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Abstract: As big data, its technologies, and application continue to advance,
the Smart Grid (SG) has become one of the most successful pervasive and
fixed computing platforms that efficiently uses a data-driven approach and
employs efficient information and communication technology (ICT) and
cloud computing. As a result of the complicated architecture of cloud com-
puting, the distinctive working of advanced metering infrastructures (AMI),
and the use of sensitive data, it has become challenging to make the SG secure.
Faults of the SG are categorized into two main categories, Technical Losses
(TLs) and Non-Technical Losses (NTLs). Hardware failure, communication
issues, ohmic losses, and energy burnout during transmission and propagation
of energy are TLs. NTL’s are human-induced errors for malicious purposes
such as attacking sensitive data and electricity theft, along with tampering
with AMI for bill reduction by fraudulent customers. This research proposes
a data-driven methodology based on principles of computational intelligence
as well as big data analysis to identify fraudulent customers based on their
load profile. In our proposed methodology, a hybrid Genetic Algorithm and
Support Vector Machine (GA-SVM) model has been used to extract the
relevant subset of feature data from a large and unsupervised public smart
grid project dataset in London, UK, for theft detection. A subset of 26 out of
71 features is obtained with a classification accuracy of 96.6%, compared to
studies conducted on small and limited datasets.
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1 Introduction

The growth of the population has led to increasing consumerism which posed a significant
challenge for utility provisions such as the electric industry. A critical change in the past decade is
the Smart Grid (SG) construction. The SG was introduced to improve the operational efficiencies of
the conventional power grid. The traditional electrical system made it difficult to track how electricity
was consumed daily in the houses because there was no communication. Due to this unawareness of
how much energy we were using until a sizable bill showed up in the mailbox, it was simple to waste it
unknowingly. By burning so much additional energy in the power plants, unintentional energy wastage
released the hazardous greenhouse gas emissions brought on by burning fossil fuels. Wasted energy
leads to excess pollution and harmful health effects, disproportionately affecting communities that
practice environmental justice. In Fig. 1, the detailed architecture of a modern SG can be seen, which
shows how it is a two-way system, where any unused energy is propagated back into the electric supply
or can be rerouted elsewhere where it is needed. However, this has increased the risk of data security
breaches and cyber-attacks [1]. The unused energy is routed back to the distributed station, which
further en-routes it to needy consumers.

Figure 1: Working of a smart grid system

The concept of SG comprises a large amount of real-time data transmission on semi-open network
structures. Such transmission makes it vulnerable to theft as data tempering becomes easier on the
metering system from any available public network. Many statistical studies show that electricity theft
in many developed countries reaches billions of dollars. E.g., the US suffers almost 6 billion USD in
electricity theft [2,3]. Such theft has consequently inhibited the growth and development of SG. To
avoid such losses in the SG, they are categorized into two major kinds, technical losses (TLs) and
non-technical losses (NTL). TLs are the ohmic losses in the transmission and distribution lines due to
faulty infrastructure and resistance. NTLs are where everything in the infrastructure works perfectly
per design, but faults occur due to external tampering or fraud. So, it can be seen that the NTLs are
energy theft-based losses, whereas the TLs are not due the energy theft. Theft of energy is the most
commonly occurring non-technical loss, and the non-technical nature of this problem makes it very
tricky for providers to detect and analyze the causes and the responsible parties for theft. The main
challenge in SGs is hardware requirements, security, and data privacy.

The primary motivation to drive the proposed research work is to minimize the NTLs in the SG
structure by detecting the most compromised areas of supply. For the detection of areas that causes
the leak and fraud, various models are currently working, such as evolutionary computing is in use.
However, here is a big room to enhance the system’s overall capacity. The proposed model is based on
the ideas of computational intelligence and big data analysis to detect fraudulent customers based on
their load summary. This research is focused on a solution that uses a hybrid Support Vector Machine
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(SVM) using optimized features subset from a large dataset of unsupervised SG data gathered as a
result of the Genetic Algorithm (GA). Hence, it is a hybrid approach of GA and SVM, which is used
to get a relevant subset of data from a large and unsupervised dataset of a public SG project in London,
UK. The proposed model successfully achieved the feature subset of 26 out of 71 features, resulting
in a classification accuracy of 96.6% on this dataset. The main contributions of this research are as
follows:

i) Data pre-processing and identification of different load clusters in the London SG dataset.
ii) Development of feature selection and classification model.

iii) Highlighting important features for theft detection in the dataset.
iv) Classification of fraudulent and non-fraudulent customers.

2 Related Work

TLs usually comprise network intrusion, false data injection, and electricity theft. Network
intrusion is one of the widely studied non-technical losses. Three main kinds of techniques for detection
techniques were discovered signature-based, anomaly-based, and specification-based.

A contextual anomaly framework was used for Big Sensor Data systems such as the one used in an
SG [4]. It was proposed as a real-time point anomaly detection with a well-defined algorithm based on
a sensor profile generated by a multivariate clustering algorithm. Another proposed technique was the
compressive sensing theory for an anomaly detection algorithm. The anomaly detection algorithm was
based on wavelet packet transform, and a statistical process control theory was subsequently deduced
[5,6] Overall, fault detection in big data applications has been a hot topic in the last decade [7]. One
such discussion was elaborated in [8], where the author targeted the problem of theft that results from
privacy issues in data. In this work, the author used a P2P (peer-to-peer) computing approach to detect
honest users from fraudulent users. It was somewhat successful in detecting users’ anomalous behavior;
however, this method’s computing complexity was very high and hence not suitable for real-time data.

Similarly, a top-down approach using decision trees has been used in [9], where decision trees are
used for a rigorous analysis of the data produced by the smart meter. This method was somewhat of an
improvement compared to the last ones since it was practical enough to be implemented in real-time
and reasonably accurate on large-scale data. Another similar work was proposed in [10], where the
attack tree-based model was introduced to detect the theft behaviors in the data. It presented a novel
idea that was based on the needs. There can be three ways for theft detection, namely divided into
the following categories; Classification based, State–estimation based, and Game theory-based. An
even better approach, if a very complex one, was used in [11,12]. The paper investigated the presently
trending False Data Injection (FDI) attack. This was performed by utilizing the introduction of the
combined sum of energy profiles and its attack in a well-organized manner in coordinated manner
on a certain number of customers and their smart meters, which shows a lowered figure of energy
consumption for the attacker as opposed to a higher reading for the neighborhood. An integrated
data storage can be seen as a distinct node connecting only with the data collector node. Therefore,
the authors used the Naive Bayes Classifier to catch the impending black-hole hits, which stems from
the Bayes theorem. In [13], an intrusion detection framework for advanced metering infrastructure
(AMI), which also used the anomaly detection technique, was studied. The architecture of the said
model was comprised of various individual IDS modules that were kept at different locations in HANs
(Home Area Network), NAN (Neighborhood Area Network), and WAN (Wide Area Network).
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Correspondingly, if an IDS module comes across a possible threat, then an associated notification will
be delivered to the system administrator of AMI. Also, a principle IDS module sums up and studies
the future alarms that may be generated by the different IDS modules [14,15]. All how fraudulent
or adversary parties can attack the AMI system of the SG are discussed in [16], as the AMI is a key
component for SGs. Energy data usage was manipulated, and penetration testing was performed on
the commodity devices. This paper highlighted a number of ways in which AMI can be tampered
with, especially data-driven theft techniques. Hence, it proved to help for future research by laying out
different ways in which theft is done and paved the way for some better methods for theft detection.

Similarly, electricity theft is also categorized as a non-technical loss since it is human-induced.
For example the energy theft has become a recurrent problem in traditional power systems. Utility
companies in the United States face a loss of around 6 billion dollars annually due to energy theft
to this problem [17,18]. In the past few years, the SG was introduced as an innovative electrical grid
to upgrade the conventional grids to make power delivery more reliable, economical, and sustainable
[19]. A standout feature amongst the SG is the substitution of ordinary simple mechanical meters for
advanced meters, often called “smart meters”.

Smart meters, equipped with recording user consumption data because of their communication
architecture, can give a two-way correspondence between unit commitment (UC) and customers,
encouraging effective power framework control and observation [20]. In contrast, the mechanical
meters, which may be physically altered, smart meters are not protected against network attacks,
which may make energy theft simpler to carry out and subsequently become a significantly increasingly
significant issue in SGs. Therefore, it has become increasingly crucial to develop methodologies that
can be efficient as well as scalable methods that can help in theft detection. Before studying theft
detection in SGs, it is essential to shedding some light on the work done for fault detection using
data-driven techniques [21]. One of the earliest non-technical fault detections was used in mechanical
big data and process manufacturing. Since the advent of SGs, there has been constant research on
resolving TLs and NTL, such as theft. The work done in security and network security for TLs,
inadvertently paved the path for the research on energy theft [22]. In [23], the discussion was done
where the author targeted the problem of theft that results from privacy issues in data. In this work, the
author used a P2P (peer-to-peer) computing approach to detect honest users from fraudulent users.
It was somewhat successful in the detection of the anomalous behavior of users at the cost of high
computational complexity.

FDI attacks were investigated in another way by using the overall sum of energy attacks in a way
upon many customers’ smart meters, which would give a lower bill value for the hacker or attacker and
a higher bill value for someone whose energy got stolen. The research model was a “one type” change
problem that paved the way to decrease the frequency of attacked meters based on the parity of an
aggregated load to evade detection. A hybrid detection framework was proposed to check malicious
activities by integrating an algorithm for grid sensor placement along with observability analysis to
increase the rate of detection [24]. This work could be used to improve the network observability and
detection accuracy, which was made even better by the grid-placed sensor deployment. However, this
was a hardware-based approach to an extent and did not address the huge amount of data vulnerable
to attacks. Another efficient method to detect energy fraud using ICT was presented in [25], which
involved the disposition of smart meters by using the matrix pencil approach, but it was a costly
solution, albeit a novel one.
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Along with the stated approaches, scholars have explored various techniques for theft detection. In
[26–28], fuzzy classification, rough set theory and SVM were used to recognize anomalies in customer
usage patterns. The fuzzification of features could be a cumbersome task. Rough sets gave rise to a
high false positive rate, and the SVM scheme was not attractive due to the manual data collection of
the customers.

In [29], Particle Swarm Optimization (PSO) was employed for feature selection in intrusion
detection. Similarly, Ant Colony Optimization (ACO) was employed for feature reduction in face
recognition problems [30]. Both methods, PSO and ACO, have high computational complexity.
In [31], the total electricity cost was minimized in SGs with short-term time averaged electricity
cost as an objective function in GA. Another aspect of theft detection with feature engineering in
SGs is presented in [32] using the GA. The dataset used was based on 4000 household records.
Besides evolutionary methods, the principle component analysis and mean shift algorithm were
employed in [33] for residential consumers’ power theft detection. Another approach using the hybrid
approach based on convolutional neural networks and Random Forests was proposed in [34]. Another
framework based on Neural Networks, SVM, was proposed for anomaly detection in [35,36]. The
computational complexity of such methods is relatively high. However, the number of false positives
decreased when all these irregularities were studied and combined with various other parameters to
identify theft and thieving customers successfully.

In all this research, many techniques have been put forward for detecting electricity theft in SGs.
However, most of these can only offer a solution for very few customers, and the detection accuracy
is not as high as ideally desired. However, a limited set of paraments and the high number of false
positives limit the application of these solutions.

3 Methodology

This section presents the proposed methodology for identifying anomalous and falsely injected
data to identify electricity theft and to recognize the parameters that set typical SG Data apart
from malicious data injected for energy theft. The main aim here is to employ the techniques of
computational intelligence that can be used in big data analysis and help detect erroneous data. Fig. 2
shows the proposed system architecture. A thorough explanation of the architecture is as follows.

3.1 Energy Consumption Profiling

Since this is a data-driven model, a thorough analysis of the consumers’ load profile and energy
consumption was performed. There were three major categories of customers, industrial, commercial
and residential. The load profiles of residential and commercial users were analyzed.

The residential and commercial customer average energy consumption should fall, as illustrated
in Tables 1 and 2, respectively. The main aim here is to analyze the percentage losses that occur after
factoring in distribution losses of 3%–5%. The dataset was divided into clusters for better analysis and
pre-processing.
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Figure 2: System architecture for feature selection and classification

Table 1: Residential consumption

Consumption Low Medium High

kWh per month 0–10 10–30 30–80
kWh per day 0–0.333 0.333–1.0 1.0–3.0
kWh per hour 0–0.014 0.014–0.042 0.042–0.060

Table 2: Commercial consumption

Consumption Low Medium High

kWh per month 0–500 500–2000 2000–20000
kWh per day 0–16.677 16.677–66.677 66.677–666.677
kWh per hour 0–0.695 0.695–2.787 2.787–27.877

Fig. 3a shows the expected regular consumption and the number of days for three residential
customers. This depicts three non-fraudulent customers, C1, C2, and C3, in residential areas and
how their energy consumption remains constant for over a month. The Fig. 3b shows that three
residential customers, C1, C2, and C3, involved in electricity theft are using abnormally large amounts
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of electricity in the given time frame; not only that but there is no regularity at all in the usage, which
shows that electricity distribution is tempered.

Figure 3: Electricity consumption across 30 days. (a) Expected consumption for three non-fraudulent
residential customers (b) Actual consumption for three non-fraudulent residential customers

The Silhouette plot shows the closeness of each point in a single cluster with the neighboring
cluster points in the range of [−1,1]. Assume that the data have been separated into k clusters with
each sample being a sample i, then a (i) is the average dissimilarity of i with other samples inside the
same cluster. Similarly, b (i) is the least average dissimilarity of i to any other clusters.

Then the silhouette value s (i) is defined in Eq. (1) as follows:

s (i) = b (i) − a (i)
max (a (i) , b (i))

(1)

The average of s (i) overall samples inside a cluster show the closeness of the samples in the cluster
and, when averaged over the entire dataset, will show us how properly the data is being clustered.
Hence, defining separate classes for distinct clusters will help achieve higher classification accuracy.
Otherwise, the single cluster cannot be used in the multi-class problem.

The case is marked as anomalous or fraudulent if any customer or electrical company faces losses
exceeding a set threshold. The proposed study considers three different behaviors of a fraudulent
customer. The explanation of each type of fraud is as below:

i) Energy consumption must follow the approximate consumption pattern as illustrated for
the customer. However, those customers who do not follow such consumption patterns are
categorized as category C.

ii) If zero consumption is read for more than two hours in 24 h, such customers are categorized
as category B customers.

iii) It may have more than six individual zero-energy consumption inputs while displaying
any zero-energy consumption repetitions. However, the customers with such behavior were
categorized as category A customers.

The above rules were generally applied, and customers that fall into the above categories were
inspected [2].
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3.2 Feature Selection and Classification

When working with fault and outlier detection, a focus on dataset features is imperative since
it helps to understand what features classify as standard data and what features would classify as
abnormal. Feature selection algorithms reduce the number of input variables, thus reducing the
complexity of prediction models. These models are of two types: the first one is feature ranking, and the
other one is set selection. Feature ranking deletes all the features that do not have an appropriate score.
The best set of features from all possible features is searched in feature selection. Feature selection is
the method employed in this research. However, before training data, only the smallest set of features
that leads to the highest accuracy are kept, and irrelevant features are discarded.

GA is used for the feature selection on the original feature set, and the best feature selected by
GA is used by SVM for anomalous data detection. Fig. 4 shows the basic framework proposed in
this methodology, which illustrates how the large dataset with many redundant or non-important
features will be optimized. In the proposed method, supervised feature selection filters out the dataset’s
irrelevant and redundant features. A target feature is defined, and the features that do not contribute
much to the target value or do not cause a huge variance in the target are removed. In this case,
individual features are the genes, and any chromosome is a candidate set of features. Each chromosome
in the “population” is ranked on fitness solution, on a fitness score, which is a model performance
in this case. The fittest chromosome will be selected (survive) and reproduce, repeating until the
population converges on a solution after some generations.

Below are the steps taken for feature selection using GA:

i. Initialization of Binary Encoded Population: Binary encoding for inclusion and exclusion of
features is carried out to ensure that the data fits into the GA model. This is also done to avoid
any categorical attribute whose values may not be all present in the train and test data. The
random exclusion of features initializes the population of chromosomes. Eq. (2) represents the
initial population matrix on ith iteration where i ≥ 0.

Ci =

⎡
⎢⎢⎣

c1,1 c1,2 . . . c1,m

c2,1 c2,2 . . . c2,m

: : : :
cn,1 cn,2 . . . cn,m

⎤
⎥⎥⎦ (2)

The cn,m represents the mth gene of the nth chromosome, where n represents the chromosome
number in the population and m represents the mth feature of the dataset, with m varying from 0 to
the total number of features. The possible values of all the genes are 1 or 0. If the value of a gene is 1,
then that feature represented by that gene is considered included. The feature is excluded if the value
of the gene is 0.

ii. Fitness Calculation with MSE: For the fitness function, the ‘fitness’ of a chromosome will
be gauged by using Mean Square Error (MSE). In this model, the model is built using build
using independent variables and predicting particular dependent or target variables. Since the
dependent variable is numeric in the case of electricity usage, the linear regression model is used
to predict it. In the linear regression model for fitness function, MSE for the line is calculated
as the average of the sum of squares for all data points. In short, the best fit is considered for
the line that gives minimal MSE. The fitness values are represented by Ji on ith iteration as
given in Eq. (3).
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Ji =

⎡
⎢⎢⎣

jc1

jc2

:
jcn

⎤
⎥⎥⎦ (3)

The K-fold cross-validation technique was used to set a benchmark of accuracy for our algorithm,
avoid over-fitting, and provide the best estimate of the GA model. This helps in selecting the parent
chromosome for the next generation.

iii. Parents Selection with Proportional Selection: The next step is parent selection, in which the
best chromosomes with high fitness values are selected as parents for the crossover.

iv. Crossover: The genes are selected from random parent chromosomes for a crossover with
a probability of 0.3. However, it is advised to avoid large probabilities since this will create
chromosomes with almost all features excluded.

v. Determining whether mutation will be done: Mutation of the chromosomes is the last opera-
tion to be performed. A chromosome is adjusted in order not to converge to a local optimum
too quickly. The change involves randomly excluding a feature with a small probability. This is
not a mandatory step but is used for large datasets in this research or is advised if the number
of iterations increases as well. In this work, the mutation is carried out with the probability of
0.05 in the subsequent four iterations to prevent it from converging too quickly.

vi. Stopping criteria: The algorithm is executed for five iterations to get the optimal results. The
fittest chromosomes are printed onto the console and exported to an excel file after the GA
terminates.

Figure 4: Propose hybrid GA and SVM-based methodology for feature selection and classification
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3.3 Classification Using SVM

Being a supervised machine learning algorithm, SVM is extensively used for classification and
regression problems. It becomes pretty powerful due to its kernel trick. The kernel trick is used to
transform the data to a higher dimension, and then along the guidelines of the transformations, it
calculates an optimal boundary between all the possible outputs. Below is the step-by-step explanation
of SVM classification:

i. Weighting the classes: To get a more emphasized decision boundary, the data sample is
first weighted using the ‘sample_weight’ function of the ‘NumPy’ classifier in Python. The
calculation of each class’s weights was derived. This was done by dividing the total number of
classifier samples by the individual class samples, after which the class weights were multiplied
by 100 to get good weight ratios for SVM training.

ii. Selection of Optimal Parameters for SVM: The optimum classification accuracy of the SVM
classifier was estimated by optimizing the linear kernel parameter and the error penalty param-
eter. The Linear kernel is easily adjustable for both multidimensional and two-dimensional data
due to its ease of use. The classification procedure requires the experiment to select the right
value of γ , a suitable value of the cost function C, and the kernel function. The linear kernel
function was used in this work. These parameters are crucial for results and depend directly
on the rules and type of training data.

iii. Cross Validation (CV) Accuracy: For every pair of (C, γ ), the validation was performed on
67% training and 33% testing data. The evaluation started at a γ value of 0.010 to 35.0. The
best classification is gotten at a γ value of 25.20, with a probability of ‘1’, and for a linear kernel
function. The iteration is repeated 200 times with a 10-fold CV, and training/testing data are
selected randomly. The 10-fold CV was selected to ensure that the classifier did not overfit the
data. The optimal parameters obtained the highest 10-fold CV training accuracy of 99.7%. The
accuracy of the SVM classifier is calculated using the following expression:

Accuracy = Tc

Ts

(4)

where Tc is the number of samples correctly classified, and Ts is the total number of samples that are
used for testing. The parameter defined in the decision function was computed to be 0.1229 on the
last (864th) training iteration.

iv. Output Visualization on Hyperplane: SVM results in hyper-plane graphs are shown in Fig. 6.
However, for a more readable form, a confusion matrix (Fig. 7) is generated, and results can
be viewed.

4 Experimental Results

This section presents the employed dataset detail and experimental environment parameters with
the results:

4.1 Dataset

The dataset employed for energy consumption readings is a sample of 5,567 London Households
named ‘London Smart Homes’1. The dataset spans three years, verified by the smart homes project
of the UK government. The dataset contains energy consumption in kWh (per half hour), unique

1 https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households

https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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household identifier, date, and time. The comma-separated values file is around 10GB when unzipped
and contains 167 million data samples with 71 features. It also contains billing and consumption data
compared to the user’s usage contract.

Data analysis was done in Python by dividing the data into five clusters, each of thousand houses.
Each cluster was analyzed for trends, and then rules were established on these trends on how to
recognize a fraudulent customer, as discussed in Section 3.1.

4.2 Genetic Algorithm Feature Selection Experimentation

To minimize the computational cost, the irrelevant features (number of columns) of the dataset
were highlighted using the GA. GA used the linear estimator fitness function for finding the fitness
of chromosomes, and stopping criteria were kept at six generations. The five offspring were mutated
randomly with a mutation rate of 0.05. The selected features were marked 1, while the non-selected
ones were marked 0.

Fig. 5 presents a graph depicting the history of the entire genetic optimization with the best and
average score for each subsequent generation. The CV-MSE scores against the number of generations
of GA are graphed.

Figure 5: Genetic algorithm optimization showing the CV-MSE scores against several generations

For best accuracy in feature selection, the CV-MSE must be minimized. The number of features in
an SG dataset is many. Most of them do not contribute to the target of the GA, which are the tariffs,
the customer category, billing, and the amount of electricity consumption. The CV-MSE was used to
know how close a regression line is to a set of data points. The fitness function used linear regression,
and the CV-MSE was used to take the distances from the data points (features) to the regression line
(these distances are the “errors”) and square them. The squaring was done to remove any negative
signs. It also increases the weight to larger differences.

Here to remember that the dataset contains a considerable number of records, with 71 features,
which were pre-processed and re-factorized. Finally, 26 features were selected using GA. There
are multiple feature selection methods, which are compared as shown in Table 3. The proposed
methodology reduced the number of features compared to the other methods. This proposed feature
selection method is compared with the three other methods that worked on the data sets with fewer
features. If it is compared concerning the number of features, then the proposed method reduces the
features by 63.38%, which is the highest.



12 CMC, 2022

Table 3: Feature selection comparison of methods

Method Dataset CV MSE Number of features
selected

Reduction in
features (%)

RFE Iris petals dataset 33.21 6 out of 10 40
Feature importance Boston housing

dataset
35.52 9 out of 15 40

Boruta Loan prediction
sample dataset

35.52 9 out of 12 25

Proposed method London smart
homes

28.73 26 out of 71 63.38

4.3 Classification Accuracy Using SVM

For training the SVM model on the dataset, the dataset of 167 million records was now reduced
to around 200,000 chromosomes, with 26 features representing all the various kinds of customers and
classes. The linear kernel distinctly divided the data into two classes. However, any classes (support
vectors) lying closer to the hyper-plane were considered “partially fraudulent.” Fig. 6 represents the
SVM hyper-plane representation of the three classes, as discussed in Section 3.1. Red support vectors
represent Class A (Overloading/fraudulent customers), and Blue represents Class C (regular cus-
tomers). Yellow support vectors closest to the hyper-plane are classified as class B (possibly/partially
fraudulent).

Figure 6: SVM classification for the three highlighted classes of Section 3.1

A confusion matrix represents the performance of the proposed class-based theft detection
method. This model considers theft when logged meter data crosses the preset voltage threshold.
Fraudulent customer is marked 1, and Normal customer is 0. In Fig. 7, the confusion matrix, the
rows, and the columns are named theft and usual. Ten thousand samples are picked randomly from
the output dataset to ensure transparency and accuracy. Following are the results obtained from the
output for the confusion matrix:

• 58 samples were incorrectly classified as a usual or false negative. This is undetected fraud.
• 5724 samples were classified as normal or true positive.
• The classification of 260 samples is incorrect, being considered theft. False positive is the case

in which normal customers are misclassified as fraud.
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• 3942 samples are classified as theft; called true negative; meaning that they have been accurately
identified as falling in the Negative/non-Normal category.

• The following parameter for performance measurement is precision. Precision is the percentage
of true positive instances among the total identified samples as positive by the theft detection
method. The precision of the proposed model is 95.7%.

• The ability of a model to predict true positives is presented as a sensitivity metric. On the
other side, the ability to predict true negatives is presented as a specificity metric. The proposed
model’s sensitivity is 99.0%, and specificity is 93.8%.

• F − Measure = (2 ∗ Precision ∗ Recall)/(Precision + Recall) = (2 ∗ 0.957 ∗ 0.99)/(0.957 +
0.99) = 1.895/1.947 = 0.973. F-score is used to balance out the implications/concerns of both
recall and precision, And the ideal case has a value of 1. Hence this model has an excellent
F-score that balances out the poor decision-making values in precision and recall.

Figure 7: Confusion matrix of class-based theft detection

Table 4 compares the different accuracy of various methods and NTL. The overall validation
accuracy is 96.6%. The most important aspect to remember is that the dataset consists of around
167 million rows, with more than 71 features, which were pre-processed and re-factorized. Finally, 26
features were selected using GA. This makes the model very vast, applicable to big data, and has more
than 50 features. Other models have taken a maximum of 7 to 8 features. The most commonly used
models comprise a combination of SVM with Boolean, fuzzy and neural networks. In addition, we can
also see OPF and regression methods are used. Accuracy is the most popular performance measure
in the literature, ranging from 0.45 to 0.90. Also, some models, such as those that use rough sets,
are simply hypothetical and, while being strong research points, they cannot be considered optimally
applicable to real-world problems as our solution. As a result, SVM was seen as the first choice of
classification for multidimensional data, hence supporting the research that SVM proves best for
classifying data that can predict and classify more than a single output.
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Table 4: Comparison of classification techniques

Model Accuracy NTL theft proportion (%)

[19] SVM (Gauss) 0.86 –
[37] SVM + Fuzzy 0.72 –
[24] Bool rules 0.47 20
[24] Fuzzy rules – 20
[24] SVM (Linear) – 20
[38] Neuro-fuzzy 0.68 –
[26] Neural network 0.87 –
[27] Rough sets 0.93 –
[28] Regression – 4–10
[31] OPF 0.90 –
Proposed framework (Hybrid GA+SVM) 0.966 5-7

5 Conclusion

NTLs are one of the predominant types of losses in SGs. They have a damaging impact on the
economy and loss in revenue. In this paper, we have proposed a novel technique for detecting NTLs,
basically a “fraudulent electricity consumption.” The proposed framework is based on optimized
feature selection using GA and SVM classification. Our methodology, with an accuracy of 96.6%,
shows reliability in detecting NTLs. This framework has the capacity of not only allowing SG
companies to handle NTLs but will also complement their existing frameworks. The real-time
(electricity consumption) data could be used as input to our implemented framework to classify it
as normal, possibly fraudulent, and fraudulent customers. The system would also help monitor the
SG consumption and trends of the customers. The user trends would also help predict future power
consumption and would be helpful to set out the SG upgradation targets. Several challenges, open
questions, and advancement voids still exist towards the advancement of smart grids [39], as our
proposed methodology requires user data for training and testing the system. In the future, we plan
to integrate a data encryption module using the available state-of-the-art data encryption techniques
[40–43]. In addition, the data encryption would prevent data fabrication and theft and add customers’
trust in the energy suppliers. Furthermore, encryption would allow data access control, authentication,
resilience, backup, and recovery.
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