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Abstract

The increasing adoption of the whole slide image (WSI) technology in

histopathology has dramatically transformed pathologists' workflow and

allowed the use of computer systems in histopathology analysis. Extensive

research in Artificial Intelligence (AI) with a huge progress has been con-

ducted resulting in efficient, effective, and robust algorithms for several appli-

cations including cancer diagnosis, prognosis, and treatment. These algorithms

offer highly accurate predictions but lack transparency, understandability, and

actionability. Thus, explainable artificial intelligence (XAI) techniques are

needed not only to understand the mechanism behind the decisions made by

AI methods and increase user trust but also to broaden the use of AI algo-

rithms in the clinical setting. From the survey of over 150 papers, we explore

different AI algorithms that have been applied and contributed to the histopa-

thology image analysis workflow. We first address the workflow of the histo-

pathological process. We present an overview of various learning-based, XAI,

and actionable techniques relevant to deep learning methods in histopatholog-

ical imaging. We also address the evaluation of XAI methods and the need to

ensure their reliability on the field.

This article is categorized under:
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1 | INTRODUCTION

Artificial Intelligence (AI) has recently shown great and considerable success in the analysis of medical images. The
development of whole slide scanners enabled the digitization of histopathological process by generating whole slide
images (WSI) and facilitating the pathologist's workflow. This has encouraged the production and application of various
AI techniques in histology diagnosis. AI-augmented histopathological diagnosis includes segmentation, quantification,
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and classification. A typical histopathology image analysis pipeline is composed of a training and a testing phase. The
training phase usually builds statistical models of the region of interest (ROIs) on the basis of previously labeled images
while the testing phase uses those trained models to detect, segment, and/or classify the ROIs in previously unseen
images. The training phase will then typically consist of (a) image pre-processing to normalize and clean the input
images in order to deal with noise, artifacts, and intensity inhomogeneities; (b) region detection, segmentation, and/or
classification to semantically extract the ROIs; (c) feature extraction; and (d) model building as a means to learn the
morphological structure (e.g., appearance and/or shape) of the ROIs. The testing phase starts with the same (a-c) steps
and then compares the extracted features to the training-built models to produce a classification map. Finally, a quanti-
tative analysis component is used to assist the extracted knowledge based on the same criteria that are usually used by
pathologists to make the diagnosis. Histopathology images have very high visual appearance variability based on the
morphological and architectural characteristics of the biological structures that typically reflect the output of a complex
and multidimensional molecular processes in the component cells. Several other technical factors such as staining dif-
ferences, orientation of the objects, and the scanning magnifications of the biological samples, just to mention a few,
are contributing to the visual heterogeneity of the histopathology image, see Figure 1. Moreover, computer vision chal-
lenges such as multi-class intensity/morphological overlaps, fully/partially occlusion, illumination variations, and
objects with weak (or ill-defined) boundaries are usually presented in histopathology images, making it hard to distin-
guish between the different classes in the images, see Figure 2.

FIGURE 1 Examples of different stains with different histopathological sections, from https://anhir.grand-challenge.org/. (a) Breast

tissues stained with, from left to right, estrogen receptor (ER), hematoxylin and eosin (H&E), Her2-neu, and progesterone receptor (PR), and

Her2-neu; (b) kidney tissues, stained with, from left to right, H&E, Masson, PAS, and Methenamine; and (c) gastric mucosa and gastric

adenocarcinoma tissues staining with, from left to right, CD4 (clone 4B12), CD8 (clone C8/144B), and CD68 (clone PG-M1).
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AI techniques have the capability to tackle such computer vision tasks through Hand-designed methods (Feng
et al., 2016; Fu et al., 2014; Gunduz-Demir et al., 2010; Liu et al., 2016; Phoulady et al., 2016; Shahul Hameed
et al., 2017; Wu et al., 2005) and trainable methods (Chen et al., 2017; Kainz et al., 2015; Li et al., 2017;
Sirinukunwattana et al., 2015). Hand-designed methods divide an image into multiple regions based on the similarities
of pixels in different feature spaces (e.g., color, texture, gradient, regional statistics, shape, etc.) within each sub-region
and the dissimilarities across different sub-regions. With the recent trend of deep learning, more publications are using
learning-based methods due to their superior performance (Ibrahim et al., 2020). This class of methods involves a train-
ing process to learn prior knowledge about the particular type of images to be segmented. The prior knowledge can be
a probabilistic approach that represents the probability distribution of each sub-region. This is then used to infer the
probability of each pixel in unseen images belonging to each of the classes. However, in practice, the probability distri-
bution is difficult to be estimated accurately due to the limited number of training images. Alternatively, a feature
descriptor can be used to describe the local characteristics in the training images, followed by training a classifier to best
discriminate different classes based on the feature descriptor. Subsequently, in the segmentation stage, the classifier is
applied to estimate the best possible class for each pixel based on the extracted feature descriptor. Many methods have
been proposed which have supreme performance than Hand-designed methods (Ballerini et al., 2004; Belhassen &
Zaidi, 2010; Katouzian et al., 2012; Naik et al., 2008; Nguyen et al., 2010; Sirinukunwattana et al., 2015). With a deep
learning architecture and a large number of training images, the feature descriptors can be automatically learnt (Chen
et al., 2017; Chen & Chefdhotel, 2014; Kainz et al., 2015; Sirinukunwattana et al., 2016). However, the learning-based
method requires a set of training images with detailed annotations, which is difficult and time consuming to obtain in
histological imaging. Nevertheless, learning-based methods offer more promising results with continuing advancements
in medical images using deep learning methods.

Despite the advances in the application of AI in a medical workflow, there remain several challenges. These algo-
rithms deliver highly accurate predictions. Yet transparency and understandability are critical factors that should be
addressed in order for these technologies to be implemented in real-world workflows. Due to the black-box nature of

FIGURE 2 Some computer vision challenging demonstrated on some of our WSIs (Abdelsamea, Grineviciute, et al., 2019a; Abdelsamea,

Pitiot, et al., 2019b).
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deep learning (DL) techniques, that are utilized in learning-based methods, interpretability methods are needed to
understand the underlying mechanism behind these decisions not only to increase users' trust in this novel technology
application but also to allow the wide use of algorithms trained for specific tasks in a way akin to human approaches.
Explainable artificial intelligence (XAI) seeks to improve the trustworthiness of AI solutions by providing an insight
into the predictions of machine learning (ML) models. This can help healthcare workers to provide more qualitative
proof of what prompted the algorithm to make these decisions. These techniques can range from intuitive designs such
as a presentation of contributing factors projected on the input (e.g., heatmaps) to patterns portraying the inner work-
ings of a model. The demand for explanations is the result of many sectors trying to integrate AI into their workflow
but failing to fully rely on them because of a lack of trust, understandability, or transparency.

To identify the position of our survey paper, we have highlighted and summarized the main aspects reviewed by the
key survey articles in digital pathology as follow: The emergence of feature engineering and learning approaches in digital
pathology, for object detection, image segmentation, and tissue classification has been discussed in Gurcan et al. (2009)
and Veta et al. (2014). Some challenging problems such as technical and computational challenges in different applica-
tions such as diagnosis and prognosis and opportunities for the quantitation and predictive modeling of digital pathology
images have been discussed in (Bueno et al., 2016; Madabhushi & Lee, 2016; Xing et al., 2017). Other challenging prob-
lems related to the image storage and management due to the large size (>10 GB) of whole slide images and their impact
on the diagnosis-making process have been discussed in (Al-Janabi et al., 2012). Applications of machine learning models
in digital pathology (such as computer-assisted diagnosis, content-based image retrieval, and clinicopathological relation-
ships) have been discussed in this mini-review paper Komura and Ishikawa (2018). Focusing on the automation of pathol-
ogy workflows, Echle et al. (2021) provides a review of deep learning models in histopathology analysis tasks such as
detection and grading the context of important clinical applications such as the inference of molecular features, prediction
of survival and therapy response. In Srinidhi et al. (2021), different classes of machine learning methods (such as super-
vised, weakly supervised, unsupervised, and transfer learning) have been discussed from the methodological perspective.
The use of deep learning models, their limitations and future perspectives in diagnostic breast pathology have been dis-
cussed in Robertson et al. (2018). Transparency and reliability challenging problems in digital pathology have also been
discussed in (Poceviči�utė et al., 2020) through XAI techniques for deep learning methods. To the best of our knowledge,
this paper is the first survey to cover the developments in histopathology workflow from annotations to explainability and
actionability challenges. We also review the state-of-the-art learning-based and XAI techniques and briefly discuss the
evaluation of such techniques and the need to ensure their reliability on the field. This survey is meant for technical
researchers and newcomers to the field and aims to provide the requisite information for further development in the field
(see Appendix S1 for brief descriptions of the main terminologies used in the survey in the Supplementary Materials).
Figure 3 shows the main topics that have been reviewed and covered in this survey.

The adopted methodology in conducting the survey is based on three foundations: (1) the separation of historical work
before and after the era of deep learning is used; (2) the categorization of the reviewed methods is based on the application
areas in histopathology; and (3) the selection of articles to be included is based on recency and impact of the work. The
selection of the papers that have been reviewed in this survey was first carried out by search process using a combination of
keywords in histopathology image analysis (such as histopathology, deep learning, computational pathology, digital pathol-
ogy, artificial intelligence, and machine learning). We then used exclusion criteria to (a) only capture studies that considered
AI algorithms applied and contributed to the histopathology image analysis workflow, and (b) focus on the application areas
in histopathology. As a consequence, a total of 155 papers were selected and reviewed in this survey paper.

The paper is organized as follows. Section 2 goes over the process of annotating histopathological data. Section 3
reviews the development of computational pathology before and after deep learning era with a focus on deep learning
applications. Section 4 demonstrates the current/future research directions in computational pathology, including
Scarce annotations problem, the importance of uncertainty quantification and explainability in future efforts and out-
lines some factors regarding actionability and its value in the medical workflow. Section 5 discusses the most common
validation metrics that have been used for explainable techniques in computational pathology. Finally, Section 6 pro-
vides a brief summary of the paper.

2 | TRAINING DATA ANNOTATION

In order to create new ways to scan medical (histopathological slide) images to whole slides images (WSI), the quality
characteristics of WSI have to be identified. Preparation of glass slides used to generate WSI requires several steps to
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ensure good quality slides suitable for WSI examination. These include tissue procurement, fixation, processing, and
staining. The next move is to digitize versions of these slides to entire images (e.g., WSI) using high quality scanners.
These images are then examined by a pathologist. Since several clinical reports are written in free text type, standard-
ized labels have to be developed to ensure all articles are the same in appearance. Annotations made by medical practi-
tioners, such as pathologists, are image labels. These annotations are called ground truth for imagery when the imagery
is the known reference standard. Choosing an appropriate classification for any imaging tool requires a proper balance
between finding the best discriminating categories (e.g., normal vs. abnormal) and clinically relevant granularity (e.g.,
sub-type of liver lesion) (Figure 4).

To establish consistently structured labels, some labeling strategies have been developed. The commercially avail-
able HALO image analysis software (www.indicalab.com) is commonly used for producing manual annotations. For
example, manually annotating images is possible but very time consuming and impractical at times when imaging
examinations are not satisfactory alone and might require assessing follow-up pathological diagnosis, or clinical out-
comes to arrive at the ground truth, see Figure 5.

FIGURE 3 The main topics covered in this survey paper

ABDELSAMEA ET AL. 5 of 44
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Imaging data may typically be classified in a number of ways, including structured labels, image annotations, image
segmentation, and/or electronic phenotypes. The implementation of an imaging diagnosis tool based on expert interpre-
tation (on the basis of a reinterpretation of the images or a free-text reports) is the most frequently used method. Auto-
matic techniques, on the other hand, are looking more like promising solutions, although they come with their
shortcomings. Natural language processing (NLP) techniques offer more scalable solutions. A useful NLP method is
topic modeling, which utilizes free text reports to obtain gross insight over the data set. This approach characterizes
report content on the basis of key terms and estimates of the topics covered in the reports. Another class of methods in
NLP are recurrent neural networks, which can be trained on small sample reports to achieve state-of-the-art perfor-
mance in radiology (Banerjee et al., 2019; Lakhani et al., 2012). These methods have shown great promise in generating
structured labels in large quantities, allowing for the production of larger imaging data sets.

FIGURE 4 An illustration of the histopathological workflow in pathology, adopted from (Barisoni et al., 2020).

FIGURE 5 Ground truth data annotated and digital image analysis by HALO software (https://indicalab.com/halo/). Images 1, 5, and

9 represent scanned TMA images without analysis. The precise manual annotations (yellow line) were drawn to delineate invasive tumor

complexes (2, 6, and 10). Images 3, 7, and 11 illustrate HALO image analysis results to classify tumor epithelium (red) inside manual

annotations avoiding artifacts (green) such as necrotic debris, stroma and glandular lumens. HALO Cytonuclear algorithm was calibrated to

segment tumor cell nuclei (blue) inside previously classified tumor areas (4, 8, and 12).
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Recently, interactive reporting has seen an uplift in attention. The premise is that by using hyperlinked text during
the process of reporting on a study, the clinical staff would link their descriptions to certain parts of the image. This
allows for far more accessible reports with immediate evaluation of the findings. (Folio et al., 2018) used such a tech-
nique in a radiological workflow and found that this interconnection between the hyperlinked text and image annota-
tion instrumental in enhancing the value of the examination reports. They found that it did not take longer for the
radiologist to apply these hyperlinks. (Yan et al., 2018) used bookmarks made during the report writing to generate
bounding boxes for an open-source dataset. Preprocessors could also be implemented to pre-segment regions in the
image before clinical interpretation (Do et al., 2020). These annotations could then be approved by the examiner
resulting in a more improved target measurement, earlier investigation, and faster notification of incidental actionable
findings to referring technicians. These methods offer a potential for a radiological workflow that can bridge the gap
between local labeling and expert labeled data sets that can be used for training, validation, and testing of future AI
techniques. However, the question whether these methods are applicable or can be adapted to cope with the challeng-
ing problems in digital pathology is still not clear.

3 | HISTOPATHOLOGY IMAGE ANALYSIS

Unlike radiology images, histopathology images are far more complex due to the amount of information contained in
the images where several regions are present and each region has a special characterization in terms of shape, color,
texture, gradient, and/or other features that might be used as similarity or difference criteria, see Figures 6 and 7.

In the context of histopathology image analysis, one of the important initial tasks is to visually compare tissue sec-
tions of the same subject but of different biomarkers in a single frame. This is achieved by determining a transformation
that maximizes the similarity between a reference image and its associated moving image (Borovec et al., 2018; Borovec
et al., 2020; Fernandez-Gonzalez et al., 2002; Gupta et al., 2018). With the aim of improving precision and reducing

FIGURE 6 Some challenging examples of (a) normal and (b) tumor epithelial regions that have been randomly extracted from WSIs

stained by AE1AE3 (bright brown) and BerEP4 (dark brown). These sections share the same intensity profiles with different morphological

structures, for example, the nuclei of (c) the normal regions are regularly distributed while (d) they are randomly distributed in the tumor

regions.

ABDELSAMEA ET AL. 7 of 44

 19424795, 2022, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1474 by E
gyptian N

ational Sti. N
etw

ork (E
nstinet), W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



subjectivity, several different image analysis approaches have been used for analyzing digitized histopathological
images. Object mage Segmentation is the most complicated challenging problem in many histopathology image analysis
pipeline. Likewise, image/tissue classification is essential and fundamental components in any analysis pipeline, see
Figure 8. In the following subsections, we categorize recent computational pathology models based on the different
application areas and the development before and after the era of deep learning.

3.1 | Pre-deep learning

Here, we review traditional computational pathology methods before the era of deep learning. We categorize pre-deep
learning methods into: (1) Hand-designed methods, and (2) trainable methods. Unlike trainable methods, hand-
designed methods are computationally efficient and works effectively to process images with homogeneous regions or
with distinctive boundaries. They are also very easy to be adapted from application to another. Although some methods
are more robust than others, they all typically have difficulties to achieve consistent results when large regional varia-
tions and noises are presented in the images.

3.1.1 | Hand-designed methods

Energy-based methods (Chang et al., 2012) are powerful hand-designed methods that have been developed/used as a
part of analyzing different histopathological tissue regions by maximization or minimization of an energy function.
Contour-based models or “Active contours” are effective energy-based tools that have been extensively used in histopa-
thology image analysis piplines. Contour-based models can be divided mainly into parametric and geometric active con-
tours. Parametric active contours, also called “Snakes”, rely on a kind of parametrization (Sekhar et al., 2008) to
approach the contour and control its evolution. Gradient Vector Flow (GVF) (Plissiti et al., 2010) is a parametric active
contours that can be considered as an extension version of snakes, which is proposed with the aim of improving its
robustness to contour initialization and to boundary concavities. Gradient vector flow snake was applied for the seg-
mentation of nuclei and cytoplasm in blood cells stained images (Ko et al., 2011). However, the segmentation scheme is

FIGURE 7 The different components of tumor Parcellation and quantification (TuPaQ) tool in analyzing immunohistochemistry

stained image (Abdelsamea, Grineviciute, et al., 2019a). First the input WSI is uploaded into TuPaQ for automatic image processing, where

the output is two binary masks for the stroma and epithelium regions extracted using an active contour model (a). Then the epithelium

binary mask is further divided into normal and tumor regions using the TuPaQ's tumor epithelium identification (TEI) component, with the

tumor epithelium highlighted in green and the rest of the image in red (b). Finally, a Tumor Quantification (TQ) component is used to

divide the nuclei clusters into individual ones and give predicted nuclei counts in the tumor epithelium region (c).
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computationally expensive and still needs further adjustment to improve the segmentation performance, because of the
sensitivity to the contour initialization. Moreover, Geodesic Active Contours (GAC) approach (Hafiane et al., 2008) is
one of the most popular edge-based active contour approaches that has been used in histopathological object segmenta-
tion. As a way of improving the robustness to contour initialization of active contour segmentation frameworks, in
(Fatakdawala et al., 2010), an expectation-maximization (EM) algorithm to detect the centers of lymphocytes on breast
cancer histopathology images has been proposed for automatically initializing the GAC. As a consequence, the initial
contours were defined using the detected centers. However, only small image patches of size 200 � 200 pixels were con-
sidered in this study. Chan and Vese (C–V) approach (Ali & Madabhushi, 2012) is the most used region-based approach,
which can perform better than edge-based active contour approaches for objects with blurred or weak boundaries in
histopathological segmentation. In Hafiane et al. (2008), Chan and Vese has been used for gland structure segmentation
as a multiphase vector-based level set method in prostate cancer images. In (Abdelsamea, Pitiot, et al., 2019b), an active
contour method based on a fuzzy sign pressure force function, has been proposed to segment out epithelial regions from
colorectal cancer cases in a way to be robust and less sensitive to noise, see Figure 9. Our practical recommendation for
hand-designed methods is to make use of morphometric features (e.g., features extracted from segmented objects within
the images) as part of the histology image analysis pipeline. Morphometric features can describe clearly the morpholog-
ical structure of ROIs. We also noticed that shape features can accommodate the high visual variability of the ROIs and
hence can provide stain-independent solutions.

As a part of grading prostate cancer (CaP) in histopathology images, a hybrid segmentation framework that com-
bines color gradient geodesic active contours (CGAC) and hierarchical normalized cuts (HNCut) has been proposed (Xu
et al., 2011). It claimed to improve the robustness to the contour initialization which gave an initial guess of the location
of the region of interests (e.g., a gland, which is composed of a central lumen area surrounding epithelial cytoplasm
with a ring of epithelial nuclei defines its outer boundary). The HNCut, which is mainly inspired by both mean shift

FIGURE 8 A few examples of segmentation and classification of tissue micro arrays (TMAs) cores of tumor (first two columns) and

normal (last two columns) colon tissues stained by CD3 (first row), with ground truth images (second row), and results from a previously

developed method of (Abdelsamea, Grineviciute, et al., 2019a) to differentiate between epithelial regions (highlighted in pink) stromal

regions (third row). The method is working by first segmenting the epithelium using an approach called fuzzy signed pressure force

approach (FSPF), based on fuzzy c-means method and level sets (or active contours) where fuzzy c-means was used to control the evolution

of the contour in a way to accuratly extracting the epithelium based on color information. Then, the method calculates a set of novel

morphometric features based on the Axis of least inertia (ALI) and appearance features based on the intensity profile of the epithelium,

which are invariant to staining. Finally, the extracted features were used to distinguish between tumor and normal epithelium using two Self

Organizing Maps (SOMs) that have been previously trained on manually labeled images.
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clustering and normalized cuts, acts as an initial contour to the CGAC segmentation framework. The main aim to
develop such a hybrid approach is to improve: the ability to deal with multiple regions; improve the computational
time; and decrease the user-intervention.

In spite of the fact that energy-based models, especially the non-parametric active contours, show superiority in per-
formance when dealing with complex distribution, they may fail due to inaccurate initialization. Similarly, boundary-
based active contour models have the ability to find accurately the region of interest by incorporating local information
around the object boundaries into its edge-detection energy functional. However, they are not robust to the contour ini-
tialization and fail to extract multiple objects due to the parametric representation of the contour, which does not allow
for the topological changes (e.g., merging and splitting) to be handled implicitly during the evolution.

3.1.2 | Trainable methods

Trainable methods or classical/statistical machine learning methods that have been previously proposed for histopa-
thology image analysis can be classified into two categories, namely, generative and discriminative methods, which
mainly consist of an off-line training phase and an on-line deployment phase. The off-line training phase can be sum-
marized in the following three steps: (a) image pre-processing, which aims to attenuate the visual appearance variability
in the image including noise, artifacts, and intensity in-homogeneity. Additionally, ROI extraction is also often required;
(b) feature extraction/representation to project the original data space into feature space (i.e., feature descriptors),
which better captures the local characteristic of the data; and (c) based on a training dataset, training a classifier
(or building a probabilistic model) to best discriminate (or describe) the features extracted from different segmentation
classes. In the on-line phase, the same image pre-processing and feature extraction methods are applied to the unseen
image, followed by pixel/region-level prediction using the trained classifier (or learnt probabilistic model).

Generative approaches (Sirinukunwattana et al., 2015) can be used as a segmentation method by building a probabi-
listic model that learns the probability of each pixel to belong to a specific class (e.g., foreground/background). This is
by finding the best estimate of its parameters for some pre-specified parametric form of a probability distribution.
Examples of generative approaches include fuzzy c-means (Belhassen & Zaidi, 2010), Bayesian inference
(Sirinukunwattana et al., 2015), and Gaussian Mixture approaches (Khan et al., 2012). In (Naik et al., 2008), nuclear

FIGURE 9 Segmentation results obtained by fuzzy sign pressure force function (Abdelsamea, Pitiot, et al., 2019b) on colorectal cancer

sections: First row shows original images with the initial contours (in red) and segmented epithelial regions (in yellow) while second row

shows the associated binary masks.
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and glandular segmentation was achieved by integrating a Bayesian classifier driven by image color, texture, and mor-
phological features for automated grading of both prostate cancer and breast cancer, and distinguishing between can-
cerous and benign breast histology specimens. Also, a Bayesian voting-based approach has been presented in Hiary
et al. (2013), for the removal of stromal cells in histology images by utilizing cell texture and color. In Hafiane et al.
(2008), the results from fuzzy c-means clustering were employed to initialize the active contour approach for
segmenting the nuclei on prostate histopathology. However, such kinds of solutions are not efficient enough especially
when dealing with large images.

Generative-based approaches are usually computationally efficient. However, with a small training dataset, the esti-
mated parametric approach may not represent the true probability distribution, which results in an inaccurate prediction.

Discriminative approaches (Katouzian et al., 2012; Naik et al., 2008; Nguyen et al., 2010) have been proposed mainly
with the aim of ignoring probability, and the main focus was to construct an accurate decision boundary directly. This
approach is often extremely successful because of its ability to discover the underline distribution of the data, especially
when no parametric probabilistic approach of the data exists. By using the extracted image features (mentioned above)
as input, a model can be trained to learn the decision boundaries that best separate different classes. Such techniques
include K-nearest neighbor (Lee et al., 2010), Self Organizing Maps (SOMs) (Katouzian et al., 2012; Sertel et al., 2009)
and random forest (Sommer et al., 2012) Support Vector Machines (Naik et al., 2008). A three-phase framework has
been proposed in (Nguyen et al., 2010) to segment the whole structure of a gland for Gleason grading of prostate tissue
histopathology images. The framework is composed of three phases, they are: (1) pixel-based classification, (2) gland
exterior boundary extraction, and (3) the whole gland construction. In the pixel-based classification phase, each pixel
has been classified into five different classes (e.g., stroma, lumen, and nontissue area, epithelial nuclei, epithelial cyto-
plasm and mucin). First, the La * b * color components have been extracted, where the L channel for illumination and
both a * and b * components for the color-opponent dimensions. Then, around 200 samples from each class was used as
training samples to feed a k-nearest Neighbor classifier in order to classify each pixel accordingly. A developed segmen-
tation algorithm based on Hierarchical Self-organizing maps (HSOM) (Datar et al., 2008) has been proposed with the
aim of segmenting tissue images into four classes: glands, epithelium, stroma, and nuclei. Each pixel has been represen-
ted by a feature vector describing the texture and color representation of the pixel to feed the trained HSOM as a classi-
fication model. Similarly, aiming to segment H&E stained cervical tissue images into regions of squamous epithelium, a
patch-based hybrid method has been proposed in (Wang et al., 2007). The method relied on support vector machine
(SVM) to classify patches according to their texture information at a low resolution and then refine the obtained seg-
mentation results, at a higher resolution and in a similar way, as a post-processing phase. It has been shown that the
method is computationally not efficient and an over-segmentation problem has been reported.

Overall, the above mentioned approaches share the same limitations as they result in objects with discontinuities
and ill-defined boundaries as pixel/patch-based methods based on some statistical assumptions about the appearance
distribution of the object(s) to be processed. Hence a post-processing phase is usually required.

3.2 | Postdeep learning

In this section, we review the recent deep learning methods that have been previously proposed in histopathology
image analysis. A summary of some common deep learning algorithms, along with information about the image
datasets and validation, is reported in Tables 1 and 2. Deep learning approaches (e.g., convolutional neural networks
[CNNs], see Figure S1 in the Supplementary Materials) have been successfully applied to several tasks, in digital pathol-
ogy, including image/object segmentation and classification (Chen et al., 2017; Kainz et al., 2015; Malon et al., 2008;
Sirinukunwattana et al., 2016). One of the advantages is that a hierarchical feature descriptor, which captures different
levels of details, can be automatically learnt in the training process. With a deep learning architecture and a large num-
ber of training images, the feature descriptors can be automatically learnt. In this section, we review the different histo-
pathology applications with deep learning as the main computational pathology models.

3.2.1 | Tissue classification

Recent techniques have been proposed to improve the classification performance of histopathological image sections.
For instance, Nazeri et al. (2018) introduced a two-stage CNN, where the first stage is a patch-wise network that is
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TABLE 1 A summary of some classification approaches in digital pathology

Method(s) Tissue type References
Application/
image type Validation Dataset info

Two-stage CNN Nuclei Nazeri et al.
(2018)

Breast cancer Partition data set into
training set and test
set for classification
accuracies and the
area under the ROC
curve

BACH dataset of 400 breast
histopathology images of
size 2048 � 1536 pixels
with a pixel resolution of
0.42 μ � 0.42 μ

Context-aware
learning using
ResNet-50 CNN

Nuclei Awan et al.
(2018)

Breast cancer Training/test sets
partition for
classification
accuracies

BACH dataset

Context-aware model
using Representation
Aggregation (RA-
CNN)

Nuclei Shaban,
et al.
(2020)

Colorectal
cancer

3-fold cross validation
for classification
accuracy

139 images (normal, low
grade, and high grade)
with an average size of
4548 � 7520 pixels
obtained at �20
magnification

Cell-graph approach Nuclei Zhou,
Graham,
et al.
(2019a)

Colorectal
cancer

3-fold cross validation
for patch and image
classification
accuracy

139 images with an average
size of 4548 � 7520 pixels
obtained at �20
magnification

Deep spatial fusion
CNN (DSF-CNN)

Nuclei Huang &
Chung
(2018)

Breast cancer 10-fold cross validation
for classification
accuracy

(1) BACH dataset, (2) BIC
dataset of 286 high
resolution images of size
2048 � 1536 pixels, split
into 249 for training and 36
for testing

Weakly supervised
feature selection and
aggregation

Carcinoma Wang et al.
(2018)

Lung cancer Classification accuracy 871 histopathology WSIs
with lung carcinomas and
68 WSIs of healthy subjects
(collected at Sun Yat-Sen
University Cancer Centre)

Adaptive Sampling
method

Nuclei Cruz-Roa
et al.
(2018)

Breast cancer Detection and
classification
accuracy—AUC

The Cancer Genome Atlas—
National Cancer Institute

Multi-resolution CNN Adenocarcinoma Muhammad
et al.
(2018)

Lung cancer Accuracy Lung adenocarcinoma
images as a part of the
MICCAI 2017 CPM
Challenge, with a total
number of 10 images of
H&E lung adenocarcinoma
sample images

EMS-Net Nuclei Yang et al.
(2019)

Breast cancer Precision, recall,
accuracy, and AUC
using 5-fold cross-
validation

BACH and BreakHis datasets

Hybrid CNN + LSTM Nuclei Yan et al.
(2020)

Breast cancer Sensitivity and
accuracy

Breast cancer dataset of 3771
high-resolution
histopathology images

Ensemble of DL
networks for
classification of
Biobsy images

Nuclei Kassani
et al.
(2019)

Breast cancer Accuracy, precision,
recall, and F1-score

BreakHis, bio-imaging 2015
challenge dataset, and
ICIAR 2018 dataset
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responsible for extracting the most salient features from image patches while the second stage is an image-wise network
that can produce image-level class labels. The work introduced by Awan et al. (2018) proposed a context-aware two-
stage approach, which consists of two main steps: (1) patch-based deep CNN ResNet-50 which extracts prominent fea-
tures from image patches, (2) perform image-based classification using the features extracted from overlapped patches
with a separate classifier (SVM). They designed their model to capture contextual information between different image
patches. Ehteshami Bejnordi et al. (2017) presented a context-aware stacked CNN architecture to classify breast whole
slide images. Their model comprises of two stages: first, they trained a CNN to memorize the cellular level features from
image patches; and second, they stacked a fully convolutional network on the top of this to permit for joining of global
inter-dependency of structures to encourage predictions in nearby regions. A model called Decompose, Transfer, and
Compose (DeTraC) (Abbas et al., 2020) has been designed to cope with data irregularity in medical image datasets and
was used to classify colorectal cancer sections (see Figure 10). Here, we realized that working on the decomposed
dataset or the decomposed classes of a dataset (instead of the original dataset/classes) can provide the deep learning

TABLE 1 (Continued)

Method(s) Tissue type References
Application/
image type Validation Dataset info

Feature concatenation
and ensemble of
deep CNNs

Nuclei Nguyen
et al.
(2019)

Cervical
cancer &
multi-
organ
cancer

Accuracy (1) 2D Hela dataset, (2) PAP
smear dataset, and (3) Hep
2 cell image dataset

DenseNet121-AnoGAN Nuclei Man et al.
(2020)

Breast cancer 5-fold cross validation
for classification
accuracy, precision,
recall, F1-score, and
confusion matrix

BreaKHis dataset of 7909
biopsy images with a
dimension of 700 � 460
using four magnification
factors

DL-based classification
using global labels

Carcinoma Sun, Xu,
et al.
(2020a)

Liver cancer Classification
accuracy, precision,
recall, F1-score, and
ROC curve

Liver cancer WSIs dataset
downloaded from The
Cancer Genome Atlas
(TCGA). A total of 462
liver tissue slide images,
containing 79 normal liver
histopathological images
and 383 liver
hepatocellular carcinoma
images

HACT-Net Nuclei Pati et al.
(2020)

Breast cancer Weighted F1-scores
across four test folds.

BReAst Carcinoma
Subtyping (BRACS) which
consists of 2080 ROIs
acquired from 106 H&E
stained breast carcinoma
whole-slide-images (WSI)

DSNet Nuclei Xiang et al.
(2022)

Breast cancer
& Lung
cancer

Classification
accuracy, precision,
recall, F1- score,
ROC curve, and
Area Under ROC
(AUC)

(1) Camelyon16, (2) The
Cancer Genome Atlas
Lung Squamous Cell
Carcinoma project (TCGA-
LUSC), and (3) Early
Breast Cancer Core-Needle
Biopsy WSI (BCNB)

HistoGAN Nuclei Xue et al.
(2021)

Cervical
cancer &
metastatic
cancer

Classification
accuracy, AUC,
sensitivity,
specificity

(1) Cervical histopathology
dataset, and (2) lymph
node histopathology
dataset from breast
metastatic cancer.
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TABLE 2 A summary of some segmentation approaches in digital pathology

Method(s)
Tissue
type References

Application/
image type Validation Dataset info

Contour-aware
Informative
Aggregation
method

Nuclei Zhou, Onder,
et al. (2019b)

Multi-organ
cancer

Average Jaccard Index and
F1-score

MoNuSeg dataset of 2018
MICCAI challenge of 30
images (with 1000 � 1000
pixels) by The Cancer
Genomic Atlas (TCGA).
The dataset consists of
breast, prostate, liver,
kidney, colon, bladder, and
stomach containing both
benign and malignant cases

Two-stage
learning
method with
DLA

Nuclei Kang et al. (2019) Multi-organ
cancer

Aggregated Jaccard Index
(AJI), precision, recall and
F1 score

(1) TCGA dataset of 30
Images with 1000 � 1000
pixels and more than 21,000
nuclei, and (2) TNBC
dataset of 50 H&E stained
images with 512 � 512
pixels and 4022 nuclei

Self-supervised
approach using
tile
magnification
level

Nuclei Sahasrabudhe
et al. (2020)

Multi-organ
cancer

AJI, Average Hausdorff
Distance (AHD), and
Average Dice Coefficient
(ADC)

MoNuSeg dataset.

Mask-RCNN as
backbone with
SPCN and
watershed
method

Glioma Xie et al. (2019) Brain cancer Dice score Dataset of 15,668 � 583 pixels
annotated H&E stain
images extracted from a set
of Glioblastoma and Lower
Grade Glioma images. The
dataset set was presented as
a part of MICCAI 2017
segmentation challenge
(MSC) and 2018 Data
Science Bowl (DSB)

Residual block +

attention
decoder

Glioma Lal et al. (2021) Liver
cancer

F1-score and Jaccard index
(JI)

KMC liver dataset of 80 H&E
stained liver histopathology
images collected at KMC
Mangalore, MAHE,
Manipal, India, and Kumar
dataset (multi-organ nuclei
segmentation) collected by
the Indian Institute of
Technology, Guwahati

Deep Learning
model +
concave point
detection

Nuclei Wan et al. (2020) Multi-organ
cancer

Dice similarity coefficient
(DSC), mean accuracy
(ACC mean), pixel accuracy
(ACC pixel), and mean
intersection over union
(IoU)

(1) TNBC dataset, (2) cancer
genome atlas (TCGA)
archive, and (3) two other
datasets acquired from the
China Japanese Friendship
Hospital, Beijing

Deep Learning
model +
Contour-aware

Gland &
Nuclei

Chen et al. (2017) colorectal
and breast
cancer

F1 score, object-level Dice
index, and Hausdorff
distance

(1) Dataset for Gland
Segmentation (GlaS)
Challenge dataset and (2)
Nuclei segmentation
challenge

Hover-Net Nuclei Ensemble Dice and AJI
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TABLE 2 (Continued)

Method(s)
Tissue
type References

Application/
image type Validation Dataset info

Graham et al.
(2019)

colorectal
cancer

Colorectal nuclear
segmentation and
phenotypes (CoN-SeP)
dataset, 6 consisting of 41
H&E stained images

Multi-scale
Adaptive
Nuclei Analysis
(MANA)

Nuclei Salvi & Molinari
(2018)

Multi-organ
cancer

Validation using recall,
precision and F1-score

H&E stained images from six
different organ tissues,
where images have been
collected/digitized at the
Molinette Città della Salute
University hospital (Torino,
Italy)

RIC-Unet
(residual-
inception-
channel
attention-Unet)

Nuclei Zeng et al. (2019) Multi-organ
cancer

Dice, F1-score, and AJI TCGA (The Cancer Genomic
Atlas) dataset

SAMS-Net Nuclei Graham &
Rajpoot (2018)

Multi-organ
cancer

Traditional an ensemble Dice
coefficients

The dataset was supplied as
part of the computational
precision medicine (CPM)
nuclei segmentation
challenge (at the MICCAI
2017)

Nucleus-
boundary
model using
FCN

Nuclei Cui et al. (2018) Multi-organ
cancer &
Breast
Cancer

Precision, recall, F1-score,
false detection rate (FDR),
missing detection rate
(MDR), over segmentation
rate (OSR), and under-
segmentation rate (USR)

(1) Multiple organ H&E-
stained images. (2) Breast
Cancer histopathology
image

super-pixels
using linear
iterative
clustering
algorithm

Cervical Sornapudi et al.
(2018)

Cervical
Cancer

Validation using precision,
recall, accuracy, dice
similarity coefficient (DSC),
F1-score, and JI

133 digitized images of
cervical cancer
histopathology images

SC-CNN Nuclei Sirinukunwattana
et al. (2016)

Colorectal
cancer

Precision, Recall, F1-score,
and Median Distance with
2-fold cross-validation

100 H&E stained
histopathology images of
500 � 500 pixels

Multi-layer
pseudo-
supervision

Nuclei Han et al. (2022) Lung cancer
and Breast
cancer

FwIoU, MIoU, and ACC 54 lung cancer WSIs with four
tissue categories labeled
and 151 H&E stained whole
slide images of breast
cancer with 5 annotated
classes

A dense dual-task
network for
tumor-
infiltrating
lymphocyte
detection and
segmentation

Nuclei Zhang et al. (2022) Breast
Cancer

Validation using precision,
recall, accuracy, dice
similarity coefficient (DSC),
F1-score, and AJI

840 images 100 � 100 pixels
and 151600 � 1600 images

Dual
Segmentation

Nuclei Razavi et al.
(2022)

Breast
Cancer

Dice similarity coefficient
(DSC) and F1-score

(Continues)
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models (e.g., ImageNet pre-trained models) with the capability of learning the boundaries between the classes and can
help in improving the transferability of features and find more specialized features. Consequently, the authors' reflec-
tion on DeTraC is that the method can be adopted in any deep learning architecture (as a generic approach) to cope
with complex datasets, especially with the limited availability of training images. A two-stacked CNNs approach was
used in (Shaban et al., 2020). The method can learn the local representation of histopathology image and encodes it to a
high dimensional features, then the learned features are aggregated considering their spatial pattern using a
second CNN.

A deep fusion network to capture the spatial relationship between high resolution histopathology image patches
was also proposed in (Huang & Chung, 2018). First, residual network was adapted to learn visual features from
cellular-level to large tissue organization. Second, a deep fusion network was developed, which modeled the inconsis-
tent construction of distinctive features over patches and learned to rectify the predictions of residual network. Kohl
et al. (2018) studied different approaches for transfer learning and classification of microscopy images using patch-based
mechanism. The work conducted in (Yan et al., 2020) proposed a hybrid convolutional and recurrent neural network
for the classification of breast cancer histopathological images. Their method introduced the short-term and long-term
spatial correlations between image patches using Bidirectional Long Short-Term Memory (LSTM) network. The model
starts by capturing feature representations from image patches of histopathology image, then they fed the extracted fea-
tures to bidirectional LSTM for generating the spatial correlations between feature representations. Koné and Boulmane
(2018) proposed a hierarchical system of CNN which automatically classifies histopathological patches into several clas-
ses. A cell-graph approach based on CNN was proposed in (Zhou, Graham, et al., 2019a), which transforms each histo-
pathology image to a graph, where nodes are represented by nuclei within the original image and cellular interactions
are presented as edges between these nodes based on node likeness. The network utilizes nuclei local features and spa-
tial location of nodes to boost the performance of their work.

DenseNet121-AnoGAN (Man et al., 2020) has been proposed for classification of breast histology images into two
classes: benign and malignant. The proposed method is divided into two parts: screening of mislabeled patches with
unsupervised anomaly detection using generative adversarial networks (AnoGAN) and extracting multi-layered fea-
tures from discriminative patches using densely connected convolutional networks (DenseNet). Another work proposed
by Hirra et al. (2021) developed a patch-based deep learning method called Pa-DBN-BC to detect and categorize breast

TABLE 2 (Continued)

Method(s)
Tissue
type References

Application/
image type Validation Dataset info

of Mitoses and
Nuclei Using
Conditional
GANs

TUPAC16, ICPR12, and
ICPR14 with 256 � 256
patches

FIGURE 10 The architecture of decompose, transfer, and compose (DeTraC) model. DeTraC has three stages: In the first stage, a class-

decomposition method is trained to divide the classes of the original dataset into subclasses, resulting in a new dataset (decomposed dataset).

The class decomposition is used to simplify the complexity of the local structure of the image dataset. In the second stage, a pre-trained

network is used to classify the decomposed dataset. Finally, the final classification of the original dataset is refined using error-correction

criteria applied to a Softmax layer.
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cancer histopathology images. An unsupervised pre-training and supervised fine-tuning phase is used to extract fea-
tures. The network extracts features from image patches automatically. Patches from histopathological images are then
classified using logistic regression. The model takes the features extracted from the patches as input, and the outcome
is presented as a probability distribution of two probability values to differentiate between positive sample (cancer) or
negative sample (no cancer). HistoGAN has been proposed by (Xue et al., 2021) to improve classification of histopathol-
ogy images. It's based on conditional GAN model for generating realistic histopathology image patches depending on
class labels. They developed a synthetic augmentation approach which selectively adds HistoGAN-produced synthetic
image patches. The framework ensures the quality of synthetic augmentation by picking synthetic images depending
on the confidence of their assigned labels and their feature closeness to actual labeled images. They demonstrated that
using HistoGAN produced images with selective augmentation improves classification performance significantly.

A transfer learning based approach has been proposed for breast cancer classification by Ahmad et al. (2021). The
approach uses patch selection technique to classify histopathology images using transfer learning. Their model works
on extracting patches from whole-slide images and fed them into CNN for feature extraction. Discriminative patches
are then selected based on the extracted features and then, using pre-trained Efficient-Net, features are extracted which
are utilized to train SVM classifier. Similar work has been introduced by Li, Wu, and Wu (2019c) which proposes model
for classification of breast histopathology images using (1) patches screening method based on clustering algorithm
which aggregates image patches based on their phenotypes and (2) CNN to pick more discriminative patches. Roy et al.
(2019) developed a patch-based classifier (PBC) that uses CNN to classify histological breast images. There are two
modes of operation for the proposed system: one patch in one decision (OPOD) and all patches in one decision
(APOD). The suggested PBC uses OPOD mode to predict the patch's class label. If the class label for all extracted pat-
ches is the same as the image's class label, the result is deemed accurate classification. In another option, APOD, the
class label of each extracted patch is extracted as in OPOD, and the image's class label is decided using a majority vote
technique. Another work (Sun, Xu, et al., 2020a) proposed a deep learning method using only global labels for classifi-
cation of liver histopathology images. Due to complex features and limited annotated training samples for liver histopa-
thology images, patch-level features are extracted from the images and then used by transfer learning to be combined
with multiple-instance learning to generate image-level features for final classification.

Chennamsetty et al. (2018) introduced three CNNs trained on different pre-processing regimes to form an ensemble.
The purpose of this work was to prove that there is no single architecture nor a pre-processing regime that can provide
a better performance. Yang et al. (2019) proposed a CNN ensemble model called Ensemble of Multi-Scale Network
(EMS-Net) utilized to classify hematoxylin–eosin stained breast histopathological images. EMS-Net allows to extract
features using multiple pre-trained CNN models at multi-scale and select the optimal subset of the fine-tuned deep
models. Likewise, the work conducted in (Dhivya & Vasuki, 2019) presents an approach for identification and classifi-
cation of tumor in breast histopathology image based on ensemble classification of pre-trained deep CNN architectures
(LeNet, AlexNet and VGGNet-16). The construction of classifier model is done by fine-tuning the pre-trained weights of
these models separately. Deciding the class label of the full model is done by applying majority voting over the class
probabilities obtained from the three pre-trained models. H. Kassani et al. (2019) introduced an ensemble of deep learn-
ing models for automatic binary classification of breast histopathology images. The proposed model has been con-
structed based on three pre-trained CNNs (VGG19, MobileNet, DenseNet). The ensemble model was used as feature
extractor and the extracted features are then fed into a multi-layer preceptron classifier to carry out the classification
task. Due to the tremendous image sizes and the limited availability of training examples, Makarchuk et al. (2018)
adapted a CNN model to classify image patches to increase effective sample size and apply ensembling to build predic-
tion for original images. Both ResNet and DenseNet were used to extract features and XGBoost was used for the final
classification. Nguyen et al. (2019) proposed a feature concatenation and ensemble method to combine several CNNs
with different depths and structures in order to improve the classification accuracy of biomedical image classification.
The proposed model consists of three base models (Inception-v3, ResNet152 and Inception-ResNet-v2) that are pre-
trained using transfer learning and a fourth model that works as multi-feature-extractors model. This feature descriptor
takes the three feature maps extracted from the three base models and concatenate them into a longer feature vector.
An ensemble learning technique is used to ensemble the four feature maps (three from the base models and one from
the multi feature descriptor). The work presented in (Vang et al., 2018) provides a deep learning model that performs
patch level classification using Inception V3. To achieve the image level prediction, the patch level predictions extracted
from the previous stage (Inception V3) are then passed to an ensemble fusion architecture comprising majority voting,
gradient boosting machine (GBM), and logistic regression. Then to discover the dominating structural patterns among
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normal image patches, a fully convolutional auto-encoder is utilized. One-class support vector machine and one-layer
neural network are used to recognize and evaluate patches that do not share the features of the regular population.

To enhance the structural description of the tissue, hierarchical cell-to-tissue-graph (HACT) representation has been
proposed by Pati et al. (2020). Their approach consists of two types of graphs. First, a low-level cell-graph which cap-
tures cell morphology and interactions. Second, a high-level tissue-graph, which captures morphological characteristics
and spatial distribution of tissue sections, and cells-to-tissue hierarchies, which incorporate the relative spatial patterns
of cells in reference to tissue distribution. Additionally, a hierarchical graph neural network (HACT-Net) is introduced
to map the HACT presentations into histological breast cancer sub-types. Another work (Shen & Ke, 2020) introduced
a Deformable Conditional Random Field (DCRF) model to learn the offsets and weights of nearby patches in a spatially
adaptable way from whole-slide images. Also, instead of using overlapped patches, they used adaptive modified offsets
in a WSI to locate patches with more robust feature representations.

An interactive whole-slide image diagnostic system has been developed by Chen et al. (2020) for thyroid frozen sec-
tions based on the doubtful areas chosen by pathologists. Their system depends on generating feature patterns for
doubtful regions through obtaining and fusing patch features using deep neural networks. The feature representations
are then used to assess four classifiers and three supervised hashing algorithms for region classification and retrieval.
The work conducted by Li, Li, Sisk, et al. (2021c) proposed a multi-resolution multiple instance learning (MIL) model
for fine-grained grade prediction that uses important feature map representations to detect doubtful image regions.
Their model can be trained end-to-end using only slide-level labels, rather than depending on region- or pixel-level
annotations. The model is based on the WSI dataset of large-scale prostate biopsy. Another work developed by Kanavati
et al. (2021) proposed a deep learning model for classifying transbronchial lung biopsy (TBLB) WSIs into one of the
lung carcinoma sub-types: adenocarcinoma (ADC), squamous cell carcinoma (SCC), small-cell lung cancer (SCLC),
and non-neoplastic. Their model is composed of a CNN and an RNN for the task of obtaining patch predictions and
aggregating patch predictions into one single WSI classification, respectively.

Because most MIL approaches are based on the independent and identical distribution assumptions, they ignore the
connection between distinct instances. The work introduced by Shao et al. (2021) presented a new framework termed
correlated MIL and offered a proof for convergence to overcome the issue. They created a Transformer-based MIL
(TransMIL) based on this framework, which looked at both morphological and contextual information. With outstand-
ing visualization and interpretability, the suggested TransMIL can cope with unbalanced/balanced and binary/multiple
categorization. Another work introduced by Chen, Liang, et al. (2021b) developed a broad framework that uses unit sto-
chastic selection and attention fusion to automatically diagnose various forms of WSIs. A unit on a histopathology slide
might be a patch or a cell on a cytopathology slide. Their approach begins with training a unit-level CNN to fulfill two
objectives: creating feature extractors for the units and calculating the non-benign probability of each unit. Then, based
on CNN's observations, they utilize a stochastic selection technique to select a small segment of units which are consid-
ered to be non-benign, termed to as Units Of Interest (UOI). The attention mechanism is then used to merge the UOI
representations into a fixed-length description for the WSI's diagnostic.

Li, Chen, Huang, et al. (2021b) argue that further improvement can be achieved by combining pixel-level and
image-level annotation. This is problematic in computational pathology because the high resolution of WSIs makes
end-to-end classification model training challenging. To deal with this, they developed a hybrid supervised learning sys-
tem for pathology high resolution images with enough image-level coarse annotations and a few pixel-level fine labels.
When used for training patch model, this approach can improve produced pixel-level pseudo labels with the help of
coarse image-level labels. Another work (Sharma et al., 2021) introduced Cluster-to-Conquer (C2C), an end-to-end
architecture that divides a WSI's patches into k-groups, picks k’ patches from each grouping for training, and employs
an adaptive attention mechanism to give final slide prediction. They have shown that splitting a WSI into clusters
improves model training by exposing it to a variety of discriminative characteristics retrieved from the patches. Due to
the difficulty in attaining good classification performance with minimal labeled samples, a deep transferable semi-
supervised domain adaptation model (HisNet-SSDA) has been suggested by Wang et al. (2022) for classification of histo-
pathology WSIs. Their approach depends on the knowledge transferred from a highly labeled source domain to a par-
tially labeled target domain via semi-supervised domain adaptation. First, a pre-trained network called HisNet is
utilized to extract high-level features from randomly chosen patches in the source and target domains. The characteris-
tics of the two domains are then matched using a multiple weighted loss functions criteria with a new manifold regular-
ization term in semi-supervised domain adaptation. Finally, the estimated probabilities of sampled patches are
combined for producing the final image-level classification.
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3.2.2 | Tissue-level segmentation

Deep Contour-aware Network (DCAN) (Chen et al., 2017) was introduced to address different issues (such as large
appearance variation, existence of strong mimics, and serious degeneration of histopathological structures) during
automated detection and segmentation. DCAN is a unified multi-task learning framework that takes advantages of
multi-level contextual features and auxiliary supervision to alleviate the problem of vanishing gradient. DCAN has
two branches that are working simultaneously where one branch is used for object segmentation while the other is
used to achieve contour detection. Each branch is based on different weight parameters during the up-sampling
process. Form each branch, a probability map is generated which leads to output of either segmentation of objects
or contour information.

As a recent introduction to computer vision, Vision Transformers (Dosovitskiy et al., 2020) have presented a tech-
nique that utilizes self-attention to overcome limitations presented by inductive biases inherit in convolutional net-
works in an efficient way, see Figure S2 in the Supplementary Materials. The spatial limitations imposed by
convolutions are not present in the visual representations produced from self-attention components. Instead, they can
learn the most appropriate inductive biases based on the task and the stage of the pipeline at which the layer is located.
Efforts have been made to use CNNs' localization and transformers' global awareness, resulting in hybrid models.
TransUnet (Chen, Lu, et al., 2021a; Lin et al., 2022) is a proposed model that enhances the locality of convolution opera-
tions by including a transformer that operates on the feature maps created by an encoding convolutional network. The
hybrid CNN-Transformer architecture preserves the advantages of both transformers and CNNs by exploiting the fea-
ture rich feature maps of a CNN and the global context encoded by a transformer. This enables better performance in
medical image segmentation. State-of-the-art performance was attained by hybrid models, often at the expense of high
model complexity and, in most cases, lengthier training times.

Figure 11 shows results of some Hybrid and CNN models on the Gland Segmentation dataset GLAS. DeepLab and
Unet are two convolutional networks based on the Unet architecture. DeepLap utilizes atrous convolution with
upsampled filters to extract dense feature maps and capture long-range context. These results illustrate the performance
of different segmentation approaches in histology and demonstrate the feasibility of deep learning applications on histo-
logical imaging. Among the different state-of-the-art deep learning architectures, the authors realize that transformer-
based models can help in dealing with the missing of contextual information in histopathology images, due to their
ability in encoding global information. Also, it might not be enough to only rely on global information extracted from
transformer-based models but there might be a need for other kinds of information (including local information).

Another application field of these models is epithelium tissue segmentation. PESO (Bulten et al., 2019) introduced a
novel deep learning algorithm for segmenting epithelial tissue in H&E stained prostatectomy slides using

FIGURE 11 Examples of the original input image, GT (ground truth), and the results of different segmentation techniques applied to

GLAS dataset
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immunohistochemistry (IHC) as the reference standard. In comparison to human outlining on H&E slides, they
employed IHC to generate a precise and objective ground truth, particularly in regions with high-grade PCa. To high-
light epithelial features, 102 tissue slices were treated with H&E and then restained with P63 and CK8/18 IHC markers.
Following that, each couple was co-registered. A U-Net was trained to segregate epithelial structures in IHC using a
subset of preprocessed IHC slides. Second, this network was applied to the remaining slides to produce a reference stan-
dard for training a second U-Net on H&E. Their method segmented whole glands as well as individual tumor epithelial
cells with high accuracy.

Iizuka et al. (2020) also used convolutional neural networks (CNNs) and recurrent neural networks (RNNs) trained
using biopsy histopathology whole-slide images (WSIs) of the stomach and colon. Their models learned to differentiate
between adenocarcinoma, adenoma, and non-neoplastic epithelial tumors. Extracted tiles were manually classified into
one of three types then features are extracted from the convlutional-based inception-v3 backbone to train an RNN net-
work. Their models attained area under the curves (AUCs) of up to 0.97 and 0.99 for gastric adenocarcinoma and ade-
noma, respectively, and 0.96 and 0.99 for colonic adenocarcinoma and adenoma, respectively, on three independent
test sets. These application results demonstrate the models' generalizability and their great potential for use in a realistic
histopathological diagnostic workflow system.

3.2.3 | Cellular-level segmentation

Detection techniques using deep learning models have demonstrated great results in the histopathology image analysis.
With the aim of automatic detection of immune cell in immunohistochemistry images, CNN (Chen &
Chefdhotel, 2014) has been trained on the immune cell marker image channel in order to produce the probability map
of the immune cell locations. First, the RGB image was unmixed in order to produce the immune cell markers compo-
nents using sparse color unmixing. Second, the immune cell markers images are applied as input to the CNN for learn-
ing each pixel into positive (i.e., immune cell) or negative (i.e., the rest). In (Sirinukunwattana et al., 2016), a Spatially
Constrained Convolutional Neural Network (SC-CNN) has been proposed with the aim of detecting nuclei in histopa-
thology images. The main contribution of the SC-CNN approach is the integration of the topological domain
(i.e., spatial domain) in the CNN architecture. This is by training a spatially constrained regression approach, via a
parameter estimation and a spatial constraints layers, to predict the center location of each nucleus in the input patch
and provide a probability map of the given locations. The work introduced by Zeng et al. (2019) proposed a U-net net-
work called RIC-U-net (residual-inception-channel attention-U-net) for nuclei segmentation. RIC-U-net was inspired
by residual blocks, multi-scale and channel attention to provide more accurate segmentation results. SAMS-Net
(Graham & Rajpoot, 2018) is proposed to tackle the trouble in segmenting nuclei with coarse chromatin appearance
which leads into a low Hematoxylin intensity. SAMS-Net is a stain-aware multi-scale convolutional neural networks
that provides prominent weight to misclassification inside the nucleus with a small Hematoxylin intensity and to mis-
classification outside the nucleus with a high Hematoxylin intensity. This happens by introducing a number of pre-
defined weight maps that are aware of the intensity of Hematoxylin within each image. Cui et al. (2018) presented an
automatic end-to-end deep neural network model for nuclei segmentation. They introduced a nucleus-boundary model
to anticipate nuclei and their boundaries at the same time using FCN. The model outputs two maps, one for nuclei and
the other for boundary information.

The work introduced in (Wan et al., 2020) developed an image-based method for nuclei segmentation using a deep
learning model encoded with a concave point detection algorithm. They used atrous spatial pyramid pooling U-Net
(ASPPU-Net) to generate multi-scale nuclei features and contextual information. This is done without decreasing the
spatial resolution of feature maps. The use of accelerate concave point detection technique helps in an effective and
accurate segmentation even for highly overlapped nuclei. Lal et al. (2021) presented NucleiSegNet for nuclei segmenta-
tion of H&E stained liver cancer histopathology images. Their model consists of three blocks. First, a residual block to
extract efficient semantic maps. Second, bottleneck block and finally, attention decoder block which utilizes attention
mechanism for object localization and improves the performance of their model by minimizing false positives.

Xie et al. (2019) introduced a deep learning framework for automatic nuclei segmentation. Their frameworks is
based on Mask-RCNN as backbone with structure-preserving color normalization (SPCN) and watershed for pre- and
postprocessing. A two-stage learning framework and Deep Layer Aggregation (DLA) is proposed by Kang et al. (2019)
for nuclei segmentation. The two-stage learning framework has been constructed by stacking two U-Nets models. The
first stage estimates the morphological information of nuclei while the second stage provides a final fine-grained
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segmentation map. Moreover, an extension is done to U-Nets by adding DLA. This is applied by concatenating features
across different levels.

Zhou, Onder, et al. (2019b) proposed a Contour-aware Informative Aggregation Network (CIA-Net) with a multi-
level information aggregation module. The network helps in capturing the spatial dependencies information between
nuclei and contour. This is done by aggregating task-specific features bidirectionally.

The work conducted in (Sornapudi et al., 2018) introduced a deep learning-based nuclei segmentation approach
based on capturing localized information by generating super-pixels using linear iterative clustering algorithm and
training with a convolutional neural network. Salvi and Molinari (2018) developed a fully Multi-scale Adaptive Nuclei
Analysis (MANA) for nuclei segmentation in different tissues and magnifications. The aim of their work is to automati-
cally detect nuclei in H&E stain images by applying object-based thresholding, area-based correction and nuclei separa-
tion (watershed transform). A novel CNN called Hover-Net for simultaneous nuclei segmentation and classification is
introduced in (Graham et al., 2019). Their model captures the instance information supported with the vertical and hor-
izontal distances of nuclei pixels. These distances are used to split the clustered nuclei yielding accurate segmentation
specially for overlapped instances. Their network predicts the type of nucleus using devoted up-sampling branch.

Mesmer (Greenwald et al., 2022) is a deep learning pipeline that uses PanopticNet and TissueNet to accurately seg-
regate nuclear and whole-cell data. Semantic heads for nuclear and whole-cell segmentation are coupled to a common
backbone and FPN in Mesmer's PanopticNet model. For each cell, Mesmer needs a nuclear image (DAPI) and a mem-
brane or cytoplasm image (CD45 or E-cadherin) to describe its form. So the PanopticNet model gets inputs normalized
(for robustness) and tiled into fixed-size patches (for processing images of various dimensions). In the last step, the
model predicts the centroid and border of each nucleus and cell in the image. The final instance segmentation mask for
each nucleus and cell in the picture is created using the centroid and border predictions.

Histological structures offer a different challenge in the computer vision field. Their abnormal, seemingly random,
structural boundaries make it harder to transfer weights or learning from solutions that have done on other problems.
Recent works have tackled this challenge by introducing methods that are more globally aware, using a higher recep-
tive field to capture these structures at scale. A solution that can be effective but runs into limitations as these structures
grow larger and occupy more of an already large image size. Consequently, transformer-based models with their self-
attention based aggregation can mitigate the large image size by having attention applied through different overlapping
windows in the image. The local objects can identified in each window and cross-window attention can lead to higher
recognition of these larger structures. Depending on the type of attention calculation used (Cross, Axial), more efficient
models can be utilized to effectively model large histological slides.

3.3 | Deep learning in precision oncology

The histopathological features of pathological tissue reflect a complex interplay between genetic and epigenetic mecha-
nisms that determine the overall protein expression patterns and functional status. Recent data demonstrated strong
correlation between the underlying molecular profile of tumors and the morphological features obtained from WSIs of
the tumor tissues. In (Cifci et al., 2022), analytic details with a comprehensive review of recent work (e.g., papers publi-
shed between 2017 and 2021) on deep learning has been provided to show that genetic alterations in tumor tissues are
predictable using histopathological images with AI-based methods. There is also direct correlation between morphologi-
cal features such as tumor grade and types and clinical behavior and response to therapy (Rakha et al., 2021). For exam-
ple, in (Wulczyn et al., 2020) the direct prediction of clinical outcomes based on morphological features of
histopathology images has been explored using deep learning. This study shows promising benefits to provide signifi-
cant prognostic information using deep learning in multiple cancer types. In (Takamatsu et al., 2022), a deep learning
model based on CNN and random forest methods was proposed to extract cancer tiles from WSIs of colorectal cancer
cases and then re-label them lymph node metastasis (LNM) status to predict LNM. A multitask deep learning (Bychkov
et al., 2022), based on CNN which is supervised by both patient outcome and biomarker status, has been proposed to
outcome prediction in breast cancer using H&E images. The study also showed that the performance of the deep learn-
ing model could improve with the integration of histologic type and grade of differentiation. Consequently, detailed
and comprehensive computational analyses of pathology images assessing myriads of features related to the tumor cyto-
logical features, growth pattern and architecture, and tumor microenvironment far beyond what can be achieved using
eyeballing assessment by pathologists or conventional image analysis techniques utilizing individual features are likely
to provide wealth of invaluable information. Linking such information to clinical behavior and response to therapy can
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identify signatures predictive of clinical behavior and response to specific therapy equivalent or more accurate to the
current prognostic and predictive tools that rely on molecular alteration or single morphological features and in cost-
efficient way (see Figure 12). However, achieving such goals require large and well annotated cohorts of pathology
images with detailed treatment and outcome information and robust image annotated protocols.

4 | CURRENT RESEARCH DIRECTIONS

4.1 | Histopathology image registration

In modern digital pathology techniques, sequential imaging enables image acquisition using multiple stained slides
from the same histopathological tissue section. This allows an order of magnitude increase in the number of molecular
markers to be imaged for the same tissue section. Consequently, automatic image registration (see Figure 13) is an
important initial step to align these multi-biomarker tissue slides for subsequent analysis.

Many histological image registration models have been proposed that achieve automated alignment of multi-
biomarker images, which we classified here into two categories: intensity-based (Venet et al., 2019; Wodzinski &
Skalski, 2019) and feature-based (Awan & Rajpoot, 2018; Schultz et al., 2019) models. Intensity-based models usually
require significant effort to minimize the stain variations or to design robust multi-modality image similarity measure-
ments. For instance, Feuerstein et al. (2011) proposed the use of block-face images (e.g., a new set of images that can
only be acquired during histological sectioning) as an external reference for registration. This method has shown less
sensitivity to the histopathology artifacts, but the availability of such references could be limited. Bagci and Bai (2010)
developed an intensity-based registration approach to reconstruct a mouse brain from its associated histological slides.
This was achieved by firstly normalizing intensity variations, followed by extracting a set of high fidelity features, and
then selecting the best reference slide using an iterative image registration method. A staining-invariant approach
(Schwier et al., 2013) was developed for the registration of histological slides. It combined rigid and elastic approaches
to firstly align consecutive slides coarsely and followed by a nonlinear registration. However, the method was designed
to work on a low magnification level, in which higher details were ignored during the registration process. On the other
hand, the feature-based models are more robust where points/landmarks are detected based on the topological struc-
tures in the images. A typical point-based registration consists (a) feature points extraction to locate significant struc-
tures in the moving (source) and reference (target) tissue images; (b) estimate a point-wise correspondence by

FIGURE 12 The integration of both structured and unstructured data to build a robust diagnostic/prognostic tool. Tissue classification/

segmentation components can be used to extract digital biomarkers (or phenotypic features) directly from images while the feature analysis

and selection can be used to extract genomic and clinicopathological features. The last fully connected network can be used to learn the

relationships between the phenotypic and genomic features to improve the performance of the system.
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maximizing the similarities in the point space and removing outliers; and (c) point-set registration to find the optimal
transformation parameters for transforming the moving image to the reference image space. A number of feature-based
image registration methods have been developed for histopathology images, which is considered to be a reasonable
choice when compared with the intensity-based methods. High-level features based on a sparse convolutional
autoencoder were used as the input to the image registration method for coping with the stain variations in histology
images (Awan & Rajpoot, 2018). A segmentation-based image registration method (Borovec et al., 2013), based on a set
of features detected by Speeded Up Robust Feature (SURF) method (Panchal et al., 2013), was applied to multiple sta-
ined histopathology images. The image registration method based on B-Splines was used for multi-stained histopathol-
ogy sections using common information of the global structure of the images (Obando et al., 2017). Likewise, local
feature descriptors based on SURF method (Rossetti et al., 2017) were used in a multi-stage image registration method
with multi-resolution mapping to align whole slide images. With the aim of aligning large multi-stained histopathology
images, Obando et al. (2017) proposed a semi-automated approach to extract feature points from a down-sampled ver-
sion of the image, and subsequently applied the estimated transformation (calculated by B-Splines) to the full resolution
image. However, the developed approach assumed that no tissue folding and losing was occurring in the moving image
which may not be valid in practice.

More recently, the Automatic Non-rigid Histological Image Registration (ANHIR) challenge (Borovec et al., 2020)
was organized as a part of the ISBI 2019 to compare the performance of different image registration models on several
different histopathology images (see Figure 1). Most of the submitted models to this grand challenge were using similar
classical techniques. They have been designed as a multi-step pipeline, which is started with a coarse pre-alignment
that is followed by a non-rigid registration step for fine-tuning the registration results. Surprisingly, only one model was
designed based on CNNs. The CNN-based model was performing very well in terms of accuracy and speed although
not as well as the best-performing methods.

4.2 | Scarce annotations in digital pathology

The main issue that can be considered as a significant obstacle to computational pathology is the scarcity of supervised
information that can be provided by professionals in order to build a supervised deep learning approach, this plays an
important role in the final diagnosis of a deep learning model. Here in this section we review the current research direc-
tions in coping with this problem using the stat-of-the-art deep learning models in several applications.

4.2.1 | Weakly supervised learning methods

Training effective and highly accurate deep learning model as a part of histopathology image analysis workflow
requires full supervision to achieve many tasks, including classification, detection, and segmentation of histopathologi-
cal structures in the images. However, due to the large size of histopathology images, the availability of dense annota-
tions is quite limited and therefore image datasets are usually composed of large coarsely annotated images.

FIGURE 13 Two different stained WSIs of the same tissue. Image registration is an important initial task that can help in visually

comparing these two images of the same issue but of different biomarkers. The main task is to determine a transformation that maximizes

the similarity between the target image and its associated moving image.

ABDELSAMEA ET AL. 23 of 44

 19424795, 2022, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1474 by E
gyptian N

ational Sti. N
etw

ork (E
nstinet), W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Consequently, it is highly beneficial to develop weakly supervised deep learning models that can predict class-level or
pixel-level labels without dense annotations.

(Wang et al., 2018) proposed a weakly supervised mechanism for effective classification for whole slide lung cancer
images. Their method utilizes patch-based fully convolutional network (FCN) for discriminatory block retrieval. Also,
they introduced context-aware feature selection and aggregation to create all inclusive holistic WSI descriptor. A practi-
cal and self-interpretable invasive cancer diagnostic approach has been proposed by Li, Radulovic, et al. (2019b) due to
the heterogeneity of cancer cell proliferation as well as a range of benign tissue generative lesions in breast cancer histo-
pathology images. The suggested technique exploits contrasting features between normal and malignant images in a
weak-supervised way with little annotation information and generates a probability map of anomalies to test its reason-
ing. A weakly supervised learning technique is used to identify well, intermediate, and poorly differentiated stages of
cervical cancer with a multi-layer hidden conditional random fields (MHCRFs)-based cervical histopathology image
classification (CHIC) model (Li, Chen, et al., 2019a). Their method starts with extracting deep learning features are
extracted from histopathology image patches. The extracted features are then used by neural network, support vector
machine, and random forest classifiers to generate patch-level classification probabilities. Then to generate unary and
binary potentials, effective classifiers are chosen. Finally, MHCRF model predicts image-level classification outcomes
utilizing the produced potentials.

The work introduced by Campanella et al. (2019) demonstrates a deep learning method based on MIL that employs
only the reported diagnoses as labels for training, eliminating costly and time-consuming pixel-by-pixel manual annota-
tions. MIL is used to train deep neural networks in the created framework, resulting in tile-level feature representation.
These representations are then utilized to integrate the information throughout the entire slide and give the final classi-
fication result using a recurrent neural network (RNN). The work conducted by Zhao et al. (2020) suggested a MIL
technique for histopathology image classification based on deep graph convolutional networks and feature selection
(FS-GCN-MIL). The suggested technique is made up of three parts: feature extraction at the instance level, feature selec-
tion at the instance level, and bag-level classification. They created a self-supervised learning method based on a varia-
tional auto-encoder and generative adversarial network model to train the feature extractor (VAE-GAN). They also
developed a new strategy for selecting discriminative instance characteristics at the instance level. In addition, they
used a graph convolutional network (GCN) to learn the bag-level representation and subsequently classify it. Another
work presented by Wang et al. (2020) suggested employing graph convolutional networks (GCNs) to describe the spatial
organization of cells as a graph to easily capture the growth and structure of tumor cells in a weakly supervised tech-
nique for grade classification in tissue micro-arrays (TMA). A contrastive predictive coding (CPC)-based self-supervised
technique is used to learn the morphometry of each cell. Courtiol et al. (2019) trained a deep learning network using
global slide-level labels based on survival scores. The network was trained to assign survival score to each tile and
aggregate a global label on the slide based on the most informative tiles. Tiles were assessed after an encoding process
through a CNN backbone that projected the image tiles into an features space that summarizes the important features
of the tile.

DeepMIL methods have recently showed great promise in weakly supervised field. In Lu et al. (2020) DeepMIL was
used to demonstrate that pre-training a feature extractor using contrastive predictive coding on histopathology tiles
increases downstream malignancy classification performance when compared with an ImageNet pre-trained feature
extractor, but this has not been tested on entire WSIs. They presented a two-stage semi-supervised strategy in which
they first pre-train the feature network using self-supervised feature learning on every single instance in the dataset.
Then a margin-based loss function during the second stage to supervise the learning process.

Some work in privacy-preserving federated learning has been done using hundreds of gigapixel entire slide images
from several universities. These studies accommodate for the challenges given by the absence of extensive annotations
in the majority of real-world whole slide histopathology datasets and illustrate how federated learning can be linked
with weakly supervised multiple instance learning to handle binary and multi-class classification tasks using just slide-
level labels as supervision.

Lu et al. (2022) proposed an interpretable, weakly supervised framework for survival prediction in computational
pathology using full slide images and patient-level prognostic information (demonstrated on renal cell cancer patients).
There framework further demonstrates the viability of weakly supervised deep survival models in a federated architec-
ture, paving the path for the development of prognostic models trained on multi-institutional cohorts with diverse
demographics.

The work proposed by Kanavati et al. (2020) suggested a weakly supervised deep learning strategy to detect carci-
noma in WSIs based on training an EfficientNet-B3, a CNN-based architecture, employing transfer learning and weakly
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supervised learning (WSIs). Their design predicts carcinoma in WSIs of lung cancer using a dataset annotated at a level
halfway between two annotation extremes (cell-level annotations and slide-level diagnosis). A similar strategy has been
introduced (Kanavati & Tsuneki, 2021) for the categorization of breast invasive ductal carcinoma (IDC) in entire slide
images by training deep learning models utilizing transfer learning and weakly supervised learning. The work intro-
duced by Zhou et al. (2021) devised a framework that included characteristics from different magnifications of WSIs to
accomplish classification and localization of colorectal carcinoma by using only global labels. Colorectal cancer WSIs
from the Cancer Genome Atlas (TCGA) were used to train and test the algorithm.

Most recently, the work introduced by Xiang et al. (2022) suggested that WSI analysis can be carried out efficiently
by combining data at both the local and regional levels. They represented the local information by auto-encoding the
visual signals in each patch of WSI into a latent embedding vector, and they used a down-sampled WSI with multiple
scales to reflect regional information. The WSI label is then predicted using a Dual-Stream Network (DSNet), which
accepts the modified local patch embeddings and multi-scale thumbnail images as inputs. These inputs aid in training
the framework by using only image-level label. To solve the label constraint problem in glioma subtypes, where each
instance is simply labeled with the glioma subtype without detailed annotations of lesion locations. Hsu et al. (2022)
devised a hybrid completely CNN-based glioma subtype classification approach that incorporates combination of WSI
and multiparametric magnetic resonance imaging (mpMRIs). It consists of two methods: one based on WSI and the
other on mpMRIs. They used a 2D CNN on WSIs to classify the glioma subtype for the WSI-based technique. To fix the
label limitation, they used a weakly supervised approach to generate representative patches for glioma subtype classifi-
cation. They devised a 3D CNN-based approach for the mpMRI-based method by examining the mpMRIs. Finally, they
combined the WSI and mpMRI data using a confidence measure to improve predictability. HCRF-AM (Hierarchical
Conditional Random Field based Attention Mechanism) is developed by Li et al. (2022) for gastric histopathology image
classification. The HCRF-AM model is made up of two modules: an Attention Mechanism (AM) and an Image Classifi-
cation (IC). An HCRF model is created in the AM module to capture attention areas. The IC module trains a CNN with
the attention areas specified, and then uses ensemble Learning technique based on probability distribution to generate
image-level findings from the CNN's patch-level output. Chen et al. (2022) introduced the IL-MCAM framework for
weakly supervised colorectal histopathology image classification, which is based on attention processes and interactive
learning. The framework has two phases: automatic learning (AL) and interactivity learning (IL). The AL stage has
three separate attention mechanism channels and CNNs to capture multiple channel features for classification. For IL
stage, the framework uses an interactive technique to constantly incorporate misclassified images to the training set,
improving the model's classification performance.

Weakly supervised techniques offer great solutions to tackle large resolution images, yet a general drawback of these
methods has been the greater complexity cost in multi-stage approaches and the computational requirement that might
associated with it.

4.2.2 | Self-supervised learning methods

Self-supervised learning (SSL) is another promising mechanism to deal with the scarcity of labeled histopathology
datasets. Self-supervised learning aims at learning salient features or digital biomarkers using the original/raw input as
the learning signal.

The work conducted by Li, Li, and Eliceiri (2021a) suggested a technique for WSI categorization and tumor identifi-
cation based on multiple instance learning (MIL) that does not require localized annotations. There are three essential
components to their technique. First, they developed a new MIL aggregator that simulates the relationships between
instances in a dual-stream design using trainable distance measurement. Second, because WSIs can result in huge or
imbalanced bags, which make it difficult to train MIL models, they proposed using self-supervised diverse learning to
generate suitable representations for MIL and avoid the problem of high memory consumption for large bags. Third,
for multi-scale WSI characteristics, they used a pyramidal fusion technique to increase classification and localization
accuracy. The work presented by Wang et al. (2021) suggested a hybrid model (TransPath) that is pre-trained on enor-
mously unlabeled histopathology images using Self Supervised Learning (SSL) to find the underlying image characteris-
tic and record domain-specific feature embedding. The TransPath acts as a collaborative local–global feature extractor
that is made up of a CNN and a modified transformer framework. They also suggested a token-aggregating and excita-
tion (TAE) module which is stacked behind the transformer encoder's self-attention for obtaining additional global
information.
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In the work introduced by Li, Lin, and Xu (2021d), it thoroughly investigates the inherent properties of WSIs and
proposed Spatial Guided Self-supervised Learning on Pathological Images (SSLP). They believed that patch-wise spatial
closeness is a key feature of WSIs that, when used appropriately, may offer enough supervision for free. They looked at
three types of semantic invariance: (1) self-invariance: the same patch in various augmented perspectives, (2) intra-
invariance: patches inside spatial neighbors, and (3) inter-invariance: their feature space equivalent neighbors. Another
paper (Koohbanani et al., 2021) suggested Self-Path: a self-supervised CNN approach for learning generalized and
domain invariant representations in pathology images utilizing unlabeled data. Self-Path is a multi-task learning archi-
tecture in which the primary job is tissue categorization and the pretext tasks are a range of self-supervised tasks with
labels embedded in the input images. They developed new self-supervision tasks that take advantage of pathology
images' contextual, multi-resolution, and semantic characteristics for semi-supervised learning and domain adaptation.
CS-CO has been proposed by Yang et al. (2021) to provide a self-supervised visual representation learning approach for
histopathology images that combines the benefits of generative and discriminative models. Their proposed technique is
made up of two self-supervised phases: cross-stain prediction (CS) and contrastive learning (CO), which are both built
on domain-specific information.

The work conducted by Aryal and Soltani (2022) proposed a self-supervised learning strategy to enhance training
with unlabeled data and using a graph convolutional network (GCN) to include context from tumor and adjacent tis-
sues. They visualized the entire slide as a graph, with nodes representing patches from WSIs. The patches in the graph
are described as feature vectors derived via self-supervised learning pre-training of WSI patches. The graph is trained
with GCN, which takes into account the context of each tissue while grading and classifying cancer. The approach
described by Srinidhi et al. (2022) presents task-agnostic unlabeled data based on a self-supervised pretext task that
learns a robust supervisory signal for unsupervised representation learning by using the underlying multi-resolution
contextual information in histology whole-slide images. Another work introduced by Ciga et al. (2022) addressed the
problem of learning domain-specific characteristics without supervision to enhance several task performances that are
relevant to the digital histopathology. They collected and pretrained on 57 histopathology datasets without labels using
a contrastive self-supervised learning approach. The researchers discovered that mixing numerous multi-organ datasets
with various types of staining and resolution qualities improved the quality of the learnt features.

The work presented by Schirris et al. (2022) developed a deep learning-based weak label learning approach for WSIs
of H&E stained tumor tissue that does not demand pixel- or patch-level annotations using Self-supervised pre-training
and heterogeneity-aware deep Multiple Instance LEarning (DeepSMILE). DeepSMILE is used to predict HRD and MSI
(homologous recombination deficiency and microsatellite instability). On histopathological patches of cancer tissue,
they use contrastive self-supervised learning to pre-train a feature extractor. In addition, when modeling tumor hetero-
geneity, they employed a variability-aware deep multiple instance learning to develop the patch feature aggregation
function.

Feature extraction is a substantial portion of deep learning modeling, since it is utilized to compress large amounts
of information into compact vectors. Recent work in Contrastive predictive encoding has shown significant potential
for developing models that do not largely reliant on labeled data to produce an effective feature extractor. Saillard et al.
(2021) demonstrated that feature extractors pretrained on TCGA with SSL (MoCo V2) provide state-of-the-art perfor-
mance for MSI prediction in both colorectal and gastric malignancies. They also discovered that utilizing a feature
extractor pretrained on numerous organs using SSL enables both cutting-edge cross-validation and strong generaliza-
tion from one organ to another.

Abbasi-Sureshjani et al. (2021) also demonstrated that specialized backbones pre-trained on H&E pictures may dis-
cover more significant patterns than ImageNet backbones. They utilized embeddings derived from two backbones: one
pre-trained on H&E tiles and the other on the ImageNet dataset. The BYOL SSL framework was utilized to train all
backbones, and their output embeddings were used as input for training the attention layers in an attention-based MIL
pooling. The bag representation of the findings is then processed by a bag-level classifier to deliver the final score for
each slide.

In contrast to fully supervised approaches, two-stage weakly supervised methods utilize the MIL method. The signal
for the WSI-level label is expected to be present in some of the unlabeled tiles (or instances) in the labeled WSI in a
MIL method. To represent the WSI latent characteristics, these methods propose a linear or non-linear combination of
the latent features or predicted scores of a subset of the tiles in a WSI. This WSI latent feature is then utilized to classify
the WSI, allowing a WSI-level loss to be calculated and transmitted back through the classification network.

A self-supervised approach is proposed by Sahasrabudhe et al. (2020) for segmentation of nuclei in WSIs. Based on
the ability to recognize the magnification at which patch is extracted using the size and texture of nuclei, Sahasrabudhe
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et al. (2020) managed to produce a precursory self-supervision signal to determine nuclei location. This occurs
depending on the identification of the magnification level for tiles.

Self-supervision prompts a large amount of data, which is not trivial in the medical domain. These methods offer
huge potential for a future of modeling in which downstream tasks are highly specialized and otherwise performed
using models pre-trained on massive amounts of data from numerous sources. This means that extremely specialized
tasks will require far fewer expert annotations. It opens the way for a future in machine learning in which models are
not highly specialized algorithms but rather more generalizable techniques used to manage various multimodal
datasets and their analysis. Furthermore, the theory of contrastive predictive modeling has been a very insightful break-
through in this field in which we try to make models that summarize information into very compact vectors that can
compress the distinguishing and shared information between different data points so that models can look at a very
global scale at the underlying inherit patterns in the data while not ignoring the local intrinsic differences between dif-
ferent categorical d boundaries. Thus, the main direction in self-supervised learning has become what is called Contras-
tive Learning (van den Oord et al., 2018).

4.2.3 | Stain normalization

The high color variability of histopathology images is another challenging problem that can affect the generalizability
of AI models. Such color variability usually results from variations in the thickness of tissue sections, the difference in
staining protocols, and the disparity in scanning characteristics, just to mention a few. Since the quality of histopathol-
ogy images has a direct influence on the performance of AI models, the normalization of the color distribution of
images is important for the reliability and accuracy of AI models. This strongly motivates the need for a stain normali-
zation component in the histopathology image analysis pipeline (see Figure 14). According to (Tosta et al., 2019), statis-
tical stain normalization techniques can be classified into three main classes of methods, they are histogram matching,
color transfer, and spectral matching. The main idea of these methods is to adjust the color space of the histopathology
images in a way to minimize the influence of color variation. Histogram matching methods minimize the color varia-
tions using information extracted from the image histogram with the assumption that images have the same histopath-
ological regions. However, unlike histogram matching methods, color transfer and spectral matching perform the
normalization using statistical correspondences between histopathological regions (extracted using segmentation
methods) and the representation of each stain in the color channels (i.e., the stain concentrations in each image pixel),
respectively. For more details about statistical stain normalization techniques, we refer the reader to this recent survey
article (Tosta et al., 2019). The article has reviewed the stat-of-the-art computational normalization methods for

FIGURE 14 Stain normalization method as a process of transforming an input image into a new colored version using a mapping

function that resembles the appearance of the input image to a target/reference image.
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histopathology images focusing on H&E stained images with some possible research directions. The authors' reflection
on stain normalization methods is that the choice of a reference/target image plays a crucial role in the histology image
analysis pipeline. Implementing accurate stain normalization step can help the deep learning model to encode more
accurate diagnostic/prognostic features that are less biased by the presence of noise and artifacts in the images.

On other hand, as a deep learning solution, generative models (such as generative adversarial [GAN]-based models)
(Niazi et al., 2019) have been recently presented to cope with the stain normalization problem. The idea of these models
is to preserve the morphological and architectural structure of the images while manipulating color information. This is
by using the color system matrix as input to the generator of GANs to encourage the model to learn the color space of
histopathology images and consequently transfer accurately the color from the reference image(s). Recently, a model
called StainGAN (Shaban et al., 2019) has been proposed based on CycleGAN to perform stain normalization using the
concepts of cycle consistency of adversarial networks. StainGAN showed good performance due to its capability to map
images to a specified color model, and at the same time preserve the same histopathology tissue structure. Likewise, a
Self-Attentive Adversarial Stain Normalization (SAASN) method (Shrivastava et al., 2021) has been designed in a way
to incorporate the self-attention mechanism in CycleGAN to achieve better finer details of the generated images.
Another GAN-based model called conditional Generative Adversarial Networks (cGAN) (Senaras et al., 2018) has been
adopted to force the generator to learn the underlying distribution of the histopathology images from the training data.
In (Cong et al., 2021), a semi-supervised GAN-based stain normalization method has been proposed to learn how to
transfer or colorize input images using both labeled (target domain images) and unlabeled (source domain images).

4.3 | Uncertainty quantification in digital pathology

As an initial stage to introduce explainability to classification and segmentation methods of histopathology images, it is
crucial to measure the uncertainty of the predictions. During uncertainty quantification, random transformations to the
input images or the network architecture generates predictive distribution. This idea leads to figuring out different
regions of uncertainty that may be clinically instructive. Moreover, the measure of uncertainty is utilized to help pathol-
ogists to rank images that should be prioritized for pathology annotations. Generally, uncertainty quantification can be
applied using two different techniques. First, measuring the uncertainty of an input image prediction (or a probability
distribution extracted from an image classification model). This method helps in understanding the level of randomness
in the probability distribution of an input sample. To adopt this approach, Shannon Entropy (Shannon, 1948) is one of
the popular techniques to measure uncertainty in the input samples. Image prediction (probability distribution) gener-
ated by deep learning model for image classification is used by Shannon entropy as an input to produce an uncertainty
score. This uncertainty score indicates the level of randomness occurring in the probability distribution. For example,
having a low uncertainty score value implies that a deep learning model is confident about its decision. Shannon
Entropy can be represented as:

E Xð Þ¼E p1,…,pcð Þ¼�
Xc

i¼1

pi log2pi , ð1Þ

where E(X) is Shannon entropy for input sample X and p1, …, pc presents probability distribution for sample X on
c class labels.

Instead of having single scalar of probability distribution for a given input image to measure the uncertainty score,
it is possible to have multi-scalar of probability distributions for a particular image. This approach is another method to
measure the level of uncertainty for an input image. Bayesian approximation using Monte-Carlo (MC) dropout (Gal &
Ghahramani, 2016) is one of the popular strategies to measure the level of ambiguity in the input sample. This method
works by adding dropout layers to the deep learning network for image classification. Then, during testing stage of an
input image, the dropout layers are activated. This approach helps in having different versions from the deep learning
model by randomly dropping different neurons from the network, and hence we can have different probability distribu-
tions for a specific input image. A proper number of test passes through the deep neural network generates a number
of probability distributions. The mean calculated from the list of probability distributions represents the final image pre-
diction, while standard deviation indicates a measure of uncertainty for the input image. We can represent the formula
for calculating mean and standard deviation as:
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μ¼ 1
k

Xk

i¼1

α Φi Xð Þ;Wð Þ, ð2Þ

σ¼ 1
k

Xk

i¼1

α Φi Xð Þ;Wð Þ�μð Þ2, ð3Þ

where μ and σ define the mean image prediction and the uncertainty, respectively. k is the number of MC dropout test
passes. The function α defines the deep neural network for image classification with input X and network weights W.
Φi defines a test pass i using MC dropout to the input image X.

Recent work has introduced the use of uncertainty measure in their models (Fraz et al., 2018, 2020; Graham
et al., 2018; Liang et al., 2020; Raczkowski et al., 2019). The work conducted by (Graham et al., 2018) proposed a mea-
sure of uncertainty in their CNN-based model by applying random transformations during test time for an enhanced
segmentation result that simultaneously creates an instability map, highlighting zones of equivocalness. Fraz et al.
(2018) proposed uncertainty driven pooling network for micro-vessel segmentation in routine histology images. Their
model is based on an aligned Xception model for feature extraction across many scales, followed by atrous spatial pyra-
mid pooling. Their design overcomes the difficulty of segmenting blood veins with different morphological appearances.
Random transformations are used at test time to integrate uncertainty for a better segmentation result and simulta-
neous uncertainty map development, highlighting confusing locations. Another work by Fraz et al. (2020) proposed a
feature attention block-based pyramid pooling deep neural network which applies random transformations to the test
images to capture model uncertainty. The work in (Liang et al., 2020) proposed a calibration approach that preserves
the overall classification accuracy, and improves model calibration. Their proposed method depends on Expected Cali-
bration Error (ECE), which is a common metric for quantifying mis-calibration. For classification of colorectal cancer
images, (Raczkowski et al., 2019) proposed an accurate, reliable, and active Bayesian network termed (ARA-CNN).
Their model is built using residual networks and variational dropout to evaluate the uncertainty of the input data.

4.4 | Explainability in histopathology

Recent developments in AI have generated lots of promising algorithms capable of achieving high accuracy in detecting
and classifying multiple pathologies. These endeavors have so far proved the effectiveness of machine learning algo-
rithms in a quantitative manner. The growth in digitization of pathology workload is accelerating the development of
AI models and approaches that allow for systems that can act as a decision support mechanism for pathologists. By inte-
grating these solutions in the workflow, potential additional improvements to results in turn-around time and better
detection quality. For such solutions to be implemented in a clinical workflow, the quality of theses methods' predic-
tions need to be assessed and improved. One way of addressing this problem is to introduce techniques that can give an
insight into the model's predictions.

Explainable artificial intelligence (XAI) aims to increase the trustworthiness of AI solutions by giving an insight into
the predictions of machine learning models. This allows clinical staff to gain more qualitative evidence of what led the
algorithm to make these decisions.

According to a recent survey in the field (Poceviči�utė et al., 2020), there are three main roles that XAI can help
enhance their workflow. These roles include AI developers who design models for application; clinical end-users who
act as the medical staff using the AI solution to reach a diagnosis decision; and quality assurance personal responsibility
for ensuring and assessing how well a solution is integrated into the workflow of a clinical setting.

Explanations can be presented in various ways. Some representations offer more relevant insight depending on who
is viewing it. For example, explanations that show the inner workings of a model can be of assistance to developers as it
allows them to detect certain biases that a model might be suffering from. On the other hand, clinical staff might find
these explanations to be confusing as it requires some machine learning knowledge to interpret. Yet they might benefit
from an explanation that shows which parts of the image are, for example, “cancerous” and thus led the model to clas-
sify this image as positive. These situations show the great variety of scenarios where pathology diagnostics would
greatly benefit from interpretability and transparency of AI methods used in digital pathology. Figure 15 shows the dif-
ferent ways explanation techniques have been used and their respective target of explanation. From the figure, we can
see that there is a trend in using projections on input to explain a network's prediction.
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This section goes over several existing approaches that aim at helping build clear and interpretable AI solutions.
These approaches are designed for visual identification tasks, with some easily extended to segmentation tasks. A list of
the available resources for XAI is provided in Table 3.

Visualizations on input images are very helpful in giving intuitive insight into an algorithm's prediction by
highlighting areas in the image that influenced the decision making process. Methods in this group are categorized
under three types: heat maps, patch selection, and receptive fields. Heat maps offer a graphical representation of how
much each pixel contributes to the prediction. This is communicated by overlaying a color gradient over the original
input image. For example, Grad-CAM (Selvaraju et al., 2019) is a technique that utilizes the gradients flowing through
the last layer of a CNN to obtain an importance map for the target class. The resulting maps indicate which pixels con-
tributed mostly to the prediction of the model. The second type of these visualizations by Ribeiro et al. (2016) focuses
on the patches or regions in the input image that contributes most to the prediction by iteratively blocking parts of the
image and recording the changes in activation in the network. The results reveal some regions that, depending on the
dataset, resemble some objects in the image which can be intuitively assessed to determine if the network is basing its
prediction on the correct discriminative features.

A similar visual interpretation can be also achieved through attention-based methods which allow for a form of
explainable visualization that have become a useful concept in deep learning. The basic idea of attention is inspired by
the way humans pay attention to different parts of an image or other data sources and analyze them. Sun, Darbehani,
et al. (2020b) proposed an interpretable version of the U-Net (Ronneberger et al., 2015) called SAUNet. They added a
parallel secondary shape stream to capture important shape-based information along with the regular texture features
of the images. The architecture used an attention module in the decoder part of the U-Net. The spatial and shape atten-
tion maps were generated using SmoothGrad (Smilkov et al., 2017) to visualize the high activation region of the images.

A presentation of this degree allows the interpretability of certain biases that a trained model might be suffering
from. In histopathology, this can be applied to present the contributing factors to the pathologist, allowing them to
understand the “logic” behind the system's diagnosis.

A second set of visualizations that aim at understanding neural networks better are synthetic visualizations. They
enable the assessment of how sensitive a model is to domain variations, which can be used to detect new data that a
model will have problems generalizing to. These approaches are known as activation maximization and include Guided
Back-Propagation (Zeiler & Fergus, 2014), DeConvNet (Springenberg et al., 2015), Layer-wise Relevance Propagation
(Bach et al., 2015), integrated Gradients (Sundararajan et al., 2017), and SmoothGrad (Smilkov et al., 2017).

By optimizing for images that maximally activate the neuron in a network, Stacke et al. (2019) demonstrated that
they are able to assess the generalization of a convolutional neural network, trained for tumor classification on H&E
stained images, by analyzing the representations generated by the network and recording which features the network
responds to.

It has been demonstrated that color can be a crucial feature in the prediction of a neural network (Dosovitskiy &
Brox, 2016). Their experiments utilized the feature vectors generated by the deep neural network layers to reconstruct

FIGURE 15 Summary of papers grouped based on target of explanation technique.
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the input image to get a better grasp of how neural network works. By comparing the reconstructions to the input
image, an assessment can show how competent the feature extractors of a neural network are. While on their own,
these works do not present much in terms of real-life implementation, they serve as a great tool for AI developers and
QA staff for the assessment of deep models by offering an insight on how the models reach their decisions.

The main drawback of the aforementioned methods is that they are not class specific, that is, they do not provide a
specific “reason” for why the model predicted a class. They do, however, give an insight into the patterns that are
important in general.

Another category of explainable techniques for neural networks is clustering explanations. These methods pre-
sent a more intuitive output for human review. The intuition here relies on the idea that visualizations of clusters
of input images can reveal the potential rationale behind the neural network decisions. Consequently, these visu-
alizations act as an explanation for how a CNN, for example, might classify images to a certain class based on cer-
tain visible features that can be quickly identified when viewed in a cluster of images. The effectiveness of the
clustering approach that relied on t-SNE embedding of VGG19 network has been demonstrated in (Faust
et al., 2018) to visualize the high-dimensional relationships between 13 classes of lesional tissue. The visualiza-
tions allowed them to detect “outliers” or out of distribution images which helps in alerting the user of images the
model is uncertain about.

These methods have a variety of potential applications. They could help in creating machine learning solutions that
are able to classify and provide an interpretable visualization to the end user. It also can be utilized by developers to
detect biases in the data. The influence that some concepts might have on neural networks has been explored in (Bau
et al., 2017).

Other methods use examples generated from the original dataset. In (Poceviči�utė et al., 2020), a GAN network has
been developed to transform image patches that contain tumor cells to healthy ones. By recording the neural network
confidence probability, they were able to show for each tumor patch another patch that resembles the original but
transformed into a healthy sample. The idea is that they can boost pathologist's confidence in model predictions by
showing an example of how would the same slide look if it was healthy.

TABLE 3 List of resources for XAI repositories and software tools

Name Type References Details

ExplainX framework explainX.ai
(2019)

A light-weight and scalable explainable AI framework.

Explainable AI framework Google (2020) A set of tools and packages developed by Google Cloud.

EthicalML/XAI Library EthicalML
(2019)

Machine Learning library with AI explainability in its core.

tf-explain Library sicara (2019) A tensorflow library with interpretability methods.

InterpretML Library Nori et al.
(2019)

Python library (of explainable machine learning models) developed by
Microsoft.

sklearn_explain Library antoinecarme
(2019)

An experimental tool to provide a score explanation for scikit-learn models.

iNNvestigate Library Alber et al.
(2019)

A software library with various implementations, including Saliency,
Deconvnet, GuidedBackprop, IntergratedGradients, LRP, and PatternNet.

Skater Library Oracle (2018) Python Library for Model Interpretation/Explanations.

AI Fairness 360 Library Bellamy et al.
(2018)

Python library developed by IBM to help in detecting/removing bias in
machine learning models.

Heatmapping
repository

Repository Fraunhofer
HHI (2019)

A webpage aims to regroup publications and software to help in better
understanding nonlinear predictions of machine learning models.

XAI Resouces Repository pbiecek
(2019)

A Github repository with various XAI articles and tools.

Interpretable Machine
Learning repository

Repository lopusz (2019) Opinionated list of resources facilitating model interpretability.
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4.5 | Actionability in histopathology

This section goes over the next steps after explainable model predictions. To fully realize interpretable models, their pre-
dictions need to present an “actionable” intent. For example, based on a model's prediction, a proposed treatment plan
based on the detected condition can act as a step forward in enhancing the user experience. Figure 16 shows an exam-
ple for actionability workflow pipeline for automated diagnosis (image classification) deep learning model.

While up until now, almost all of the machine learning applications are very capable of achieving high diagnosis
accuracy, some of them are still quite complex to explain their diagnostic decisions. However, the ability to act, that is,
the ability to turn predictions into action, continues to be absent in many applications. Users would not only need reli-
able, interpretable predictions in real-world applications, but also instructions that are actionable to move the current
output to a better, more desirable target. For instance, a model may provide a diagnosis in a medical workflow that is
interpretable to technicians with a suggested treatment plan, advice on more scans, or other immediate actions. This
pipeline offers every department in a medical hospital with invaluable insight. Actionability presents itself in any imple-
mentation of AI solutions as a more general problem. To provide value to users, a model needs to provide actionable
insight, based on trustworthy, accountable, reliable data. They can provide real world value by translating these insights
into practical decisions or actions. Models attempting such approaches are currently often complicated and lack optimal
solutions. Current efforts to extract such actionable recommendations are restricted and limited to simple action
models, which are restricted to modifying only one attribute for each action.

A novel approach has been proposed in (Lyu et al., 2016), which achieves actionability by combining learning with
planning. Specifically, they proposed a system for the extraction of information from random forests, one of the most
commonly used and best off-the-shelf classifiers. Their approach addresses actionability by formulating a sub-optimal
action planning (SOAP) problem. To solve this problem the model tries to find a plan to alter some features of the input
such that the random forest can produce a desirable output. Another work has been proposed in (Senousy, Abdelsamea,
Mohamed, & Gaber, 2021b) which introduces actionability to deep learning models. They proposed an entropy-based
elastic ensemble model termed (3E-Net) for grading breast invasive carcinoma samples where it applies an ensemble of
image-wise models supported by a patch-wise CNN (DenseNet-161) for feature extraction. The model uses Shannon
Entropy to measure the level of randomness in the obtained probability distribution associated to an input image. More-
over, 3E-Net introduces actionability to by taking decision of excluding poor samples based on their uncertainty scores,
see Figure 17. Likewise, another work (Senousy, Abdelsamea, Gaber, et al., 2021a) proposed an actionable model for
classification of breast cancer images named Multi Context and Uncertainty awareness (MCUa). Their model intro-
duces an ensemble of multi-scale and multi-architecture models for patch-wise feature extraction where it applies diver-
sity in feature learning. Then, the model introduces different levels of context-awareness for learning spatial
dependencies between image patches. Then the model applies Bayesian approximation using MC dropout for measur-
ing uncertainty and it excludes images based on the trust rates generated from the models in the ensemble architecture.
Here, the authors come to the conclusion that uncertainty aware models (such as their previously developed 3E-Net

FIGURE 16 Actionability workflow pipeline. To introduce actionability in histopathology, it is crucial to process the predictions

extracted from deep learning model (e.g., automated diagnosis model). For instance, the above diagram presents the workflow for a deep

learning model for automated diagnosis which takes a histopathology image as input and generates image prediction (e.g., class labels based

on probability distribution). The image prediction can be utilized by an actionability component which acts as an active learner that takes

decision/action based on certain criteria/condition. The action can be an uncertainty measure which reflects the level of confidence

associated with the image prediction. Based on this confidence condition, the image prediction can be used as the final automated diagnosis

generated by the deep learning model or to exclude the image from the automated diagnosis process due to image uncertainty. The excluded

image is then returned to pathologists for further investigation and re-annotation.

32 of 44 ABDELSAMEA ET AL.

 19424795, 2022, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1474 by E
gyptian N

ational Sti. N
etw

ork (E
nstinet), W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and MCUa) not only help in taking actions by excluding low-quality images or correct annotations but also can help in
better understanding the behavior of the deep learning model. This provides an opportunity to build a dynamic ensem-
ble model based on the most confident deep learning models, which can boost the performance of the overall model
and at the same improve its trustworthiness.

5 | EVALUATION OF EXPLAINABLE TECHNIQUES

With the introduction of interpretability methods, comes the trivial task of finding a widely accepted quantitative met-
ric to compare them.

Evaluation methods for explainable artificial intelligence (XAI) systems seem to fall into two categories: human-
based and computational methods (see Table 4). The measures assess the explanations of XAI interface based on how a
human qualitatively scores it or a computational assessment scores it. In order to verify and compare these methods,
we need to quantify the “Quality” of the produced explanations.

5.1 | Human evaluated methods

In the world of HCI (Human Computer Interaction), researchers study user's mental models to gauge their understand-
ing of the system they are dealing with. Some methods attempted as assessment of such mental models to evaluate if
the XAI explanations led to a correct understanding of how the AI works. Furthermore, this can help in verifying the
effectiveness of explanations provided by XAI models.

Kulesza et al. (2013) studied the effect of explanations on user's mental models. By using a combination of
short-answer and Likert scale questions, they measured the impact of soundness and completeness on the fidelity
user's mental model, their trust in the explanations, and cost/benefit of using these explanations. They defined
these two factors as soundness (how truthful each element in an explanation is with respect to the underlying sys-
tem) and completeness (the extent to which an explanation describes all of the underlying system). Their findings
showed that when compared with sound explanations, complete ones were associated with the best mental models
and highest perceived benefits with lowest cost. Users also tended to trust explanations that are highly sound and
complete.

Ribeiro et al. (2018) experimented with an evaluation of the user's mental model through predictions of model out-
put. In their experiments, users were asked to predict the behavior of the classifier based on examples that included pre-
dictions of the models with and without explanations. They demonstrated how explanations can reduce human
overestimation of model's accuracy and allow user's to better understand the coverage of some explanations by gaining
a high understanding of the behavior for the model. While interview questions can provide researches to examine cer-
tain aspects of a user's mental model, they are highly dependent on the structure of the questions which can vary
resulting in different impacts on the user. Similarly, most qualitative assessments of mental models such as Think-
Aloud, task reflection, etc. provide rich information about the end-user's mental models, but suffer from variability and
high time consumption in carrying out the full process of design, implementation, and result analysis.

FIGURE 17 Highly uncertain excluded images from final image classification using actionable 3E-Net (Senousy, Abdelsamea,

Mohamed, & Gaber, 2021b). (a) Shows an excluded image which was graded as invasive breast carcinoma grade 3 and the actual label was

grade 1, while (b) shows an excluded image graded as grade 1 with actual ground truth label grade 3.
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Another quality of interest to evaluate in the user's perception of the model explanations is satisfaction and useful-
ness. Measuring usefulness can be done through better response time, overall task performance, or measuring cognitive
load. User Satisfaction, on the other hand, can be measured in similar qualitative ways of mental models such as inter-
view, questionnaires, etc.

Lage et al. (2019) measured response time as the number of seconds it took the subject to submit a task, while mea-
suring satisfaction through a 5-point scale Likert. After submitting their response to each question, but before being told
if their answer was correct, the participant was asked to rate subjectively how difficult it was for the model to answer
the question on a scale from 1 to 5 where one was very easy to use, three was neutral, and five was very difficult to use.
They found that greater complexity, in terms of cognitive chunks or model size, leads to slower response time and less
user satisfaction.

User trust and reliance is another widely departed topic in terms of how to assess such qualities in the AI field. Prior
knowledge and beliefs can influence the initial state of trust of the user but overtime response changes depending on
the user interaction with the system (Mohseni & Ragan, 2018). Some proposed ways to measure trust and reliance try
to enquire about the user's opinion during and after the system interaction (Bussone et al., 2015). Though, these
methods can often suffer from user bias and impressions of the user based on the stated accuracy and the perceived
accuracy as (Yin et al., 2019) found in their experiment, where they measured trust and reliance on AI system based on
the user agreement with the system's recommended action. Their results show that higher stated accuracy of models
tends to persuade the users to rely on using them. An effect that gets amplified when the user's own performance
improves from reliance on the model.

Finally, a more general way of calculating the effect of the explanations on the workflow of the user is by analyzing
the time taken by the user before the introduction of explanations.

5.2 | Computational methods

Reliance on human evaluation can result in the development of model explanations that are more focused on convinc-
ing the user rather than offering transparent interface with the underlying machine learning model. Thus, becoming
unfaithful to the inner workings of the models. Such implicit biases can be problematic to interpretable machine learn-
ing. It limits our ability to provide purely descriptive explanations that are accurate and transparent. Ethically, this
becomes more prominent as we move towards more “convincing” explanations, we fail to satisfy our ethical goals of
offering transparency of underlying model predictions.

Computational measures aim to mediate this problem by offering solutions that are more reliant. By assessing the
consistency of explanations after same input transformations, comparing with inherently interpretable models (gold
standards), and assessing similarity with human generated explanations, scoring of explanations can become more
“metric” based rather than human-based.

By comparing to inherently interpretable models, some methods can assess the fidelity of explanations to the under-
lying model. Ribeiro et al. (2016) showed that by creating a gold standard, retrieved from decision trees, and compared
their proposed ad-hoc method to it. While this can act as an indicator of interpretability of the method, it is limited by
the ability to generate a gold standard that fits the domain space of the field.

Hase and Bansal (2020) proposed a multifaceted metrics to compare explainers based on their correctness, consis-
tency, and confidence. By using masked areas from the input of a high probability data point, they evaluated correct-
ness as the increase in accuracy on the new masked input. Consistency is evaluated based on the ability of the
explainer to consistently identify the same relevant components in the image even after input transformation.

Clinically, a physician needs to trust and depend on the system at hand without falling into: self-reliance where cli-
nician rejects the recommendations of the system entirely or over-reliance where they consider suggestions even though
they are incorrect. The many variables that this evaluation challenge poses may make it so that a compromise needs to
be made, however, with properly researched requirements, a solution that satisfies them would be feasible.

6 | SUMMARY

In this article, we discussed the recent progress in state-of-the-art AI systems applicable on histopathology with an
emphasis on deep learning models. Deep learning networks have demonstrated high performance in several
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applications in the field of histopathology image analysis, ranging from low-level tasks (such as stain normalization) to
high-level tasks (such as explainability and actionability of AI tools). However, these models need a large dataset with
detailed annotation to be introduced into the networks. Network architecture and tuning parameters are not trivial
tasks. More specifically, the parameters in deep neural networks are difficult to interpret in clinical contexts. With these
limitations, the authors believe that an self-supervised and/or weakly supervised learning-based approachs, based solely
on limited or partially annotated datasets, would support the histopathology image analysis field. It is also important to
consider the relationship between the machine-learned features and the clinical diagnostic criteria.

In order to integrate these algorithms into healthcare systems, there is a problem of reliability and interpretability
that need to be addressed. For the histopathology field there are some open problems that still need to be solved. The
first problem is introduced by the nature of the explanations and their utility to the user experiences. To gain a deeper
understanding of the predictive algorithm, it is important to derive a causal explanation as to why the algorithm made
the prediction. Though the XAI techniques may help improve the understandability of our AI solutions, at the current
state we do not have a scientifically backed evaluation framework that would tell us how well they perform and what
drawbacks they might have. This problem exists, because we still lack a solid definition of what makes an explanation
“good”, thus making the majority of outputs by any XAI technique uncertain. Nonetheless, the emergence of many
explainability techniques makes it clear that many approaches can be considered when developing XAI solutions.

An additional consideration when developing new algorithms is making sure they are actionable in real world situa-
tions. In several applications, the ability to act, that is, the ability to transform predictions into action, continues to be
absent. Users will need not only accurate, interpretable predictions in real-world applications, but also instructions to
move the current output to a better, more desirable target.
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Poceviči�utė, M., Eilertsen, G. and Lundström, C. (2020), Survey of xai in digital pathology. In Artificial intelligence and machine learning for
digital pathology, Lecture Notes in Computer Science. Springer, 56–88.

Raczkowski, L., Mozejko, M., Zambonelli, J., & Szczurek, E. (2019). Ara: Accurate, reliable and active histopathological image classification
framework with bayesian deep learning. Scientific Reports, 9, 14347.

ABDELSAMEA ET AL. 41 of 44

 19424795, 2022, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1474 by E
gyptian N

ational Sti. N
etw

ork (E
nstinet), W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://arxiv.org/abs/2009.10639
https://github.com/lopusz/awesome-interpretable-machine-learning
http://arxiv.org/abs/1802.00947
https://github.com/SinaMohseni/ML-Interpretability
https://github.com/SinaMohseni/ML-Interpretability
http://arxiv.org/abs/1803.04054
https://github.com/oracle/Skater
https://github.com/pbiecek/xai-resources/blob/master/README.md#theses
https://github.com/pbiecek/xai-resources/blob/master/README.md#theses


Rakha, E. A., Toss, M., Shiino, S., Gamble, P., Jaroensri, R., Mermel, C. H., & Chen, P.-H. C. (2021). Current and future applications of artifi-
cial intelligence in pathology: A clinical perspective. Journal of Clinical Pathology, 74(7), 409–414.

Razavi, S., Khameneh, F. D., Nouri, H., Androutsos, D., Done, S. J., & Khademi, A. (2022). Minugan: Dual segmentation of mitoses and
nuclei using conditional gans on multi-center breast h&e images. Journal of pathology informatics, 13, 100002.

Ribeiro, M. T., Singh, S. and Guestrin, C. (2016), “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining. (pp. 1135–1144). ACM digital Library.

Ribeiro, M. T., Singh, S. and Guestrin, C. (2018), Anchors: High-precision model-agnostic explanations. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 32.

Robertson, S., Azizpour, H., Smith, K., & Hartman, J. (2018). Digital image analysis in breast pathology-from image processing techniques to
artificial intelligence. Translational Research, 194, 19–35.

Ronneberger, O., Fischer, P. and Brox, T. (2015), U-net: Convolutional networks for biomedical image segmentation. In ‘International Con-
ference on Medical image computing and computer-assisted intervention’, Springer, pp. 234–241.

Ross, A. S., Hughes, M. C. and Doshi-Velez, F. (2017), Right for the right reasons: Training differentiable models by constraining their expla-
nations, International Joint Conferences on Artificial Intelligence, pp. 2662–2670. http://arxiv.org/abs/1703.03717

Rossetti, B. J., Wang, F., Zhang, P., Teodoro, G., Brat, D. J. and Kong, J. (2017), Dynamic registration for gigapixel serial whole slide images.
In ‘2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017)’, IEEE, pp. 424–428.

Roy, K., Banik, D., Bhattacharjee, D., & Nasipuri, M. (2019). Patch-based system for classification of breast histology images using deep learn-
ing. Computerized Medical Imaging and Graphics, 71, 90–103. https://www.sciencedirect.com/science/article/pii/S0895611118302039

Sahasrabudhe, M., Christodoulidis, S., Salgado, R., Michiels, S., Loi, S., André, F., Paragios, N., & Vakalopoulou, M. (2020). Self-supervised
nuclei segmentation in histopathological images using attention. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A.
Zuluaga, S. K. Zhou, D. Racoceanu, & L. Joskowicz (Eds.), Medical image computing and computer assisted intervention: MICCAI 2020
(pp. 393–402). Springer International Publishing.

Saillard, C., Dehaene, O., Marchand, T. and Moindrot, O. (2021), ‘Self supervised learning improves dmmr/msi detection from histology slides
across multiple cancers’, pp. 1–16.

Salvi, M., & Molinari, F. (2018). Multi-tissue and multi-scale approach for nuclei segmentation in h&e stained images. Biomedical Engineer-
ing Online, 17, 89.

Samek, W., Binder, A., Montavon, G., Bach, S., & Müller, K.-R. (2015). Evaluating the visualization of what a deep neural network has
learned. IEEE Transactions on Neural Networks and Learning Systems, 28, 2660–2673. http://arxiv.org/abs/1509.06321

Schirris, Y., Gavves, E., Nederlof, I., Horlings, H. M., & Teuwen, J. (2022). Deepsmile: Contrastive self-supervised pre-training benefits msi
and hrd classification directly from h&e whole-slide images in colorectal and breast cancer. Medical Image Analysis, 79, 102464.

Schultz, S., Krüger, J., Handels, H. and Ehrhardt, J. (2019), Bayesian inference for uncertainty quantification in point-based deformable
image registration. In Medical Imaging 2019: Image Processing, Vol. 10949, International Society for Optics and Photonics, 109491S.

Schwier, M., Böhler, T., Hahn, H. K., Dahmen, U., & Dirsch, O. (2013). Registration of histological whole slide images guided by vessel struc-
tures. Journal of pathology informatics, 4, 10.

Sekhar, S. C., Aguet, F., Romain, S., Thévenaz, P. and Unser, M. (2008), Parametric b-spline snakes on distance maps-application to segmen-
tation of histology images. In Signal processing conference, 2008 16th European, IEEE, pp. 1–5.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2019). Grad-cam: Visual explanations from deep networks via
gradient-based localization. International Journal of Computer Vision, 128(2), 336–359. https://doi.org/10.1007/s11263-019-01228-7

Senaras, C., Niazi, M. K. K., Sahiner, B., Pennell, M. P., Tozbikian, G., Lozanski, G., & Gurcan, M. N. (2018). Optimized generation of high-
resolution phantom images using cgan: Application to quantification of ki67 breast cancer images. PLoS One, 13(5), e0196846.

Senousy, Z., Abdelsamea, M., Gaber, M. M., Abdar, M., Acharya, R. U., Khosravi, A., & Nahavandi, S. (2021a). Mcua: Multi-level
context and uncertainty aware dynamic deep ensemble for breast cancer histology image classification. IEEE Transactions on Biomedical
Engineering, 69(2), 818–829.

Senousy, Z., Abdelsamea, M. M., Mohamed, M. M., & Gaber, M. M. (2021b). 3e-net: Entropy-based elastic ensemble of deep convolutional
neural networks for grading of invasive breast carcinoma histopathological microscopic images. Entropy, 23(5), 1–21. https://www.mdpi.
com/1099-4300/23/5/620

Sertel, O., Kong, J., Catalyurek, U. V., Lozanski, G., Saltz, J. H., & Gurcan, M. N. (2009). Histopathological image analysis using model-based
intermediate representations and color texture: Follicular lymphoma grading. Journal of Signal Processing Systems, 55(1–3), 169–183.

Shaban, M., Awan, R., Fraz, M., Azam, A., Snead, D., & Rajpoot, N. (2020). Context‐aware convolutional neural network for grading of colo-
rectal cancer histology images. IEEE Transactions on Medical Imaging, 39(7), 2395–2405.

Shaban, M. T., Baur, C., Navab, N., & Albarqouni, S. (2019). Staingan: Stain style transfer for digital histological images. In 2019 IEEE 16th
international symposium on biomedical imaging (Isbi 2019), IEEE. pp. 953–956.

Shahul Hameed, K., Banumathi, A., & Ulaganathan, G. (2017). A simple method of immunostained tissue scoring based on maximal separa-
tion techniques. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6, 1–7.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.
Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., & Zhang, Y. (2021). Transmil: Transformer based correlated multiple instance learn-

ing for whole slide image classification. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances in neu-
ral information processing systems (Vol. 34, pp. 2136–2147). Curran Associates, Inc.. https://proceedings.neurips.cc/paper/2021/file/
10c272d06794d3e5785d5e7c5356e9ff-Paper.pdf

42 of 44 ABDELSAMEA ET AL.

 19424795, 2022, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1474 by E
gyptian N

ational Sti. N
etw

ork (E
nstinet), W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://arxiv.org/abs/1703.03717
https://www.sciencedirect.com/science/article/pii/S0895611118302039
http://arxiv.org/abs/1509.06321
https://doi.org/10.1007/s11263-019-01228-7
https://www.mdpi.com/1099-4300/23/5/620
https://www.mdpi.com/1099-4300/23/5/620
https://proceedings.neurips.cc/paper/2021/file/10c272d06794d3e5785d5e7c5356e9ff-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/10c272d06794d3e5785d5e7c5356e9ff-Paper.pdf


Sharma, Y., Shrivastava, A., Ehsan, L., Moskaluk, C. A., Syed, S., & Brown, D. (2021). Cluster-to-conquer: A framework for end-to-end
multi-instance learning for whole slide image classification. In M. Heinrich, Q. Dou, M. de Bruijne, J. Lellmann, A. Schläfer, & F. Ernst
(Eds.), Proceedings of the Fourth Conference on Medical Imaging with Deep Learning’, Vol. 143 of Proceedings of Machine Learning
Research, PMLR (pp. 682–698). PMLR. https://proceedings.mlr.press/v143/sharma21a.html

Shen, Y., & Ke, J. (2020). A deformable crf model for histopathology whole-slide image classification. In A. L. Martel, P. Abolmaesumi, D.
Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, & L. Joskowicz (Eds.), Medical image computing and computer assisted
intervention: MICCAI 2020 (pp. 500–508). Springer International Publishing.

Shrivastava, A., Adorno, W., Sharma, Y., Ehsan, L., Ali, S. A., Moore, S. R., Amadi, B., Kelly, P., Syed, S. and Brown, D. E. (2021), Self-
attentive adversarial stain normalization, In International conference on pattern recognition, springer, pp. 120–140.

sicara (2019), tf-explain: tf-explain documentation. https://tf-explain.readthedocs.io/en/latest/.
Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D. R., Cree, I. A., & Rajpoot, N. M. (2016). Locality sensitive deep learning for

detection and classification of nuclei in routine colon cancer histology images. IEEE Transactions on Medical Imaging, 35(5), 1196–1206.
Sirinukunwattana, K., Snead, D. R., & Rajpoot, N. M. (2015). A stochastic polygons model for glandular structures in colon histology images.

IEEE Transactions on Medical Imaging, 34(11), 2366–2378.
Smilkov, D., Thorat, N., Kim, B., Viégas, F. and Wattenberg, M. (2017), Smoothgrad: Removing noise by adding noise, pp. 1–10.
Sommer, C., Fiaschi, L., Hamprecht, F. A. and Gerlich, D. W. (2012), Learning-based mitotic cell detection in histopathological images. In

Pattern recognition (ICPR), 2012 21st International Conference on, IEEE, 2306–2309.
Sornapudi, S., Stanley, R., Stoecker, W., Almubarak, H., Long, L., Antani, S., Thoma, G., Zuna, R. and Frazier, S. (2018), Deep learning nuclei

detection in digitized histology images by superpixels, 9, 5.
Springenberg, J. T., Dosovitskiy, A., Brox, T. and Riedmiller, M. (2015), ‘Striving for simplicity: The all convolutional net’, pp. 1–14.
Srinidhi, C. L., Ciga, O., & Martel, A. L. (2021). Deep neural network models for computational histopathology: A survey. Medical Image

Analysis, 67, 101813.
Srinidhi, C. L., Kim, S. W., Chen, F.-D., & Martel, A. L. (2022). Self-supervised driven consistency training for annotation efficient histopa-

thology image analysis. Medical Image Analysis, 75, 102256. https://www.sciencedirect.com/science/article/pii/S1361841521003017
Stacke, K., Eilertsen, G., Unger, J. and Lundström, C. (2019), ‘A closer look at domain shift for deep learning in histopathology’, pp. 1–8.
Sun, C., Xu, A., Liu, D., Xiong, Z., Zhao, F., & Ding, W. (2020a). Deep learning-based classification of liver cancer histopathology images

using only global labels. IEEE Journal of Biomedical and Health Informatics, 24(6), 1643–1651.
Sun, J., Darbehani, F., Zaidi, M. and Wang, B. (2020b), Saunet: Shape attentive u-net for interpretable medical image segmentation. In Inter-

national conference on medical image computing and computer-assisted intervention, Springer, pp. 797–806.
Sundararajan, M., Taly, A. and Yan, Q. (2017). Axiomatic attribution for deep networks. In International conference on machine learning.

(pp. 3319–3328). PMLR.
Takamatsu, M., Yamamoto, N., Kawachi, H., Nakano, K., Saito, S., Fukunaga, Y., & Takeuchi, K. (2022). Prediction of lymph node metastasis

in early colorectal cancer based on histologic images by artificial intelligence. Scientific Reports, 12(1), 1–11.
Tosta, T. A. A., de Faria, P. R., Neves, L. A., & Nascimento, M. Z. (2019). Computational normalization of h&e-stained histological images:

Progress, challenges and future potential. Artificial Intelligence in Medicine, 95, 118–132.
van den Oord, A., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv e-prints, arXiv-1807,

pp. 1–13.
Vang, Y. S., Chen, Z., & Xie, X. (2018). Deep learning framework for multi-class breast cancer histology image classification. In A. Campilho,

F. Karray, & B. ter Haar Romeny (Eds.), Image analysis and recognition (pp. 914–922). Springer International Publishing.
Venet, L., Pati, S., Yushkevich, P., & Bakas, S. (2019). Accurate and robust alignment of variable-stained histologic images using a general-

purpose greedy diffeomorphic registration tool. arXiv preprint, arXiv:1904.11929, 1–3.
Veta, M., Pluim, J. P., Van Diest, P. J., & Viergever, M. A. (2014). Breast cancer histopathology image analysis: A review. IEEE Transactions

on Biomedical Engineering, 61(5), 1400–1411.
Wan, T., Zhao, L., Feng, H., Li, D., Tong, C., & Qin, Z. (2020). Robust nuclei segmentation in histopathology using asppu-net and boundary

refinement. Neurocomputing, 408, 144–156.
Wang, J., Chen, R. J., Lu, M. Y., Baras, A. and Mahmood, F. (2020), Weakly supervised prostate tma classification via graph convolutional

networks. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 239–243.
Wang, P., Li, P., Li, Y., Xu, J., & Jiang, M. (2022). Classification of histopathological whole slide images based on multiple weighted semi-

supervised domain adaptation. Biomedical Signal Processing and Control, 73, 103400. https://www.sciencedirect.com/science/article/pii/
S1746809421009976

Wang, X., Chen, H., Gan, C., Lin, H., Dou, Q., Huang, Q., Cai, M. and Heng, P. (2018), Weakly supervised learning for whole slide lung can-
cer image classification. In Medical Imaging with Deep Learning. https://openreview.net/forum?id=SJwod1hjz

Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Huang, J., Yang, W., & Han, X. (2021). Transpath: Transformer-based self-supervised
learning for histopathological image classification. In M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, & C. Essert
(Eds.), Medical image computing and computer assisted intervention – MICCAI 2021 (pp. 186–195). Springer International Publishing.

Wang, Y., Crookes, D., Diamond, J., Hamilton, P. and Turner, R. (2007), Segmentation of squamous epithelium from ultra-large cervical his-
tological virtual slides. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the
IEEE, IEEE, pp. 775–778.

ABDELSAMEA ET AL. 43 of 44

 19424795, 2022, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1474 by E
gyptian N

ational Sti. N
etw

ork (E
nstinet), W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://proceedings.mlr.press/v143/sharma21a.html
https://tf-explain.readthedocs.io/en/latest/
https://www.sciencedirect.com/science/article/pii/S1361841521003017
https://www.sciencedirect.com/science/article/pii/S1746809421009976
https://www.sciencedirect.com/science/article/pii/S1746809421009976
https://openreview.net/forum?id=SJwod1hjz


Wodzinski, M., & Skalski, A. (2019). Automatic nonrigid histological image registration with adaptive multistep algorithm. arXiv preprint,
1–4. arXiv:1904.00982.

Wu, H.-S., Xu, R., Harpaz, N., Burstein, D., & Gil, J. (2005). Segmentation of intestinal gland images with iterative region growing. Journal of
Microscopy, 220(3), 190–204.

Wulczyn, E., Steiner, D. F., Xu, Z., Sadhwani, A., Wang, H., Flament-Auvigne, I., Mermel, C. H., Chen, P.-H. C., Liu, Y., & Stumpe, M. C.
(2020). Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS One, 15(6), e0233678.

Xiang, T., Song, Y., Zhang, C., Liu, D., Chen, M., Zhang, F., Huang, H., O'Donnell, L., & Cai, W. (2022). Dsnet: A dual-stream framework for
weakly-supervised gigapixel pathology image analysis. IEEE Transactions on Medical Imaging, 1–11.

Xie, X., Li, Y., Zhang, M., & Shen, L. (2019). Robust segmentation of nucleus in histopathology images via mask r-cnn. In A. Crimi, S. Bakas,
H. Kuijf, F. Keyvan, M. Reyes, & T. van Walsum (Eds.), Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries
(pp. 428–436). Springer International Publishing.

Xing, F., Xie, Y., Su, H., Liu, F., & Yang, L. (2017). Deep learning in microscopy image analysis: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 29(10), 4550–4568.

Xu, J., Janowczyk, A., Chandran, S., & Madabhushi, A. (2011). A high-throughput active contour scheme for segmentation of histopathologi-
cal imagery. Medical Image Analysis, 15(6), 851–862.

Xue, Y., Ye, J., Zhou, Q., Long, L. R., Antani, S., Xue, Z., Cornwell, C., Zaino, R., Cheng, K. C., & Huang, X. (2021). Selective synthetic aug-
mentation with histogan for improved histopathology image classification. Medical Image Analysis, 67, 101816. https://www.
sciencedirect.com/science/article/pii/S1361841520301808

Yan, K., Wang, X., Lu, L., & Summers, R. M. (2018). DeepLesion: Automated mining of large-scale lesion annotations and universal lesion
detection with deep learning. Journal of Medical Imaging, 5(3), 1–11. https://doi.org/10.1117/1.JMI.5.3.036501

Yan, R., Ren, F., Zihao, W., Wang, L., Zhang, T., Liu, Y., Rao, X., Zheng, C., & Zhang, F. (2020). Breast cancer histopathological image classi-
fication using a hybrid deep neural network. Methods, 173, 52–60.

Yang, P., Hong, Z., Yin, X., Zhu, C., & Jiang, R. (2021). Self-supervised visual representation learning for histopathological images. In M. de
Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, & C. Essert (Eds.), Medical image computing and computer assisted inter-
vention: MICCAI 2021 (pp. 47–57). Springer International Publishing.

Yang, Z., Ran, L., Zhang, S., Xia, Y., & Zhang, Y. (2019). Ems-net: Ensemble of multiscale convolutional neural networks for classification of
breast cancer histology images. Neurocomputing, 366, 46–53. http://www.sciencedirect.com/science/article/pii/S0925231219310872

Yin, M., Vaughan, J. W., & Wallach, H. (2019). Understanding the effect of accuracy on trust in machine learning models. Association for Com-
puting Machinery, pp. 1–12. https://doi.org/10.1145/3290605.3300509

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars,
(Eds.), Computer Vision: ECCV 2014. ECCV 2014. Lecture Notes in Computer Science (Vol. 8689). Springer. https://doi.org/10.1007/978-3-
319-10590-1_53.

Zeng, Z., Xie, W., Zhang, Y., & Lu, Y. (2019). Ric-unet: An improved neural network based on unet for nuclei segmentation in histology
images. IEEE Access, 7, 21420–21428.

Zhang, X., Zhu, X., Tang, K., Zhao, Y., Lu, Z., & Feng, Q. (2022). Ddtnet: A dense dual-task network for tumor-infiltrating lymphocyte detec-
tion and segmentation in histopathological images of breast cancer. Medical Image Analysis, 78, 102415.

Zhao, Y., Yang, F., Fang, Y., Liu, H., Zhou, N., Zhang, J., Sun, J., Yang, S., Menze, B., Fan, X. and Yao, J. (2020), Predicting lymph node
metastasis using histopathological images based on multiple instance learning with deep graph convolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Zhou, C., Jin, Y., Chen, Y., Huang, S., Huang, R., Wang, Y., Zhao, Y., Chen, Y., Guo, L., & Liao, J. (2021). Histopathology classification and
localization of colorectal cancer using global labels by weakly supervised deep learning. Computerized Medical Imaging and Graphics,
88, 101861. https://www.sciencedirect.com/science/article/pii/S0895611121000094

Zhou, Y., Graham, S., Koohbanani, N. A., Shaban, M., Heng, P.‐A., & Rajpoot, N. (2019a). Cgc‐net: Cell graph convolutional network for
grading of colorectal cancer histology images. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops
(pp. 1–11). https://doi.org/10.48550/arXiv.1909.01068.

Zhou, Y., Onder, O. F., Dou, Q., Tsougenis, E., Chen, H., & Heng, P.-A. (2019b). Cia-net: Robust nuclei instance segmentation with contour-
aware information aggregation. In A. C. S. Chung, J. C. Gee, P. A. Yushkevich, & S. Bao (Eds.), Information processing in medical imag-
ing (pp. 682–693). Springer International Publishing.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Abdelsamea, M. M., Zidan, U., Senousy, Z., Gaber, M. M., Rakha, E., & Ilyas, M.
(2022). A survey on artificial intelligence in histopathology image analysis. WIREs Data Mining and Knowledge
Discovery, 12(6), e1474. https://doi.org/10.1002/widm.1474

44 of 44 ABDELSAMEA ET AL.

 19424795, 2022, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1474 by E
gyptian N

ational Sti. N
etw

ork (E
nstinet), W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.sciencedirect.com/science/article/pii/S1361841520301808
https://www.sciencedirect.com/science/article/pii/S1361841520301808
https://doi.org/10.1117/1.JMI.5.3.036501
http://www.sciencedirect.com/science/article/pii/S0925231219310872
https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://www.sciencedirect.com/science/article/pii/S0895611121000094
https://doi.org/10.48550/arXiv.1909.01068
https://doi.org/10.1002/widm.1474

	A survey on artificial intelligence in histopathology image analysis
	1  INTRODUCTION
	2  TRAINING DATA ANNOTATION
	3  HISTOPATHOLOGY IMAGE ANALYSIS
	3.1  Pre-deep learning
	3.1.1  Hand-designed methods
	3.1.2  Trainable methods

	3.2  Postdeep learning
	3.2.1  Tissue classification
	3.2.2  Tissue-level segmentation
	3.2.3  Cellular-level segmentation

	3.3  Deep learning in precision oncology

	4  CURRENT RESEARCH DIRECTIONS
	4.1  Histopathology image registration
	4.2  Scarce annotations in digital pathology
	4.2.1  Weakly supervised learning methods
	4.2.2  Self-supervised learning methods
	4.2.3  Stain normalization

	4.3  Uncertainty quantification in digital pathology
	4.4  Explainability in histopathology
	4.5  Actionability in histopathology

	5  EVALUATION OF EXPLAINABLE TECHNIQUES
	5.1  Human evaluated methods
	5.2  Computational methods

	6  SUMMARY
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	RELATED WIREs ARTICLE
	REFERENCES


