. A Precision measure precision ∈ L×M→ [0, 1] quantifies the fraction
of behaviour allowed by the model that was actually observed. Let l ∈ L and m ∈ M be an event log
and a process model, and T be a set of traces. Then

Precision =
|T(l) ∩ T(m)|
|T(m)| . (2)

F-score is a single measure of accuracy; it is the harmonic mean of fitness and precision,
calculated as

F-score =
2× Fitness× Precision

Fitness + Precision
.

To complement PGraphDD-QM, PGraphDD-SS illustrated in Figure 2b compares
the structure of the DFGs generated based on the output of the prediction by two LSTM
models, one trained on traces from the reference window and the other trained on traces
from the detection window covering two different periods (i.e., reference and detection).
Algorithm 2 lists the pseudo-code of PGraphDD-SS, which includes the following steps:

1. Split the recently observed stream of traces into two windows (line 5–12): the detection
window D (most recent traces) and the reference windowR (older traces).

2. Preprocessing (namely, encoding and padding) the traces from both the detection and
reference windows as described in Section 3.3 (line 14).

3. Define and compile an LSTM model µ and train it first on the preprocessed traces
from the reference window R as described in Section 3.3 and [38] to obtain fitted
model µ′1 (line 15) and then on the preprocessed traces from the detection window D
to obtain fitted model µ′2 (line 16).

4. Use each of the trained LSTM models to predict the complete trace of each process
instance of the window it has been trained on (lines 18–19).

5. Construct prediction probability matrices for each of the two windows, respectively,
as described in Section 3.3 and [38] (lines 21–22).

6. Generate two DFG process models as described in Section 3.4 and [38] using the
respective prediction probability matrices of each window (lines 23–24).

7. Build adjacency matrices for each of the constructed DFG process models, respectively
(lines 26–27).

Definition 13. Adjacency matrix. Let G be a DFG with a vertex set V = v1, . . ., vn. G can
be transformed into an adjacency matrix A, where A is a square n× n matrix, such that its
element Aij = 1 when there is an edge from vertex vi to vertex vj, and Aij = 0 when there is
no edge.

8. Compare the two DFG process models by calculating the similarity score using the
generated adjacency matrices (lines 28–34). Compare the similarity score to the
threshold set based on the highest similarity score obtained.

9. Analyse changes and localise the position of drift (lines 35–39).
10. Repeat the whole process for each new run read from the stream by sliding both

reference and detection windows to the right until the end of the stream is reached.

Calculating similarity score. In addition to visually comparing the similarity between
the two graphs representing two snapshots of a business process taken over different
windows, the similarity is also verified formally in PGraphDD-SS. To achieve this, the
two graphs are first converted into two adjacency matrices. Then, the similarity score
between the matrices is calculated by taking the sum of the differences between the values
in corresponding cells of the two matrices and dividing it by the number of non-zero
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values in the matrix with the least number of activities. If the two graphs, namely, the
first graph representing the reference window and the second graph representing the
detection window, happen to differ in size (i.e., one has more transitions than the other), the
transitions present in one window but absent in the other are introduced when constructing
the adjacency matrix of the latter to enable the calculation of the similarity score. These
additional transitions are initialised to zeros since they have not occurred in reality. A
similarity score of 1 indicates that the two graphs are identical (i.e., there is no drift),
whereas a similarity score of 0 indicates that they are entirely different (i.e., represent
different business processes). A similarity score between 0 and 1 indicates drift presence.
For the calculation of the similarity score, binary matrices are constructed. A value of 1 in a
cell indicates that the transition between the corresponding two activities exists, whereas a
value of 0 represents the fact that there is no transition between the two activities.

Algorithm 2 PGraphDD-SS: concept drift detection using similarity score

Require: Event stream: S , LSTM model: µ, Threshold: φ
1: simScore← [], Dri f tLog← []
2: e← f etch(eventStream)
3: w← winSize {the window size}
4: parts← splitLog(e, w)
5: for all i in range(0, parts) do
6: j← i + 1
7: if i = parts− 1 then
8: j← 0
9: R ← part(i), D ← part(j)

10: end if
11: while w 6= 0 do
12: prepare(R,D) {compile and train two lstm model on the reference and detection window}

13: µ′1 ← (µ,R), µ′2 ← (µ,D)
14: {Make predictions for both}
15: Rpred ← predict(µ′1,R)
16: Dpred ← predict(µ′2,D)
17: {build next event prediction probability matrices, construct graphs}
18: PR

ij ← generate(Pred_Prob_Mat, Rpred)

19: PD
ij ← generate(Pred_Prob_Mat, Dpred)

20: GR ← drawGraph(i, o, N, E, PR
ij , Rpred)

21: GD ← drawGraph(i, o, N, E, PD
ij , Dpred)

22: {generate adjacency matrices, measure similarity score}
23: AR

ij ← generate(adjacency_matrix, GR)

24: AD
ij ← generate(adjacency_matrix, GD)

25: p← per f ormance()
26: simScore← p.getScore()
27: M← 0 {set a counter of non-zero values}
28: M← getM(AR

ij , AD
ij )

29: absoluteVal ← (AR
ij − AD

ij )

30: sumVal ← absoluteVal.abs().sum().sum()
31: simScore← 1− sumVal/M
32: if simScore ≤ φ then
33: print(“dri f t f ound in window′′ + str(j))
34: {change point detected and reported}
35: end if
36: Report← (i, j, simScore)
37: end while
38: end for
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3.6. Change Localisation: PGraphDL

Detecting a drift without localising it does not provide a complete picture of the
change that occurred in a process. Change localisation aims to identify the region of the
drift and unravel what has changed in the behaviour of a process. While drift detection
alerts organisations that a process has changed, drift localisation sheds more light on where
the process has changed.

This study proposes to use the process graphs constructed based on two different
windows (reference and detection) as described in Section 3 to identify the locations
of process drifts. The proposed change localisation method, called PGraphDL, allows
gathering details about the structural change and modifications detected when comparing
two process graphs.

Figure 3. Two process graphs constructed based on two different windows: reference and detection.

According to the proposed change localisation method PGraphDL, two process graphs
(graph A and graph B) constructed based on two different windows (reference and detection),
respectively, are taken as input (Figure 3). A user selects any path of interest from the
base process model by specifying an index. The best matching path is searched in graph
B for each possible path in graph A by computing the positional score for each candidate
path in graph B. The positional score is calculated as the number of activities in graph
A located in the same position in graph B divided by the length of the selected path in
graph A. For example, if there are five activities in the selected path of graph A and four
matching activities in graph B, then the positional score is 4/5. The candidate path in graph
B with the maximum positional score is selected as the best matching path in graph A. A
maximum positional score of 1 indicates that the paths in two graphs are identical (i.e.,
there is no drift). At the same time, each activity in graph B that is not found in the same
position as the activity in question in graph A is declared as positional drift. For example,
if ‘b’ is an activity in the selected path of graph A with a positional index of ‘1’, but there is
an activity ‘k’ in the positional index ‘1’ of graph B, then ‘k’ is declared as positional drift.
In the experiments outlined in the next section, the probability threshold was set to 0 when
identifying candidate paths (i.e., all transitions in the graph inclusive). The process graph
of each path is constructed with drift positions highlighted in dotted circles to visualise
drifts. The graph of the selected path is also displayed to make the explanation clearer
(Figure 4).

Figure 4. Change localisation according to the proposed PGraphDL method: Path A is the selected
path from graph A, while Path B is the candidate path from graph B with drift position highlighted.
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4. Experiments

All the stages of PGraphDD-QM and PGraphDD-SS illustrated in Figure 2 were
implemented as a set of Python scripts using Python 3.6. The LSTM models were built
using the Keras [40] and Tensorflow [41] libraries. The process graphs were generated
using the Graphviz library [42]. The experiments were carried out using the Google Colab
free Tesla K80 GPU.

Two publicly available event logs were used to evaluate the performance of the
proposed concept drift detection methods, namely, the loan application process [43] and
Dutch municipality (BPIC 2015) [17] logs. The details of the two datasets are presented
below in turn. Accuracy (calculated as a harmonic mean of precision and recall) and
mean delay (calculated as the average number across all windows of log traces between
the point when a drift happened and when it was detected) were used as performance
metrics [44]. The results obtained for the loan application process logs [43] were compared
to those reported in [9,14,22]. While there exists a study using the BPIC 2015 logs for drift
detection [13], the results reported cannot be directly compared to ours.

4.1. Loan Application Process Dataset

The loan application process dataset consists of 72 synthetic event logs generated
from a base model comprising 15 activities, one start and three end events. The logs
exhibit different control-flow structures, including loops, parallel and alternative branches
(Figure 5). To generate the logs, the base model was modified systematically by applying,
in turn, one out of twelve simple change patterns described in [45] (Table 1). These
modifications reveal different change patterns, which are categorised into insertion (“I”),
resequentialisation (“R”) and optionalisation (“O”). More complex drifts were created by
combining the simple change patterns; this involved randomly applying a pattern from
each category in a nested way, thus resulting in additional event logs: “IOR”, “IRO”, “OIR”,
“ORI”, “RIO” and “ROI”.

To vary the distance between the drifts, four event logs of sizes 2500, 5000, 7500 and
10,000 were generated for each of the change patterns by combining a fixed number of
alternating instances from the base model, then a fixed number of instances from the
modified model, leading to a total of 72 logs. Each event log generated in this way contains
precisely nine process drifts.

Table 1. Control-flow change patterns for synthetic event logs.

Code Simple Change Pattern Category

re Add/remove fragment I
cf Make two fragments conditional/sequential R
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
cb Make fragment skippable/non-skippable O
cm Move fragment into/out of conditional branch I
cd Synchronise two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I



Entropy 2022, 24, 910 15 of 31

Figure 5. Base BPMN model of the loan application process.

4.2. BPIC 2015 Dataset

BPIC 2015 is a real-life dataset, which includes event logs provided by each one of the
five Dutch municipalities [17]. The logs contain many activities, each labelled with a code
and a Dutch and English label. While the processes across the five municipalities should be
identical, they differ in reality. A behaviour in each municipality is not observed in each of
the other municipalities. There are distinctions in sub-processes between the municipalities,
both in the frequency and behaviour. The differences may have resulted from the changes
made to procedures, rules or regulations. As there are about 1170; 828; 1349; 1049 and 1153
different execution paths for the BPIC2015_1; BPIC2015_2; BPIC2015_3; BPIC2015_4 and
BPIC2015_5 logs, respectively, almost all cases are unique from the control-flow perspective.
Similar to [13], for the experiments presented in this study, the five logs were merged
together to get one log with four reliable concept drifts.

4.3. Experimental Setup

The two proposed drift detection methods were tested in two experiments: (1) drift
introduced at the start of the detection window (Figure 6) and (2) drift introduced in the
middle of the detection window (Figure 7). In the first experiment, all traces in the detection
window were generated by one process model that was different from that used to generate
traces for the reference window. In the second experiment, the detection window contained
traces generated by two different process models: an old one used for the reference window
and a new one. The point of the switch from the old to the new process in the detection
window (i.e., the ratio between the number of traces generated by the old and new process
models) was varied in the second experiment to assess the sensitivity of the proposed drift
detection methods to the number of traces generated by the old process model still present
in the analysed window containing a drift.

To clearly demonstrate the ability of the proposed methods to detect drifts in the first
experiment, the LSTM model was initially trained on the first half of the reference window
and applied to its second half. In this case, the model is expected to achieve an F-score
close to 1 since the same process model generated traces in both portions. This F-score
value was used to set the threshold for PGraphDD-QM. Next, the model was trained on the
second half of the reference window and applied to the first half of the detection window.
Since the model was trained on traces generated by one process model but applied to traces
generated by another process model, a drop in the F-score value below the threshold is
expected, indicating a drift. The procedure was repeated by shifting windows forward
until reaching the end of the considered log. For all the iterations, it was noted whether
the F-score value was always above the threshold when the LSTM model was trained and
applied to traces generated by the same process model (i.e., not triggering false alarms) and
below the threshold when the LSTM model was trained on traces generated by one process
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model but applied to traces generated by another process model (i.e., detecting drifts when
they actually happened). For PGraphDD-SS, the similarity score was compared across
the windows in the same manner, assuming that a similarity score above the threshold
indicated no drift and a similarity score below the threshold meant a drift.

Figure 6. Experiment 1: drift introduced at the start of the detection window.

Figure 7. Experiment 2: drift introduced in the middle of the detection window.

The second experiment was designed to explore the behaviour of the proposed drift
detection methods on the stitches of the traces generated by different process models and
obtain the delay metric. In this case, each detection window was constructed to include
traces before and after the change point (i.e., drift) at different percentages. Initially, the
detection window was set to have 90% of traces generated by the old process model and
10% of traces generated by the new process model. The F-score value was checked, and a
drift was assumed to be detected if the F-score value was below the set threshold. If drift
was not detected, the detection window was modified to include old and new traces at the
ratios of 80%:20%, 70%:30% and so on until drift was detected. The delay was set to the
number of traces generated by the new process model at the point of the detected drift (i.e.,
if the drift was detected at a ratio of 30%:70%, the delay was set to the number of traces in
the 30% block). A short delay between a change and its detection is highly desirable.

The following experimental protocol was adopted to evaluate the proposed methods
for detecting concept drifts in business processes:

1. For both methods, the threshold was tuned for each dataset, according to the values
obtained over the very first reference windows (which contain no drift by default).

2. For the embedding layer of the LSTM model, the vocabulary size was set to the
number of unique activities in the considered log. The vocabulary size guided the
number of embedding dimensions; hence it varied across the event logs.
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3. The network architecture of the LSTM model included one hidden LSTM layer with a
dropout probability of 0.2. The dropout technique was used to avoid over-fitting and
improve learning by randomly removing a cell from the network.

4. The number of training epochs was set to 50 for all the synthetic logs and 10 for the
BPIC 2015 logs based on preliminary experimentation.

5. The parameters of the LSTM model, namely, the number of embedding dimensions,
batch size and LSTM neurons, were tuned for the different event log sizes for better
performance. In particular, 250; 500; 750; 1000 embedding dimensions and batch
sizes were used for each of 2500; 5000; 7500; 10,000 loan application process logs,
respectively; 1000 embedding dimensions and a batch size of 1000 were used for the
BPIC 2015 logs; 100 neurons were used in the LSTM layer for all the logs.

5. Results
5.1. Drift Detection: Loan Application Process

In the first experiment for the loan application process dataset, the thresholds were set
to 0.9 and 1.0 for PGraphDD-QM and PGraphDD-SS, respectively. PGraphDD-QM achieved
an average accuracy score of 99% across all log sizes over 11 out of 17 change patterns. For
the remaining change patterns (’cb’, ‘cm’, ‘ior’, ‘pl’, ‘rio’ and ‘lp’), the method achieved
an average accuracy of 66%. These results suggest that the effectiveness of PGraphDD-
QM depends on the nature of the event log. For example, in the case of the ‘cb’ change
pattern, the fragment “‘Prepare acceptance pack’—‘Check application form completeness”’
always present in the reference window may be omitted in the detection window (i.e., the
process branches, meaning that the two activities are executed in some cases but not always,
resulting in a portion of traces containing the two activities and in a portion of traces not
containing them). Since the LSTM model trained on the reference window, where the
activities are always present, would still get points for correctly predicting the case of these
activities being present in the detection window, PGraphDD-QM may fail to detect the
drift if the proportion of the traces containing the activities is greater than the proportion of
the traces not containing these activities.

PGraphDD-SS achieved an average accuracy score of 98% over 16 out of 17 change pat-
terns in the first experiment. However, over the remaining ‘ior’ change pattern, PGraphDD-
SS achieved a low average accuracy score of 58%, which can be explained by the composite
nature of this change pattern, where simple change patterns are nested within each other.
Such a build means that there is a point in time when a new behaviour resembles an old
behaviour from a previous time, which is challenging for the method to handle as indicated
by the four false negatives made by the LSTM model for each of the log sizes.

Table 2 lists F-scores and Table 3 lists similarity scores achieved by PGraphDD-QM
and PGraphDD-SS, respectively, over each pair of windows slid across the ‘cd’ log of sizes
2500, 5000, 7500 and 10,000 as an example to explain how the decision on whether a drift
have occurred or not is derived. F-score and similarity values above the set thresholds
indicate drift absence. In contrast, a drop in the values below the thresholds indicates the
presence of a drift. Considering our knowledge of the event log, we can confirm whether
drift happened or not in reality. The Yes/No answers in the ‘Drift detected?’ column in
both tables indicate whether the methods detected a drift or not, respectively. The Yes/No
answers in the ‘Actual drift?’ column indicate whether the drift has actually occurred or
not, respectively. The Yes/No answers in the ‘Correct detection?’ column indicate whether
the methods detected the drift correctly or not, respectively. It can be observed that the
decisions reported in the ‘Detected drift?’ column of both tables are confirmed as accurate
detections in the ‘Correct detection?’ column. This means that both methods were able to
detect all nine drifts for the ‘cd’ logs of all sizes. Indeed, it can be noticed from the tables that
high F-score and similarity values were returned for each window pair containing traces
generated by the same process model and low values for each window pair containing
traces generated by different process models.
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Further analysis of the results revealed that PGraphDD-SS is more stable and accurate
on average than PGraphDD-QM (Figure 8). At the same time, it should be noted that
PGraphDD-SS requires training two LSTM models, whereas PGraphDD-QM—only one.
Hence, PGraphDD-QM can be recommended for resource-constrained environments, while
PGraphDD-SS should be used when achieving accurate and stable results is more critical
than efficiency.

Table 2. Results across all log sizes for the “cd” change pattern of the Loan Application Process
dataset using PGraphDD-QM.

Windows cd-2500 cd-5000 cd-7500 cd-10000 Drift
Detected?

Actual
Drift?

Correct
Detection?

0,1 0.98 0.99 0.99 0.99 No No Yes
1,2 0.53 0.47 0.55 0.50 Yes Yes Yes
2,3 0.50 0.94 0.99 0.99 No No Yes
3,4 0.62 0.49 0.54 0.47 Yes Yes Yes
4,5 0.96 0.99 0.99 0.99 No No Yes
5,6 0.42 0.45 0.50 0.49 Yes Yes Yes
6,7 0.69 0.99 0.99 0.99 No No Yes
7,8 0.56 0.48 0.48 0.63 Yes Yes Yes
8,9 0.94 0.98 0.99 0.99 No No Yes

9,10 0.89 0.51 0.49 0.49 Yes Yes Yes
10,11 0.98 0.97 0.99 0.99 No No Yes
11,12 0.25 0.50 0.48 0.48 Yes Yes Yes
12,13 0.95 1.00 0.99 0.99 No No Yes
13,14 0.37 0.49 0.44 0.49 Yes Yes Yes
14,15 0.65 0.99 0.98 0.99 No No Yes
15,16 0.50 0.45 0.52 0.48 Yes Yes Yes
16,17 0.96 0.99 0.99 0.99 No No Yes
17,18 0.82 0.45 0.48 0.51 Yes Yes Yes
18,19 0.92 0.97 1.00 0.99 No No Yes
19,0 0.33 0.46 0.67 0.49 Yes Yes Yes

Table 3. Results across all log sizes for the “cd” change pattern of the Loan Application Process
dataset using PGraphDD-SS.

Windows cd-2500 cd-5000 cd-7500 cd-10000 Drift
Detected?

Actual
Drift?

Correct
Detection?

0,1 1.00 1.00 0.93 1.00 No No Yes
1,2 0.86 0.86 0.86 0.86 Yes Yes Yes
2,3 1.00 1.00 1.00 1.00 No No Yes
3,4 0.86 0.86 0.86 0.86 Yes Yes Yes
4,5 1.00 1.00 1.00 1.00 No No Yes
5,6 0.86 0.86 0.86 0.86 Yes Yes Yes
6,7 1.00 1.00 1.00 1.00 No No Yes
7,8 0.86 0.86 0.86 0.93 Yes Yes Yes
8,9 1.00 0.93 1.00 0.93 No No Yes

9,10 0.86 0.93 0.86 0.86 Yes Yes Yes
10,11 1.00 1.00 1.00 1.00 No No Yes
11,12 0.86 0.86 0.86 0.86 Yes Yes Yes
12,13 1.00 1.00 1.00 1.00 No No Yes
13,14 0.86 0.86 0.86 0.86 Yes Yes Yes
14,15 1.00 1.00 1.00 1.00 No No Yes
15,16 0.86 0.86 0.86 0.86 Yes Yes Yes
16,17 1.00 1.00 1.00 1.00 No No Yes
17,18 0.86 0.86 0.86 0.86 Yes Yes Yes
18,19 1.00 1.00 1.00 1.00 No No Yes
19,0 0.86 0.92 0.86 0.86 Yes Yes Yes
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Figure 8. Distribution of accuracy scores achieved by PGraphDD-QM and PGraphDD-SS across all
change patterns and log sizes of the Loan Application Process dataset.

5.2. Drift Detection: BPIC 2015

Table 4 lists F-scores obtained for BPIC 2015 using PGraphDD-QM, with the threshold
F-score value set to 0.9. It can be noticed from the table that PGraphDD-QM was able to
find all four concept drifts. However, it reported two false positives, thus achieving an
accuracy score of 80%. The false positives can be attributed to the complex nature of the
five business processes and the high variability of traces within each of the five logs, as
mentioned in Section 4.2.

Table 5 reports results achieved by PGraphDD-SS over the BPIC 2015 dataset. It can
be noticed from the table that significantly lower similarity scores were achieved across all
window pairs of the BPIC 2015 dataset compared to the Loan Application Process dataset,
which again can be explained by the much more complex nature of the BPIC 2015 logs and
higher variability across traces within each log compared to the Loan Application Process
logs. The threshold similarity value for BPIC 2015 was set to 0.3. Three drifts were correctly
detected, while one was missed, resulting in an accuracy score of 75%.

The results obtained for BPIC 2015 indicate that both PGraphDD-QM and PGraphDD-
SS can perform well regardless of the complexity and peculiarities of logs but require
setting F-score and similarity threshold values on case by case basis. It is important to note
that the thresholds can be set for each case automatically based on the results obtained over
two windows known covering traces generated by the same process model.

Table 4. Results obtained for BPIC 2015 using PGraphDD-QM.

Windows F-Score Drift
Detected?

Actual
Drift?

Correct
Detection?

0,1 0.92 No No Yes
1,2 0.87 Yes Yes Yes
2,3 0.88 Yes No No
3,5 0.89 Yes Yes Yes
4,5 0.90 No No Yes
5,6 0.21 Yes Yes Yes
6,7 0.84 Yes No No
7,8 0.67 Yes Yes Yes
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Table 5. Results obtained for BPIC 2015 using PGraphDD-SS.

Windows Similarity Score Drift
Detected?

Actual
Drift?

Correct
Detection?

0,1 0.31 No No Yes
1,2 0.27 Yes Yes Yes
2,3 0.36 No No Yes
3,5 0.15 Yes Yes Yes
4,5 0.32 No No Yes
5,6 0.30 No Yes No
6,7 0.39 No No Yes
7,8 0.24 Yes Yes Yes

5.3. Drift Localisation

In addition to detecting drifts, it is important to be able to localise them, i.e., correctly
identify the activities/fragments that changed, e.g., added or removed. To achieve that,
we visually and analytically (i.e., using the proposed PGraphDL method introduced in
Section 3.6) compare graphs generated over two different windows. The correctness of
identified changes for the Loan Application Process dataset can be validated using the
knowledge about the changes injected into the event logs (Section 4.1).

As an example of visual drift localisation using PGraphDL, Figure 9 shows two di-
rectly follows process graphs constructed for a reference window before a drift and a
detection window after the drift, respectively. The process graphs were generated using
the Graphviz library [42] according to the procedure described in Section 3.4. The refer-
ence window graph (Figure 9a) represents the base BPMN model of the loan application
process (Section 4.1, Figure 5), whereas the detection window graph (Figure 9b) represents
a modified version of the base model after introducing the ‘sw’ change pattern. It can be
observed that before the drift (Figure 9a), activities ‘Prepare acceptance pack’ and ‘Check if
home insurance quote is requested’ happened before activity ‘Verify repayment agreement’.
However, after the drift (Figure 9b), activities ‘Prepare acceptance pack’ and ‘Check if home
insurance quote is requested’ swapped place with activity ‘Verify repayment agreement’.

Table 6 lists the reasons extracted from the pair of graphs generated for some of the
change patterns using PGraphDL. A reason is marked correct if the modification to the
event log corresponds to the activities identified as the reasons for the process drift. In all
cases, the correct reason for the process drift from the graphs are extracted.

Table 6. Reasons for drifts extracted from graphs generated using PGraphDL for each change pattern
of the Loan Application Process dataset.

Change Pattern Reason for Drift Extracted from Graphs Reason Correct?

cb ‘Prepare acceptance pack’ and ‘Check application form completeness’ are
non-skippable before the drift but skippable after drift. Correct

cd ‘Check credit history’ and ‘Assess loan risk’ are sequential before the drift but happen
at the same time after drift. Correct

cf ‘Send home insurance quote’ and ‘send acceptance pack’ are conditional before the
drift but sequential after drift. Correct

ori ‘Added activity’ is added in-between Send home insurance quote’ and ‘send
acceptance pack’ which are made sequential and loopable after the drift. Correct

rp ‘Verify repayment agreement’ is always in place before the drift but replaced with
‘Replaced activity’ after the drift. Correct

sw ‘Prepare acceptance pack’ and ‘Check if home insurance quote is requested’ swapped
place with ‘Verify repayment agreement’ after the drift. Correct
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(a) (b)

Figure 9. Directly follows process graphs constructed using the ‘sw’ change pattern log from the
Loan Application Process dataset: (a) reference window; (b) detection window.

To evaluate PGraphDL, a path selected from the graph representing the base loan
application process was compared to the paths from the graphs representing the modified
versions of the base process. After selecting the candidate path for each graph based on the
positional scores, drift positions were visualised as described in Section 3.6.

Figure 10 shows an example of localising drifts in the ‘sw’ log, where two fragments are
swapped in some specific parts of the log. It can be noticed from the figure that before the
drift (path A), activity ‘Check if home insurance quote is requested’ is executed after activity
‘Prepare acceptance pack’, whereas after the drift (path B), activities ‘Prepare acceptance
pack’ and ‘Check if home insurance quote is requested’ swapped place with activities ‘Verify
repayment agreement’ and ‘Send home insurance quote’. Figure 11 considers the ‘re’ log,
where a fragment is added or removed in some specific parts of the log. It can be noticed
from the figure that before the drift (path A), activity ‘Appraise property’ is followed by
activity ‘Assess eligibility’, then by activity ‘Reject application’, whereas after the drift (path
B), activity ‘Assess eligibility’ is removed, while activity ‘Reject application’ happens after
activity ‘Appraise property’. Finally, Figure 12 considers the ‘rp’ log with a substituted
activity. It can be noticed from the figure that before the drift (path A), activity ‘Verify
repayment agreement’ is executed after activity ‘Send home insurance quote’, whereas after
the drift (path B), the activity ‘Verify repayment agreement’ is substituted with activity
‘Replaced activity’.
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Figure 10. Drift localisation in the Loan Application Process logs: Path A—reference path from the
reference window of the ‘sw’ process graph; Path B—candidate path from the detection window of
the ‘sw’ process graph.

Figure 11. Drift localisation in the Loan Application Process logs: Path A—reference path from the
reference window of the ‘re’ process graph; Path B—candidate path from the detection window of
the ‘re’ process graph.
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Figure 12. Drift localisation in the Loan Application Process logs: Path A—reference path from the
reference window of the ‘rp’ process graph; Path B—candidate path from the detection window of
the ‘rp’ process graph.

Due to limited space, only one example of drift localisation is presented for BPIC
2015. In Figure 13, one path from the graph generated using the BPIC2015_1 reference
window is compared to the closest path detected by the proposed drift localisation method
in the graph generated using the BPIC2015_2 reference window. It can be noticed from the
figure that before the drift (path A), 46 activities were executed sequentially. After the drift
(path B), some of those activities were replaced, while other, new activities were introduced.
For example, after the drift (path B), activities ‘01_HOOFD_015’ and ‘01_HOOFD_030_2’
in the reference graph, were replaced with activities ‘05_EIND_010’ and ‘03_GBH_005’
in the detection graph. It can also be noticed that after the drift (path B), some activities
such as ‘01_HOOFD_061’ and ‘01_HOOFD_510_2’ executed in path A are seen to happen
sporadically. Drifts can be easily localised in the same manner for the other pairs of the
Loan Application Process and BPIC 2015 logs.

5.4. Comparison with State-of-the-Art Methods

Table 7 lists accuracy scores for each change pattern averaged over the four event
log sizes as achieved by the proposed PGraphDD-QM and PGraphDD-SS methods, and
existing approaches reported in [9,14,22]. The highest accuracy values for each change
pattern across all the compared methods are highlighted in bold.

PGraphDD-QM was able to detect drifts with high accuracy between 90% and 100%
in 12 out of 17 change patterns, while PGraphDD-SS—in 16 out of 17 change patterns
(Table 7). PGraphDD-QM outperformed the state-of-the-art methods over some change
patterns such as ‘cd’, ‘cf’ and ‘rio’. However, it did not perform on par with the other
methods over change pattern ‘ior’. PGraphDD-SS outperformed PGraphDD-QM (Table 7)
over change patterns ‘cb’, ‘cm’, ‘lp’, and ‘rio’. For example, PGraphDD-QM could not
find all the drifts in “cb” because it may have been tricked by the appearance of both
skippable and non-skippable fragments in the detection window. However, according to
PGraphDD-SS, these changes were captured in the adjacency matrices generated from the
pair of graphs and thus could not be missed in the similarity score calculation. Overall,
the proposed methods match the performance of the state-of-the-art methods while not
requiring generating features manually.
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Figure 13. Drift localisation: Path A—reference path from the BPIC 2015 reference process graph;
Path B—candidate path from the BPIC 2015 detection process graph.
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Table 7. Average accuracy achieved over the Loan Application Process logs by the proposed and
state-of-the-art methods.

# PGraphDD-QM PGraphDD-SS Maaradji et al. [14] Seeliger et al. [9] Gaspar et al. [13]

cb 0.65 0.92 0.92 0.97 0.76
cd 1.00 0.97 0.88 0.95 0.90
cf 0.98 1.00 0.98 0.98 0.98

cm 0.65 0.92 1.00 0.97 0.91
cp 1.00 1.00 1.00 0.98 1.00
ior 0.65 0.58 1.00 0.96 -
iro 1.00 1.00 1.00 0.94 -
lp 0.73 1.00 1.00 0.76 0.76
oir 1.00 1.00 0.98 0.73 -
ori 1.00 0.94 1.00 0.98 -
pl 0.65 1.00 1.00 0.95 0.90

pm 1.00 1.00 1.00 0.98 1.00
re 1.00 1.00 1.00 0.90 0.72
rio 0.95 1.00 0.98 0.97 -
roi 1.00 0.92 1.00 1.00 -
rp 1.00 1.00 0.96 0.97 0.98
sw 1.00 1.00 1.00 1.00 1.00

For a fair comparison with Maaradji et al. [14] and Seeliger et al. [9], a fixed window
size of 100 traces was used for all log sizes in the second experiment assessing the delay
of the proposed methods in detecting drifts. Figures 14 and 15 show the mean delay
per change pattern for each of the four log sizes for PGraphDD-QM and PGraphDD-SS,
respectively. It can be noticed from the figures that PGraphDD-QM performs better on
reasonably small log sizes (5000), whereas PGraphDD-SS performs better on larger log
sizes (7500 and 10,000). The performance of both methods on very small log sizes (2500) is
not stable.

Figure 16 compares the mean delays per change pattern across the four log sizes
achieved by PGraphDD-QM and PGraphDD-SS with those achieved by the methods
reported by Maaradji et al. [14] and Seeliger et al. [9]. It can be observed from the figure
that both PGraphDD-QM and PGraphDD-SS outperform the state-of-the-art methods, with
PGraphDD-SS achieving the most stable results and the shortest drift detection delays
compared to the other three methods.

Figure 14. Distribution of mean delay scores achieved by PGraphDD-QM per change pattern for
each of the four log sizes of the Loan Application Process dataset.
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Figure 15. Distribution of mean delay scores achieved by PGraphDD-SS per change pattern for each
of the four log sizes of the Loan Application Process dataset.

Figure 16. Distribution of mean delay scores per change pattern across all log sizes of the Loan
Application Process dataset: PGraphDD-QM and PGraphDD-SS versus Maaradji et al. [14] and
Seeliger et al. [9].

Table 8 lists mean delays for each change pattern averaged over the four different
event log sizes for PGraphDD-QM and PGraphDD-SS, as well as state-of-the-art methods
reported in [9,14,22]. The lowest mean delay values for each change pattern are highlighted
in bold. It can be noticed from the table that PGraphDD-SS performs better than the other
methods in 12 out of 17 logs (cb, cd, cf, cm, cp, iro, lp, oir, pl, re, rio, sw).

We found only one study conducted over BPIC 2015 logs [13]. However, the metrics
employed in that study are not comparable to those reported in this and other studies on
drift detection in process mining. In particular, the study presented in [13] used measures
such as dependency, edge and routing distances to identify drifts. The authors reported
that out of the four drifts resulting from concatenating the five BPIC 2015 logs, the first
three drifts were detected but not the fourth one when using the distance measure. The
edge distance allowed to detect all four drifts but with low confidence for the first and last
drift. Finally, the routing distance also allowed to detect all drifts but with low confidence
for the first drift. As discussed in Section 5.2, PGraphDD-QM was able to detect three out
of four drifts, while PGraphDD-SS was able to detect all four drifts. However, the overall
performance of the two methods was affected by a number of false positives reported over
pairs of windows taken from the same logs (something not explored in [13]). At the same
time, it is not possible to provide a full evaluation of false positives due to the absence
of the ground truth about the individual municipality logs (i.e., there could be changes
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in the business processes of each municipality over time constituting drifts that are not
formally recognised).

Table 8. Mean delay per change pattern of the Loan Application Process dataset compared to
Maaradji et al. [14] and Seeliger et al. [9].

# Mean Delay d
PGraphDD-QM PGraphDD-SS Maaradji et al. (ADWIN) [14] Seeliger et al. [9]

cb 25.5 18.1 54.7 18.9
cd 27.7 17.8 32.4 28.7
cf 25.4 16.7 19.1 34.6

cm 21.0 17.9 40.9 19.2
cp 24.4 16.6 18.7 17.6
ior 21.0 17.5 16.7 13.0
iro 19.7 16.5 43.8 27.2
lp 19.3 18.8 46.3 48.0
oir 19.5 17.1 43.7 28.01
ori 20.5 17.8 12.9 14.3
pl 32.5 19.1 36.5 26.3

pm 20.9 17.1 12.9 24.8
re 25.0 14.6 38.1 33.0
rio 22.2 17.9 25.1 20.8
roi 21.9 21.8 19.8 7.3
rp 25.5 15.6 16.9 12.7
sw 25.7 15.9 20.8 29.6

6. Discussion

The proposed methods can find use in many different application domains. For
example, the adoption of the methods in healthcare may provide efficient solutions for
saving lives. In particular, the proposed methods can be employed in discovering disease
trajectories, which can reveal disease correlations and temporal disease progression, thus
equipping clinicians with tools for predicting and preventing future complications in
individual patients [46]. Previous studies have based their solutions for discovering disease
trajectories on statistical analysis [47] and knowledge graphs [48]. Both approaches have
their limitations: while the former approach is prone to statistical bias, the latter is not
scalable and requires significant expert input. Furthermore, both approaches are not
designed to track changes in disease trajectories over time, e.g., to study the implications of
the COVID-19 pandemic on population health and determine the subset of comorbidities
contributing to the death outcome following the coronavirus disease. In contrast, the
proposed methods can be easily applied to temporal sequences of diagnoses extracted from
electronic healthcare records at scale and in a continuous manner, allowing clinicians to
track changes in disease progression patterns, perform temporal analysis of comorbidities
using the generated graphs and predict patient outcomes based on their history.

The oil and gas industry is another complex domain, where the proposed methods can
be useful for preventing theft, improving the efficiency of supply chain management and
adapting to world events in a timely manner. The industry involves many interconnected
tasks and parties [49]. The actions of every party can be logged and cases of noncompliance
identified easily by visualising the intended and actual processes as graphs. Any changes
and weaknesses in the supply chain management can be equally efficiently spotted through
detecting and localising drifts in the discovered process graphs evolving over time.

It should be noted that the proposed methods are designed to detect changes in
business processes rather than predict process outcomes. For example, the methods can
detect changes in the process required from bank staff to follow to approve a loan, while
they are not suitable for predicting whether a specific loan application will be approved
or not.

To make it easy for different companies to use the proposed methods in their practice,
we intend to package the proposed methods as a plugin to established open-source process
mining software such as ProM.
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7. Conclusions and Future Work

Modern-day business processes are prone to changes over time due to changing cir-
cumstances and conditions. To proactively respond to these changes, also known as concept
drifts, businesses require mechanisms to detect and analyse them. This paper presented
three novel methods (PGraphDD-QM, PGraphDD-SS and PGraphDL) for detecting and
localising sudden concept drifts in dynamic business processes based on streams of logged
events. The first drift detection method involves training an LSTM model on a previous
stream of events and applying it to a newly generated stream of events. The performance of
the model over the old and new streams is compared based on the F-score metric. Similar
F-score values over the two streams indicate no drift, whereas a drop of the F-score value
over the new stream below a set threshold is indicative of a drift. The more significant
drop in the F-score value, the more changes are expected to be present in the new stream
of events compared to the old one. The second drift detection method involves training
two LSTM models, each on a stream of events covering two different periods, respectively.
These models are then used to generate two graphs representing the business processes for
the two analysed periods as believed by the LSTM models. Next, two adjacency matrices
are generated based on the two graphs to measure the similarity between the two business
processes. A drop in the similarity score below a set threshold is indicative of a drift. The
more significant drop in the similarity score, the more changes are expected to be present
in the new stream of events compared to the old one. Finally, the paper detailed how the
graphs representing two different periods of a business process can be used to visually and
analytically localise the parts of the process that have changed.

An evaluation of the proposed methods using synthetic and real-life logs demonstrated
that the methods perform on par with state-of-the-art methods, achieving similar accuracy
in detecting drifts, with shorter delays compared to the other methods, while also offering
the following advantages over existing solutions. First, unlike the method based on
a statistical analysis of graphs representing business processes, the proposed methods
employ deep learning, which does not require the user to construct features. Second, the
proposed methods employ graphs that explain the decision-making process of the deep
learning models predicting the next activities in the sequence of business processes, thus
allowing the user to verify what has changed in the process when a drift is detected. Finally,
the relative insensitivity of the LSTM model to interval length may have contributed to
detecting drifts with minimal delay.

In the future, we plan to evaluate the proposed methods on several other real-life event
logs, explore the ways of applying the methods to analysing chains of events affecting the
stock market and adapt the methods to enable them to detect gradual drifts. Furthermore,
we intend to extend the drift localisation method by enumerating all the detection paths in
descending order of proximity to the reference path. Another avenue for future work is to
package the proposed methods as a library for existing popular process mining software
and provide the user with an interactive visualisation tool for extensive exploration of
changes in case they are more significant than those considered in this study.
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The following abbreviations are used in this manuscript:

BPM Business Process Management
PGraphDD-QM Process Graph Drift Detection using Quality Metrics
PGraphDD-SS Process Graph Drift Detection using Similarity Score
LSTM Long Short-term Memory
DFG Directly Follows Graph
BPIC15 Business Process Intelligence Challenge 2015
GARCH Generalised AutoRegressive Conditional Heteroskedasticity
CUSUM Cumulative Sum of squared residuals
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